JP2013061161A - Rotation angle detecting device - Google Patents

Rotation angle detecting device Download PDF

Info

Publication number
JP2013061161A
JP2013061161A JP2011198036A JP2011198036A JP2013061161A JP 2013061161 A JP2013061161 A JP 2013061161A JP 2011198036 A JP2011198036 A JP 2011198036A JP 2011198036 A JP2011198036 A JP 2011198036A JP 2013061161 A JP2013061161 A JP 2013061161A
Authority
JP
Japan
Prior art keywords
integrator
rotation angle
output side
sinθ
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198036A
Other languages
Japanese (ja)
Other versions
JP5823785B2 (en
Inventor
Yoshimasa Hieda
祥正 稗田
Fuminori Kobayashi
史典 小林
Manabu Inoue
学 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
New Japan Radio Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Kyushu Institute of Technology NUC
New Japan Radio Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, New Japan Radio Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Kyushu Institute of Technology NUC
Priority to JP2011198036A priority Critical patent/JP5823785B2/en
Publication of JP2013061161A publication Critical patent/JP2013061161A/en
Application granted granted Critical
Publication of JP5823785B2 publication Critical patent/JP5823785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotation angle detecting device dispensing with a dedicated circuit such as a multiplying DAC, a SIN-ROM table, and COS-ROM table.SOLUTION: A rotation angle detecting device comprises: an A/D converter 3A for performing the A/D conversion on a rotation detection signal sinθ*f(t); an A/D converter 3B for performing the A/D conversion on a rotation detection signal cosθ*f(t); Fourier analysis means 4A for extracting an amplitude intensity sinθ of the fundamental wave component from the rotation detection signal sinθ*f(t) converted by the A/D converter 3A; Fourier analysis means 4B for extracting an amplitude intensity cosθ of the fundamental wave component from the rotation detection signal cosθ*f(t) converted by the A/D converter 3B; a composite wave generator/phase controller 5 for generating a composite wave sin(θ-φ) from the amplitude intensities sinθ and cosθ, and an internally estimated angle φ, and for controlling the internally estimated angle φ to be identical with a rotation angle θ on the basis of a polarity of the composite wave sin(θ-φ); and an excitation signal generator 7 for generating a sine wave or a binary excitation signal for the rotation angle detecting device.

Description

本発明は、回転検出器から出力するアナログの角度検出信号をディジタルの角度信号に変換する回転角度検出装置に関する。   The present invention relates to a rotation angle detection device that converts an analog angle detection signal output from a rotation detector into a digital angle signal.

回転角度検出装置として、1相励磁2相出力のレゾルバを回転検出器として用い、そのレゾルバから得られた90度位相差を有する2個の出力信号cosθ、sinθを専用の集積回路にて処理し、レゾルバの回転角度θを検出するR/Dコンバータが知られている(例えば、特許文献1参照)。   As a rotation angle detection device, a resolver with 1-phase excitation and 2-phase output is used as a rotation detector, and two output signals cosθ and sinθ having a 90-degree phase difference obtained from the resolver are processed by a dedicated integrated circuit. An R / D converter that detects a rotational angle θ of a resolver is known (for example, see Patent Document 1).

このR/Dコンバータは、図6に示すように、補償器31から出力するアップ/ダウン信号でアップ/ダウンが制御されるアップ/ダウンカウンタ32から出力する角度情報φを基にして、COS-ROMテーブル33、SIN-ROMテーブル34から正弦波/余弦波の各波高値cosφ/sinφを順次読み出している。そして、これらを、10ビット乗算型DAC35,36において、レゾルバ1の2相の2次巻線から出力するsinθ・f(t)、cosθ・f(t)にそれぞれ乗算して、sinθ・f(t)・cosφ、cosθ・f(t)・sinφを求め、その差分sin(θ−φ)・f(t)を減算器37で求め、比較器38でその極性を検出し、同期検波器39で励磁成分f(t)を除去して制御成分sin(θ−φ)を求め、これを補償器31に入力し、θ>φ、θ<φに応じて、前記アップ/ダウン信号を生成するようにトラッキングループを構成している。そして、θ−φが零となるように制御することで、レゾルバ1の回転子の回転角度θを求めている。40は励磁信号f(t)を生成する励磁信号生成器であり、この励磁信号f(t)がレゾルバ1の1次巻線に印加され、また同期検波用となる。   As shown in FIG. 6, this R / D converter is based on angle information φ output from an up / down counter 32 whose up / down is controlled by an up / down signal output from a compensator 31, and COS − The peak values cosφ / sinφ of the sine wave / cosine wave are sequentially read from the ROM table 33 and the SIN-ROM table 34. These are multiplied by sinθ · f (t) and cosθ · f (t) output from the two-phase secondary windings of the resolver 1 in the 10-bit multiplying DACs 35 and 36, respectively, and sinθ · f ( t) · cosφ and cosθ · f (t) · sinφ are obtained, the difference sin (θ−φ) · f (t) is obtained by the subtractor 37, the polarity is detected by the comparator 38, and the synchronous detector 39 is obtained. Then, the excitation component f (t) is removed to obtain the control component sin (θ−φ), which is input to the compensator 31, and the up / down signal is generated according to θ> φ and θ <φ. The tracking loop is configured as follows. Then, the rotation angle θ of the rotor of the resolver 1 is obtained by controlling so that θ−φ becomes zero. Reference numeral 40 denotes an excitation signal generator for generating an excitation signal f (t). This excitation signal f (t) is applied to the primary winding of the resolver 1 and is used for synchronous detection.

特許第3442316号公報Japanese Patent No. 3442316

しかし、特許文献1のような専用の集積回路を用いる場合、10ビット乗算型DAC35,36、同期検波器39、COS-ROMテーブル33、SIN-ROMテーブル34など、集積回路において非常に面積規模の大きな回路が多く、また処理も複雑となってしまうため、コストが高くなってしまう。特にCOS-ROMテーブル33、SIN−ROMテーブル34を使って角度精度を上げようとする場合、角度分解能が高くなるほど、より緻密に各波高値をROMに記憶させなければならないため、テーブルが巨大化してしまうという問題が生じる。テーブルを巨大化させずに精度をあげる方法として補間処理があるが、この場合、回路構成及び処理がさらに複雑化してしまう。   However, when a dedicated integrated circuit such as Patent Document 1 is used, the integrated circuit such as the 10-bit multiplying DACs 35 and 36, the synchronous detector 39, the COS-ROM table 33, and the SIN-ROM table 34 has a very large area scale. There are many large circuits and the processing becomes complicated, which increases the cost. In particular, when using the COS-ROM table 33 and the SIN-ROM table 34 to increase the angular accuracy, the higher the angular resolution, the more precisely each peak value must be stored in the ROM. Problem arises. Interpolation processing is a method for improving accuracy without enlarging the table, but in this case, the circuit configuration and processing are further complicated.

本発明の目的は、乗算型DACおよびSIN-ROMテーブル、COS−ROMテーブル等の専用回路を不要にした回転角度検出装置を提供することである。   An object of the present invention is to provide a rotation angle detection device that eliminates the need for dedicated circuits such as a multiplying DAC, a SIN-ROM table, and a COS-ROM table.

