JP2013060922A - Combustion control device - Google Patents

Combustion control device Download PDF

Info

Publication number
JP2013060922A
JP2013060922A JP2011201062A JP2011201062A JP2013060922A JP 2013060922 A JP2013060922 A JP 2013060922A JP 2011201062 A JP2011201062 A JP 2011201062A JP 2011201062 A JP2011201062 A JP 2011201062A JP 2013060922 A JP2013060922 A JP 2013060922A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
pressure
air
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201062A
Other languages
Japanese (ja)
Other versions
JP5146581B1 (en
Inventor
Yasushi Katsurayama
裕史 葛山
Kin Kawai
謹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011201062A priority Critical patent/JP5146581B1/en
Priority to PCT/JP2012/068337 priority patent/WO2013038805A1/en
Application granted granted Critical
Publication of JP5146581B1 publication Critical patent/JP5146581B1/en
Publication of JP2013060922A publication Critical patent/JP2013060922A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a combustion control device capable of establishing a proper pre-mixing, compressive ignition combustion even if the suction pressure to inside a combustion chamber is lowered.SOLUTION: After deciding the fuel injection amount of the first fuel injection and its timing and those of the second time fuel injection executed following the first fuel injection, an ECU determines whether the suction pressure sensed by a suction pressure sensor is lower than the reference pressure, controls, when the suction pressure is lower than the reference pressure, so that the air-fuel ratio in the combustion chamber may be maintained at the value which is set when the pressure is at the reference, and further advances the fuel injection timings of the first fuel injection and the second fuel injection. Additionally, the ECU controls an injector so that the first time fuel injection and the second fuel injection may be executed one after the other according to the given fuel injection amount and fuel injection timing.

Description

本発明は、予混合圧縮着火(PCCI)燃焼を行うエンジンの燃焼制御装置に関するものである。   The present invention relates to a combustion control device for an engine that performs premixed compression ignition (PCCI) combustion.

予混合圧縮着火燃焼を行うエンジンの燃焼制御装置としては、例えば特許文献1に記載されているように、気筒の圧縮行程中期から後期にかけてインジェクタにより燃料を複数回に分けて噴射させることで、予めできるだけ均質な混合気を形成した上で自己着火により燃焼させるようにしたものが知られている。   As a combustion control device for an engine that performs premixed compression ignition combustion, for example, as described in Patent Document 1, by injecting fuel into a plurality of times by an injector from the middle to the latter half of a cylinder compression stroke, It is known that an air-fuel mixture that is as homogeneous as possible is formed and burned by self-ignition.

特開2003−286879号公報JP 2003-286879 A

しかしながら、上記従来技術のように、予混合圧縮着火燃焼を行う場合に、エンジンの燃焼室内への吸気圧が低下すると、適切な燃焼波形(熱発生率波形)が得られず、適切な予混合圧縮着火燃焼の実現が困難になることがある。この場合には、燃焼騒音の増大やエミッションの悪化につながる。   However, when premixed compression ignition combustion is performed as in the above prior art, if the intake pressure into the combustion chamber of the engine decreases, an appropriate combustion waveform (heat generation rate waveform) cannot be obtained, and appropriate premixing is performed. Realizing compression ignition combustion may be difficult. In this case, the combustion noise increases and the emission deteriorates.

本発明の目的は、燃焼室内への吸気圧が低下しても、適切な予混合圧縮着火燃焼を実現することができる燃焼制御装置を提供することである。   An object of the present invention is to provide a combustion control device capable of realizing appropriate premixed compression ignition combustion even when the intake pressure into the combustion chamber decreases.

本発明は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置において、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、燃料噴射量及び燃料噴射時期を決定する決定手段と、燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように、燃料噴射弁を制御する噴射制御手段と、燃焼室内に空気を吸入するための吸気通路と、燃焼室内から燃焼後の排気ガスを排出するための排気通路と、燃焼室内への吸気圧を検出する吸気圧検出手段と、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正する補正手段とを備えることを特徴とするものである。   The present invention relates to an engine combustion control apparatus that performs premixed compression ignition combustion, a fuel injection valve that injects fuel into a combustion chamber of the engine, a determination unit that determines a fuel injection amount and a fuel injection timing, a fuel injection amount, Injecting control means for controlling the fuel injection valve so as to perform fuel injection according to the fuel injection timing, an intake passage for sucking air into the combustion chamber, and exhausting exhaust gas after combustion from the combustion chamber The exhaust passage, the intake pressure detecting means for detecting the intake pressure into the combustion chamber, and the ignition timing by the fuel injection is advanced when the intake pressure detected by the intake pressure detecting means is lower than a predetermined pressure. And a correction means for correcting.

エンジンの燃焼室内への吸気圧が低下すると、燃焼室内に吸入される空気量が少なくなるため、燃料噴射弁により燃焼室内に燃料を噴射したときに、燃料と空気との酸化反応が遅れ、適切な燃焼波形が得られなくなる。そこで本発明においては、燃焼室内への吸気圧を検出し、吸気圧が所定圧力よりも低いときには、燃料噴射による着火時期を進角させるように補正することにより、その時の燃焼波形が所定圧力時に得られる燃焼波形に近づくようになる。これにより、適切な予混合圧縮着火燃焼を実現することができる。その結果、燃焼騒音の増大やエミッションの悪化を抑制することができる。   When the intake pressure into the combustion chamber of the engine decreases, the amount of air taken into the combustion chamber decreases, so that when the fuel is injected into the combustion chamber by the fuel injection valve, the oxidation reaction between the fuel and air is delayed. A correct combustion waveform cannot be obtained. Therefore, in the present invention, the intake pressure into the combustion chamber is detected, and when the intake pressure is lower than the predetermined pressure, correction is made to advance the ignition timing by fuel injection, so that the combustion waveform at that time is at the predetermined pressure. It approaches the resulting combustion waveform. Thereby, appropriate premixed compression ignition combustion can be realized. As a result, an increase in combustion noise and a deterioration in emissions can be suppressed.

なお、予混合圧縮着火燃焼における燃焼過程では、燃焼室内に噴射された燃料により、熱発生が緩やかに生じる低温酸化反応(冷炎反応)と、低温酸化反応後に熱発生が急激に高まる高温酸化反応(熱炎反応)とを伴う。ここで、燃料噴射による着火時期とは、熱発生が急激に高まる高温酸化反応が始まる時期のことである。   In the combustion process in premixed compression ignition combustion, the fuel injected into the combustion chamber causes a low temperature oxidation reaction (cool flame reaction) in which heat generation occurs slowly, and a high temperature oxidation reaction in which heat generation increases rapidly after the low temperature oxidation reaction. Accompanied by (hot flame reaction). Here, the ignition timing by fuel injection is the timing when a high-temperature oxidation reaction in which heat generation rapidly increases starts.

好ましくは、決定手段は、第1の燃料噴射及びその後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定し、噴射制御手段は、燃料噴射量及び燃料噴射時期に応じて第1の燃料噴射及び第2の燃料噴射を順次実施するように、燃料噴射弁を制御し、補正手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射による着火時期を進角させるように補正する。   Preferably, the determining means determines the fuel injection amount and the fuel injection timing of the first fuel injection and the second fuel injection performed thereafter, and the injection control means is responsive to the fuel injection amount and the fuel injection timing. The fuel injection valve is controlled so as to sequentially perform the first fuel injection and the second fuel injection, and the correction unit is configured to perform the first operation when the intake pressure detected by the intake pressure detection unit is lower than a predetermined pressure. The ignition timing by the fuel injection is corrected so as to advance.

燃料を分割して噴射すると、燃焼室内における燃料の燃焼期間が長くなるため、吸気圧が所定圧力より低くなったときに、燃焼波形が適切な燃焼波形からずれ易い。そこで、検出された吸気圧が所定圧力よりも低いときには、第1の燃料噴射による着火時期を進角させるように補正することにより、その時の燃焼波形が所定圧力時に得られる燃焼波形に近づくようになる。なお、第1の燃料噴射及び第2の燃料噴射は、要求されるエンジンの出力を発生させるためのメインの燃料噴射を分割して行うものであり、メインの燃料噴射の前に実施されるパイロット噴射やプレ噴射と呼ばれる少量の燃料噴射は含まない。   If the fuel is divided and injected, the combustion period of the fuel in the combustion chamber becomes longer. Therefore, when the intake pressure becomes lower than a predetermined pressure, the combustion waveform tends to deviate from an appropriate combustion waveform. Therefore, when the detected intake pressure is lower than the predetermined pressure, correction is made to advance the ignition timing by the first fuel injection so that the combustion waveform at that time approaches the combustion waveform obtained at the predetermined pressure. Become. The first fuel injection and the second fuel injection are performed by dividing the main fuel injection for generating the required engine output, and are performed before the main fuel injection. A small amount of fuel injection called injection or pre-injection is not included.

このとき、好ましくは、補正手段は、燃焼室内の空燃比を制御する空燃比制御手段と、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段とを有し、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御する。   At this time, preferably, the correction means includes an air-fuel ratio control means for controlling the air-fuel ratio in the combustion chamber, and an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. The air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio set at the predetermined pressure when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure.

このように第1の燃料噴射の燃料噴射時期を進角させることにより、第1の燃料噴射による着火時期が進角されるため、第1の燃料噴射による着火時期が所定圧力時に得られる着火時期に確実に近づくようになる。また、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御することにより、燃焼波形を所定圧力時に得られる燃焼波形に近づけることができる。従って、燃料と空気との予混合気の燃焼が適切に行われるため、未燃分のHCやCOの増加を抑制することができる。   Since the ignition timing by the first fuel injection is advanced by advancing the fuel injection timing of the first fuel injection in this way, the ignition timing at which the ignition timing by the first fuel injection is obtained at a predetermined pressure. Will definitely come closer to. Further, by controlling the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio set at a predetermined pressure, the combustion waveform can be brought close to the combustion waveform obtained at the predetermined pressure. Therefore, since the combustion of the premixed mixture of fuel and air is appropriately performed, an increase in unburned HC and CO can be suppressed.

