WO2013038805A1 - Combustion control device - Google Patents

Combustion control device Download PDF

Info

Publication number
WO2013038805A1
WO2013038805A1 PCT/JP2012/068337 JP2012068337W WO2013038805A1 WO 2013038805 A1 WO2013038805 A1 WO 2013038805A1 JP 2012068337 W JP2012068337 W JP 2012068337W WO 2013038805 A1 WO2013038805 A1 WO 2013038805A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
pressure
air
fuel
intake pressure
Prior art date
Application number
PCT/JP2012/068337
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 葛山
謹 河合
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013038805A1 publication Critical patent/WO2013038805A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a combustion control device for an engine that performs Premixed Charge Compression Ignition (PCCI) combustion.
  • PCCI Premixed Charge Compression Ignition
  • a combustion control device for an engine that performs premixed compression ignition combustion for example, a combustion control device described in Patent Document 1 is known.
  • the combustion control device described in Patent Document 1 forms the mixture as homogeneous as possible in advance by injecting fuel several times by the injector from the middle stage to the late stage of the compression stroke of the cylinder, and then mixes the mixture by self-ignition. Burn it.
  • An object of the present invention is to provide a combustion control device capable of realizing appropriate premixed compression ignition combustion even when the intake pressure into the combustion chamber decreases.
  • the present invention is a combustion control device of an engine performing premixed compression ignition combustion, comprising: a fuel injection valve for injecting fuel into a combustion chamber of the engine; determination means for determining a fuel injection amount and a fuel injection timing; In order to carry out fuel injection according to the amount and fuel injection timing, injection control means for controlling the fuel injection valve, an intake passage for drawing air into the combustion chamber, and exhaust gas after combustion from the combustion chamber
  • injection control means for controlling the fuel injection valve, an intake passage for drawing air into the combustion chamber, and exhaust gas after combustion from the combustion chamber
  • the ignition timing by fuel injection is advanced when the intake pressure detected by the intake pressure detection means for detecting the intake pressure into the combustion chamber and the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure.
  • correction means for correcting the
  • the combustion control device of the present invention detects the intake pressure into the combustion chamber, and corrects the ignition timing by fuel injection to advance when the intake pressure is lower than a predetermined pressure.
  • the combustion waveform when the intake pressure is lower than the predetermined pressure approaches the combustion waveform obtained when the intake pressure is the predetermined pressure. Therefore, appropriate premixed compression ignition combustion is realized. As a result, it is possible to suppress an increase in combustion noise and a deterioration in emission.
  • the low temperature oxidation reaction (cold flame reaction) in which heat generation gradually occurs by the fuel injected into the combustion chamber and the high temperature oxidation reaction (thermal And flame reaction).
  • the ignition timing by fuel injection is a timing at which a high temperature oxidation reaction starts to rapidly generate heat.
  • the determination means determines the fuel injection amount and fuel injection timing of the second fuel injection to be performed after the first fuel injection and the first fuel injection, and the injection control means determines the fuel injection amount and the fuel injection timing. Accordingly, the fuel injection valve is controlled such that the first fuel injection and the second fuel injection are sequentially performed, and the correction means detects that the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure, The correction may be made to advance the ignition timing by the first fuel injection.
  • the correction means corrects to advance the ignition timing by the first fuel injection when the detected intake pressure is lower than a predetermined pressure.
  • the combustion waveform when the intake pressure is lower than the predetermined pressure approaches the combustion waveform obtained when the intake pressure is the predetermined pressure.
  • the first fuel injection and the second fuel injection are divided injections of the main fuel injection for generating the required engine output, and a small amount of fuel injection performed before the main fuel injection This is different from (so-called pilot fuel injection or pre-fuel injection etc).
  • the correction means includes an air-fuel ratio control means for controlling an air-fuel ratio in the combustion chamber, and an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means.
  • the advance means advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure
  • the air fuel ratio control means detects the intake pressure by the intake pressure detection means When the intake pressure is lower than the predetermined pressure, the air-fuel ratio in the combustion chamber may be controlled to be maintained at the air-fuel ratio at the predetermined pressure.
  • the injection timing advance means advances the fuel injection timing of the first fuel injection, the ignition timing by the first fuel injection is advanced.
  • the ignition timing by the first fuel injection reliably approaches the ignition timing obtained when the intake pressure is a predetermined pressure.
  • the air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio at the predetermined pressure, the combustion waveform approaches the combustion waveform obtained when the intake pressure is the predetermined pressure. As a result, the combustion of the premixed mixture of fuel and air is properly performed, and the increase in HC and CO of unburned components can be suppressed.
  • the engine further includes load detecting means for detecting the load of the engine, and the injection timing advancing means has the intake pressure detected by the intake pressure detecting means lower than a predetermined pressure and the engine load detected by the load detecting means is When it is higher than the first predetermined value, the fuel injection timing of the first fuel injection is advanced, and the air-fuel ratio control means determines that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure and When the load of the engine detected by the load detection means is higher than the first predetermined value, the air-fuel ratio in the combustion chamber may be controlled to be maintained at the air-fuel ratio at the predetermined pressure.
  • the ignition timing by the first fuel injection is less likely to be advanced even if the fuel injection timing of the first fuel injection is advanced. Therefore, the correction by the injection timing advancing means and the air fuel ratio control means (the fuel injection timing of the first fuel injection is advanced and controlled so that the air fuel ratio in the combustion chamber is maintained at the air fuel ratio at the predetermined pressure) As a result, the operating range in which the correction for advancing the ignition timing by the first fuel injection is performed is narrowed to the area of the engine load where it is easy to advance the ignition timing by the first fuel injection. Thereby, the ignition timing by the first fuel injection can be efficiently brought close to the ignition timing obtained when the intake pressure is a predetermined pressure.
  • the air fuel ratio control means When the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure and the load of the engine detected by the load detection means is lower than a first predetermined value, the air fuel ratio control means The air-fuel ratio may be controlled to be lean with respect to the air-fuel ratio at a predetermined pressure.
  • the air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be lean with respect to the air-fuel ratio at the predetermined pressure.
  • the amount of air taken into the combustion chamber is sufficiently increased, so that the ignition timing by the first fuel injection is advanced even if the fuel injection timing of the first fuel injection is not particularly advanced. Therefore, the combustion waveform surely approaches the combustion waveform obtained when the intake pressure is a predetermined pressure. As a result, the combustion of the premixed mixture of fuel and air is properly performed, and the increase in unburned HC and CO can be suppressed.
  • the correction means is configured to set the fuel injection pressure of the first fuel injection and the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. It may further include injection pressure control means for controlling to decrease.
  • the injection pressure control means controls to lower the fuel injection pressure of the first fuel injection and the second fuel injection when the load of the engine is higher than a second predetermined value larger than the first predetermined value. Therefore, the second fuel injection hardly causes ignition. Therefore, the premixing time of the fuel and air by the second fuel injection becomes long, and the insufficient premixing is prevented. As a result, an increase in smoke can be suppressed.
  • the correction means reduces injection amount of the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. May further be included.
  • the injection amount reducing means reduces the fuel injection amount of the second fuel injection when the load of the engine is higher than the second predetermined value larger than the first predetermined value
  • the injection pressure control means reduces the second Similar to the case of reducing the fuel injection pressure of the fuel injection, the second fuel injection hardly causes the ignition. Therefore, the premixing time of fuel and air is prolonged, and the lack of premixing is prevented. As a result, an increase in smoke can be suppressed.
  • the exhaust gas recirculation passage is disposed to connect the exhaust gas passage and the intake gas passage, and is disposed in an exhaust gas recirculation passage for recirculating a portion of the exhaust gas as exhaust gas recirculation gas into the combustion chamber.
  • the air-fuel ratio control means may control the air-fuel ratio in the combustion chamber by controlling the valve means such that the amount of recirculation of the exhaust gas recycle is reduced. .
  • valve means for adjusting the amount of recirculation of the exhaust gas recirculation is used, the air-fuel ratio in the combustion chamber can be maintained at the air-fuel ratio at the predetermined pressure with a simple configuration and with certainty.
  • FIG. 1 is a schematic configuration view showing a diesel engine provided with a combustion control device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure executed by the ECU shown in FIG.
  • FIG. 3 is a graph showing the heat release rate waveform under the condition where the engine load is in the low load region.
  • FIG. 4 is a graph showing the level of combustion noise and the emission concentration of HC and CO under the condition where the engine load is in the low load region.
  • FIG. 5 is a graph showing the heat release rate waveform under the condition where the engine load is in the medium load region.
  • FIG. 6 is a graph showing the amount of generated NOx and the level of combustion noise under the condition where the engine load is in the medium load region.
  • FIG. 1 is a schematic configuration view showing a diesel engine provided with a combustion control device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure executed by the ECU shown in FIG.
  • FIG. 3 is a
  • FIG. 7 is a graph showing the heat release rate waveform under the condition where the engine load is in the high load region.
  • FIG. 8 is a graph showing the smoke generation rate and the pre-mixing time by the second fuel injection under the condition where the engine load is in the high load range.
  • FIG. 9 shows the characteristics of the combustion waveform when only the fuel injection timing of the first fuel injection is advanced, and the case where the fuel injection timing of the first fuel injection and the second fuel injection are advanced. Of the characteristics of the combustion waveform of
  • FIG. 1 is a schematic configuration view showing a diesel engine provided with a combustion control device according to an embodiment of the present invention.
  • the diesel engine 1 is a four-cylinder in-line diesel engine that performs homogeneous charge compression ignition (PCCI), and includes a common rail fuel injection device.
  • the diesel engine 1 comprises an engine body 2 in which four cylinders 3 are arranged.
  • Each cylinder 3 is provided with an injector (fuel injection valve) 5 for injecting fuel into the combustion chamber 4.
  • the injectors 5 inject fuel radially from the injection nozzle 5a.
  • Each injector 5 is connected to the common rail 6.
  • the common rail 6 is connected to the high pressure pump 8 through the fuel supply pipe 7.
  • the common rail 6 stores high pressure fuel supplied from the high pressure pump 8 and uniformly supplies the fuel to each injector 5.
  • a rail pressure adjusting valve 9 is disposed in the fuel supply pipe 7 to adjust the pressure of the fuel in the common rail 6 (common rail pressure).