上記目的を達成するために、請求項1にかかる発明の回転角度検出装置は、回転検出器から出力する2相の回転検出信号sinθ・f(t)、cosθ・f(t)をディジタル変換し、回転角度θを得る回転角度検出装置において、前記回転検出信号sinθ・f(t)をA/D変換する第1のA/D変換手段と、前記回転検出信号cosθ・f(t)をA/D変換する第2のA/D変換手段と、前記第1のA/D変換手段で変換した回転検出信号sinθ・f(t)から基本波成分の振幅強度sinθを抽出する第1のフーリエ分析手段と、前記第2のA/D変換手段で変換した回転検出信号cosθ・f(t)から基本波成分の振幅強度cosθを抽出する第2のフーリエ分析手段と、前記振幅強度sinθ、cosθと内部推定角度φから合成波sin(θ−φ)を生成するとともに、該合成波sin(θ−φ)の極性にもとづき内部推定角度φを回転角度θに一致するように制御する合成波生成・位相制御手段と、前記回転検出器への正弦波または2値の励磁信号を生成する励磁信号生成手段と、を有することを特徴とする。
請求項2にかかる発明は、請求項1に記載の回転角度検出装置において、前記第1および第2のフーリエ分析手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる2相発振器でそれぞれ構成され、前記第1のフーリエ分析手段は、前記第1の積分器に前記回転検出信号sinθ・f(t)が更新してセットされ、前記第1の積分器の出力側から振幅強度sinθが抽出され、前記第2のフーリエ分析手段は、前記第1の積分器に前記回転検出信号cosθ・f(t)が更新してセットされ、前記第1の積分器の出力側から振幅強度cosθが抽出される、ことを特徴とする。
請求項3にかかる発明は、請求項1に記載の回転角度検出装置において、前記合成波生成・位相制御手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる2相発振器で構成され、前記第1の積分器に前記振幅強度sinθが更新してセットされ、前記第2の積分器に前記振幅強度cosθが更新してセットされ、前記第1の積分器の出力側から前記合成波sin(θ−φ)が生成され、該合成波sin(θ−φ)の極性に基づき、内部推定角度φが前記回転角度θに一致するよう前記第1のω係数器と前記第2のω係数器の極性が制御されることを特徴とする。
請求項4にかかる発明は、請求項1に記載の回転角度検出装置において、前記第1および第2のフーリエ分析手段、前記合成波生成・位相制御手段、並びに正弦波を生成する励磁信号生成手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる共通の2相発振器で構成され、前記第1および第2のフーリエ分析手段、前記合成波生成・位相制御手段、並びに前記励磁信号生成手段が時分割で動作し、前記第1の積分器および前記第2の積分器の値が、前記時分割動作に応じて置き換えられるようにしたことを特徴とする。
In order to achieve the above object, the rotation angle detection device according to the first aspect of the present invention digitally converts the two-phase rotation detection signals sinθ · f (t) and cosθ · f (t) output from the rotation detector. In the rotation angle detecting device for obtaining the rotation angle θ, the rotation detection signal sinθ · f (t) is A / D converted by a first A / D conversion means, and the rotation detection signal cosθ · f (t) is converted to A Second A / D conversion means for D / D conversion, and first Fourier for extracting amplitude intensity sin θ of the fundamental wave component from the rotation detection signal sin θ · f (t) converted by the first A / D conversion means Analysis means, second Fourier analysis means for extracting the amplitude intensity cosθ of the fundamental wave component from the rotation detection signal cosθ · f (t) converted by the second A / D conversion means, and the amplitude intensity sinθ, cosθ And a synthesized wave sin (θ−φ) from the internal estimated angle φ and the internal estimated angle φ based on the polarity of the synthesized wave sin (θ−φ) And a synthetic wave generation / phase control means for controlling the rotation angle θ to coincide with the rotation angle θ, and an excitation signal generation means for generating a sine wave or binary excitation signal for the rotation detector. .
According to a second aspect of the present invention, in the rotation angle detection device according to the first aspect, the first and second Fourier analysis means are input to a first integrator and an output side of the first integrator. A first ω coefficient unit connected to the output side, a second integrator connected to the output side of the first ω coefficient unit, and an output side connected to the output side of the second integrator. Each of which is composed of a two-phase oscillator comprising a second ω coefficient unit connected to the input side of the first integrator, and the first Fourier analysis means is connected to the first integrator to detect the rotation. The signal sinθ · f (t) is updated and set, the amplitude intensity sinθ is extracted from the output side of the first integrator, and the second Fourier analysis means detects the rotation in the first integrator. The signal cosθ · f (t) is updated and set, and the amplitude intensity cosθ is extracted from the output side of the first integrator. It is characterized by that.
According to a third aspect of the present invention, in the rotation angle detection device according to the first aspect, the synthesized wave generation / phase control means includes a first integrator and an input side connected to an output side of the first integrator. The first ω coefficient unit, the second integrator whose input side is connected to the output side of the first ω coefficient unit, the input side is connected to the output side of the second integrator, and the output side is the aforementioned The second integrator is composed of a second ω coefficient unit connected to the input side of the first integrator, the amplitude intensity sin θ is updated and set in the first integrator, and the second integrator The amplitude intensity cos θ is updated and set in an integrator, and the combined wave sin (θ−φ) is generated from the output side of the first integrator, and based on the polarity of the combined wave sin (θ−φ) The polarities of the first ω coefficient unit and the second ω coefficient unit are controlled so that the internal estimated angle φ matches the rotation angle θ. It is characterized by.
According to a fourth aspect of the present invention, in the rotation angle detecting device according to the first aspect, the first and second Fourier analysis means, the synthesized wave generation / phase control means, and an excitation signal generation means for generating a sine wave Includes a first integrator, a first ω coefficient unit whose input side is connected to the output side of the first integrator, and a second one whose input side is connected to the output side of the first ω coefficient unit. And a second ω-coefficient generator having an input side connected to the output side of the second integrator and an output side connected to the input side of the first integrator. The first and second Fourier analysis means, the synthesized wave generation / phase control means, and the excitation signal generation means operate in a time-sharing manner, and the values of the first integrator and the second integrator Is replaced according to the time-sharing operation.