このとき、好ましくは、エンジンの負荷を検出する負荷検出手段を更に備え、噴射時期進角手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも高いときに、第1の燃料噴射の燃料噴射時期を進角させ、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも高いときに、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御する。   At this time, it is preferable to further include load detection means for detecting the engine load, and the injection timing advance means detects the intake pressure detected by the intake pressure detection means lower than a predetermined pressure and is detected by the load detection means. When the engine load is higher than the first predetermined value, the fuel injection timing of the first fuel injection is advanced, and the air-fuel ratio control means causes the intake pressure detected by the intake pressure detection means to be a predetermined pressure. When the engine load detected by the load detecting means is higher than the first predetermined value, the air-fuel ratio in the combustion chamber is controlled to be maintained at the air-fuel ratio set at the predetermined pressure.

一般的にエンジン負荷が低いときは、エンジン負荷が高いときに比べて吸入空気量が少なくなる。そのため、エンジンの負荷が第1の所定値よりも低いときは、第1の燃料噴射の燃料噴射時期を進角させても、第1の燃料噴射による着火時期が進角されにくい。従って、第1の燃料噴射による着火時期を進角させやすい領域に絞ることで、第1の燃料噴射による着火時期を所定圧力時に得られる着火時期に効率的に近づけることができる。   Generally, when the engine load is low, the intake air amount is smaller than when the engine load is high. Therefore, when the engine load is lower than the first predetermined value, the ignition timing due to the first fuel injection is hardly advanced even if the fuel injection timing of the first fuel injection is advanced. Therefore, by narrowing the ignition timing by the first fuel injection to a region where it is easy to advance, the ignition timing by the first fuel injection can be efficiently brought close to the ignition timing obtained at a predetermined pressure.

このとき、好ましくは、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも低いときに、燃焼室内の空燃比を所定圧力時に設定される空燃比に対してリーン化するように制御する。   In this case, preferably, the air-fuel ratio control means is such that the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure, and the engine load detected by the load detection means is lower than a first predetermined value. Sometimes, the air-fuel ratio in the combustion chamber is controlled to be lean with respect to the air-fuel ratio set at a predetermined pressure.

このようにエンジンの負荷が第1の所定値よりも低いときには、燃焼室内の空燃比を所定圧力時に設定される空燃比に対してリーン化するように制御することにより、燃焼室内に吸入される空気量が十分多くなる。このため、特に第1の燃料噴射の燃料噴射時期を進角させなくても、第1の燃料噴射による着火時期が進角されるため、燃焼波形が所定圧力時に得られる燃焼波形に確実に近づくようになる。従って、燃料と空気との予混合気の燃焼が適切に行われるため、未燃分のHCやCOの増加を抑制することができる。   As described above, when the engine load is lower than the first predetermined value, the air-fuel ratio in the combustion chamber is controlled to be lean with respect to the air-fuel ratio set at the predetermined pressure, thereby being sucked into the combustion chamber. The amount of air becomes large enough. For this reason, even if the fuel injection timing of the first fuel injection is not advanced, the ignition timing by the first fuel injection is advanced, so that the combustion waveform reliably approaches the combustion waveform obtained at the predetermined pressure. It becomes like this. Therefore, since the combustion of the premixed mixture of fuel and air is appropriately performed, an increase in unburned HC and CO can be suppressed.

また、好ましくは、排気通路と吸気通路とを繋ぐように設けられ、燃焼後の排気ガスの一部を排気再循環ガスとして燃焼室内に還流するための排気再循環通路と、排気再循環通路に設けられ、排気再循環ガスの還流量を調整するバルブ手段とを更に備え、空燃比制御手段は、排気再循環ガスの還流量が減少するようにバルブ手段を制御することで、燃焼室内の空燃比を制御する。   Preferably, the exhaust passage and the intake passage are connected to each other, and an exhaust gas recirculation passage for returning a part of the exhaust gas after combustion as an exhaust gas recirculation gas into the combustion chamber and an exhaust gas recirculation passage are provided. And a valve means for adjusting the recirculation amount of the exhaust gas recirculation gas. The air-fuel ratio control means controls the valve means so that the recirculation amount of the exhaust gas recirculation gas decreases, thereby Control the fuel ratio.

このように排気再循環ガスの還流量を調整するバルブ手段を用いることにより、簡単な構成で且つ確実に、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持することができる。   Thus, by using the valve means for adjusting the recirculation amount of the exhaust gas recirculation gas, the air-fuel ratio in the combustion chamber can be reliably maintained at the air-fuel ratio set at a predetermined pressure with a simple configuration.

さらに、好ましくは、補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を更に有する。   Further preferably, when the engine load detected by the load detecting means is higher than a second predetermined value larger than the first predetermined value, the correcting means preferably performs the first fuel injection and the second fuel injection. There is further provided an injection pressure control means for controlling the fuel injection pressure to be reduced.

エンジンの燃焼室内への吸気圧が低くなると、第1の燃料噴射による着火が遅れるため、その後の第2の燃料噴射の実施時に燃焼室内の温度が上昇し、第2の燃料噴射による着火遅れが短縮され、燃料と空気との予混合時間が短くなる。特に、エンジンの負荷が高くなると、着火性が良くなるため、そのような不具合が顕著に表れるようになる。そこで、エンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときには、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させることにより、第2の燃料噴射による着火が起こりにくくなるため、燃料と空気との予混合時間が長くなり、予混合不足が防止される。これにより、スモークの増加を抑制することができる。   When the intake pressure into the combustion chamber of the engine becomes low, ignition by the first fuel injection is delayed, so the temperature in the combustion chamber rises at the time of performing the second fuel injection thereafter, and the ignition delay by the second fuel injection is delayed. This shortens the premixing time of fuel and air. In particular, when the engine load is increased, the ignitability is improved, so that such a problem appears remarkably. Therefore, when the engine load is higher than the second predetermined value that is larger than the first predetermined value, the second fuel injection is reduced by reducing the fuel injection pressures of the first fuel injection and the second fuel injection. Therefore, the premixing time of the fuel and the air becomes long, and the premixing shortage is prevented. Thereby, the increase in smoke can be suppressed.

また、補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を更に有していても良い。   The correction means reduces the fuel injection quantity of the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value that is larger than the first predetermined value. You may further have a weight reduction means.

このようにエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときには、第2の燃料噴射の燃料噴射量を減量することにより、第2の燃料噴射の燃料噴射圧を低下させる場合と同様に、第2の燃料噴射による着火が起こりにくくなるため、燃料と空気との予混合時間が長くなり、予混合不足が防止される。これにより、スモークの増加を抑制することができる。   Thus, when the engine load is higher than the second predetermined value that is larger than the first predetermined value, the fuel injection pressure of the second fuel injection is reduced by decreasing the fuel injection amount of the second fuel injection. As in the case of lowering, since ignition due to the second fuel injection is less likely to occur, the premixing time of the fuel and air is lengthened, and insufficient premixing is prevented. Thereby, the increase in smoke can be suppressed.

本発明によれば、燃焼室内への吸気圧が低下しても、適切な予混合圧縮着火燃焼を実現することができる。これにより、燃焼騒音の増大やエミッションの悪化を抑制することが可能となる。   According to the present invention, appropriate premixed compression ignition combustion can be realized even if the intake pressure into the combustion chamber decreases. Thereby, it is possible to suppress an increase in combustion noise and a deterioration in emissions.

本発明に係わる燃焼制御装置の一実施形態を備えたディーゼルエンジンを示す概略構成図である。It is a schematic block diagram which shows the diesel engine provided with one Embodiment of the combustion control apparatus concerning this invention. 図1に示したECUにより実行される処理手順を示すフローチャートである。It is a flowchart which shows the process sequence performed by ECU shown in FIG. エンジン負荷が低負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the heat release rate waveform in the condition where an engine load is in a low load region under various conditions. エンジン負荷が低負荷領域にある状況における燃焼騒音のレベル、HC及びCOの排出濃度の一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the level of combustion noise in the situation where an engine load is in a low load region, and the exhaust concentration of HC and CO under various conditions. エンジン負荷が中負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the heat release rate waveform in the condition where an engine load is in a middle load region under various conditions. エンジン負荷が中負荷領域にある状況におけるNOxの発生量、燃焼騒音のレベルの一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the generation amount of NOx and the level of a combustion noise in the condition where an engine load is in a middle load region. エンジン負荷が高負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the heat release rate waveform in the condition where the engine load is in a high load region under various conditions. エンジン負荷が高負荷領域にある状況におけるスモークの発生率、2回目の燃料噴射による予混合時間の一例を様々な条件で比較して示すグラフである。It is a graph which compares and shows an example of the premixing time by the incidence rate of smoke in the situation where an engine load is in a high load region, and the second fuel injection under various conditions. 1回目の燃料噴射の燃料噴射時期のみを進角させた場合の燃焼波形のイメージを、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角させた場合の燃焼波形のイメージと比較して示すグラフである。An image of the combustion waveform when only the fuel injection timing of the first fuel injection is advanced is an image of the combustion waveform when the fuel injection timing of the first fuel injection and the second fuel injection is advanced It is a graph shown in comparison.