  • An intake passage 10 for drawing air into the combustion chamber 4 is connected to the engine body 2 via an intake manifold 11.
  • An exhaust passage 12 for discharging exhaust gas after combustion is connected to the engine body 2 via an exhaust manifold 13.
  • an air cleaner 14, a compressor 16 of a turbocharger 15, an intercooler 17, and a throttle valve 18 are disposed from the upstream side toward the downstream side.
  • the throttle valve 18 reduces the passage area of the intake passage 10.
  • a negative pressure is generated downstream of the throttle valve 18. This enables exhaust gas recirculation (EGR) described later.
  • EGR exhaust gas recirculation
  • the turbine 19 of the turbocharger 15 and the DPF 20 with a catalyst are disposed.
  • the diesel engine 1 includes an exhaust gas recirculation (EGR) device 21 that recirculates a part of the exhaust gas after combustion into the combustion chamber 4 as an exhaust gas recirculation gas (EGR gas).
  • the EGR device 21 is arranged to connect the intake passage 10 and the exhaust manifold 13.
  • the EGR device 21 has an EGR passage 22, an EGR valve (valve means) 23, an EGR cooler 24, a bypass passage 25, and a switching valve 26.
  • the EGR passage 22 connects the intake passage 10 and the exhaust manifold 13 to recirculate the EGR gas.
  • the EGR valve 23 adjusts the amount of recirculation of EGR gas from the exhaust manifold 13 to the intake passage 10.
  • the EGR cooler 24 cools the EGR gas passing through the EGR passage 22.
  • the bypass passage 25 is connected to the EGR passage 22 so as to bypass the EGR cooler 24.
  • the switching valve 26 switches the flow path of the EGR gas to the EGR cooler 24 side or the bypass passage 25 side.
  • Each of the injectors 5, the rail pressure adjustment valve 9, the throttle valve 18, the EGR valve 23, and the switching valve 26 described above are controlled by an electronic control unit (ECU) (controller) 27.
  • ECU electronice control unit
  • a crank angle sensor 28, an accelerator opening sensor 29, and an intake pressure sensor 30 are connected to the ECU 27.
  • the crank angle sensor 28 detects a rotation angle (crank angle) of a crankshaft to which a piston (not shown) is connected. Based on the output from the crank angle sensor 25, the number of rotations of the engine body 2 (engine rotation number) can be calculated.
  • the accelerator opening degree sensor 29 detects the depression angle (accelerator opening degree) of the accelerator pedal as an alternative value of the load (engine load) of the engine body 2.
  • the accelerator opening degree sensor 29 functions as a load sensor (load detection means). In a diesel engine equipped with a common rail fuel injection system, the fuel injection amount is electronically controlled, and it is also possible to use the fuel injection amount as a substitute value for the engine load.
  • the intake pressure sensor 30 detects the pressure of air taken into the combustion chamber 4 (intake pressure into the combustion chamber 4). The intake pressure sensor 30 functions as an intake pressure detection unit.
  • the intake pressure sensor 30 is disposed, for example, at the downstream end of the intake passage 10.
  • Detection signals of the crank angle sensor 28, the accelerator opening degree sensor 29, and the intake pressure sensor 30 are input to the ECU 27.
  • the ECU 27 performs predetermined processing, and controls the injector 5, the rail pressure adjustment valve 9, the throttle valve 18, the EGR valve 23, and the switching valve 26.
  • the combustion control apparatus 31 of the form is comprised.
  • the combustion control device 31 sucks air into the combustion chamber 4 and injects the fuel from the injectors 5 into the combustion chamber 4 in multiple cycles in one cycle of the intake stroke, compression stroke, expansion stroke, and exhaust stroke. (Divided injection) is controlled to perform premixed compression ignition combustion.
  • FIG. 2 is a flowchart showing the processing procedure executed by the ECU 27.
  • the injector 5, the rail pressure adjusting valve 9, and the EGR valve 23 are controlled based on the detection signals of the sensors 28-30.
  • the ECU 27 first determines the fuel injection amount and fuel injection timing of the second fuel injection performed after the first fuel injection and the first fuel injection (S101).
  • the ECU 27 determines the fuel injection amount and the fuel injection timing based on the engine speed detected by the crank angle sensor 28 and the accelerator opening (engine load) detected by the accelerator opening sensor 29. Do.
  • the ECU 27 determines whether the intake pressure detected by the intake pressure sensor 30 is lower than a reference pressure (for example, the atmospheric pressure) (S102). If the ECU 27 determines that the intake pressure is lower than the reference pressure, the ECU 27 determines whether the engine load detected by the accelerator opening sensor 29 is lower than the low load threshold (S103).
  • the low load side threshold is set to, for example, an opening of 30% with respect to the accelerator fully open. The ECU 27 may determine whether the engine load detected by the accelerator opening sensor 29 is less than or equal to the low load threshold value in the process of S103.
  • the air-fuel ratio (A / F) in the combustion chamber 4 at that time is made lean with respect to the air-fuel ratio set at the reference pressure. In other words, control is performed to become larger than the air-fuel ratio set at the reference pressure (S104).
  • the ECU 27 controls the air-fuel ratio by controlling the EGR valve 23. Specifically, the ECU 27 increases the amount of intake air into the combustion chamber 4 by controlling the EGR valve 23 so as to reduce the amount of recirculation of EGR gas to the intake passage 10.
  • the air-fuel ratio is made lean by increasing the amount of intake air into the combustion chamber 4 without changing the fuel injection amount into the combustion chamber 4.
  • the amount to make the air-fuel ratio lean may be increased, for example, as the intake pressure and the engine load are lower.
  • the ECU 27 determines that the engine load is not lower than the low load threshold, the ECU 27 controls the air-fuel ratio in the combustion chamber 4 at that time to be maintained at the air-fuel ratio set at the reference pressure (S105) .
  • the ECU 27 controls the air-fuel ratio by controlling the EGR valve 23.
  • the ECU 27 controls the EGR valve 23 to reduce the amount of EGR gas recirculated to the intake passage 10 in accordance with the decrease in the amount of intake air. As a result, the amount of intake air into the combustion chamber 4 increases, and the air-fuel ratio is maintained at the air-fuel ratio set at the reference pressure.
  • the ECU 27 advances the fuel injection timing of the first fuel injection and the second fuel injection determined by the processing in S101 (S106).
  • the amount of advance of the fuel injection timing may be, for example, an amount according to the intake pressure and the engine load, or may be a predetermined constant amount.
  • the ignition timing of the premixed mixture of air and fuel is advanced.
  • the ECU 27 determines whether the engine load detected by the accelerator opening sensor 29 is higher than the high load threshold (S107).
  • the high load side threshold value is a value larger than the low load side threshold value, and is set to, for example, an opening degree of 60% with respect to full accelerator opening.
  • the ECU 27 determines that the engine load is higher than the high load threshold value, the ECU 27 controls the rail pressure adjusting valve 9 so as to reduce the common rail pressure from a preset value (S108). As a result, the fuel injection pressure from the injector 5 is reduced.
  • the amount of reduction of the common rail pressure may be, for example, an amount corresponding to the intake pressure and the engine load, or may be a preset fixed amount.
  • the ECU 27 decreases the fuel injection amount of the second fuel injection determined by the processing in S101, and the fuel injection amount of the first fuel injection determined in S101 by the reduction amount of the fuel injection amount.
  • the amount is increased (S109).
  • the amount of decrease of the fuel injection amount may be, for example, an amount according to the intake pressure and the engine load, or may be a preset constant amount.
  • each injector 5 is controlled so that the first fuel injection and the second fuel injection are sequentially performed (S110).
  • the ECU 27 determines that the intake pressure is not lower than the reference pressure based on the process of S102, or when the process of S104 is performed, the fuel injection amount and the fuel injection determined by the process of S101 The first fuel injection and the second fuel injection are sequentially performed according to the timing.
  • the ECU 27 determines that the engine load is not higher than the high load threshold based on the processing at S107, the fuel injection amount determined by the processing at S101 and the fuel injection timing corrected by the processing at S106
  • the first fuel injection and the second fuel injection are sequentially performed according to
  • the ECU 27 performs the first fuel injection and the second fuel injection according to the fuel injection amount corrected by the process of S109 and the fuel injection timing determined by the process of S101. Implement sequentially.
  • the ECU 27 (in particular, the process in S101) constitutes a determination means for determining the fuel injection amount and the fuel injection timing.
  • the ECU 27 (in particular, the process at S110) constitutes an injection control means for controlling the fuel injection valve (injector 5) so as to carry out the fuel injection according to the fuel injection amount and the fuel injection timing.
  • the ECU 27 (particularly, the processing in S102 to S109) corrects the ignition timing by fuel injection to advance when the intake pressure detected by the intake pressure detection means (intake pressure sensor 30) is lower than a predetermined pressure. Constitute correction means.
  • the ECU 27 (particularly, the processing in S102 to S105) constitutes an air-fuel ratio control unit that controls the air-fuel ratio in the combustion chamber 4.
  • the ECU 27 (in particular, the process at S106) constitutes an injection timing advancing means for advancing the fuel injection timing of the first fuel injection determined by the determining means.
  • the ECU 27 (in particular, the processing in S107 and S108) is executed when the engine load detected by the load detection means (the accelerator opening sensor 29) is higher than a second predetermined value larger than the first predetermined value.
  • An injection pressure control means is configured to perform control to lower the fuel injection pressure of the first fuel injection and the second fuel injection.
  • the ECU 27 (in particular, the processing in S107 and S109) is performed when the engine load detected by the load detection means (the accelerator opening sensor 29) is higher than a second predetermined value larger than the first predetermined value.
  • the fuel injection amount reducing means is configured to reduce the fuel injection amount of the second fuel injection.
  • the engine load when the intake pressure into the combustion chamber 4 is lower than the reference pressure, the engine load is in the middle load range from the low load threshold to the high load threshold.
  • the air-fuel ratio set at the reference pressure is maintained so as to secure the intake air amount of 1 and the fuel injection timing of the first fuel injection and the second fuel injection is advanced.
  • the ignition timing of the premixed mixture of fuel and air substantially matches the ignition timing when the intake pressure is the reference pressure, so a heat release rate waveform is obtained when the intake pressure is the reference pressure It approaches the heat release rate waveform. Since the combustion of the premixed mixture is properly performed, it is possible to suppress an increase in combustion noise and an increase in HC and CO of unburned components. NOx can be reduced as compared with the case where the air-fuel ratio in the combustion chamber 4 is made lean.