本発明の回転角度検出装置によれば、従来では必要であった乗算型DAC、同期検波器、補償器、SIN-ROMテーブル、COS−ROMテーブル等の専用回路が不要になる。特に乗算型DAC、SIN-ROMテーブル、COS-ROMテーブルは、半導体装置においてチップ面積に対する比率が大きいため、不要にすることによりチップ面積を大幅に小さくすることができ、コストを下げることができる。また、本発明をDSP、マイコン等で実現する場合においても、より廉価なDSP、マイコン等で実現することができる利点がある。さらに2相発振器自体が一般的な論理回路で構成できるため、2相発振器を応用したフーリエ分析器、合成波生成・位相制御手段、励磁信号生成手段も一般的な回路構成で実現でき、信号処理部全体に関して、半導体装置においてはチップ面積を下げることができ、DSP、マイコン等においては処理が軽くなり、より廉価なもので実現できる利点がある。   According to the rotation angle detection device of the present invention, dedicated circuits such as a multiplying DAC, a synchronous detector, a compensator, a SIN-ROM table, and a COS-ROM table, which are conventionally required, are not required. In particular, since the multiplying DAC, the SIN-ROM table, and the COS-ROM table have a large ratio to the chip area in the semiconductor device, the chip area can be significantly reduced by reducing the cost and the cost can be reduced. Further, even when the present invention is realized by a DSP, a microcomputer, etc., there is an advantage that it can be realized by a cheaper DSP, a microcomputer, etc. Furthermore, since the two-phase oscillator itself can be configured with a general logic circuit, a Fourier analyzer, synthetic wave generation / phase control means, and excitation signal generation means that apply the two-phase oscillator can also be realized with a general circuit configuration for signal processing. With respect to the entire unit, the chip area can be reduced in the semiconductor device, and the processing is lightened in the DSP, microcomputer, etc., and there is an advantage that it can be realized at a lower cost.

本発明の一実施例の回転角度検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the rotation angle detection apparatus of one Example of this invention. ディジタル2相発振器の構成を示す説明図である。It is explanatory drawing which shows the structure of a digital two phase oscillator. 2相発振器を応用して構成したフーリエ分析器4A,4Bを示す説明図である。It is explanatory drawing which shows Fourier analyzer 4A, 4B comprised by applying a two-phase oscillator. 2相発振器を応用して構成した合成波生成・位相制御器5を示す構成図である。It is a block diagram which shows the synthetic wave production | generation / phase controller 5 comprised applying the two-phase oscillator. 共通の2相発振器によりフーリエ分析器4A,4Bと、合成波生成・位相制御器5と、励磁信号生成器7の処理を時分割で行う構成の説明図である。It is explanatory drawing of the structure which performs the processing of Fourier analyzer 4A, 4B, the synthetic wave production | generation / phase controller 5, and the excitation signal generator 7 by a common 2 phase oscillator by a time division. 従来のR/Dコンバータの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional R / D converter.

以下に本発明の回転角度検出装置の実施例について説明する。図1はその一実施例の構成を示すブロック図で、1は回転検出器であるレゾルバ本体、2は回転角度検出部を示す。回転角度検出部2おいて、3Aは正弦波側のA/D変換器、3Bは余弦波側のA/D変換器、4Aは正弦波側のフーリエ分析器、4Bは余弦波側のフーリエ分析器である。A/D変換器3A,3Bは同じ回路構成、フーリエ分析器4A,4Bは同じ回路構成である。5は合成波生成・位相制御器、6は制御器、7は励磁信号生成器である。なお、フーリエ分析器4A、4B、合成波生成・位相制御器5、励磁信号生成器7は、いずれも2相発振器を基とした回路で構成されている。   Embodiments of the rotation angle detection device of the present invention will be described below. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. Reference numeral 1 denotes a resolver body which is a rotation detector, and 2 denotes a rotation angle detector. In the rotation angle detector 2, 3A is a sine wave side A / D converter, 3B is a cosine wave side A / D converter, 4A is a sine wave side Fourier analyzer, and 4B is a cosine wave side Fourier analysis. It is a vessel. The A / D converters 3A and 3B have the same circuit configuration, and the Fourier analyzers 4A and 4B have the same circuit configuration. Reference numeral 5 denotes a composite wave generator / phase controller, 6 denotes a controller, and 7 denotes an excitation signal generator. The Fourier analyzers 4A and 4B, the synthesized wave generator / phase controller 5 and the excitation signal generator 7 are all configured by a circuit based on a two-phase oscillator.

図2はディジタル2相発振器の構成を示したもので、8が加算器、9A,9Bが積分器、10A,10Bがω係数器である。積分器9A,9Bは、レジスタ91と2相発振器の出力発散防止のための1−δ係数器92と加算器93とで構成されている。なお、2相発振器をディジタル的に表現する場合、ω係数器10A,10B、および1−δ係数器92の係数値は、ビットシフト回路と加算器を組み合わせることで実現できる。   FIG. 2 shows the configuration of a digital two-phase oscillator, where 8 is an adder, 9A and 9B are integrators, and 10A and 10B are ω coefficient units. The integrators 9A and 9B include a register 91, a 1-δ coefficient unit 92 for preventing output divergence of the two-phase oscillator, and an adder 93. When the two-phase oscillator is digitally expressed, the coefficient values of the ω coefficient units 10A and 10B and the 1-δ coefficient unit 92 can be realized by combining a bit shift circuit and an adder.

2相発振器自体は公知の技術であるが、簡単にその原理を説明する。積分器9A,9Bを伝達関数1/sとし、図2の加算器8に発振の初期値として振幅Aのインパルスを入力すると、右上側の出力Z(s)は以下のように求められる。

Figure 2013061161
式(1)を逆ラプラス変換すると、Z(t)=Acosωtとなる。
同様に、左下側の出力Z'(s)は以下のように求められる。
Figure 2013061161
式(2)を逆ラプラス変換すると、Z'(t)=−Asinωtとなる。つまり、2相発振器においては同一の入力信号(振幅Aのインパルス)に対して、Acosωt、−Asinωtの2相の出力を同時に得ることができる。 The two-phase oscillator itself is a known technique, but its principle will be briefly described. When integrators 9A and 9B have a transfer function 1 / s and an impulse of amplitude A is input to adder 8 in FIG. 2 as an initial value of oscillation, output Z (s) on the upper right side is obtained as follows.
Figure 2013061161
When equation (1) is subjected to inverse Laplace transform, Z (t) = Acosωt.
Similarly, the lower left output Z ′ (s) is obtained as follows.
Figure 2013061161
When Expression (2) is subjected to inverse Laplace transform, Z ′ (t) = − Asinωt. That is, in the two-phase oscillator, two-phase outputs of Acosωt and −Asinωt can be simultaneously obtained with respect to the same input signal (impulse of amplitude A).

この原理を応用したものがフーリエ分析器4A、4Bであり、図3にフーリエ分析器の伝達関数を示す。積分器41A,41Bは、レジスタ411と1−δ係数器412と加算器413とで構成される。42A,42Bはω係数器である。その考え方は文献(小林史典、中野道雄、「2相発振器を応用したアナログ式フーリエ分析器」、電子通信学会論文誌 別刷、Trans.IECE '80/6 Vol.63-C No.6)を参考にしている。詳しい説明は前記文献に譲るが、簡単に説明すると、図3の系の加算器43にωの成分を有する周期信号f(t)(=f(t+nT))が入力される場合、出力は系のインパルス応答と、入力信号の畳み込み積分で表されることから、T周期後のcos側出力からは、信号のcosωtの振幅値に比例した値(一次成分)が出力し、sin側出力からは信号のsinωtの振幅値に比例した値(一次成分)が出力する。 The application of this principle is the Fourier analyzers 4A and 4B, and FIG. 3 shows the transfer function of the Fourier analyzer. The integrators 41A and 41B are composed of a register 411, a 1-δ coefficient unit 412 and an adder 413. Reference numerals 42A and 42B denote ω coefficient units. For the idea, refer to the literature (Fuminori Kobayashi, Michio Nakano, “Analog Fourier Analyzer Applying Two-Phase Oscillator”, IEICE Transactions, Trans.IECE '80 / 6 Vol.63-C No.6) I have to. The detailed description will be given in the above document, but in brief, when a periodic signal f (t) (= f (t + nT)) having a component of ω is input to the adder 43 of the system of FIG. Therefore, from the cos side output after T period, a value (primary component) proportional to the amplitude value of cosωt of the signal is output, and from the sin side output A value (primary component) proportional to the amplitude value of sinωt of the signal is output.