以下、本発明に係わる燃焼制御装置の好適な実施形態について、図面を参照して詳細に説明する。   Hereinafter, a preferred embodiment of a combustion control device according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる燃焼制御装置の一実施形態を備えたディーゼルエンジンを示す概略構成図である。同図において、本実施形態に係るディーゼルエンジン1は、予混合圧縮着火(PCCI)燃焼を行う4気筒直列ディーゼルエンジンであり、コモンレール式の燃料噴射装置を備えている。ディーゼルエンジン1はエンジン本体2を備え、このエンジン本体2には4つのシリンダ3が設けられている。   FIG. 1 is a schematic configuration diagram showing a diesel engine equipped with an embodiment of a combustion control device according to the present invention. In the figure, a diesel engine 1 according to this embodiment is a four-cylinder in-line diesel engine that performs premixed compression ignition (PCCI) combustion, and includes a common rail fuel injection device. The diesel engine 1 includes an engine body 2, and the engine body 2 is provided with four cylinders 3.

各シリンダ3には、燃焼室4内に燃料を噴射するインジェクタ(燃料噴射弁)5がそれぞれ配設されている。インジェクタ5は、噴射ノズル5aから放射状に燃料を噴射する。各インジェクタ5は、コモンレール6に接続されている。コモンレール6は、燃料供給管7を介して高圧ポンプ8と接続されている。コモンレール6は、高圧ポンプ8から供給される高圧燃料を貯留して各インジェクタ5に均一に供給する。燃料供給管7には、コモンレール6内での燃料の圧力(コモンレール圧)を調整するレール圧調整バルブ9が設けられている。   Each cylinder 3 is provided with an injector (fuel injection valve) 5 for injecting fuel into the combustion chamber 4. The injector 5 injects fuel radially from the injection nozzle 5a. Each injector 5 is connected to a common rail 6. The common rail 6 is connected to a high pressure pump 8 through a fuel supply pipe 7. The common rail 6 stores the high-pressure fuel supplied from the high-pressure pump 8 and supplies it uniformly to the injectors 5. The fuel supply pipe 7 is provided with a rail pressure adjusting valve 9 for adjusting the fuel pressure (common rail pressure) in the common rail 6.

エンジン本体2には、燃焼室4内に空気を吸入するための吸気通路10がインテークマニホールド11を介して接続されている。また、エンジン本体2には、燃焼後の排気ガスを排出するための排気通路12がエキゾーストマニホールド13を介して接続されている。   An intake passage 10 for sucking air into the combustion chamber 4 is connected to the engine body 2 via an intake manifold 11. Further, an exhaust passage 12 for exhausting exhaust gas after combustion is connected to the engine body 2 via an exhaust manifold 13.

吸気通路10には、上流側から下流側に向けてエアクリーナー14、ターボ過給機15のコンプレッサ16、インタークーラー17及びスロットルバルブ18が設けられている。スロットルバルブ18は、吸気通路10の通路面積を絞り、下流側に負圧を発生させることで、後述する排気再循環(EGR)を可能とする。排気通路12には、ターボ過給機15のタービン19及び触媒付きDPF20が設けられている。   In the intake passage 10, an air cleaner 14, a compressor 16 of the turbocharger 15, an intercooler 17, and a throttle valve 18 are provided from the upstream side toward the downstream side. The throttle valve 18 restricts the passage area of the intake passage 10 and generates negative pressure downstream, thereby enabling exhaust gas recirculation (EGR), which will be described later. In the exhaust passage 12, a turbine 19 of the turbocharger 15 and a DPF 20 with a catalyst are provided.

また、ディーゼルエンジン1は、燃焼後の排気ガスの一部を排気再循環ガス(EGRガス)として燃焼室4内に還流する排気再循環(EGR)装置21を備えている。EGR装置21は、吸気通路10とエキゾーストマニホールド13とを繋ぐように設けられ、EGRガスを還流するためのEGR通路22と、エキゾーストマニホールド13から吸気通路10へのEGRガスの還流量を調整するEGRバルブ(バルブ手段)23と、EGR通路22を通るEGRガスを冷却するEGRクーラ24と、このEGRクーラ24をバイパスするようにEGR通路22に接続されたバイパス通路25と、EGRガスの流路をEGRクーラ24側またはバイパス通路25側に切り替える切替弁26とを有している。   The diesel engine 1 also includes an exhaust gas recirculation (EGR) device 21 that recirculates a part of the exhaust gas after combustion into the combustion chamber 4 as exhaust gas recirculation gas (EGR gas). The EGR device 21 is provided so as to connect the intake passage 10 and the exhaust manifold 13, and an EGR passage 22 for recirculating the EGR gas, and an EGR that adjusts the recirculation amount of the EGR gas from the exhaust manifold 13 to the intake passage 10. A valve (valve means) 23, an EGR cooler 24 for cooling EGR gas passing through the EGR passage 22, a bypass passage 25 connected to the EGR passage 22 so as to bypass the EGR cooler 24, and an EGR gas passage And a switching valve 26 for switching to the EGR cooler 24 side or the bypass passage 25 side.

上記の各インジェクタ5、レール圧調整バルブ9、スロットルバルブ18、EGRバルブ23及び切替弁26は、電子制御ユニット(ECU)27によって制御される。ECU27には、クランク角センサ28、アクセル開度センサ29及び吸気圧センサ30が接続されている。   Each injector 5, rail pressure adjusting valve 9, throttle valve 18, EGR valve 23 and switching valve 26 are controlled by an electronic control unit (ECU) 27. A crank angle sensor 28, an accelerator opening sensor 29, and an intake pressure sensor 30 are connected to the ECU 27.

クランク角センサ28は、図示しないピストンが連結されるクランク軸の回転角度(クランク角)を検出することで、エンジン本体2の回転数(エンジン回転数)を算出可能とするためのセンサである。アクセル開度センサ29は、エンジン本体2の負荷(エンジン負荷)の代替値として、アクセルペダルの踏込み角(アクセル開度)を検出するセンサ(負荷検出手段)である。なお、コモンレール式燃料噴射装置を備えたディーゼルエンジンでは、燃料噴射量を電子制御しており、エンジン負荷の代替値として燃料噴射量を用いることも可能である。吸気圧センサ30は、燃焼室4内に吸入される空気の圧力(燃焼室4内への吸気圧)を検出するセンサ(吸気圧検出手段)であり、例えば吸気通路10の下流側端部に取り付けられている。   The crank angle sensor 28 is a sensor that enables calculation of the rotational speed (engine rotational speed) of the engine body 2 by detecting the rotational angle (crank angle) of a crankshaft to which a piston (not shown) is coupled. The accelerator opening sensor 29 is a sensor (load detection means) that detects the depression angle (accelerator opening) of the accelerator pedal as an alternative value for the load (engine load) of the engine body 2. In a diesel engine equipped with a common rail fuel injection device, the fuel injection amount is electronically controlled, and the fuel injection amount can be used as an alternative value for the engine load. The intake pressure sensor 30 is a sensor (intake pressure detection means) for detecting the pressure of air sucked into the combustion chamber 4 (intake pressure detection means), for example, at the downstream end of the intake passage 10. It is attached.

ECU24は、クランク角センサ28、アクセル開度センサ29、吸気圧センサ30の検出信号を入力し、所定の処理を行い、インジェクタ5、レール圧調整バルブ9、スロットルバルブ18、EGRバルブ23及び切替弁26を制御する。   The ECU 24 receives detection signals from the crank angle sensor 28, the accelerator opening sensor 29, and the intake pressure sensor 30, performs predetermined processing, and performs the injector 5, the rail pressure adjustment valve 9, the throttle valve 18, the EGR valve 23, and the switching valve. 26 is controlled.

ここで、インジェクタ5、コモンレール6、燃料供給管7、高圧ポンプ8、レール圧調整バルブ9、吸気通路10、排気通路12、スロットルバルブ18、排気再循環装置21、ECU27及びセンサ28〜30は、本実施形態の燃焼制御装置31を構成している。このような燃焼制御装置31は、吸気行程、圧縮行程、膨張行程及び排気行程という1サイクルにおいて、燃焼室4内に空気を吸入すると共に各インジェクタ5から燃焼室4内に燃料を複数回に分けて噴射(分割噴射)して、予混合圧縮着火燃焼を行うように制御する。   Here, the injector 5, common rail 6, fuel supply pipe 7, high-pressure pump 8, rail pressure adjustment valve 9, intake passage 10, exhaust passage 12, throttle valve 18, exhaust recirculation device 21, ECU 27 and sensors 28 to 30 are The combustion control device 31 of the present embodiment is configured. Such a combustion control device 31 draws air into the combustion chamber 4 and divides the fuel from each injector 5 into the combustion chamber 4 in a plurality of times in one cycle of the intake stroke, the compression stroke, the expansion stroke, and the exhaust stroke. To perform premixed compression ignition combustion.

図2は、ECU27により実行される処理手順を示すフローチャートである。本処理は、センサ28〜30の検出信号に基づいてインジェクタ5、レール圧調整バルブ9及びEGRバルブ23を制御する処理である。   FIG. 2 is a flowchart showing a processing procedure executed by the ECU 27. This process is a process of controlling the injector 5, the rail pressure adjusting valve 9, and the EGR valve 23 based on the detection signals of the sensors 28-30.

同図において、まずクランク角センサ28により検出されたエンジン回転数とアクセル開度センサ29により検出されたアクセル開度(エンジン負荷)とに基づいて、1回目の燃料噴射及びこの後に実施される2回目の燃料噴射の燃料噴射量及び燃料噴射時期を決定する(手順S101)。   In the figure, firstly, based on the engine speed detected by the crank angle sensor 28 and the accelerator opening (engine load) detected by the accelerator opening sensor 29, the first fuel injection and thereafter 2 are carried out. The fuel injection amount and fuel injection timing for the second fuel injection are determined (step S101).