  • the amount of intake air into the combustion chamber 4 can be secured under the condition that the engine load is in the high load region higher than the high load threshold.
  • the air-fuel ratio set at the time of the reference pressure is maintained, and the fuel injection timing of the first fuel injection and the second fuel injection is advanced.
  • the common rail pressure is reduced, the fuel injection pressure from the injector 5 is reduced, and the fuel injection amount of the second fuel injection is reduced.
  • the heat release rate waveform approaches the heat release rate waveform obtained when the intake pressure is the reference pressure.
  • the ignition by the first fuel injection is delayed, so the temperature (in-cylinder temperature) in the combustion chamber 4 rises when the second fuel injection is performed.
  • the amount of fuel injected by the first fuel injection increases, so the temperature in the combustion chamber 4 further increases when the second fuel injection is performed. easy. Therefore, the ignitability of the fuel by the second fuel injection is improved, and the ignition delay by the second fuel injection is easily shortened.
  • the fuel injection pressure from the injector 5 is reduced and the fuel injection amount of the second fuel injection is reduced, shortening of the ignition delay due to the second fuel injection can be suppressed. Therefore, the pre-mixing time by the second fuel injection becomes longer, and the insufficient pre-mixing of fuel and air is prevented. As a result, an increase in smoke can be suppressed.
  • the ignitability of the premixed mixture of fuel and air is poor.
  • the intake pressure into the combustion chamber 4 is low, the first fuel injection is carried out at an early stage where the pressure in the combustion chamber 4 (in-cylinder pressure) is low.
  • the air-fuel ratio set at the reference pressure is maintained so that the amount of intake air into the combustion chamber 4 is maintained, and the fuel injection timing of the first fuel injection and the second fuel injection is
  • the advance angle is advanced, the first fuel injection is performed at a stage where the in-cylinder pressure is lower. In this case, the spray travel distance of the fuel is extended, and the amount of spray adhering to the wall surface of the combustion chamber 4 is large. For this reason, the inhibitory effect of HC and CO increase may fall.
  • the air-fuel ratio in the combustion chamber 4 is set at the reference pressure under a condition where the engine load is in the low load region lower than the low load threshold. It is made lean with respect to the air fuel ratio.
  • the amount of air taken into the combustion chamber 4 is sufficiently large, and the ignition timing of the premixed mixture of fuel and air is earlier even if the fuel injection timing of the first fuel injection is not advanced. Therefore, the ignition timing of the premixed gas substantially coincides with the ignition timing when the intake pressure is the reference pressure, and the heat release rate waveform approaches the heat release rate waveform obtained when the intake pressure is the reference pressure. . Therefore, the combustion of the premixed gas is properly performed, and it is possible to suppress an increase in combustion noise and an increase in HC and CO of unburned components.
  • FIG. 3 is a graph showing an example of a heat release rate waveform under a situation where the engine load is in a low load region.
  • a plurality of heat release rate waveforms obtained under various conditions are shown.
  • the broken line P represents the heat release rate waveform when the intake pressure is the reference pressure.
  • the thin solid line Q represents the heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa.
  • a thick solid line R represents a heat generation rate waveform when the air fuel ratio is made lean with respect to the air fuel ratio when the intake pressure is lower than the reference pressure by 20 kPa and the intake pressure is the reference pressure.
  • the ignition delay causes the heat release rate waveform to deviate significantly from the heat release rate waveform when the intake pressure is the reference pressure (broken line P and fine See solid line Q).
  • the air release ratio is made lean with respect to the air-fuel ratio when the intake pressure is the reference pressure, whereby the heat release rate waveform is the intake pressure being the reference pressure It approaches the heat release rate waveform of time (see the broken line P and the thick solid line R).
  • FIG. 4 is a graph showing an example of the level of combustion noise and the emission concentration of HC and CO under a situation where the engine load is in a low load region.
  • FIG. 4 shows an example of the level of combustion noise and the emission concentration of HC and CO under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 3 were obtained.
  • P ref reference pressure
  • the air-fuel ratio is made lean relative to the air-fuel ratio when the intake pressure is the reference pressure (P ref )
  • the level of combustion noise and the generation rates of HC and CO hardly change compared to when the intake pressure is the reference pressure (P ref ).
  • the exhaust concentration of HC and CO is sufficiently lower than the case where the intake pressure is 20 kPa lower than the reference pressure (P ref ) and the air fuel ratio is not leaned.
  • FIG. 5 is a graph showing an example of the heat release rate waveform under the condition that the engine load is in the medium load region. Also in FIG. 5, a plurality of heat release rate waveforms obtained under various conditions are shown.
  • the broken line P represents the heat release rate waveform when the intake pressure is the reference pressure.
  • An alternate long and short dash line Q represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa.
  • the thin solid line R represents the heat release rate waveform when the air fuel ratio is made lean with respect to the air fuel ratio when the intake pressure is lower than the reference pressure by 20 kPa and the intake pressure is the reference pressure.
  • a thick solid line S represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa and the fuel injection timing of the first fuel injection and the second fuel injection is advanced.
  • FIG. 6 is a graph showing an example of the amount of generated NOx and the level of combustion noise in a situation where the engine load is in the medium load region.
  • FIG. 6 shows the generation amount of NOx and the level of combustion noise under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 5 were obtained.
  • P ref reference pressure
  • FIG. 6 even if the intake pressure is lower than the reference pressure (P ref ) by 20 kPa, the fuel injection timing is advanced, so that the combustion noise level is equal to the reference pressure (P ref ). It hardly changes compared to when.
  • FIG. 7 is a graph showing an example of the heat release rate waveform under the condition where the engine load is in the high load region. Also shown in FIG. 7 are multiple heat release rate waveforms under various conditions.
  • the broken line P represents the heat release rate waveform when the intake pressure is the reference pressure.
  • An alternate long and short dash line Q represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 30 kPa.
  • a thin solid line R represents a heat release rate waveform when the fuel injection timing of the first fuel injection and the second fuel injection is advanced when the intake pressure is lower than the reference pressure by 30 kPa.
  • the intake pressure is lower than the reference pressure by 30 kPa, in addition to the advance angle of the fuel injection timing of the first fuel injection and the second fuel injection, the common rail pressure is reduced and the second It represents the heat release rate waveform when the fuel injection amount of the fuel injection is reduced.
  • FIG. 8 is a graph showing an example of the smoke generation rate and the premixing time by the second fuel injection under a situation where the engine load is in the high load range.
  • FIG. 8 shows the smoke generation rate and the premixing time by the second fuel injection under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 7 were obtained.
  • P ref reference pressure
  • the common rail pressure is reduced in addition to the advance of the fuel injection timing, and the fuel injection amount for the second fuel injection
  • the smoke generation rate hardly changes compared to when the intake pressure is the reference pressure (P ref ).
  • the premixing time by the second fuel injection is longer than when the processing is not performed, The incidence of smoke is low.
  • the combustion waveform by the first fuel injection and the intake pressure become the reference pressure regardless of the engine load. It approaches the combustion waveform when it is.
  • substantially the same premixed compression ignition combustion is realized as when the intake pressure is the reference pressure.
  • the present embodiment is a combustion control device for an engine that performs premixed compression ignition combustion, including a fuel injection valve that injects fuel into a combustion chamber of the engine, and intake air for drawing air into the combustion chamber.
  • the fuel cell system includes a passage, an exhaust passage for discharging exhaust gas after combustion from the combustion chamber, an intake pressure sensor for detecting an intake pressure into the combustion chamber, and a controller for operating a fuel injection valve.
  • the fuel injection valve is operated to determine the injection amount and the fuel injection timing, and the fuel injection is performed according to the determined fuel injection amount and the fuel injection timing, and the intake pressure detected by the intake pressure sensor is higher than a predetermined pressure When it is low, correction is made to advance the ignition timing by fuel injection.
  • the controller determines a fuel injection amount and a fuel injection timing of the second fuel injection to be performed after the first fuel injection and the first fuel injection, and the first according to the determined fuel injection amount and the fuel injection timing.
  • the fuel injection valve is operated so that the second fuel injection and the second fuel injection are sequentially performed, and when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, the ignition timing by the first fuel injection It may be corrected to advance the
  • the controller advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, and sets the air-fuel ratio in the combustion chamber to the air-fuel ratio at the predetermined pressure. It may be controlled to maintain.
  • the combustion control device further includes a load sensor for detecting a load of the engine, and the controller is configured to set an engine load detected by the load sensor at a lower intake pressure detected by the intake pressure sensor than the predetermined pressure.
  • the fuel injection timing of the first fuel injection may be advanced to maintain the air-fuel ratio in the combustion chamber at the air-fuel ratio at the predetermined pressure.
  • the controller determines the air fuel ratio in the combustion chamber Control may be performed to make the air-fuel ratio lean at a predetermined pressure.
  • the combustion control device is disposed to connect the exhaust passage and the intake passage, and is disposed in an exhaust gas recirculation passage for recirculating a portion of the exhaust gas as exhaust gas recirculation gas into the combustion chamber, and disposed in the exhaust gas recirculation passage.
  • the air-fuel ratio in the combustion chamber may be controlled by further comprising a valve for adjusting the amount of recirculation of the circulating gas, and the controller controls the valve so as to reduce the amount of recirculation of the exhaust gas recirculation.
  • the controller reduces the fuel injection pressure of the first fuel injection and the second fuel injection when the engine load detected by the load sensor is higher than a second predetermined value larger than the first predetermined value. It may be controlled to The controller may decrease the fuel injection amount of the second fuel injection when it is higher than the second predetermined value detected by the load sensor.
  • the present embodiment is a combustion control device for an engine that performs premixed compression ignition combustion, including a fuel injection valve that injects fuel into a combustion chamber of the engine, and a device for drawing air into the combustion chamber.
  • a fuel injection valve that injects fuel into a combustion chamber of the engine, and a device for drawing air into the combustion chamber.