これにより、図1のフーリエ分析器4A,4Bでは、それぞれの加算器43にA/D変換器3A,3Bから出力するsinθ・f(t)、cosθ・f(t)をそれぞれ入力させれば、周波数成分f(t)は無くなるので、sinθ・f(t)側のフーリエ分析器4Aからは励磁信号f(t)の振幅値に当たるsinθが得られ、cosθ・f(t)側のフーリエ分析器4Bからはcosθが得られる。また、このフーリエ分析器4A,4Bにおいて、励磁成分f(t)は除去されるので、同期検波は不要となる。なお、本発明においては、励磁信号にωの成分を有する正弦波を用いている(f(t)=sinωt)が、方形波を用いても同様の分析結果が得られることは明らかであり、その場合、励磁信号生成器7には2相発振器を用いず、分周器のみでごく簡単に構成可能であり、その出力も電圧レベルとしては“Low/High”の2種類だけであるので、例えばオープンドレイン出力端子などを使えば、プルアップするための電源電圧を変化させるだけで、信号の増幅も非常に効率的に行うことが出来る。   Thus, in the Fourier analyzers 4A and 4B in FIG. 1, if each adder 43 is input with sin θ · f (t) and cos θ · f (t) output from the A / D converters 3A and 3B, respectively. Since the frequency component f (t) is eliminated, sinθ corresponding to the amplitude value of the excitation signal f (t) is obtained from the Fourier analyzer 4A on the sinθ · f (t) side, and Fourier analysis on the cosθ · f (t) side is obtained. Cos θ is obtained from the device 4B. Further, in the Fourier analyzers 4A and 4B, since the excitation component f (t) is removed, synchronous detection becomes unnecessary. In the present invention, a sinusoidal wave having a ω component is used for the excitation signal (f (t) = sinωt). However, it is clear that a similar analysis result can be obtained using a square wave, In that case, the excitation signal generator 7 can be configured with only a frequency divider without using a two-phase oscillator, and its output is only two kinds of voltage levels of “Low / High”. For example, if an open drain output terminal or the like is used, signal amplification can be performed very efficiently only by changing the power supply voltage for pull-up.

フーリエ分析器4A,4Bより得られた振幅値sinθ、cosθから制御偏差ε=sin(θ-φ)を求めるのが、合成波生成・位相制御器5である。合成波生成・位相制御器5も2相発振器の応用で実現できる。合成波生成・位相制御器5の伝達関数を図4に示す。この合成波生成・位相制御器5は、2相発振器を重ね合わせたものであり、その動作は以下のようになる。図4において、51A,51Bは積分器、52A,52Bはω係数器、53A,53Bは加算器である。積分器51A,51Bは、レジスタ511、1−δ係数器512、加算器513で構成される。 The synthesized wave generator / phase controller 5 obtains the control deviation ε = sin (θ−φ) from the amplitude values sinθ and cosθ obtained from the Fourier analyzers 4A and 4B. The synthesized wave generator / phase controller 5 can also be realized by application of a two-phase oscillator. The transfer function of the composite wave generator / phase controller 5 is shown in FIG. The composite wave generator / phase controller 5 is a superposition of two-phase oscillators, and its operation is as follows. In FIG. 4, 51A and 51B are integrators, 52A and 52B are ω coefficient units, and 53A and 53B are adders. The integrators 51A and 51B include a register 511, a 1-δ coefficient unit 512, and an adder 513.

図4の加算器53Aに振幅Aのインパルスを入力した場合を考える。この場合、右上側の出力からはAcosωtの信号が得られる。同様に図4の加算器53Bに振幅値Bのインパルスを入力した場合を考える。この場合、右上側の出力からは−Bsinωtの信号が得られる。よって、同じタイミングで振幅A、Bを2相発振器の系に入力した場合を考えると、右上側の出力よりそれぞれの出力の和であるAcosωt−Bsinωtを得ることができる。 Consider a case where an impulse of amplitude A is input to the adder 53A of FIG. In this case, an Acosωt signal is obtained from the output on the upper right side. Similarly, consider a case where an impulse having an amplitude value B is input to the adder 53B in FIG. In this case, a signal of −Bsinωt is obtained from the output on the upper right side. Therefore, considering the case where the amplitudes A and B are input to the two-phase oscillator system at the same timing, Acosωt−Bsinωt that is the sum of the outputs can be obtained from the output on the upper right side.

ここで図1のブロック図において、合成波生成・位相制御器5に入力される振幅Aをsinθ、振幅Bをcosθ、角度ωtを内部推定角度φとすると、三角関数の加法定理より上記合成波出力は以下のようになる。

Figure 2013061161
Here, in the block diagram of FIG. 1, when the amplitude A input to the combined wave generator / phase controller 5 is sin θ, the amplitude B is cos θ, and the angle ω t is the internal estimated angle φ, the above combined wave is obtained from the trigonometric addition theorem. The output is as follows:
Figure 2013061161

この式(3)より、図1の合成波生成・位相制御器5より出力される信号は、制御偏差εそのものとなることが判る。この制御偏差ε=sin(θ−φ)において、θはレゾルバ1の回転角度、φは内部推定角度であるため、両者が一致するよう、つまり制御偏差ε=0となるように図1の合成波生成・位相制御器5は動作する。これにより、回転角度θ−φ=0から、θを検出することができる。   From this equation (3), it can be seen that the signal output from the combined wave generator / phase controller 5 of FIG. 1 is the control deviation ε itself. In this control deviation ε = sin (θ−φ), θ is the rotation angle of the resolver 1 and φ is the internal estimated angle, so that both are matched, that is, the composition of FIG. The wave generator / phase controller 5 operates. Thereby, θ can be detected from the rotation angle θ−φ = 0.

具体的には、制御偏差εは2の補数表現で表されるため、最上位の符号ビット(MSB)で正負の判別ができ、図4の上側の積分器51Aのレジスタ511のMSBが‘0’の場合、θ>φとなるため、図4のω係数器52A,52Bの符号はそのままで、内部推定角度φの位相を進める。逆にMSBが‘1’の場合、θ<φとなるため、図4のω係数器52A,52Bの符号を逆に替えて内部推定角度φの位相を遅らせる。これにより、φ=θに収束する。   Specifically, since the control deviation ε is represented by a two's complement expression, positive / negative discrimination can be made with the most significant sign bit (MSB), and the MSB of the register 511 of the upper integrator 51A in FIG. In the case of ', θ> φ, so the phase of the internal estimation angle φ is advanced while the signs of the ω coefficient units 52A and 52B in FIG. Conversely, when the MSB is ‘1’, θ <φ, so the sign of the ω coefficient units 52A and 52B in FIG. 4 is reversed to delay the phase of the internal estimated angle φ. This converges to φ = θ.