続いて、吸気圧センサ30により検出された吸気圧が基準圧力(例えば大気圧)よりも低いかどうかを判断する(手順S102)。吸気圧が基準圧力よりも低いと判断されたときは、アクセル開度センサ29により検出されたエンジン負荷が低負荷側閾値よりも低いかどうかを判断する(手順S103)。低負荷側閾値は、例えばアクセル全開に対して30%の開度とする。   Subsequently, it is determined whether or not the intake pressure detected by the intake pressure sensor 30 is lower than a reference pressure (for example, atmospheric pressure) (step S102). When it is determined that the intake pressure is lower than the reference pressure, it is determined whether or not the engine load detected by the accelerator opening sensor 29 is lower than the low load side threshold (step S103). The low load side threshold is, for example, an opening of 30% with respect to the accelerator fully open.

エンジン負荷が低負荷側閾値よりも低いと判断されたときは、その時の燃焼室4内の空燃比(A/F)が基準圧力時に設定される空燃比に対してリーン化される(大きくなる)ように、EGRバルブ23を制御する(手順S104)。具体的には、吸気通路10へのEGRガスの還流量を減少させることで燃焼室4内への吸入空気量を増加させるように、EGRバルブ23を制御する。なお、空燃比をリーン化するときは、燃焼室4内への燃料噴射量を変えずに、燃焼室4内への吸入空気量を増やすようにする。このとき、例えば吸気圧及びエンジン負荷が低くなるほど、空燃比をリーン化する量を増大させる。   When it is determined that the engine load is lower than the low load side threshold, the air-fuel ratio (A / F) in the combustion chamber 4 at that time is leaned (increased) with respect to the air-fuel ratio set at the reference pressure. ), The EGR valve 23 is controlled (step S104). Specifically, the EGR valve 23 is controlled so as to increase the intake air amount into the combustion chamber 4 by decreasing the recirculation amount of the EGR gas to the intake passage 10. When the air-fuel ratio is made lean, the intake air amount into the combustion chamber 4 is increased without changing the fuel injection amount into the combustion chamber 4. At this time, for example, the amount of lean air-fuel ratio is increased as the intake pressure and engine load are lowered.

このように空燃比をリーン化することにより、燃焼室4内への吸入空気量が多くなるため、インジェクタ5により燃焼室4内に燃料噴射を行ったときに、空気と燃料との予混合気の着火時期が進角するようになる。   By making the air-fuel ratio lean in this way, the amount of intake air into the combustion chamber 4 increases, so that when the fuel is injected into the combustion chamber 4 by the injector 5, the premixed air and fuel are mixed. The ignition timing of will advance.

一方、エンジン負荷が低負荷側閾値よりも低くないと判断されたときは、その時の燃焼室4内の空燃比が基準圧力時に設定される空燃比に維持されるように、EGRバルブ23を制御する(手順S105)。具体的には、燃焼室4内への吸気圧が下がると、燃焼室4内への吸入空気量が少なくなるため、その分だけ燃焼室4内への吸入空気量を増加させる、つまり吸気通路10へのEGRガスの還流量を減少させるように、EGRバルブ23を制御する。   On the other hand, when it is determined that the engine load is not lower than the low load side threshold, the EGR valve 23 is controlled so that the air-fuel ratio in the combustion chamber 4 at that time is maintained at the air-fuel ratio set at the reference pressure. (Step S105). Specifically, when the intake pressure into the combustion chamber 4 decreases, the amount of intake air into the combustion chamber 4 decreases, so the amount of intake air into the combustion chamber 4 is increased accordingly, that is, the intake passage. The EGR valve 23 is controlled so as to reduce the recirculation amount of the EGR gas to 10.

続いて、手順S101で決定された1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角させる(手順S106)。このとき、燃料噴射時期の進角量は、例えば吸気圧及びエンジン負荷に応じた量としても良いし、予め設定された一定量としても良い。   Subsequently, the fuel injection timings of the first fuel injection and the second fuel injection determined in step S101 are advanced (step S106). At this time, the advance amount of the fuel injection timing may be, for example, an amount corresponding to the intake pressure and the engine load, or may be a predetermined constant amount.

このように燃料噴射の燃料噴射時期を進角させることにより、インジェクタ5により燃焼室4内に燃料噴射を行ったときに、空気と燃料との予混合気の着火時期が進角するようになる。   By advancing the fuel injection timing of the fuel injection in this way, when the fuel is injected into the combustion chamber 4 by the injector 5, the ignition timing of the premixed air / fuel mixture is advanced. .

続いて、アクセル開度センサ29により検出されたエンジン負荷が高負荷側閾値よりも高いかどうかを判断する(手順S107)。高負荷側閾値は、上記の低負荷側閾値よりも大きな値であり、例えばアクセル全開に対して60%の開度とする。   Subsequently, it is determined whether or not the engine load detected by the accelerator opening sensor 29 is higher than a high load side threshold (step S107). The high load side threshold value is larger than the above low load side threshold value, and is, for example, an opening degree of 60% with respect to the accelerator fully open.

エンジン負荷が高負荷側閾値よりも高いと判断されたときは、コモンレール圧を予め設定された値から低下させるようにレール圧調整バルブ9を制御する(手順S108)。これにより、インジェクタ5からの燃料噴射圧が低下することになる。このとき、コモンレール圧の低下量は、例えば吸気圧及びエンジン負荷に応じた量としても良いし、予め設定された一定量としても良い。   When it is determined that the engine load is higher than the high load side threshold value, the rail pressure adjusting valve 9 is controlled so as to lower the common rail pressure from a preset value (step S108). Thereby, the fuel injection pressure from the injector 5 falls. At this time, the amount of decrease in the common rail pressure may be, for example, an amount corresponding to the intake pressure and the engine load, or may be a predetermined constant amount.

続いて、手順S101で決定された2回目の燃料噴射の燃料噴射量を減量すると共に、その燃料噴射量の減量分だけ、手順S101で決定された1回目の燃料噴射の燃料噴射量を増量する(手順S109)。このとき、燃料噴射量の減少量は、例えば吸気圧及びエンジン負荷に応じた量としても良いし、予め設定された一定量としても良い。   Subsequently, the fuel injection amount of the second fuel injection determined in step S101 is decreased, and the fuel injection amount of the first fuel injection determined in step S101 is increased by an amount corresponding to the decrease in the fuel injection amount. (Procedure S109). At this time, the amount of decrease in the fuel injection amount may be, for example, an amount corresponding to the intake pressure and the engine load, or may be a predetermined constant amount.

手順S102で吸気圧が基準圧力よりも低くないと判断されたとき、手順S104を実行したとき、手順S107でエンジン負荷が高負荷側閾値よりも高くないと判断されたとき、手順S109を実行したときは、1回目の燃料噴射及び2回目の燃料噴射を順次実施するように、各インジェクタ5を制御する(手順S110)。   When it is determined at step S102 that the intake pressure is not lower than the reference pressure, when step S104 is executed, when it is determined at step S107 that the engine load is not higher than the high load side threshold value, step S109 is executed. At this time, each injector 5 is controlled so that the first fuel injection and the second fuel injection are sequentially performed (step S110).

このとき、手順S102で吸気圧が基準圧力よりも低くないと判断されたとき、手順S104を実行したときは、手順S101で決定された燃料噴射量及び燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。手順S107でエンジン負荷が高負荷側閾値よりも高くないと判断されたときは、手順S101で決定された燃料噴射量及び手順S106で補正された燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。手順S109を実行したときは、手順S109で補正された燃料噴射量及び手順S101で決定された燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。   At this time, when it is determined in step S102 that the intake pressure is not lower than the reference pressure, when step S104 is executed, the first fuel injection and the fuel injection timing and the fuel injection timing determined in step S101 are performed. The second fuel injection is performed sequentially. When it is determined in step S107 that the engine load is not higher than the high load side threshold, the first and second fuel injections are performed according to the fuel injection amount determined in step S101 and the fuel injection timing corrected in step S106. The fuel injection is performed sequentially. When step S109 is executed, the first fuel injection and the second fuel injection are sequentially performed according to the fuel injection amount corrected in step S109 and the fuel injection timing determined in step S101.

以上において、上記手順S101は、燃料噴射量及び燃料噴射時期を決定する決定手段を構成する。上記手順S110は、燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように、燃料噴射弁5を制御する噴射制御手段を構成する。上記手順S102〜S109は、吸気圧検出手段30により検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正する補正手段を構成する。   In the above, the procedure S101 constitutes a determination unit that determines the fuel injection amount and the fuel injection timing. The procedure S110 constitutes an injection control means for controlling the fuel injection valve 5 so as to perform fuel injection according to the fuel injection amount and the fuel injection timing. The steps S102 to S109 constitute correction means for correcting the ignition timing by fuel injection to advance when the intake pressure detected by the intake pressure detection means 30 is lower than a predetermined pressure.

このとき、上記手順S102〜S105は、燃焼室4内の空燃比を制御する空燃比制御手段を構成する。上記手順S106は、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段を構成する。上記手順S107,S108は、負荷検出手段29により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を構成する。上記手順S107,S109は、負荷検出手段29により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を構成する。   At this time, the steps S102 to S105 constitute air-fuel ratio control means for controlling the air-fuel ratio in the combustion chamber 4. Step S106 constitutes an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. The above steps S107 and S108 are performed when the engine load detected by the load detecting means 29 is higher than a second predetermined value that is larger than the first predetermined value. An injection pressure control means for controlling to reduce the fuel injection pressure is configured. The above steps S107 and S109 reduce the fuel injection amount of the second fuel injection when the engine load detected by the load detecting means 29 is higher than a second predetermined value larger than the first predetermined value. An injection amount reducing means is configured.