  • An intake passage, an exhaust passage for discharging exhaust gas after combustion from the combustion chamber, an intake pressure sensor for detecting an intake pressure into the combustion chamber, a fuel injection amount and a fuel injection timing are determined, and the fuel injection determined
  • the fuel injection valve is operated to carry out the fuel injection according to the amount and the fuel injection timing, and when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, the ignition timing by the fuel injection is advanced.
  • a controller configured to correct.
  • the present invention is not limited to the above embodiment.
  • the fuel injection timing of the first fuel injection and the second fuel injection is advanced, but the fuel injection of the second fuel injection is performed Only the fuel injection timing of the first fuel injection may be advanced without advancing the timing.
  • the combustion waveform in this case is a waveform shown by a solid line X in FIG.
  • the broken line Y shown in FIG. 9 shows the combustion waveform when the fuel injection timing of the second fuel injection is advanced.
  • the control mode is not limited to this. Only one of the decrease in common rail pressure and the decrease in fuel injection amount of the second fuel injection may be performed.
  • the advance amount of the fuel injection timing of the first fuel injection is not changed when the common rail pressure is reduced, but the control mode is the same. It is not limited to.
  • the fuel injection timing of the first fuel injection may be further advanced. In this case, the heat release rate waveform is closer to the heat release rate waveform obtained when the intake pressure is the reference pressure.
  • the amount of advance of the fuel injection timing of the first fuel injection may be changed to an amount according to the amount of decrease of the common rail pressure.
  • the air-fuel ratio in the combustion chamber 4 is controlled by adjusting the flow rate of the EGR gas by the EGR valve 23, but the control aspect of the air-fuel ratio is not limited to this.
  • the air-fuel ratio in the combustion chamber 4 may be controlled by changing the supercharging pressure of the turbocharger.
  • the main fuel injection is divided into the first fuel injection and the second fuel injection twice, but the aspect of the fuel injection is not limited to this.
  • the main fuel injection may be performed only once. In this case, if the engine load is lower than the low load threshold, the air-fuel ratio is made leaner than the air-fuel ratio when the intake pressure is the reference pressure, and if the engine load is higher than the low load threshold, the intake pressure The main fuel injection timing is advanced while maintaining the air-fuel ratio when the reference pressure is the reference pressure.
  • the present invention is applicable to a fuel injection device of an engine that performs premixed compression ignition combustion.

Abstract

A combustion control device equipped with: fuel injection valves (5) that inject fuel into the combustion chamber (4) of an engine (1); an intake pressure sensor (30) that detects the intake pressure with respect to the combustion chamber (4); and an electronic control unit (27) that operates the fuel injection valves (5). The electronic control unit (27) determines the fuel injection amount and the fuel injection timing, and operates the fuel injection valves (5) so as to execute fuel injection in accordance with the fuel injection amount and the fuel injection timing, and performs a correction so as to advance the ignition timing during fuel injection when the intake pressure detected by the intake pressure sensor (30) is lower than a prescribed pressure.

Description

燃焼制御装置Combustion control device
 本発明は、予混合圧縮着火(PCCI:Premixed Charge Compression Ignition)燃焼を行うエンジンの燃焼制御装置に関する。 The present invention relates to a combustion control device for an engine that performs Premixed Charge Compression Ignition (PCCI) combustion.
 予混合圧縮着火燃焼を行うエンジンの燃焼制御装置としては、例えば特許文献1に記載されている燃焼制御装置が知られている。特許文献1に記載の燃焼制御装置は、気筒の圧縮行程中期から後期にかけてインジェクタにより燃料を複数回に分けて噴射することにより、できるだけ均質な混合気を予め形成した上で自己着火により混合気を燃焼させる。 As a combustion control device for an engine that performs premixed compression ignition combustion, for example, a combustion control device described in Patent Document 1 is known. The combustion control device described in Patent Document 1 forms the mixture as homogeneous as possible in advance by injecting fuel several times by the injector from the middle stage to the late stage of the compression stroke of the cylinder, and then mixes the mixture by self-ignition. Burn it.
特開2003-286879号公報JP 2003-286879 A
 しかしながら、予混合圧縮着火燃焼が行われる場合に、エンジンの燃焼室内への吸気圧が低下すると、適切な燃焼波形(熱発生率波形)が得られない懼れがある。適切な燃焼波形が得られないと、適切な予混合圧縮着火燃焼の実現が困難になり、燃焼騒音の増大やエミッションの悪化につながる。 However, when the premixed compression ignition combustion is performed, if the intake pressure into the combustion chamber of the engine decreases, there is a risk that an appropriate combustion waveform (heat generation rate waveform) can not be obtained. If an appropriate combustion waveform can not be obtained, it is difficult to realize appropriate premixed compression ignition combustion, which leads to an increase in combustion noise and a deterioration in emissions.
 本発明の目的は、燃焼室内への吸気圧が低下した場合でも、適切な予混合圧縮着火燃焼を実現することができる燃焼制御装置を提供することである。 An object of the present invention is to provide a combustion control device capable of realizing appropriate premixed compression ignition combustion even when the intake pressure into the combustion chamber decreases.
 本発明は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、燃料噴射量及び燃料噴射時期を決定する決定手段と、燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように、燃料噴射弁を制御する噴射制御手段と、燃焼室内に空気を吸入するための吸気通路と、燃焼室内から燃焼後の排気ガスを排出するための排気通路と、燃焼室内への吸気圧を検出する吸気圧検出手段と、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正する補正手段と、を備える。 The present invention is a combustion control device of an engine performing premixed compression ignition combustion, comprising: a fuel injection valve for injecting fuel into a combustion chamber of the engine; determination means for determining a fuel injection amount and a fuel injection timing; In order to carry out fuel injection according to the amount and fuel injection timing, injection control means for controlling the fuel injection valve, an intake passage for drawing air into the combustion chamber, and exhaust gas after combustion from the combustion chamber The ignition timing by fuel injection is advanced when the intake pressure detected by the intake pressure detection means for detecting the intake pressure into the combustion chamber and the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure. And correction means for correcting the
 エンジンの燃焼室内への吸気圧が低下すると、燃焼室内に吸入される空気量が減少する。燃料噴射弁により燃焼室内に燃料が噴射されたときに、燃料と空気との酸化反応が遅れるため、適切な燃焼波形が得らない。本発明の燃焼制御装置は、燃焼室内への吸気圧を検出し、吸気圧が所定圧力よりも低いときには、燃料噴射による着火時期を進角させるように補正する。これにより、吸気圧が所定圧力よりも低いときの燃焼波形が、吸気圧が所定圧力であるときに得られる燃焼波形に近づく。したがって、適切な予混合圧縮着火燃焼が実現される。この結果、燃焼騒音の増大やエミッションの悪化を抑制することができる。 When the intake pressure into the combustion chamber of the engine decreases, the amount of air taken into the combustion chamber decreases. When fuel is injected into the combustion chamber by the fuel injection valve, the oxidation reaction between the fuel and air is delayed, so an appropriate combustion waveform can not be obtained. The combustion control device of the present invention detects the intake pressure into the combustion chamber, and corrects the ignition timing by fuel injection to advance when the intake pressure is lower than a predetermined pressure. Thus, the combustion waveform when the intake pressure is lower than the predetermined pressure approaches the combustion waveform obtained when the intake pressure is the predetermined pressure. Therefore, appropriate premixed compression ignition combustion is realized. As a result, it is possible to suppress an increase in combustion noise and a deterioration in emission.
 予混合圧縮着火燃焼における燃焼過程では、燃焼室内に噴射された燃料により、熱発生が緩やかに生じる低温酸化反応(冷炎反応)と、低温酸化反応後に熱発生が急激に高まる高温酸化反応(熱炎反応)と、を伴う。燃料噴射による着火時期とは、熱発生が急激に高まる高温酸化反応が始まる時期である。 In the combustion process in premixed compression ignition combustion, the low temperature oxidation reaction (cold flame reaction) in which heat generation gradually occurs by the fuel injected into the combustion chamber and the high temperature oxidation reaction (thermal And flame reaction). The ignition timing by fuel injection is a timing at which a high temperature oxidation reaction starts to rapidly generate heat.
 決定手段は、第1の燃料噴射及び第1の燃料噴射の後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定し、噴射制御手段は、燃料噴射量及び燃料噴射時期に応じて第1の燃料噴射及び第2の燃料噴射を順次実施するように、燃料噴射弁を制御し、補正手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射による着火時期を進角させるように補正してもよい。 The determination means determines the fuel injection amount and fuel injection timing of the second fuel injection to be performed after the first fuel injection and the first fuel injection, and the injection control means determines the fuel injection amount and the fuel injection timing. Accordingly, the fuel injection valve is controlled such that the first fuel injection and the second fuel injection are sequentially performed, and the correction means detects that the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure, The correction may be made to advance the ignition timing by the first fuel injection.
 燃料を分割して噴射すると、燃焼室内における燃料の燃焼期間が長くなる。このため、吸気圧が所定圧力より低いときに、燃焼波形が適切な燃焼波形からずれ易い。補正手段が、検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射による着火時期を進角させるように補正する。これにより、吸気圧が所定圧力よりも低いときの燃焼波形が、吸気圧が所定圧力であるときに得られる燃焼波形に近づく。第1の燃料噴射及び第2の燃料噴射は、要求されるエンジンの出力を発生させるためのメインの燃料噴射が分割された噴射であり、メインの燃料噴射の前に実施される少量の燃料噴射(いわゆる、パイロット燃料噴射又はプレ燃料噴射など)とは異なる。 When the fuel is dividedly injected, the fuel combustion period in the combustion chamber becomes longer. Therefore, when the intake pressure is lower than the predetermined pressure, the combustion waveform is likely to deviate from the appropriate combustion waveform. The correction means corrects to advance the ignition timing by the first fuel injection when the detected intake pressure is lower than a predetermined pressure. Thus, the combustion waveform when the intake pressure is lower than the predetermined pressure approaches the combustion waveform obtained when the intake pressure is the predetermined pressure. The first fuel injection and the second fuel injection are divided injections of the main fuel injection for generating the required engine output, and a small amount of fuel injection performed before the main fuel injection This is different from (so-called pilot fuel injection or pre-fuel injection etc).