これを実際にクロック周期ΔTの概念を入れて式で表すと、以下のようになる。制御偏差εが、ε>0、つまりMSB=‘0’のときは、

Figure 2013061161
となる。一方、ε<0、つまりMSB=‘1’のときは、
Figure 2013061161
となる。このように、合成波生成・位相制御器5の内部で制御偏差εのフィードバック制御を行うことで、常にθ=φを得ることができる。 When this is actually expressed by an expression including the concept of the clock period ΔT, it is as follows. When the control deviation ε is ε> 0, that is, MSB = '0',
Figure 2013061161
It becomes. On the other hand, when ε <0, that is, when MSB = '1',
Figure 2013061161
It becomes. In this way, by performing feedback control of the control deviation ε inside the composite wave generator / phase controller 5, θ = φ can always be obtained.

また、制御器6では、合成波生成・位相制御器5で得られたMSBをアップ/ダウン信号として、内部推定角度φを表すアップ/ダウンカウンタのカウント値を同じタイミングで増減している。このため、(3)式で表される合成波生成・位相制御器5の内部推定角度φと、制御器6から出力される内部推定角度φは、常に同期している。つまり、制御器6からはレゾルバ1の回転角度θ(=φ)を表す信号が出力する。   Further, the controller 6 uses the MSB obtained by the synthesized wave generator / phase controller 5 as an up / down signal to increase / decrease the count value of the up / down counter representing the internal estimated angle φ at the same timing. For this reason, the internal estimated angle φ of the synthesized wave generation / phase controller 5 expressed by the equation (3) and the internal estimated angle φ output from the controller 6 are always synchronized. That is, the controller 6 outputs a signal representing the rotation angle θ (= φ) of the resolver 1.

なお、図1において、励磁信号生成器7は図2に示した2相発振器そのものであり、回転検出器1の励磁側へ、ωの成分を含む励磁成分f(t)=sinωtを出力する。 In FIG. 1, the excitation signal generator 7 is the two-phase oscillator itself shown in FIG. 2, and outputs the excitation component f (t) = sinωt including the component ω to the excitation side of the rotation detector 1.

本発明の実施例では励磁信号f(t)に正弦波を使用しているが、フーリエ分析器の説明でも述べたように、方形波を使用しても同様の結果が得られる。方形波を利用する場合、分周器を利用して励磁信号を生成できるため、マイコン等DAC出力を持たない半導体装置で本発明を実現する場合においても、実現することができる。   In the embodiment of the present invention, a sine wave is used for the excitation signal f (t). However, as described in the description of the Fourier analyzer, a similar result can be obtained by using a square wave. When a square wave is used, an excitation signal can be generated using a frequency divider. Therefore, the present invention can be realized even when the present invention is realized by a semiconductor device such as a microcomputer that does not have a DAC output.

以上の説明及び図2〜図4から判るように、本発明において主要な構成要素であるフーリエ分析器4A,4B、合成波生成・位相制御器5、および励磁信号生成器7は、全て2相発振器を基とするほぼ同じ回路によって構成されている。   As can be seen from the above description and FIGS. 2 to 4, the Fourier analyzers 4 </ b> A and 4 </ b> B, the synthesized wave generator / phase controller 5, and the excitation signal generator 7, which are main components in the present invention, are all two-phase. It is constituted by almost the same circuit based on an oscillator.

2相発振器自体は、図2からも明らかなように簡単な回路で構成されているため、本発明における回転角度検出装置を専用の半導体装置で構成する場合、A/D変換回路以外には特許文献1のような専用回路を必要とせず、ハードウェアを大幅に簡略化できる。またDSP、マイコン等で構成する場合においても、一般的にDSP、マイコン等が具備している回路で実現可能であり、複雑な処理を必要としないため、より廉価なDSP、マイコンで実現することが可能である。   Since the two-phase oscillator itself is configured with a simple circuit as is apparent from FIG. 2, when the rotation angle detection device according to the present invention is configured with a dedicated semiconductor device, there is a patent other than the A / D conversion circuit. The dedicated circuit as in Document 1 is not required, and the hardware can be greatly simplified. Even in the case of a DSP, microcomputer, etc., it can be realized by a circuit generally provided by the DSP, microcomputer, etc., and does not require complicated processing, so it can be realized by a cheaper DSP, microcomputer. Is possible.

いま、励磁信号生成器7で生成される励磁信号f(t)(=sinωt)を図2の2相発振器で生成し、フーリエ分析器4A,4Bで生成されるsinθ、cosθを図3の2相発振器で生成し、合成波生成/位相制御器5で生成される合成波sin(θ−φ)を図4の2相発振器で生成する場合、それらの2相発振器を構成する1−δ係数器及びω係数器はビットシフト回路と加算器の組み合わせで構成できるため、その組み合わせを切り替えることで共有させることができ、このとき、積分器を構成するレジスタは、そこにセットするデータを入れ替えることによって、そのレジスタも共有させることができる。   Now, the excitation signal f (t) (= sinωt) generated by the excitation signal generator 7 is generated by the two-phase oscillator of FIG. 2, and sinθ and cosθ generated by the Fourier analyzers 4A and 4B are represented by 2 in FIG. When the composite wave sin (θ−φ) generated by the phase oscillator and generated by the composite wave generator / phase controller 5 is generated by the two-phase oscillator of FIG. 4, the 1-δ coefficient constituting these two-phase oscillators Can be shared by switching the combination, and at this time, the register that configures the integrator replaces the data set there Can also share the register.

図5はこのように1つの2相発振器によって、励磁信号生成器7、フーリエ分析器4A,4B、合成波生成/位相制御器5の3種の回路を実現する場合の構成を示す図である。積分器60A,60Bは、レジスタ61、1−δ係数器62、加算器63、セレクタ64で構成される。そして、1−δ係数器62は、ビットシフト回路群621、セレクタ622〜624、および加算器625で構成される。また、ω係数器70A,70Bは、ビットシフト回路群71、セレクタ72〜74、加算器75、利得が−1の乗算器76、およびセレクタ77で構成される。   FIG. 5 is a diagram showing a configuration in the case where three types of circuits of the excitation signal generator 7, the Fourier analyzers 4A and 4B, and the synthesized wave generator / phase controller 5 are realized by one two-phase oscillator as described above. . The integrators 60A and 60B include a register 61, a 1-δ coefficient unit 62, an adder 63, and a selector 64. The 1-δ coefficient unit 62 includes a bit shift circuit group 621, selectors 622 to 624, and an adder 625. The ω coefficient units 70A and 70B include a bit shift circuit group 71, selectors 72 to 74, an adder 75, a multiplier 76 having a gain of -1, and a selector 77.