ところで、大気圧の変化等で燃焼室4内への吸気圧が低くなると、燃焼室4内に吸入される空気量が少なくなるため、インジェクタ5により燃焼室4内に燃料を噴射したときに、燃料と空気との酸化反応が遅れるため、その時の熱発生率波形(燃焼波形)が基準圧力時に得られる熱発生率波形からずれてしまい、基準圧力時と同様の予混合圧縮着火燃焼を実現することが困難となる。この場合には、燃焼騒音が大きくなったり、燃焼悪化による未燃分のHCやCOが発生しやすくなる。   By the way, when the intake pressure into the combustion chamber 4 decreases due to a change in atmospheric pressure or the like, the amount of air sucked into the combustion chamber 4 decreases, so when the fuel is injected into the combustion chamber 4 by the injector 5, Since the oxidation reaction between fuel and air is delayed, the heat generation rate waveform (combustion waveform) at that time deviates from the heat generation rate waveform obtained at the reference pressure, and the premixed compression ignition combustion similar to that at the reference pressure is realized. It becomes difficult. In this case, combustion noise increases, and unburned HC and CO are likely to be generated due to deterioration of combustion.

これに対し本実施形態では、燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が低負荷側閾値から高負荷側閾値までの中負荷領域にある状況では、燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比を維持しつつ、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角するようにしたので、燃料と空気との予混合気の着火時期が基準圧力時とほぼ一致するようになる。このため、熱発生率波形が基準圧力時に得られる熱発生率波形に近づくようになる。従って、予混合気の燃焼が適切に行われるため、燃焼騒音の増大や未燃分のHCやCOの増加を抑制することができる。また、燃焼室4内の空燃比をリーン化する場合に比べて、NOxを低減することができる。   On the other hand, in the present embodiment, when the intake pressure into the combustion chamber 4 is lower than the reference pressure, the combustion chamber 4 is in a state where the engine load is in the middle load region from the low load side threshold value to the high load side threshold value. The fuel injection timing of the first fuel injection and the second fuel injection is advanced while maintaining the air-fuel ratio set at the reference pressure so as to secure the intake air amount into the fuel. The ignition timing of the premixed mixture of air and air almost coincides with the reference pressure. For this reason, the heat generation rate waveform comes closer to the heat generation rate waveform obtained at the reference pressure. Accordingly, since the premixed gas is appropriately burned, an increase in combustion noise and an increase in unburned HC and CO can be suppressed. Further, NOx can be reduced as compared with the case where the air-fuel ratio in the combustion chamber 4 is made lean.

燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が高負荷側閾値よりも高い高負荷領域にある状況では、燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比を維持しつつ、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角することに加え、コモンレール圧を低下させることで、インジェクタ5からの燃料噴射圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量する。これにより、上述したように熱発生率波形が基準圧力時に得られる熱発生率波形に近づくようになる。   When the intake pressure into the combustion chamber 4 is lower than the reference pressure, the intake air amount into the combustion chamber 4 is ensured in a situation where the engine load is in a high load region higher than the high load side threshold. In addition to advancing the fuel injection timing of the first fuel injection and the second fuel injection while maintaining the air-fuel ratio set at the reference pressure, the fuel injection from the injector 5 is reduced by reducing the common rail pressure. While reducing the pressure, the fuel injection amount of the second fuel injection is reduced. As a result, the heat generation rate waveform approaches the heat generation rate waveform obtained at the reference pressure as described above.

また、燃焼室4内への吸気圧が低くなると、1回目の燃料噴射による着火が遅れることで、2回目の燃料噴射を行うときに燃焼室4内の温度(筒内温度)が上昇する。このため、特にエンジン負荷が高負荷領域にある状況では、燃料と空気との予混合気の着火性が良くなるため、2回目の燃料噴射による着火遅れが短縮されやすくなる。しかし、上述したように、インジェクタ5からの燃料噴射圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量するようにしたので、2回目の燃料噴射による着火遅れの短縮が抑えられる。従って、2回目の燃料噴射による予混合時間が長くなり、燃料と空気との予混合不足が防止されるため、スモークの増加を抑制することができる。   Further, when the intake pressure into the combustion chamber 4 becomes low, the ignition in the first fuel injection is delayed, so that the temperature in the combustion chamber 4 (cylinder temperature) increases when the second fuel injection is performed. For this reason, especially in a situation where the engine load is in a high load region, the ignition quality of the premixed mixture of fuel and air is improved, so that the ignition delay due to the second fuel injection is easily shortened. However, as described above, since the fuel injection pressure from the injector 5 is reduced and the fuel injection amount of the second fuel injection is reduced, the ignition delay due to the second fuel injection can be suppressed. Accordingly, the premixing time by the second fuel injection becomes longer, and insufficient premixing of fuel and air is prevented, so that an increase in smoke can be suppressed.

エンジン負荷が低負荷領域にある状況では、燃料と空気との予混合気の着火性が悪くなるため、燃焼室4内への吸気圧が低くなると、燃焼室4内の圧力(筒内圧力)が低い早期の段階で1回目の燃料噴射が実施されることになる。その状況下で、上記のように燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比を維持しつつ、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角すると、筒内圧力が更に低い段階で1回目の燃料噴射が実施されてしまう。この場合には、燃料の噴霧到達距離が伸びて、燃焼室4の壁面に付着する噴霧量が多くなるため、HCやCO増加の抑制効果が低下する可能性がある。   In a situation where the engine load is in a low load region, the ignitability of the premixed mixture of fuel and air deteriorates. Therefore, when the intake pressure into the combustion chamber 4 decreases, the pressure in the combustion chamber 4 (cylinder pressure) Thus, the first fuel injection is performed at an early stage where the value is low. Under the circumstances, the fuel of the first fuel injection and the second fuel injection is maintained while maintaining the air-fuel ratio set at the reference pressure so as to ensure the intake air amount into the combustion chamber 4 as described above. When the injection timing is advanced, the first fuel injection is performed at a stage where the in-cylinder pressure is further lowered. In this case, since the fuel spray reach distance is extended and the amount of spray adhering to the wall surface of the combustion chamber 4 is increased, the effect of suppressing the increase in HC and CO may be reduced.

そこで、燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が低負荷側閾値よりも低い低負荷領域にある状況では、燃焼室4内の空燃比を基準圧力時に設定される空燃比に対してリーン化することにより、燃焼室4内に吸入される空気量が十分多くなるため、第1の燃料噴射の燃料噴射時期を進角させなくても、燃料と空気との予混合気の着火時期が早くなる。このため、上記と同様に、予混合気の着火時期が基準圧力時とほぼ一致するようになるため、熱発生率波形が基準圧力時に得られる熱発生率波形に近づくようになる。従って、予混合気の燃焼が適切に行われるため、燃焼騒音の増大や未燃分のHCやCOの増加を抑制することができる。   Therefore, when the intake pressure into the combustion chamber 4 is lower than the reference pressure, the air-fuel ratio in the combustion chamber 4 is set at the reference pressure in a situation where the engine load is in a low load region lower than the low load side threshold. By making the air-fuel ratio lean, the amount of air sucked into the combustion chamber 4 becomes sufficiently large, so that the fuel and air can be mixed without advancing the fuel injection timing of the first fuel injection. The ignition timing of the premixed gas becomes earlier. For this reason, similarly to the above, since the ignition timing of the premixed gas substantially coincides with that at the reference pressure, the heat generation rate waveform approaches the heat generation rate waveform obtained at the reference pressure. Accordingly, since the premixed gas is appropriately burned, an increase in combustion noise and an increase in unburned HC and CO can be suppressed.

図3は、エンジン負荷が低負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示したものである。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表し、細実線Qは、吸気圧が基準圧力よりも20kPaだけ低いときの熱発生率波形を表し、太実線Rは、吸気圧が基準圧力よりも20kPaだけ低いときに、空燃比を基準圧力時に対してリーン化した場合の熱発生率波形を表している。   FIG. 3 shows an example of a heat release rate waveform in a situation where the engine load is in a low load region, compared with various conditions. The broken line P represents the heat generation rate waveform when the intake pressure is the reference pressure, the thin solid line Q represents the heat generation rate waveform when the intake pressure is 20 kPa lower than the reference pressure, and the thick solid line R represents the absorption rate. It shows a heat release rate waveform when the air-fuel ratio is leaned with respect to the reference pressure when the atmospheric pressure is lower by 20 kPa than the reference pressure.

図3から分かるように、吸気圧が基準圧力よりも20kPaだけ低くなると、着火遅れによって熱発生率波形が基準圧力時のものに比べて大きくずれている(破線P及び細実線Q参照)。しかし、吸気圧が基準圧力よりも20kPaだけ低くなったときに、空燃比を基準圧力時に対してリーン化することにより、熱発生率波形が基準圧力時のものに近づくようになる(破線P及び太実線R参照)。   As can be seen from FIG. 3, when the intake pressure is lower than the reference pressure by 20 kPa, the heat release rate waveform is greatly deviated from that at the reference pressure due to the ignition delay (see broken line P and thin solid line Q). However, when the intake pressure is lower than the reference pressure by 20 kPa, the air-fuel ratio is made lean relative to the reference pressure, so that the heat generation rate waveform approaches that at the reference pressure (broken lines P and (See thick solid line R).

図4は、エンジン負荷が低負荷領域にある状況における燃焼騒音のレベル、HC及びCOの排出濃度の一例を図3と同じ条件で比較して示したものである。図4から分かるように、吸気圧が基準圧力よりも20kPaだけ低くなっても、空燃比を基準圧力時に対してリーン化することにより、燃焼騒音のレベル、HC及びCOの発生率は基準圧力時と比べて殆ど変化しない。特にHC及びCOの排出濃度については、吸気圧が基準圧力よりも20kPaだけ低くなったときに空燃比をリーン化しない場合に比べて十分低くなっている。   FIG. 4 shows an example of the combustion noise level and the HC and CO emission concentrations in a situation where the engine load is in a low load region, under the same conditions as in FIG. As can be seen from FIG. 4, even when the intake pressure is lower than the reference pressure by 20 kPa, the air-fuel ratio is made lean with respect to the reference pressure, so that the combustion noise level and the HC and CO generation rates are at the reference pressure. Compared with almost no change. In particular, the exhaust concentrations of HC and CO are sufficiently lower than when the air-fuel ratio is not made lean when the intake pressure is lower than the reference pressure by 20 kPa.