 補正手段は、燃焼室内の空燃比を制御する空燃比制御手段と、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段と、を有し、噴射時期進角手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、第1の燃料噴射の燃料噴射時期を進角させ、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低いときに、燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御してもよい。 The correction means includes an air-fuel ratio control means for controlling an air-fuel ratio in the combustion chamber, and an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. The advance means advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure, and the air fuel ratio control means detects the intake pressure by the intake pressure detection means When the intake pressure is lower than the predetermined pressure, the air-fuel ratio in the combustion chamber may be controlled to be maintained at the air-fuel ratio at the predetermined pressure.
 噴射時期進角手段が第1の燃料噴射の燃料噴射時期を進角させるので、第1の燃料噴射による着火時期が進角される。これにより、第1の燃料噴射による着火時期が、吸気圧が所定圧力であるときに得られる着火時期に確実に近づく。空燃比制御手段が、燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御するので、燃焼波形が、吸気圧が所定圧力であるときに得られる燃焼波形に近づく。これらの結果、燃料と空気との予混合気の燃焼が適切に行われ、未燃分のHC及びCOの増加を抑制することができる。 Since the injection timing advance means advances the fuel injection timing of the first fuel injection, the ignition timing by the first fuel injection is advanced. Thus, the ignition timing by the first fuel injection reliably approaches the ignition timing obtained when the intake pressure is a predetermined pressure. Since the air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio at the predetermined pressure, the combustion waveform approaches the combustion waveform obtained when the intake pressure is the predetermined pressure. As a result, the combustion of the premixed mixture of fuel and air is properly performed, and the increase in HC and CO of unburned components can be suppressed.
 エンジンの負荷を検出する負荷検出手段を更に備え、噴射時期進角手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも高いときに、第1の燃料噴射の燃料噴射時期を進角させ、空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも高いときに、燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御してもよい。 The engine further includes load detecting means for detecting the load of the engine, and the injection timing advancing means has the intake pressure detected by the intake pressure detecting means lower than a predetermined pressure and the engine load detected by the load detecting means is When it is higher than the first predetermined value, the fuel injection timing of the first fuel injection is advanced, and the air-fuel ratio control means determines that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure and When the load of the engine detected by the load detection means is higher than the first predetermined value, the air-fuel ratio in the combustion chamber may be controlled to be maintained at the air-fuel ratio at the predetermined pressure.
 一般的に、エンジン負荷が低いときは、エンジン負荷が高いときに比べて吸入空気量が少ない。このため、エンジンの負荷が第1の所定値よりも低いときは、第1の燃料噴射の燃料噴射時期が進角されても、第1の燃料噴射による着火時期が進角されにくい。そこで、噴射時期進角手段及び空燃比制御手段による補正(第1の燃料噴射の燃料噴射時期を進角させると共に燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御することにより、第1の燃料噴射による着火時期を進角させる補正)が行われる運転領域が、第1の燃料噴射による着火時期を進角させやすい、エンジン負荷の領域に絞られる。これにより、第1の燃料噴射による着火時期を吸気圧が所定圧力であるときに得られる着火時期に効率的に近づけることができる。 Generally, when the engine load is low, the amount of intake air is smaller than when the engine load is high. Therefore, when the load of the engine is lower than the first predetermined value, the ignition timing by the first fuel injection is less likely to be advanced even if the fuel injection timing of the first fuel injection is advanced. Therefore, the correction by the injection timing advancing means and the air fuel ratio control means (the fuel injection timing of the first fuel injection is advanced and controlled so that the air fuel ratio in the combustion chamber is maintained at the air fuel ratio at the predetermined pressure) As a result, the operating range in which the correction for advancing the ignition timing by the first fuel injection is performed is narrowed to the area of the engine load where it is easy to advance the ignition timing by the first fuel injection. Thereby, the ignition timing by the first fuel injection can be efficiently brought close to the ignition timing obtained when the intake pressure is a predetermined pressure.
 空燃比制御手段は、吸気圧検出手段により検出された吸気圧が所定圧力よりも低く、かつ、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも低いときに、燃焼室内の空燃比を所定圧力時での空燃比に対してリーン化するように制御してもよい。 When the intake pressure detected by the intake pressure detection means is lower than a predetermined pressure and the load of the engine detected by the load detection means is lower than a first predetermined value, the air fuel ratio control means The air-fuel ratio may be controlled to be lean with respect to the air-fuel ratio at a predetermined pressure.
 エンジンの負荷が第1の所定値よりも低いときは、空燃比制御手段が、燃焼室内の空燃比を所定圧力時での空燃比に対してリーン化するように制御する。これにより、燃焼室内に吸入される空気量が十分に増加するため、特に第1の燃料噴射の燃料噴射時期が進角されなくても、第1の燃料噴射による着火時期が進角される。したがって、燃焼波形が、吸気圧が所定圧力であるときに得られる燃焼波形に確実に近づく。この結果、燃料と空気との予混合気の燃焼が適切に行われ、未燃分のHCやCOの増加を抑制することができる。 When the load of the engine is lower than the first predetermined value, the air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be lean with respect to the air-fuel ratio at the predetermined pressure. As a result, the amount of air taken into the combustion chamber is sufficiently increased, so that the ignition timing by the first fuel injection is advanced even if the fuel injection timing of the first fuel injection is not particularly advanced. Therefore, the combustion waveform surely approaches the combustion waveform obtained when the intake pressure is a predetermined pressure. As a result, the combustion of the premixed mixture of fuel and air is properly performed, and the increase in unburned HC and CO can be suppressed.
 補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を更に有してもよい。 The correction means is configured to set the fuel injection pressure of the first fuel injection and the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. It may further include injection pressure control means for controlling to decrease.
 エンジンの燃焼室内への吸気圧が低いと、第1の燃料噴射による着火が遅れる。このため、第2の燃料噴射が実施される時に燃焼室内の温度が上昇して、第2の燃料噴射による着火遅れが短縮される。この結果、第2の燃料噴射による燃料と空気との予混合時間が短くなる不具合が生じる懼れがある。特に、エンジンの負荷が高いと、第1の燃料噴射によって噴射される燃料の量が増えるため、第2の燃料噴射が実施される時に、燃焼室内の温度が上昇している。これにより、第2の燃料噴射による燃料の着火性が良くなり、上記不具合が顕著に表れる。噴射圧制御手段が、エンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御するので、第2の燃料噴射による着火が起こり難い。したがって、第2の燃料噴射による燃料と空気との予混合時間が長くなり、予混合不足が防止される。この結果、スモークの増加を抑制することができる。 If the intake pressure into the combustion chamber of the engine is low, ignition by the first fuel injection is delayed. Therefore, when the second fuel injection is performed, the temperature in the combustion chamber rises, and the ignition delay due to the second fuel injection is shortened. As a result, there may occur a problem that the pre-mixing time of fuel and air by the second fuel injection becomes short. In particular, when the load on the engine is high, the amount of fuel injected by the first fuel injection increases, so the temperature in the combustion chamber rises when the second fuel injection is performed. As a result, the ignitability of the fuel by the second fuel injection is improved, and the above-mentioned problems appear prominently. The injection pressure control means controls to lower the fuel injection pressure of the first fuel injection and the second fuel injection when the load of the engine is higher than a second predetermined value larger than the first predetermined value. Therefore, the second fuel injection hardly causes ignition. Therefore, the premixing time of the fuel and air by the second fuel injection becomes long, and the insufficient premixing is prevented. As a result, an increase in smoke can be suppressed.
 補正手段は、負荷検出手段により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を更に有してもよい。 The correction means reduces injection amount of the second fuel injection when the engine load detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. May further be included.
 噴射量減量手段が、エンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量するので、噴射圧制御手段が第2の燃料噴射の燃料噴射圧を低下させる場合と同様に、第2の燃料噴射による着火が起こり難い。したがって、燃料と空気との予混合時間が長くなり、予混合不足が防止される。この結果、スモークの増加を抑制することができる。 Since the injection amount reducing means reduces the fuel injection amount of the second fuel injection when the load of the engine is higher than the second predetermined value larger than the first predetermined value, the injection pressure control means reduces the second Similar to the case of reducing the fuel injection pressure of the fuel injection, the second fuel injection hardly causes the ignition. Therefore, the premixing time of fuel and air is prolonged, and the lack of premixing is prevented. As a result, an increase in smoke can be suppressed.
 排気通路と吸気通路とを繋ぐように配置され、排気ガスの一部を排気再循環ガスとして燃焼室内に還流するための排気再循環通路と、排気再循環通路に配置され、排気再循環ガスの還流量を調整するバルブ手段と、を更に備え、空燃比制御手段は、排気再循環ガスの還流量が減少するようにバルブ手段を制御することで、燃焼室内の空燃比を制御してもよい。 The exhaust gas recirculation passage is disposed to connect the exhaust gas passage and the intake gas passage, and is disposed in an exhaust gas recirculation passage for recirculating a portion of the exhaust gas as exhaust gas recirculation gas into the combustion chamber. The air-fuel ratio control means may control the air-fuel ratio in the combustion chamber by controlling the valve means such that the amount of recirculation of the exhaust gas recycle is reduced. .
 排気再循環ガスの還流量を調整するバルブ手段が用いられるので、簡単な構成で且つ確実に、燃焼室内の空燃比を所定圧力時での空燃比に維持することができる。 Since the valve means for adjusting the amount of recirculation of the exhaust gas recirculation is used, the air-fuel ratio in the combustion chamber can be maintained at the air-fuel ratio at the predetermined pressure with a simple configuration and with certainty.
 本発明によれば、燃焼室内への吸気圧が低下した場合でも、適切な予混合圧縮着火燃焼を実現することができる燃焼制御装置を提供することができる。 According to the present invention, it is possible to provide a combustion control device capable of realizing appropriate premixed compression ignition combustion even when the intake pressure into the combustion chamber decreases.