図5の回路を励磁信号生成器7として使用する場合は、積分器60A,60Bにおいて、ビットシフト回路群621の所定のビットシフト回路により得られる1−δ係数をセレクタ622〜624で選択する。そして、一方の積分器60Aのセレクタ64によって、外部入力する初期値(図2の初期パルスAに相当する値)をレジスタ61に取り込んでおく。なお、他方の積分器60Bのセレクタ64は加算器63の出力を選択するようにする。また、ω係数器70A,70Bにおいて、ビットシフト回路群71の所定のビットシフト回路により得られるω係数をセレクタ72〜74で選択し、セレクタ77でそのω係数の極性を選択する。ω係数の値は、例えば、T=50であれば、ω=2π/Tにより、ω=0.125663706・・・≒2-3+2-11+2-13により設定される。これにより、f(t)=sinωtが積分器60Bから生成される。ただし、(1−δ係数、及びω係数を決める)このビットシフト回路のセレクタの数は、3個に限られるものではなく、必要な精度で決まる。 When the circuit of FIG. 5 is used as the excitation signal generator 7, the integrators 60A and 60B select 1-δ coefficients obtained by a predetermined bit shift circuit of the bit shift circuit group 621 using the selectors 622 to 624. Then, an initial value (a value corresponding to the initial pulse A in FIG. 2) input externally is taken into the register 61 by the selector 64 of one integrator 60A. The selector 64 of the other integrator 60B selects the output of the adder 63. In the ω coefficient units 70A and 70B, the ω coefficient obtained by a predetermined bit shift circuit of the bit shift circuit group 71 is selected by the selectors 72 to 74, and the polarity of the ω coefficient is selected by the selector 77. For example, when T = 50, the value of the ω coefficient is set by ω = 2π / T and ω = 0.125663706... ≈2 −3 +2 −11 +2 −13 . Thereby, f (t) = sinωt is generated from the integrator 60B. However, the number of selectors of this bit shift circuit (determining the 1-δ coefficient and the ω coefficient) is not limited to three, but is determined by the required accuracy.

図5の回路をフーリエ分析器4A,4Bとして使用する場合は、フーリエ分析器4A,4Bのそれぞれを図5の回路で構成する。そして、積分器60A,60Bにおいて、ビットシフト回路群621の所定のビットシフト回路により得られる1−δ係数をセレクタ622〜624で選択する。そして、一方の積分器60Aのセレクタ64によって、図1のA/D変換器3A,3Bから入力する値(sinθ・f(t)、又はcosθ・f(t))を当該値が更新される毎に初期値としてレジスタ61に取り込み発振を行わせる。なお、他方の積分器60Bのセレクタ64は加算器63の出力を選択するようにする。また、ω係数器70A,70Bにおいて、ビットシフト回路群71の所定のビットシフト回路により得られるω係数をセレクタ72〜74で選択し、セレクタ77でそのω係数の極性を選択する。これにより、積分器60Aから入力信号の振幅値であるcosθ、又はsinθが生成される。   When the circuit of FIG. 5 is used as the Fourier analyzers 4A and 4B, each of the Fourier analyzers 4A and 4B is configured by the circuit of FIG. In integrators 60A and 60B, selectors 622 to 624 select 1-δ coefficients obtained by a predetermined bit shift circuit of bit shift circuit group 621. Then, the value (sinθ · f (t) or cosθ · f (t)) input from the A / D converters 3A and 3B in FIG. 1 is updated by the selector 64 of one integrator 60A. Each time, an initial value is taken into the register 61 and oscillation is performed. The selector 64 of the other integrator 60B selects the output of the adder 63. In the ω coefficient units 70A and 70B, the ω coefficient obtained by a predetermined bit shift circuit of the bit shift circuit group 71 is selected by the selectors 72 to 74, and the polarity of the ω coefficient is selected by the selector 77. Thereby, cos θ or sin θ, which is the amplitude value of the input signal, is generated from the integrator 60A.

図5の回路を合成波生成/位相制御器5として使用する場合は、積分器60A,60Bにおいて、ビットシフト回路群621の所定のビットシフト回路により得られる1−δ係数をセレクタ622〜624で選択する。そして、一方の積分器60Aのセレクタ64によって、図1のフーリエ分析器4Aから入力する値(sinθ)を当該値が更新される毎に初期値としてレジスタ61に取り込み、他方の積分器60Bのセレクタ64によって、図1のフーリエ分析器4Bから入力する値(cosθ)を当該値が更新される毎(つまり、前記cosθの取り込みと同時)に初期値としてレジスタ61に取り込み、発振を行わせる。また、ω係数器70A,70Bにおいて、ビットシフト回路群71の所定のビットシフト回路により得られるω係数をセレクタ72〜74で選択し、積分器60A側のレジスタ61のデータのMSBの値に応じて、セレクタ77でそのω係数の極性を選択する。これにより、積分器60Aからsin(θ−φ)が生成される。   When the circuit of FIG. 5 is used as the synthesized wave generator / phase controller 5, the integrators 60A and 60B use selectors 622 to 624 to obtain 1-δ coefficients obtained by a predetermined bit shift circuit of the bit shift circuit group 621. select. Then, the selector 64 of one integrator 60A takes in the value (sinθ) input from the Fourier analyzer 4A of FIG. 1 into the register 61 as an initial value every time the value is updated, and the selector of the other integrator 60B. 64, the value (cos θ) input from the Fourier analyzer 4B of FIG. 1 is loaded into the register 61 as an initial value every time the value is updated (that is, simultaneously with the loading of cos θ), and oscillation is performed. Further, in the ω coefficient units 70A and 70B, the ω coefficient obtained by a predetermined bit shift circuit of the bit shift circuit group 71 is selected by the selectors 72 to 74, and according to the MSB value of the data in the register 61 on the integrator 60A side. The selector 77 selects the polarity of the ω coefficient. Thereby, sin (θ−φ) is generated from the integrator 60A.