図5は、エンジン負荷が中負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示したものである。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表し、1点鎖線Qは、吸気圧が基準圧力よりも20kPaだけ低いときの熱発生率波形を表し、細実線Rは、吸気圧が基準圧力よりも20kPaだけ低いときに、空燃比を基準圧力時に対してリーン化した場合の熱発生率波形を表し、太実線Sは、吸気圧が基準圧力よりも20kPaだけ低いときに、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角した場合の熱発生率波形を表している。   FIG. 5 shows an example of the heat generation rate waveform in a situation where the engine load is in the middle load region, compared under various conditions. The broken line P represents the heat generation rate waveform when the intake pressure is the reference pressure, the alternate long and short dash line Q represents the heat generation rate waveform when the intake pressure is lower by 20 kPa than the reference pressure, and the thin solid line R is When the intake pressure is lower than the reference pressure by 20 kPa, the heat generation rate waveform when the air-fuel ratio is leaned with respect to the reference pressure is shown. A thick solid line S indicates when the intake pressure is lower by 20 kPa than the reference pressure. The heat release rate waveform when the fuel injection timing of the first fuel injection and the second fuel injection is advanced is shown.

図5から分かるように、吸気圧が基準圧力よりも20kPaだけ低くなると、着火遅れによって熱発生率波形が基準圧力時に比べて大きくずれている(破線P及び1点鎖線Q参照)。しかし、吸気圧が基準圧力よりも20kPaだけ低くなったときに、空燃比を基準圧力時に対してリーン化したり、燃料噴射時期を進角することにより、1回目の燃料噴射による熱発生率波形が基準圧力時のものに近づくようになる(破線P、細実線R及び太実線S参照)。   As can be seen from FIG. 5, when the intake pressure is lower than the reference pressure by 20 kPa, the heat release rate waveform is greatly deviated from the reference pressure due to the ignition delay (see the broken line P and the one-dot chain line Q). However, when the intake pressure is lower than the reference pressure by 20 kPa, the heat generation rate waveform by the first fuel injection is obtained by making the air-fuel ratio leaner than the reference pressure or by advancing the fuel injection timing. It comes close to that at the time of the reference pressure (see broken line P, thin solid line R, and thick solid line S).

図6は、エンジン負荷が中負荷領域にある状況におけるNOxの発生量、燃焼騒音のレベルの一例を図5と同じ条件で比較して示したものである。図6から分かるように、吸気圧が基準圧力よりも20kPaだけ低くなっても、燃料噴射時期を進角することにより、燃焼騒音のレベルは基準圧力時と比べて殆ど変化しない。また、吸気圧が基準圧力よりも20kPaだけ低くなったときに、燃料噴射時期を進角した場合には、空燃比を基準圧力時に対してリーン化した場合に比べてNOxの発生量が十分少なくなっている。   FIG. 6 shows an example of the amount of NOx generated and the level of combustion noise in a situation where the engine load is in the middle load region under the same conditions as in FIG. As can be seen from FIG. 6, even if the intake pressure is lower than the reference pressure by 20 kPa, the combustion noise level is hardly changed by advancing the fuel injection timing as compared with the reference pressure. Further, when the fuel injection timing is advanced when the intake pressure is lower than the reference pressure by 20 kPa, the amount of NOx generated is sufficiently smaller than when the air-fuel ratio is made lean relative to the reference pressure. It has become.

図7は、エンジン負荷が高負荷領域にある状況における熱発生率波形の一例を様々な条件で比較して示したものである。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表し、1点鎖線Qは、吸気圧が基準圧力よりも30kPaだけ低いときの熱発生率波形を表し、細実線Rは、吸気圧が基準圧力よりも30kPaだけ低いときに、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角した場合の熱発生率波形を表し、太実線Sは、吸気圧が基準圧力よりも30kPaだけ低いときに、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角したうえ、コモンレール圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量した場合の熱発生率波形を表している。   FIG. 7 shows an example of a heat release rate waveform in a situation where the engine load is in a high load region and compared under various conditions. The broken line P represents the heat generation rate waveform when the intake pressure is the reference pressure, the one-dot chain line Q represents the heat generation rate waveform when the intake pressure is lower by 30 kPa than the reference pressure, and the thin solid line R is When the intake pressure is lower than the reference pressure by 30 kPa, the heat generation rate waveform when the fuel injection timing of the first fuel injection and the second fuel injection is advanced is shown. The thick solid line S indicates the intake pressure is the reference When the fuel injection timing of the first fuel injection and the second fuel injection is advanced and the common rail pressure is lowered and the fuel injection amount of the second fuel injection is reduced when the pressure is lower by 30 kPa than the pressure Represents the heat release rate waveform.

図7から分かるように、吸気圧が基準圧力よりも30kPaだけ低くなると、着火遅れによって熱発生率波形が基準圧力時に比べて大きくずれている(破線P及び1点鎖線Q参照)。しかし、吸気圧が基準圧力よりも30kPaだけ低くなったときに、燃料噴射時期を進角することで、1回目の燃料噴射による熱発生率波形が基準圧力時のものに近づくようになる(破線P、細実線R及び太実線S参照)。   As can be seen from FIG. 7, when the intake pressure is lower than the reference pressure by 30 kPa, the heat release rate waveform is greatly deviated from the reference pressure due to the ignition delay (see the broken line P and the one-dot chain line Q). However, when the intake pressure becomes 30 kPa lower than the reference pressure, the fuel injection timing is advanced so that the heat generation rate waveform by the first fuel injection approaches that at the reference pressure (dashed line). P, thin solid line R and thick solid line S).

図8は、エンジン負荷が高負荷領域にある状況におけるスモークの発生率、2回目の燃料噴射による予混合時間の一例を図7と同じ条件で比較して示したものである。図8から分かるように、吸気圧が基準圧力よりも30kPaだけ低くなっても、燃料噴射時期を進角したうえ、コモンレール圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量することにより、スモークの発生率は基準圧力時と比べて殆ど変化しない。また、コモンレール圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量した場合には、これらの処理を行わない場合に比べて、2回目の燃料噴射による予混合時間が長くなるため、スモークの発生率が低くなっている。   FIG. 8 shows an example of the smoke generation rate in the situation where the engine load is in a high load region and an example of the premix time for the second fuel injection under the same conditions as in FIG. As can be seen from FIG. 8, even when the intake pressure is lower than the reference pressure by 30 kPa, the fuel injection timing is advanced, the common rail pressure is reduced, and the fuel injection amount of the second fuel injection is reduced. Therefore, the smoke generation rate hardly changes compared with the reference pressure. In addition, when the common rail pressure is reduced and the fuel injection amount of the second fuel injection is reduced, the premixing time by the second fuel injection becomes longer than when these processes are not performed. The incidence of smoke is low.

以上のように本実施形態によれば、燃焼室4内への吸気圧が基準圧力よりも低くなっても、エンジン負荷にかかわらず、1回目の燃料噴射による燃焼波形が基準圧力時のものに近づくようになるので、基準圧力時とほぼ同様の予混合圧縮着火燃焼を実現することができる。その結果、燃焼騒音の増大やエミッションの悪化を抑制することが可能となる。   As described above, according to the present embodiment, even if the intake pressure into the combustion chamber 4 becomes lower than the reference pressure, the combustion waveform by the first fuel injection is the one at the reference pressure regardless of the engine load. Since it comes closer, premixed compression ignition combustion similar to that at the reference pressure can be realized. As a result, it is possible to suppress an increase in combustion noise and a deterioration in emissions.

なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、エンジン負荷が低負荷側閾値よりも高いときは、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角させるようにしたが、2回目の燃料噴射の燃料噴射時期は進角させずに、1回目の燃料噴射の燃料噴射時期のみを進角させても良い。この場合の燃焼波形は、図9の実線Xで示すようになる。なお、図9の破線Yは、2回目の燃料噴射の燃料噴射時期を進角させた場合の波形を示している。これにより、1回目の燃料噴射及び2回目の燃料噴射による熱発生率波形が基準圧力時のものに更に近づくようになり、吸気圧が変化したときの音色変化が少なくなる。   The present invention is not limited to the above embodiment. For example, in the above embodiment, when the engine load is higher than the low load side threshold, the fuel injection timing of the first fuel injection and the second fuel injection is advanced, but the fuel of the second fuel injection Instead of advancing the injection timing, only the fuel injection timing of the first fuel injection may be advanced. The combustion waveform in this case is as shown by the solid line X in FIG. A broken line Y in FIG. 9 shows a waveform when the fuel injection timing of the second fuel injection is advanced. As a result, the heat release rate waveforms due to the first fuel injection and the second fuel injection become closer to those at the reference pressure, and the timbre change when the intake pressure changes is reduced.

また、上記実施形態では、エンジン負荷が高負荷側閾値よりも高いときは、コモンレール圧を低下させると共に、2回目の燃料噴射の燃料噴射量を減量するようにしたが、特にそれには限られず、コモンレール圧の低下及び2回目の燃料噴射の燃料噴射量の減量のいずれか一方のみを実施しても良い。   Further, in the above embodiment, when the engine load is higher than the high load side threshold, the common rail pressure is reduced and the fuel injection amount of the second fuel injection is decreased. Only one of the decrease in the common rail pressure and the decrease in the fuel injection amount of the second fuel injection may be performed.