図1は、本発明の実施形態に係る燃焼制御装置を備えたディーゼルエンジンを示す概略構成図である。FIG. 1 is a schematic configuration view showing a diesel engine provided with a combustion control device according to an embodiment of the present invention. 図2は、図1に示されたECUにより実行される処理手順を示すフローチャートである。FIG. 2 is a flowchart showing a processing procedure executed by the ECU shown in FIG. 図3は、エンジン負荷が低負荷領域にある状況下での熱発生率波形を示すグラフである。FIG. 3 is a graph showing the heat release rate waveform under the condition where the engine load is in the low load region. 図4は、エンジン負荷が低負荷領域にある状況下での、燃焼騒音のレベル、並びに、HC及びCOの排出濃度を示すグラフである。FIG. 4 is a graph showing the level of combustion noise and the emission concentration of HC and CO under the condition where the engine load is in the low load region. 図5は、エンジン負荷が中負荷領域にある状況下での熱発生率波形を示すグラフある。FIG. 5 is a graph showing the heat release rate waveform under the condition where the engine load is in the medium load region. 図6は、エンジン負荷が中負荷領域にある状況下での、NOxの発生量、及び、燃焼騒音のレベルを示すグラフである。FIG. 6 is a graph showing the amount of generated NOx and the level of combustion noise under the condition where the engine load is in the medium load region. 図7は、エンジン負荷が高負荷領域にある状況下での熱発生率波形を示すグラフである。FIG. 7 is a graph showing the heat release rate waveform under the condition where the engine load is in the high load region. 図8は、エンジン負荷が高負荷領域にある状況下での、スモークの発生率、及び、2回目の燃料噴射による予混合時間を示すグラフである。FIG. 8 is a graph showing the smoke generation rate and the pre-mixing time by the second fuel injection under the condition where the engine load is in the high load range. 図9は、1回目の燃料噴射の燃料噴射時期のみが進角された場合での燃焼波形の特徴と、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角された場合での燃焼波形の特徴と、を比較するための図である。FIG. 9 shows the characteristics of the combustion waveform when only the fuel injection timing of the first fuel injection is advanced, and the case where the fuel injection timing of the first fuel injection and the second fuel injection are advanced. Of the characteristics of the combustion waveform of
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施形態に係る燃焼制御装置を備えたディーゼルエンジンを示す概略構成図である。図1に示されるように、ディーゼルエンジン1は、予混合圧縮着火(PCCI)を行う4気筒直列ディーゼルエンジンであり、コモンレール式の燃料噴射装置を備えている。ディーゼルエンジン1はエンジン本体2を備え、このエンジン本体2には4つのシリンダ3が配置されている。 FIG. 1 is a schematic configuration view showing a diesel engine provided with a combustion control device according to an embodiment of the present invention. As shown in FIG. 1, the diesel engine 1 is a four-cylinder in-line diesel engine that performs homogeneous charge compression ignition (PCCI), and includes a common rail fuel injection device. The diesel engine 1 comprises an engine body 2 in which four cylinders 3 are arranged.
 各シリンダ3には、燃焼室4内に燃料を噴射するインジェクタ(燃料噴射弁)5がそれぞれ配設されている。インジェクタ5は、噴射ノズル5aから放射状に燃料を噴射する。各インジェクタ5は、コモンレール6に接続されている。コモンレール6は、燃料供給管7を介して高圧ポンプ8と接続されている。コモンレール6は、高圧ポンプ8から供給される高圧燃料を貯留し、各インジェクタ5に燃料を均一に供給する。燃料供給管7には、コモンレール6内での燃料の圧力(コモンレール圧)を調整するレール圧調整バルブ9が配置されている。 Each cylinder 3 is provided with an injector (fuel injection valve) 5 for injecting fuel into the combustion chamber 4. The injectors 5 inject fuel radially from the injection nozzle 5a. Each injector 5 is connected to the common rail 6. The common rail 6 is connected to the high pressure pump 8 through the fuel supply pipe 7. The common rail 6 stores high pressure fuel supplied from the high pressure pump 8 and uniformly supplies the fuel to each injector 5. A rail pressure adjusting valve 9 is disposed in the fuel supply pipe 7 to adjust the pressure of the fuel in the common rail 6 (common rail pressure).
 エンジン本体2には、燃焼室4内に空気を吸入するための吸気通路10がインテークマニホールド11を介して接続されている。エンジン本体2には、燃焼後の排気ガスを排出するための排気通路12がエキゾーストマニホールド13を介して接続されている。 An intake passage 10 for drawing air into the combustion chamber 4 is connected to the engine body 2 via an intake manifold 11. An exhaust passage 12 for discharging exhaust gas after combustion is connected to the engine body 2 via an exhaust manifold 13.
 吸気通路10には、上流側から下流側に向けてエアクリーナー14、ターボ過給機15のコンプレッサ16、インタークーラー17、及びスロットルバルブ18が配置されている。スロットルバルブ18は、吸気通路10の通路面積を絞る。吸気通路10の通路面積がスロットルバルブ18により絞られると、スロットルバルブ18の下流側に負圧が発生する。これにより、後述する排気再循環(EGR)が可能となる。排気通路12には、ターボ過給機15のタービン19及び触媒付きDPF20が配置されている。 In the intake passage 10, an air cleaner 14, a compressor 16 of a turbocharger 15, an intercooler 17, and a throttle valve 18 are disposed from the upstream side toward the downstream side. The throttle valve 18 reduces the passage area of the intake passage 10. When the passage area of the intake passage 10 is narrowed by the throttle valve 18, a negative pressure is generated downstream of the throttle valve 18. This enables exhaust gas recirculation (EGR) described later. In the exhaust passage 12, the turbine 19 of the turbocharger 15 and the DPF 20 with a catalyst are disposed.
 ディーゼルエンジン1は、燃焼後の排気ガスの一部を排気再循環ガス(EGRガス)として燃焼室4内に還流する排気再循環(EGR)装置21を備えている。EGR装置21は、吸気通路10とエキゾーストマニホールド13とを繋ぐように配置されている。EGR装置21は、EGR通路22と、EGRバルブ(バルブ手段)23と、EGRクーラ24と、バイパス通路25と、切替弁26と、を有している。EGR通路22は、吸気通路10とエキゾーストマニホールド13とを繋いでおり、EGRガスを還流させる。EGRバルブ23は、エキゾーストマニホールド13から吸気通路10へのEGRガスの還流量を調整する。EGRクーラ24は、EGR通路22を通るEGRガスを冷却する。バイパス通路25は、EGRクーラ24をバイパスするようにEGR通路22に接続されている。切替弁26は、EGRガスの流路をEGRクーラ24側またはバイパス通路25側に切り替える。 The diesel engine 1 includes an exhaust gas recirculation (EGR) device 21 that recirculates a part of the exhaust gas after combustion into the combustion chamber 4 as an exhaust gas recirculation gas (EGR gas). The EGR device 21 is arranged to connect the intake passage 10 and the exhaust manifold 13. The EGR device 21 has an EGR passage 22, an EGR valve (valve means) 23, an EGR cooler 24, a bypass passage 25, and a switching valve 26. The EGR passage 22 connects the intake passage 10 and the exhaust manifold 13 to recirculate the EGR gas. The EGR valve 23 adjusts the amount of recirculation of EGR gas from the exhaust manifold 13 to the intake passage 10. The EGR cooler 24 cools the EGR gas passing through the EGR passage 22. The bypass passage 25 is connected to the EGR passage 22 so as to bypass the EGR cooler 24. The switching valve 26 switches the flow path of the EGR gas to the EGR cooler 24 side or the bypass passage 25 side.
 上記の各インジェクタ5、レール圧調整バルブ9、スロットルバルブ18、EGRバルブ23、及び切替弁26は、電子制御ユニット(ECU)(コントローラ)27によって制御される。ECU27には、クランク角センサ28、アクセル開度センサ29、及び吸気圧センサ30が接続されている。 Each of the injectors 5, the rail pressure adjustment valve 9, the throttle valve 18, the EGR valve 23, and the switching valve 26 described above are controlled by an electronic control unit (ECU) (controller) 27. A crank angle sensor 28, an accelerator opening sensor 29, and an intake pressure sensor 30 are connected to the ECU 27.
 クランク角センサ28は、図示しないピストンが連結されるクランク軸の回転角度(クランク角)を検出する。クランク角センサ25からの出力に基づいて、エンジン本体2の回転数(エンジン回転数)を算出することができる。アクセル開度センサ29は、エンジン本体2の負荷(エンジン負荷)の代替値として、アクセルペダルの踏込み角(アクセル開度)を検出する。アクセル開度センサ29は、負荷センサ(負荷検出手段)として機能する。コモンレール式燃料噴射装置を備えたディーゼルエンジンでは、燃料噴射量を電子制御しており、エンジン負荷の代替値として燃料噴射量を用いることも可能である。吸気圧センサ30は、燃焼室4内に吸入される空気の圧力(燃焼室4内への吸気圧)を検出する。吸気圧センサ30は、吸気圧検出手段として機能する。吸気圧センサ30は、例えば吸気通路10の下流側端部に配置される。 The crank angle sensor 28 detects a rotation angle (crank angle) of a crankshaft to which a piston (not shown) is connected. Based on the output from the crank angle sensor 25, the number of rotations of the engine body 2 (engine rotation number) can be calculated. The accelerator opening degree sensor 29 detects the depression angle (accelerator opening degree) of the accelerator pedal as an alternative value of the load (engine load) of the engine body 2. The accelerator opening degree sensor 29 functions as a load sensor (load detection means). In a diesel engine equipped with a common rail fuel injection system, the fuel injection amount is electronically controlled, and it is also possible to use the fuel injection amount as a substitute value for the engine load. The intake pressure sensor 30 detects the pressure of air taken into the combustion chamber 4 (intake pressure into the combustion chamber 4). The intake pressure sensor 30 functions as an intake pressure detection unit. The intake pressure sensor 30 is disposed, for example, at the downstream end of the intake passage 10.
 ECU27には、クランク角センサ28、アクセル開度センサ29、及び吸気圧センサ30の各検出信号が入力される。ECU27は、所定の処理を行い、インジェクタ5、レール圧調整バルブ9、スロットルバルブ18、EGRバルブ23、及び切替弁26を制御する。 Detection signals of the crank angle sensor 28, the accelerator opening degree sensor 29, and the intake pressure sensor 30 are input to the ECU 27. The ECU 27 performs predetermined processing, and controls the injector 5, the rail pressure adjustment valve 9, the throttle valve 18, the EGR valve 23, and the switching valve 26.