図5の構成では、以上の励磁信号生成器7、フーリエ分析器4A,4B、および合成波生成・位相制御器5のような3種類4つの2相発振器の動作を、時分割動作により実施する。この時分割動作では、励磁信号生成器7として動作させるときは、フーリエ分析器4A,4B、および合成波生成・位相制御器5で動作して生成した積分器60A,60Bのレジスタ61の値を図示しないメモリ(レジスタ)に一時待避させ、フーリエ分析器4A,4Bの一方として動作させるときは、フーリエ分析器4A,4Bの他方、励磁信号生成器7、および合成波生成・位相制御器5で動作して生成した積分器60A,60Bのレジスタ61の値をメモリ(レジスタ)に一時待避させ、合成波生成・位相制御器5として動作させるときは、フーリエ分析器4A,4B、および励磁信号生成器7で動作して生成した積分器60A,60Bのレジスタ61の値をメモリ(レジスタ)に一時待避させる。そして、励磁信号生成器7、フーリエ分析器4A,4B、合成波生成・位相制御器5としてそれぞれを動作させるとき、それぞれメモリの値をセレクタ64から取り込んでレジスタ61に復帰セットさせて、当該の動作を行わせる。このような手法により、積分器60A,60Bのレジスタ61をそれぞれ1個で済ませることができ、回路素子を大幅に削減できる。   In the configuration of FIG. 5, the operations of the three types of four two-phase oscillators such as the excitation signal generator 7, the Fourier analyzers 4 </ b> A and 4 </ b> B, and the synthesized wave generator / phase controller 5 are performed by a time division operation. . In this time division operation, when the excitation signal generator 7 is operated, the values of the registers 61 of the integrators 60A and 60B generated by the operations of the Fourier analyzers 4A and 4B and the synthesized wave generator / phase controller 5 are used. When temporarily storing in a memory (register) (not shown) and operating as one of the Fourier analyzers 4A and 4B, the other of the Fourier analyzers 4A and 4B, the excitation signal generator 7 and the combined wave generator / phase controller 5 When the value of the register 61 of the integrators 60A and 60B generated by the operation is temporarily saved in the memory (register) and operated as the synthesized wave generator / phase controller 5, the Fourier analyzers 4A and 4B and the excitation signal generator are generated. The value of the register 61 of the integrators 60A and 60B generated by the operation of the generator 7 is temporarily saved in the memory (register). When each of the excitation signal generator 7, the Fourier analyzers 4 A and 4 B, and the combined wave generator / phase controller 5 is operated, the memory value is taken from the selector 64 and returned to the register 61 to be set. Let the action take place. By such a method, it is possible to use only one register 61 for each of the integrators 60A and 60B, and the circuit elements can be greatly reduced.

本発明の回転角度検出装置は、以上の実施例で説明した1相励磁2相出力のレゾルバ1以外にも、90度位相の異なる信号を出力する回転検出器の信号処理の実現に好適である。   The rotation angle detection device of the present invention is suitable for realizing signal processing of a rotation detector that outputs signals having phases different from each other by 90 degrees in addition to the resolver 1 having a single-phase excitation and two-phase output described in the above embodiments. .

1:レゾルバ
2:回転角度検出部
3A,3B:A/D変換器、4,4A,4B:フーリエ分析器、5:合成波生成/位相制御器、6:制御器、7:励磁信号生成器
8:加算器、9A,9B:積分器、91:レジスタ、92:1−δ係数器、93:加算器、10A,10B:ω係数器
41A,41B:積分器、411:レジスタ、412:1−δ係数器、413:加算器、42A,42B:ω係数器、43:加算器
51A,51B:積分器、511:レジスタ、512:1−δ係数器、513:加算器、52A,52B:ω係数器、53A,53B:加算器
60A,60B:積分器、61:レジスタ、62:1−δ係数器、621:ビットシフト回路群、622〜624:セレクタ、625:加算器、63:加算器、64:セレクタ
70A,70B:ω係数器、71:ビットシフト回路群、72〜74:セレクタ、75:加算器、76:乗算器、77:セレクタ
1: Resolver 2: Rotation angle detector 3A, 3B: A / D converter, 4, 4A, 4B: Fourier analyzer, 5: Synthetic wave generator / phase controller, 6: Controller, 7: Excitation signal generator 8: adder, 9A, 9B: integrator, 91: register, 92: 1-δ coefficient multiplier, 93: adder, 10A, 10B: ω coefficient multiplier 41A, 41B: integrator, 411: register, 412: 1 -Δ coefficient unit, 413: adder, 42A, 42B: ω coefficient unit, 43: adder 51A, 51B: integrator, 511: register, 512: 1-δ coefficient unit, 513: adder, 52A, 52B: ω coefficient unit, 53A, 53B: adder 60A, 60B: integrator, 61: register, 62: 1-δ coefficient unit, 621: bit shift circuit group, 622-624: selector, 625: adder, 63: addition , 64: selector 70A, 7 B: omega coefficient unit, 71: bit shift circuit groups 72-74: selector, 75: adder, 76: multiplier, 77: selector

Claims (4)