また、上記実施形態では、エンジン負荷が高負荷側閾値よりも高いときは、コモンレール圧を低下させた場合において、1回目の燃料噴射の燃料噴射時期の進角量を変更することはなかったが、特にそれには限らず、コモンレール圧を低下させた場合は、1回目の燃料噴射の燃料噴射時期をさらに進角させても良い。これにより、熱発生率波形を基準圧力時に得られる熱発生率波形に更に近づけることができる。なお、この場合、コモンレール圧の低下量を可変とした場合は、1回目の燃料噴射の燃料噴射時期の進角量をコモンレール圧の低下量に応じた量としても良い。   In the above embodiment, when the engine load is higher than the high load side threshold, the advance amount of the fuel injection timing of the first fuel injection is not changed when the common rail pressure is reduced. However, the present invention is not limited thereto, and when the common rail pressure is reduced, the fuel injection timing of the first fuel injection may be further advanced. Thereby, the heat generation rate waveform can be made closer to the heat generation rate waveform obtained at the reference pressure. In this case, when the amount of decrease in the common rail pressure is variable, the advance amount of the fuel injection timing of the first fuel injection may be an amount corresponding to the amount of decrease in the common rail pressure.

さらに、上記実施形態では、EGRバルブ23によりEGRガスの流量を調整することで、燃焼室4内の空燃比を制御するようにしたが、空燃比の制御方法としては特にそれには限られず、例えばターボ過給機の過給圧を上げるようにしても良い。   Furthermore, in the above embodiment, the air-fuel ratio in the combustion chamber 4 is controlled by adjusting the flow rate of the EGR gas by the EGR valve 23. However, the air-fuel ratio control method is not particularly limited, for example, You may make it raise the supercharging pressure of a turbocharger.

また、上記実施形態では、メインの燃料噴射を1回目の燃料噴射及び2回目の燃料噴射の2回に分けて行うように制御したが、特にそれには限らず、メインの燃料噴射を1回のみ実施しても良い。その場合、エンジン負荷が低負荷閾値よりも低い場合は、空燃比を基準圧力時に対してリーン化するように制御し、エンジン負荷が低負荷閾値よりも高い場合は、基準圧力時の空燃比を維持したままメインの燃料噴射時期を進角させる。   In the above-described embodiment, the main fuel injection is controlled to be performed by dividing the fuel injection into the first fuel injection and the second fuel injection. However, the present invention is not limited to this, and the main fuel injection is performed only once. You may carry out. In this case, when the engine load is lower than the low load threshold, the air-fuel ratio is controlled to be leaner than that at the reference pressure, and when the engine load is higher than the low load threshold, the air-fuel ratio at the reference pressure is set. The main fuel injection timing is advanced while maintaining it.

1…ディーゼルエンジン、4…燃焼室、5…インジェクタ(燃料噴射弁)、10…吸気通路、12…排気通路、22…EGR通路(排気再循環通路)、23…EGRバルブ(バルブ手段)、27…ECU(決定手段、噴射制御手段、補正手段、空燃比制御手段、噴射時期進角手段、噴射圧制御手段、噴射量減量手段)、29…アクセル開度センサ(負荷検出手段)、30…吸気圧センサ(吸気圧検出手段)、31…燃焼制御装置。   DESCRIPTION OF SYMBOLS 1 ... Diesel engine, 4 ... Combustion chamber, 5 ... Injector (fuel injection valve), 10 ... Intake passage, 12 ... Exhaust passage, 22 ... EGR passage (exhaust recirculation passage), 23 ... EGR valve (valve means), 27 ... ECU (determination means, injection control means, correction means, air-fuel ratio control means, injection timing advance means, injection pressure control means, injection amount reduction means), 29 ... accelerator opening sensor (load detection means), 30 ... suction Barometric pressure sensor (intake pressure detecting means), 31... Combustion control device.

このとき、好ましくは、補正手段は、燃焼室内の空燃比を制御する空燃比制御手段と、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段とを有し、噴射時期進角手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射の燃料噴射時期を進角させ、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御する。 At this time, preferably, the correction means includes an air-fuel ratio control means for controlling the air-fuel ratio in the combustion chamber, and an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. And the injection timing advance means advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure, and the air-fuel ratio control means When the intake pressure detected by the atmospheric pressure detection means is lower than a predetermined pressure, control is performed so that the air-fuel ratio in the combustion chamber is maintained at the air-fuel ratio set at the predetermined pressure.

また、好ましくは、補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を更に有する。 Preferably, the correction unit is configured to perform the first fuel injection and the second fuel injection when the engine load detected by the load detection unit is higher than a second predetermined value which is larger than the first predetermined value. further have the injection pressure control means for controlling to reduce the fuel injection pressure.

エンジンの燃焼室内への吸気圧が低くなると、第1の燃料噴射による着火が遅れるため、その後の第2の燃料噴射の実施時に燃焼室内の温度が上昇し、第2の燃料噴射による着火遅れが短縮され、燃料と空気との予混合時間が短くなる。特に、エンジンの負荷が高くなると、着火性が良くなるため、そのような不具合が顕著に表れるようになる。そこで、エンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときには、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させることにより、第2の燃料噴射による着火が起こりにくくなるため、燃料と空気との予混合時間が長くなり、予混合不足が防止される。これにより、スモークの増加を抑制することができる。When the intake pressure into the combustion chamber of the engine becomes low, ignition by the first fuel injection is delayed, so the temperature in the combustion chamber rises at the time of performing the second fuel injection thereafter, and the ignition delay by the second fuel injection is delayed. This shortens the premixing time of fuel and air. In particular, when the engine load is increased, the ignitability is improved, so that such a problem appears remarkably. Therefore, when the engine load is higher than the second predetermined value that is larger than the first predetermined value, the second fuel injection is reduced by reducing the fuel injection pressures of the first fuel injection and the second fuel injection. Therefore, the premixing time of the fuel and the air becomes long, and the premixing shortage is prevented. Thereby, the increase in smoke can be suppressed.

さらに、補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を更に有していても良い。 Further, the correction means reduces the fuel injection amount of the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value that is larger than the first predetermined value. You may further have a weight reduction means.

このようにエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときには、第2の燃料噴射の燃料噴射量を減量することにより、第2の燃料噴射の燃料噴射圧を低下させる場合と同様に、第2の燃料噴射による着火が起こりにくくなるため、燃料と空気との予混合時間が長くなり、予混合不足が防止される。これにより、スモークの増加を抑制することができる。Thus, when the engine load is higher than the second predetermined value that is larger than the first predetermined value, the fuel injection pressure of the second fuel injection is reduced by decreasing the fuel injection amount of the second fuel injection. As in the case of lowering, since ignition due to the second fuel injection is less likely to occur, the premixing time of the fuel and air is lengthened, and insufficient premixing is prevented. Thereby, the increase in smoke can be suppressed.

また、好ましくは、排気通路と吸気通路とを繋ぐように設けられ、燃焼後の排気ガスの一部を排気再循環ガスとして燃焼室内に還流するための排気再循環通路と、排気再循環通路に設けられ、排気再循環ガスの還流量を調整するバルブ手段とを更に備え、空燃比制御手段は、排気再循環ガスの還流量が減少するようにバルブ手段を制御することで、燃焼室内の空燃比を制御する。 Preferably, the exhaust passage and the intake passage are connected to each other, and an exhaust gas recirculation passage for returning a part of the exhaust gas after combustion as an exhaust gas recirculation gas into the combustion chamber and an exhaust gas recirculation passage are provided. And a valve means for adjusting the recirculation amount of the exhaust gas recirculation gas. The air-fuel ratio control means controls the valve means so that the recirculation amount of the exhaust gas recirculation gas decreases, thereby Control the fuel ratio.

このように排気再循環ガスの還流量を調整するバルブ手段を用いることにより、簡単な構成で且つ確実に、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持することができる。

Thus, by using the valve means for adjusting the recirculation amount of the exhaust gas recirculation gas, the air-fuel ratio in the combustion chamber can be reliably maintained at the air-fuel ratio set at a predetermined pressure with a simple configuration .

本発明は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置において、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、第1の燃料噴射及びその後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定する決定手段と、燃料噴射量及び燃料噴射時期に応じて第1の燃料噴射及び第2の燃料噴射を順次実施するように、燃料噴射弁を制御する噴射制御手段と、燃焼室内に空気を吸入するための吸気通路と、燃焼室内から燃焼後の排気ガスを排出するための排気通路と、燃焼室内への吸気圧を検出する吸気圧検出手段と、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射による着火時期を進角させるように補正する補正手段とを備え、補正手段は、燃焼室内の空燃比を制御する空燃比制御手段と、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段とを有し、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御することを特徴とするものである。 The present invention relates to a combustion control apparatus for an engine that performs premixed compression ignition combustion, a fuel injection valve that injects fuel into a combustion chamber of the engine, a fuel for a first fuel injection and a second fuel injection that is performed thereafter. Determination means for determining the injection amount and the fuel injection timing, and injection control means for controlling the fuel injection valve so as to sequentially perform the first fuel injection and the second fuel injection according to the fuel injection amount and the fuel injection timing An intake passage for sucking air into the combustion chamber, an exhaust passage for discharging exhaust gas after combustion from the combustion chamber, an intake pressure detection means for detecting the intake pressure into the combustion chamber, and an intake pressure detection Correction means for correcting the ignition timing by the first fuel injection to advance when the intake pressure detected by the means is lower than a predetermined pressure , and the correction means controls the air-fuel ratio in the combustion chamber. Air-fuel ratio control And an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means, and the air-fuel ratio control means has a predetermined intake pressure detected by the intake pressure detection means. When the pressure is lower than the pressure, the air-fuel ratio in the combustion chamber is controlled to be maintained at the air-fuel ratio set at a predetermined pressure .