 インジェクタ5、コモンレール6、燃料供給管7、高圧ポンプ8、レール圧調整バルブ9、吸気通路10、排気通路12、スロットルバルブ18、排気再循環装置21、ECU27、及びセンサ28~30は、本実施形態の燃焼制御装置31を構成している。燃焼制御装置31は、吸気行程、圧縮行程、膨張行程、及び排気行程という1サイクルにおいて、燃焼室4内に空気を吸入させると共に各インジェクタ5から燃焼室4内に燃料を複数回に分けて噴射(分割噴射)させて、予混合圧縮着火燃焼を行うように制御する。 The injector 5, the common rail 6, the fuel supply pipe 7, the high pressure pump 8, the rail pressure adjusting valve 9, the intake passage 10, the exhaust passage 12, the throttle valve 18, the exhaust gas recirculation device 21, the ECU 27, and the sensors 28 to 30 The combustion control apparatus 31 of the form is comprised. The combustion control device 31 sucks air into the combustion chamber 4 and injects the fuel from the injectors 5 into the combustion chamber 4 in multiple cycles in one cycle of the intake stroke, compression stroke, expansion stroke, and exhaust stroke. (Divided injection) is controlled to perform premixed compression ignition combustion.
 図2は、ECU27により実行される処理手順を示すフローチャートである。本処理では、センサ28~30の検出信号に基づいてインジェクタ5、レール圧調整バルブ9、及びEGRバルブ23が制御される。 FIG. 2 is a flowchart showing the processing procedure executed by the ECU 27. In this process, the injector 5, the rail pressure adjusting valve 9, and the EGR valve 23 are controlled based on the detection signals of the sensors 28-30.
 図2に示されるように、ECU27は、まず、1回目の燃料噴射及び1回目の燃料噴射の後に実施される2回目の燃料噴射の燃料噴射量及び燃料噴射時期を決定する(S101)。ここでは、ECU27は、クランク角センサ28により検出されたエンジン回転数とアクセル開度センサ29により検出されたアクセル開度(エンジン負荷)とに基づいて、上記燃料噴射量及び燃料噴射時期をそれぞれ決定する。 As shown in FIG. 2, the ECU 27 first determines the fuel injection amount and fuel injection timing of the second fuel injection performed after the first fuel injection and the first fuel injection (S101). Here, the ECU 27 determines the fuel injection amount and the fuel injection timing based on the engine speed detected by the crank angle sensor 28 and the accelerator opening (engine load) detected by the accelerator opening sensor 29. Do.
 続いて、ECU27は、吸気圧センサ30により検出された吸気圧が基準圧力(たとえば、大気圧)よりも低いか否かを判断する(S102)。ECU27は、吸気圧が基準圧力よりも低いと判断したときは、アクセル開度センサ29により検出されたエンジン負荷が低負荷側閾値よりも低いか否かを判断する(S103)。低負荷側閾値は、たとえば、アクセル全開に対して30%の開度に設定される。ECU27は、S103での処理において、アクセル開度センサ29により検出されたエンジン負荷が低負荷側閾値以下か否かを判断してもよい。 Subsequently, the ECU 27 determines whether the intake pressure detected by the intake pressure sensor 30 is lower than a reference pressure (for example, the atmospheric pressure) (S102). If the ECU 27 determines that the intake pressure is lower than the reference pressure, the ECU 27 determines whether the engine load detected by the accelerator opening sensor 29 is lower than the low load threshold (S103). The low load side threshold is set to, for example, an opening of 30% with respect to the accelerator fully open. The ECU 27 may determine whether the engine load detected by the accelerator opening sensor 29 is less than or equal to the low load threshold value in the process of S103.
 ECU27は、エンジン負荷が低負荷側閾値よりも低いと判断したときは、そのときの燃焼室4内の空燃比(A/F)が、基準圧力時に設定される空燃比に対してリーン化される、すなわち、基準圧力時に設定される空燃比よりも大きくなるように制御する(S104)。ここでは、ECU27は、EGRバルブ23を制御することにより、空燃比を制御する。具体的には、ECU27は、吸気通路10へのEGRガスの還流量を減少させるようにEGRバルブ23を制御することで、燃焼室4内への吸入空気量を増加させる。燃焼室4内への燃料噴射量を変えずに、燃焼室4内への吸入空気量を増やすことにより、空燃比がリーン化される。空燃比をリーン化する量は、たとえば吸気圧及びエンジン負荷が低いほど、増大させてもよい。 When the ECU 27 determines that the engine load is lower than the low load threshold, the air-fuel ratio (A / F) in the combustion chamber 4 at that time is made lean with respect to the air-fuel ratio set at the reference pressure. In other words, control is performed to become larger than the air-fuel ratio set at the reference pressure (S104). Here, the ECU 27 controls the air-fuel ratio by controlling the EGR valve 23. Specifically, the ECU 27 increases the amount of intake air into the combustion chamber 4 by controlling the EGR valve 23 so as to reduce the amount of recirculation of EGR gas to the intake passage 10. The air-fuel ratio is made lean by increasing the amount of intake air into the combustion chamber 4 without changing the fuel injection amount into the combustion chamber 4. The amount to make the air-fuel ratio lean may be increased, for example, as the intake pressure and the engine load are lower.
 空燃比が上述したようにリーン化されることにより、燃焼室4内への吸入空気量が増える。このため、インジェクタ5から燃焼室4内に燃料が噴射されたときに、空気と燃料との予混合気の着火時期が進角する。 By making the air-fuel ratio lean as described above, the amount of intake air into the combustion chamber 4 increases. For this reason, when fuel is injected from the injector 5 into the combustion chamber 4, the ignition timing of the premixed mixture of air and fuel advances.
 ECU27は、エンジン負荷が低負荷側閾値よりも低くないと判断したときは、そのときの燃焼室4内の空燃比が基準圧力時に設定される空燃比に維持されるように制御する(S105)。ここでも、ECU27は、EGRバルブ23を制御することにより、空燃比を制御する。燃焼室4内への吸気圧が下がると、燃焼室4内への吸入空気量が減少する。したがって、空燃比が、基準圧力時に設定される空燃比に維持されるためには、吸入空気量が減少する分だけ燃焼室4内への吸入空気量を増加させる必要がある。ECU27は、吸入空気量の減少分に対応させて、吸気通路10へのEGRガスの還流量を減少させるように、EGRバルブ23を制御する。これにより、燃焼室4内への吸入空気量が増加し、空燃比が、基準圧力時に設定される空燃比に維持される。 When the ECU 27 determines that the engine load is not lower than the low load threshold, the ECU 27 controls the air-fuel ratio in the combustion chamber 4 at that time to be maintained at the air-fuel ratio set at the reference pressure (S105) . Here too, the ECU 27 controls the air-fuel ratio by controlling the EGR valve 23. When the intake pressure into the combustion chamber 4 decreases, the amount of intake air into the combustion chamber 4 decreases. Therefore, in order to maintain the air-fuel ratio at the air-fuel ratio set at the reference pressure, it is necessary to increase the amount of intake air into the combustion chamber 4 by the amount by which the amount of intake air decreases. The ECU 27 controls the EGR valve 23 to reduce the amount of EGR gas recirculated to the intake passage 10 in accordance with the decrease in the amount of intake air. As a result, the amount of intake air into the combustion chamber 4 increases, and the air-fuel ratio is maintained at the air-fuel ratio set at the reference pressure.
 続いて、ECU27は、S101での処理により決定された1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期を進角させる(S106)。燃料噴射時期の進角量は、たとえば、吸気圧及びエンジン負荷に応じた量であってもよく、また、予め設定された一定量であってもよい。 Subsequently, the ECU 27 advances the fuel injection timing of the first fuel injection and the second fuel injection determined by the processing in S101 (S106). The amount of advance of the fuel injection timing may be, for example, an amount according to the intake pressure and the engine load, or may be a predetermined constant amount.
 燃料噴射の燃料噴射時期が上述したように進角されることにより、インジェクタ5から燃焼室4内に燃料が噴射されたときに、空気と燃料との予混合気の着火時期が進角する。 By advancing the fuel injection timing of the fuel injection as described above, when fuel is injected from the injector 5 into the combustion chamber 4, the ignition timing of the premixed mixture of air and fuel is advanced.
 続いて、ECU27は、アクセル開度センサ29により検出されたエンジン負荷が高負荷側閾値よりも高いか否かを判断する(S107)。高負荷側閾値は、低負荷側閾値よりも大きな値であり、たとえば、アクセル全開に対して60%の開度に設定される。 Subsequently, the ECU 27 determines whether the engine load detected by the accelerator opening sensor 29 is higher than the high load threshold (S107). The high load side threshold value is a value larger than the low load side threshold value, and is set to, for example, an opening degree of 60% with respect to full accelerator opening.
 ECU27は、エンジン負荷が高負荷側閾値よりも高いと判断したときは、コモンレール圧を予め設定された値から低下させるようにレール圧調整バルブ9を制御する(S108)。これにより、インジェクタ5からの燃料噴射圧が低下する。コモンレール圧の低下量は、たとえば、吸気圧及びエンジン負荷に応じた量であってもよく、また、予め設定された一定量であってもよい。 When the ECU 27 determines that the engine load is higher than the high load threshold value, the ECU 27 controls the rail pressure adjusting valve 9 so as to reduce the common rail pressure from a preset value (S108). As a result, the fuel injection pressure from the injector 5 is reduced. The amount of reduction of the common rail pressure may be, for example, an amount corresponding to the intake pressure and the engine load, or may be a preset fixed amount.
 続いて、ECU27は、S101での処理により決定された2回目の燃料噴射の燃料噴射量を減量すると共に、その燃料噴射量の減量分だけ、S101で決定された1回目の燃料噴射の燃料噴射量を増量する(S109)。燃料噴射量の減少量は、たとえば、吸気圧及びエンジン負荷に応じた量であってもよく、また、予め設定された一定量であってもよい。 Subsequently, the ECU 27 decreases the fuel injection amount of the second fuel injection determined by the processing in S101, and the fuel injection amount of the first fuel injection determined in S101 by the reduction amount of the fuel injection amount. The amount is increased (S109). The amount of decrease of the fuel injection amount may be, for example, an amount according to the intake pressure and the engine load, or may be a preset constant amount.
 ECU27は、S102での処理に基づいて吸気圧が基準圧力よりも低くないと判断したとき、S104での処理を実行したとき、S107での処理に基づいてエンジン負荷が高負荷側閾値よりも高くないと判断したとき、又は、S109での処理を実行したときは、1回目の燃料噴射及び2回目の燃料噴射を順次実施するように、各インジェクタ5を制御する(S110)。 When the ECU 27 determines that the intake pressure is not lower than the reference pressure based on the processing in S102, when the processing in S104 is executed, the engine load is higher than the high load threshold based on the processing in S107. When it is determined that there is no, or when the process of S109 is performed, each injector 5 is controlled so that the first fuel injection and the second fuel injection are sequentially performed (S110).