回転検出器から出力する2相の回転検出信号sinθ・f(t)、cosθ・f(t)をディジタル変換し、回転角度θを得る回転角度検出装置において、
前記回転検出信号sinθ・f(t)をA/D変換する第1のA/D変換手段と、
前記回転検出信号cosθ・f(t)をA/D変換する第2のA/D変換手段と、
前記第1のA/D変換手段で変換した回転検出信号sinθ・f(t)から基本波成分の振幅強度sinθを抽出する第1のフーリエ分析手段と、
前記第2のA/D変換手段で変換した回転検出信号cosθ・f(t)から基本波成分の振幅強度cosθを抽出する第2のフーリエ分析手段と、
前記振幅強度sinθ、cosθと内部推定角度φから合成波sin(θ−φ)を生成するとともに、該合成波sin(θ−φ)の極性にもとづき内部推定角度φを回転角度θに一致するように制御する合成波生成・位相制御手段と、
前記回転検出器への正弦波または2値の励磁信号を生成する励磁信号生成手段と、
を有することを特徴とする回転角度検出装置。
In the rotation angle detection device for obtaining the rotation angle θ by digitally converting the two-phase rotation detection signals sinθ · f (t) and cosθ · f (t) output from the rotation detector,
First A / D conversion means for A / D converting the rotation detection signal sinθ · f (t);
Second A / D conversion means for A / D converting the rotation detection signal cos θ · f (t);
First Fourier analysis means for extracting the amplitude intensity sinθ of the fundamental wave component from the rotation detection signal sinθ · f (t) converted by the first A / D conversion means;
Second Fourier analysis means for extracting the amplitude intensity cosθ of the fundamental wave component from the rotation detection signal cosθ · f (t) converted by the second A / D conversion means;
A composite wave sin (θ−φ) is generated from the amplitude intensities sinθ, cosθ and the internal estimated angle φ, and the internal estimated angle φ is made to coincide with the rotation angle θ based on the polarity of the composite wave sin (θ−φ). Synthetic wave generation / phase control means for controlling
Excitation signal generating means for generating a sine wave or binary excitation signal to the rotation detector;
A rotation angle detection device comprising:
請求項1に記載の回転角度検出装置において、
前記第1および第2のフーリエ分析手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる2相発振器でそれぞれ構成され、
前記第1のフーリエ分析手段は、前記第1の積分器に前記回転検出信号sinθ・f(t)が更新してセットされ、前記第1の積分器の出力側から振幅強度sinθが抽出され、
前記第2のフーリエ分析手段は、前記第1の積分器に前記回転検出信号cosθ・f(t)が更新してセットされ、前記第1の積分器の出力側から振幅強度cosθが抽出される、
ことを特徴とする回転角度検出装置。
The rotation angle detection device according to claim 1,
The first and second Fourier analysis means include a first integrator, a first ω coefficient unit whose input side is connected to an output side of the first integrator, and a first ω coefficient unit. A second integrator whose input side is connected to the output side, and a second ω coefficient unit whose input side is connected to the output side of the second integrator and whose output side is connected to the input side of the first integrator Each is composed of a two-phase oscillator consisting of
The first Fourier analysis means updates and sets the rotation detection signal sinθ · f (t) in the first integrator, extracts the amplitude intensity sinθ from the output side of the first integrator,
In the second Fourier analysis means, the rotation detection signal cosθ · f (t) is updated and set in the first integrator, and the amplitude intensity cosθ is extracted from the output side of the first integrator. ,
A rotation angle detection device characterized by that.
請求項1に記載の回転角度検出装置において、
前記合成波生成・位相制御手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる2相発振器で構成され、
前記第1の積分器に前記振幅強度sinθが更新してセットされ、前記第2の積分器に前記振幅強度cosθが更新してセットされ、前記第1の積分器の出力側から前記合成波sin(θ−φ)が生成され、該合成波sin(θ−φ)の極性に基づき、内部推定角度φが前記回転角度θに一致するよう前記第1のω係数器と前記第2のω係数器の極性が制御されることを特徴とする回転角度検出装置。
The rotation angle detection device according to claim 1,
The synthetic wave generation / phase control means includes a first integrator, a first ω coefficient unit whose input side is connected to an output side of the first integrator, and an output side of the first ω coefficient unit A second integrator whose input side is connected to the second integrator, and a second ω coefficient multiplier whose input side is connected to the output side of the second integrator and whose output side is connected to the input side of the first integrator. Consisting of a two-phase oscillator
The amplitude intensity sinθ is updated and set in the first integrator, the amplitude intensity cosθ is updated and set in the second integrator, and the combined wave sin is output from the output side of the first integrator. (Θ−φ) is generated, and based on the polarity of the combined wave sin (θ−φ), the first ω coefficient unit and the second ω coefficient are set so that the internal estimated angle φ matches the rotation angle θ. The rotation angle detection device is characterized in that the polarity of the vessel is controlled.
請求項1に記載の回転角度検出装置において、
前記第1および第2のフーリエ分析手段、前記合成波生成・位相制御手段、並びに正弦波を生成する励磁信号生成手段は、第1の積分器と、該第1の積分器の出力側に入力側が接続された第1のω係数器と、該第1のω係数器の出力側に入力側が接続された第2の積分器と、該第2の積分器の出力側に入力側が接続され出力側が前記第1の積分器の入力側に接続された第2のω係数器とからなる共通の2相発振器で構成され、
前記第1および第2のフーリエ分析手段、前記合成波生成・位相制御手段、並びに前記励磁信号生成手段が時分割で動作し、前記第1の積分器および前記第2の積分器の値が、前記時分割動作に応じて置き換えられるようにしたことを特徴とする回転角度検出装置。
The rotation angle detection device according to claim 1,
The first and second Fourier analysis means, the synthesized wave generation / phase control means, and the excitation signal generation means for generating a sine wave are input to a first integrator and an output side of the first integrator. A first ω coefficient unit connected to the output side, a second integrator connected to the output side of the first ω coefficient unit, and an output side connected to the output side of the second integrator. A common two-phase oscillator consisting of a second ω coefficient unit connected to the input side of the first integrator,
The first and second Fourier analysis means, the combined wave generation / phase control means, and the excitation signal generation means operate in a time division manner, and the values of the first integrator and the second integrator are: A rotation angle detection device, wherein the rotation angle detection device is replaced in accordance with the time division operation.
JP2011198036A 2011-09-12 2011-09-12 Rotation angle detector Active JP5823785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198036A JP5823785B2 (en) 2011-09-12 2011-09-12 Rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198036A JP5823785B2 (en) 2011-09-12 2011-09-12 Rotation angle detector

Publications (2)

Publication Number Publication Date
JP2013061161A true JP2013061161A (en) 2013-04-04
JP5823785B2 JP5823785B2 (en) 2015-11-25

Family

ID=48185962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198036A Active JP5823785B2 (en) 2011-09-12 2011-09-12 Rotation angle detector

Country Status (1)

Country Link
JP (1) JP5823785B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776471A (en) * 2014-01-28 2014-05-07 华中科技大学 Magnetic encoder based on double synchronous rotation coordinate systems
WO2019093074A1 (en) * 2017-11-07 2019-05-16 株式会社松尾製作所 Electrical angle acquisition system, electrical angle acquisition method, electrical angle acquisition program, electrical angle acquisition characteristic measurement system, electrical angle acquisition characteristic measurement method, and electrical angle acquisition characteristic measurement program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118520A (en) * 1997-10-17 1999-04-30 Tamagawa Seiki Co Ltd Digital angle conversation method
JP2003344106A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Rotation angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118520A (en) * 1997-10-17 1999-04-30 Tamagawa Seiki Co Ltd Digital angle conversation method
JP2003344106A (en) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp Rotation angle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776471A (en) * 2014-01-28 2014-05-07 华中科技大学 Magnetic encoder based on double synchronous rotation coordinate systems
WO2019093074A1 (en) * 2017-11-07 2019-05-16 株式会社松尾製作所 Electrical angle acquisition system, electrical angle acquisition method, electrical angle acquisition program, electrical angle acquisition characteristic measurement system, electrical angle acquisition characteristic measurement method, and electrical angle acquisition characteristic measurement program

Also Published As

Publication number Publication date
JP5823785B2 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6005781B2 (en) Resolver device
Al-Emadi et al. A new tracking technique for mechanical angle measurement
JP2011033602A (en) Resolver/digital converter, and resolver/digital conversion method
JP2016138870A (en) Semiconductor device
NO864053L (en) CIRCUIT FOR CREATING A MULTIPLE PHASE SINUS SHAPED OUTPUT.
JP2013250231A5 (en)
JP5823785B2 (en) Rotation angle detector
JPH11118520A (en) Digital angle conversation method
US9948209B2 (en) Digital controller architecture for three-phase AC sources
JP6005409B2 (en) Redundant resolver device
JP2003149003A (en) Phase difference-correcting apparatus of encoder, phase difference-correcting method, and phase difference- correcting program
JP6809707B2 (en) How to convert an analog signal to a digital signal
JP6205683B2 (en) Rotation angle detection device, image processing device, and rotation angle detection method
JP2015135283A (en) Rotation angle detection device and pulse signal generation circuit
KR101012740B1 (en) Resolver digital converter and position detecting apparatus
US20160102996A1 (en) Phase-locked loop (pll)-type resolver/converter method and apparatus
JP5895680B2 (en) Signal processing device
JP4818772B2 (en) Inverter drive device and drive method
JP2018146243A (en) RD converter
JP5342982B2 (en) Resolver digital converter
JP2007139502A (en) Angle detector and device of calculating rotational coordinate
Ismail et al. Integrally accurate resolver-to-digital converter (RDC)
JP5798844B2 (en) Digital oscillator
JP6283791B2 (en) Method and apparatus for digital conversion of synchro signal
KR102051820B1 (en) Apparatus for detecting rotation angle of a asynchronous resolver and Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151008

R150 Certificate of patent or registration of utility model

Ref document number: 5823785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250