また、第1の燃料噴射の燃料噴射時期を進角させることにより、第1の燃料噴射による着火時期が進角されるため、第1の燃料噴射による着火時期が所定圧力時に得られる着火時期に確実に近づくようになる。また、燃焼室内の空燃比を所定圧力時に設定される空燃比に維持するように制御することにより、燃焼波形を所定圧力時に得られる燃焼波形に近づけることができる。従って、燃料と空気との予混合気の燃焼が適切に行われるため、未燃分のHCやCOの増加を抑制することができる。 Further, since the ignition timing of the first fuel injection is advanced by advancing the fuel injection timing of the first fuel injection, the ignition timing of the first fuel injection is obtained at an ignition timing obtained at a predetermined pressure. It will come closer. Further, by controlling the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio set at a predetermined pressure, the combustion waveform can be brought close to the combustion waveform obtained at the predetermined pressure. Therefore, since the combustion of the premixed mixture of fuel and air is appropriately performed, an increase in unburned HC and CO can be suppressed.

Claims (8)

予混合圧縮着火燃焼を行うエンジンの燃焼制御装置において、
前記エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、
燃料噴射量及び燃料噴射時期を決定する決定手段と、
前記燃料噴射量及び前記燃料噴射時期に応じて燃料噴射を実施するように、前記燃料噴射弁を制御する噴射制御手段と、
前記燃焼室内に空気を吸入するための吸気通路と、
前記燃焼室内から燃焼後の排気ガスを排出するための排気通路と、
前記燃焼室内への吸気圧を検出する吸気圧検出手段と、
前記吸気圧検出手段により検出された前記吸気圧が所定圧力よりも低いときに、前記燃料噴射による着火時期を進角させるように補正する補正手段とを備えることを特徴とする燃焼制御装置。
In an engine combustion control device that performs premixed compression ignition combustion,
A fuel injection valve for injecting fuel into the combustion chamber of the engine;
Determining means for determining the fuel injection amount and fuel injection timing;
Injection control means for controlling the fuel injection valve so as to perform fuel injection according to the fuel injection amount and the fuel injection timing;
An intake passage for sucking air into the combustion chamber;
An exhaust passage for exhausting exhaust gas after combustion from the combustion chamber;
Intake pressure detection means for detecting intake pressure into the combustion chamber;
A combustion control apparatus, comprising: a correction unit that corrects the ignition timing by the fuel injection to advance when the intake pressure detected by the intake pressure detection unit is lower than a predetermined pressure.
前記決定手段は、第1の燃料噴射及びその後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定し、
前記噴射制御手段は、前記燃料噴射量及び前記燃料噴射時期に応じて前記第1の燃料噴射及び前記第2の燃料噴射を順次実施するように、前記燃料噴射弁を制御し、
前記補正手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低いときに、前記第1の燃料噴射による着火時期を進角させるように補正することを特徴とする請求項1記載の燃焼制御装置。
The determining means determines the fuel injection amount and fuel injection timing of the first fuel injection and the second fuel injection performed thereafter,
The injection control means controls the fuel injection valve so as to sequentially perform the first fuel injection and the second fuel injection according to the fuel injection amount and the fuel injection timing;
The correction means corrects the ignition timing by the first fuel injection to advance when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure. Item 4. The combustion control device according to Item 1.
前記補正手段は、前記燃焼室内の空燃比を制御する空燃比制御手段と、前記決定手段により決定された前記第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段とを有し、
前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低いときに、前記燃焼室内の空燃比を前記所定圧力時に設定される空燃比に維持するように制御することを特徴とする請求項2記載の燃焼制御装置。
The correction means includes air-fuel ratio control means for controlling the air-fuel ratio in the combustion chamber, and injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. ,
The air-fuel ratio control means maintains the air-fuel ratio in the combustion chamber at the air-fuel ratio set at the predetermined pressure when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure. The combustion control device according to claim 2, wherein the combustion control device is controlled.
前記エンジンの負荷を検出する負荷検出手段を更に備え、
前記噴射時期進角手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が第1の所定値よりも高いときに、前記第1の燃料噴射の燃料噴射時期を進角させ、
前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも高いときに、前記燃焼室内の空燃比を前記所定圧力時に設定される空燃比に維持するように制御することを特徴とする請求項3記載の燃焼制御装置。
A load detecting means for detecting the load of the engine;
The injection timing advance means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the engine load detected by the load detection means is lower than a first predetermined value. When high, advance the fuel injection timing of the first fuel injection,
The air-fuel ratio control means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the engine load detected by the load detection means is lower than the first predetermined value. 4. The combustion control apparatus according to claim 3, wherein when the fuel pressure is high, control is performed so that the air-fuel ratio in the combustion chamber is maintained at the air-fuel ratio set at the predetermined pressure.
前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも低いときに、前記燃焼室内の空燃比を前記所定圧力時に設定される空燃比に対してリーン化するように制御することを特徴とする請求項4記載の燃焼制御装置。   The air-fuel ratio control means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the engine load detected by the load detection means is lower than the first predetermined value. 5. The combustion control device according to claim 4, wherein when the temperature is low, the air-fuel ratio in the combustion chamber is controlled to be lean with respect to the air-fuel ratio set at the predetermined pressure. 前記排気通路と前記吸気通路とを繋ぐように設けられ、前記燃焼後の排気ガスの一部を排気再循環ガスとして前記燃焼室内に還流するための排気再循環通路と、
前記排気再循環通路に設けられ、前記排気再循環ガスの還流量を調整するバルブ手段とを更に備え、
前記空燃比制御手段は、前記排気再循環ガスの還流量が減少するように前記バルブ手段を制御することで、前記燃焼室内の空燃比を制御することを特徴とする請求項3〜5のいずれか一項記載の燃焼制御装置。
An exhaust gas recirculation passage provided so as to connect the exhaust passage and the intake passage, and for returning a part of the exhaust gas after combustion as exhaust gas recirculation gas into the combustion chamber;
Valve means for adjusting a recirculation amount of the exhaust gas recirculation gas provided in the exhaust gas recirculation passage;
The air-fuel ratio control means controls the air-fuel ratio in the combustion chamber by controlling the valve means so that the recirculation amount of the exhaust gas recirculation gas decreases. A combustion control device according to claim 1.
前記補正手段は、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも大きい第2の所定値よりも高いときに、前記第1の燃料噴射及び前記第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を更に有することを特徴とする請求項4〜6のいずれか一項記載の燃焼制御装置。   The correction means includes the first fuel injection and the second fuel when the engine load detected by the load detection means is higher than a second predetermined value that is larger than the first predetermined value. The combustion control device according to any one of claims 4 to 6, further comprising injection pressure control means for controlling the fuel injection pressure of the injection to be lowered. 前記補正手段は、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも大きい第2の所定値よりも高いときに、前記第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を更に有することを特徴とする請求項4〜6のいずれか一項記載の燃焼制御装置。   The correction means reduces the fuel injection amount of the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value that is larger than the first predetermined value. The combustion control device according to any one of claims 4 to 6, further comprising injection amount reduction means for performing the injection amount reduction.
JP2011201062A 2011-09-14 2011-09-14 Combustion control device Active JP5146581B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011201062A JP5146581B1 (en) 2011-09-14 2011-09-14 Combustion control device
PCT/JP2012/068337 WO2013038805A1 (en) 2011-09-14 2012-07-19 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201062A JP5146581B1 (en) 2011-09-14 2011-09-14 Combustion control device

Publications (2)

Publication Number Publication Date
JP5146581B1 JP5146581B1 (en) 2013-02-20
JP2013060922A true JP2013060922A (en) 2013-04-04

Family

ID=47883047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201062A Active JP5146581B1 (en) 2011-09-14 2011-09-14 Combustion control device

Country Status (2)

Country Link
JP (1) JP5146581B1 (en)
WO (1) WO2013038805A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078615A (en) * 2013-10-15 2015-04-23 株式会社豊田自動織機 Combustion control system
CN110360019A (en) * 2018-04-09 2019-10-22 丰田自动车株式会社 The control device of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2809291C (en) 2013-03-12 2014-11-25 Westport Power Inc. Fuel system diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635142A (en) * 1986-06-26 1988-01-11 Toyota Motor Corp Fuel injection timing control method for diesel engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635142A (en) * 1986-06-26 1988-01-11 Toyota Motor Corp Fuel injection timing control method for diesel engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078615A (en) * 2013-10-15 2015-04-23 株式会社豊田自動織機 Combustion control system
CN110360019A (en) * 2018-04-09 2019-10-22 丰田自动车株式会社 The control device of internal combustion engine
JP2019183729A (en) * 2018-04-09 2019-10-24 トヨタ自動車株式会社 Control device of internal combustion engine
CN110360019B (en) * 2018-04-09 2022-07-19 丰田自动车株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
WO2013038805A1 (en) 2013-03-21
JP5146581B1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6787140B2 (en) Internal combustion engine control device
US7894975B2 (en) Combustion control device and method for controlling combustion of engine
JP2004176593A (en) Diesel engine
US9032930B2 (en) Combustion control device
JP2015078619A (en) Combustion control system
JP5056966B2 (en) Combustion control device
JP5146581B1 (en) Combustion control device
JP5083440B1 (en) Combustion control device
JP5196270B2 (en) Combustion control device and combustion control method for diesel engine
JP4998632B1 (en) Combustion control device
JP5556956B2 (en) Control device and method for internal combustion engine
JP2011099344A (en) Fuel injection control device for internal combustion engine
JP5158245B1 (en) Combustion control device
JP6175343B2 (en) Combustion control device
JP5141807B1 (en) Combustion control device
JP6075166B2 (en) Combustion control device
JP6190238B2 (en) Combustion control device
EP1176300A2 (en) System, method and computer program for controlling fuel injection in a diesel engine
JP2015078617A (en) Combustion control system
JP6244160B2 (en) Combustion control device
JP5569552B2 (en) Combustion control device
JP2004316557A (en) Compression ignition type internal combustion engine
JP2008240554A (en) Fuel injection control device of diesel engine
JP2017020411A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5146581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3