 ECU27は、S102での処理に基づいて吸気圧が基準圧力よりも低くないと判断したとき、又は、S104での処理を実行したときは、S101での処理により決定された燃料噴射量及び燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。ECU27は、S107での処理に基づいてエンジン負荷が高負荷側閾値よりも高くないと判断したときは、S101での処理により決定された燃料噴射量及びS106での処理により補正された燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。ECU27は、S109での処理を実行したときは、S109での処理により補正された燃料噴射量及びS101での処理により決定された燃料噴射時期に従って、1回目の燃料噴射及び2回目の燃料噴射を順次実施する。 When the ECU 27 determines that the intake pressure is not lower than the reference pressure based on the process of S102, or when the process of S104 is performed, the fuel injection amount and the fuel injection determined by the process of S101 The first fuel injection and the second fuel injection are sequentially performed according to the timing. When the ECU 27 determines that the engine load is not higher than the high load threshold based on the processing at S107, the fuel injection amount determined by the processing at S101 and the fuel injection timing corrected by the processing at S106 The first fuel injection and the second fuel injection are sequentially performed according to When the process of S109 is executed, the ECU 27 performs the first fuel injection and the second fuel injection according to the fuel injection amount corrected by the process of S109 and the fuel injection timing determined by the process of S101. Implement sequentially.
 ECU27(特に、S101での処理)は、燃料噴射量及び燃料噴射時期を決定する決定手段を構成する。ECU27(特に、S110での処理)は、燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように、燃料噴射弁(インジェクタ5)を制御する噴射制御手段を構成する。ECU27(特に、S102~S109での処理)は、吸気圧検出手段(吸気圧センサ30)により検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正する補正手段を構成する。 The ECU 27 (in particular, the process in S101) constitutes a determination means for determining the fuel injection amount and the fuel injection timing. The ECU 27 (in particular, the process at S110) constitutes an injection control means for controlling the fuel injection valve (injector 5) so as to carry out the fuel injection according to the fuel injection amount and the fuel injection timing. The ECU 27 (particularly, the processing in S102 to S109) corrects the ignition timing by fuel injection to advance when the intake pressure detected by the intake pressure detection means (intake pressure sensor 30) is lower than a predetermined pressure. Constitute correction means.
 ECU27(特に、S102~S105での処理)は、燃焼室4内の空燃比を制御する空燃比制御手段を構成する。ECU27(特に、S106での処理)は、決定手段により決定された第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段を構成する。ECU27(特に、S107及びS108での処理)は、負荷検出手段(アクセル開度センサ29)により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を構成する。ECU27(特に、S107及びS109での処理)は、負荷検出手段(アクセル開度センサ29)により検出されたエンジンの負荷が第1の所定値よりも大きい第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を構成する。 The ECU 27 (particularly, the processing in S102 to S105) constitutes an air-fuel ratio control unit that controls the air-fuel ratio in the combustion chamber 4. The ECU 27 (in particular, the process at S106) constitutes an injection timing advancing means for advancing the fuel injection timing of the first fuel injection determined by the determining means. The ECU 27 (in particular, the processing in S107 and S108) is executed when the engine load detected by the load detection means (the accelerator opening sensor 29) is higher than a second predetermined value larger than the first predetermined value. An injection pressure control means is configured to perform control to lower the fuel injection pressure of the first fuel injection and the second fuel injection. The ECU 27 (in particular, the processing in S107 and S109) is performed when the engine load detected by the load detection means (the accelerator opening sensor 29) is higher than a second predetermined value larger than the first predetermined value. The fuel injection amount reducing means is configured to reduce the fuel injection amount of the second fuel injection.
 大気圧の変化等の影響により燃焼室4内への吸気圧が低くなると、燃焼室4内に吸入される空気量が減少する。このため、インジェクタ5により燃焼室4内に燃料を噴射したときに、燃料と空気との酸化反応が遅れる。したがって、熱発生率波形(燃焼波形)が、吸気圧が基準圧力であるときに得られる熱発生率波形からずれ、吸気圧が基準圧力であるときと同様の予混合圧縮着火燃焼を実現することが困難である。この場合、燃焼騒音が増加する懼れがあり、また、燃焼悪化による未燃分のHC及びCOが発生し易い。 When the intake pressure into the combustion chamber 4 becomes lower due to the influence of the change of the atmospheric pressure, the amount of air taken into the combustion chamber 4 decreases. Therefore, when the fuel is injected into the combustion chamber 4 by the injector 5, the oxidation reaction between the fuel and the air is delayed. Therefore, the heat generation rate waveform (combustion waveform) deviates from the heat generation rate waveform obtained when the intake pressure is the reference pressure, and the same premixed compression ignition combustion is realized as when the intake pressure is the reference pressure. Is difficult. In this case, combustion noise may increase, and unburned HC and CO are likely to be generated due to combustion deterioration.
 本実施形態では、燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が低負荷側閾値から高負荷側閾値までの中負荷領域にある状況下では、燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比が維持されると共に、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角される。これにより、燃料と空気との予混合気の着火時期が、吸気圧が基準圧力であるときの着火時期とほぼ一致するため、熱発生率波形が、吸気圧が基準圧力であるときに得られる熱発生率波形に近づく。予混合気の燃焼が適切に行われるため、燃焼騒音の増大、並びに、未燃分のHC及びCOの増加を抑制することができる。燃焼室4内の空燃比がリーン化される場合に比べて、NOxを低減することができる。 In the present embodiment, when the intake pressure into the combustion chamber 4 is lower than the reference pressure, the engine load is in the middle load range from the low load threshold to the high load threshold. The air-fuel ratio set at the reference pressure is maintained so as to secure the intake air amount of 1 and the fuel injection timing of the first fuel injection and the second fuel injection is advanced. As a result, the ignition timing of the premixed mixture of fuel and air substantially matches the ignition timing when the intake pressure is the reference pressure, so a heat release rate waveform is obtained when the intake pressure is the reference pressure It approaches the heat release rate waveform. Since the combustion of the premixed mixture is properly performed, it is possible to suppress an increase in combustion noise and an increase in HC and CO of unburned components. NOx can be reduced as compared with the case where the air-fuel ratio in the combustion chamber 4 is made lean.
 燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が高負荷側閾値よりも高い高負荷領域にある状況下では、燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比が維持されると共に、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角される。更に、コモンレール圧が低下されることによりインジェクタ5からの燃料噴射圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量される。これにより、上述したように熱発生率波形が、吸気圧が基準圧力であるときに得られる熱発生率波形に近づく。 When the intake pressure into the combustion chamber 4 is lower than the reference pressure, the amount of intake air into the combustion chamber 4 can be secured under the condition that the engine load is in the high load region higher than the high load threshold. The air-fuel ratio set at the time of the reference pressure is maintained, and the fuel injection timing of the first fuel injection and the second fuel injection is advanced. Furthermore, as the common rail pressure is reduced, the fuel injection pressure from the injector 5 is reduced, and the fuel injection amount of the second fuel injection is reduced. Thus, as described above, the heat release rate waveform approaches the heat release rate waveform obtained when the intake pressure is the reference pressure.
 燃焼室4内への吸気圧が低いと、1回目の燃料噴射による着火が遅れるので、2回目の燃料噴射を行うときに燃焼室4内の温度(筒内温度)が上昇する。特に、エンジン負荷が高負荷領域にある状況では、1回目の燃料噴射によって噴射される燃料の量が増えるため、2回目の燃料噴射が実施される時に、燃焼室4内の温度が更に上昇し易い。したがって、2回目の燃料噴射による燃料の着火性が良くなり、2回目の燃料噴射による着火遅れが短縮され易い。しかし、上述したように、インジェクタ5からの燃料噴射圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量されるので、2回目の燃料噴射による着火遅れの短縮が抑えられる。したがって、2回目の燃料噴射による予混合時間が長くなり、燃料と空気との予混合不足が防止される。この結果、スモークの増加を抑制することができる。 When the intake pressure into the combustion chamber 4 is low, the ignition by the first fuel injection is delayed, so the temperature (in-cylinder temperature) in the combustion chamber 4 rises when the second fuel injection is performed. In particular, when the engine load is in the high load range, the amount of fuel injected by the first fuel injection increases, so the temperature in the combustion chamber 4 further increases when the second fuel injection is performed. easy. Therefore, the ignitability of the fuel by the second fuel injection is improved, and the ignition delay by the second fuel injection is easily shortened. However, as described above, since the fuel injection pressure from the injector 5 is reduced and the fuel injection amount of the second fuel injection is reduced, shortening of the ignition delay due to the second fuel injection can be suppressed. Therefore, the pre-mixing time by the second fuel injection becomes longer, and the insufficient pre-mixing of fuel and air is prevented. As a result, an increase in smoke can be suppressed.
 エンジン負荷が低負荷領域にある状況下では、燃料と空気との予混合気の着火性が悪い。燃焼室4内への吸気圧が低いと、燃焼室4内の圧力(筒内圧力)が低い早期の段階で1回目の燃料噴射が実施される。その状況下で、燃焼室4内への吸入空気量が確保されるように基準圧力時に設定される空燃比が維持されると共に、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角されると、筒内圧力が更に低い段階で1回目の燃料噴射が実施される。この場合には、燃料の噴霧到達距離が伸びて、燃焼室4の壁面に付着する噴霧量が多い。このため、HCやCO増加の抑制効果が低下する可能性がある。 Under conditions where the engine load is in the low load range, the ignitability of the premixed mixture of fuel and air is poor. If the intake pressure into the combustion chamber 4 is low, the first fuel injection is carried out at an early stage where the pressure in the combustion chamber 4 (in-cylinder pressure) is low. Under the circumstances, the air-fuel ratio set at the reference pressure is maintained so that the amount of intake air into the combustion chamber 4 is maintained, and the fuel injection timing of the first fuel injection and the second fuel injection is When the advance angle is advanced, the first fuel injection is performed at a stage where the in-cylinder pressure is lower. In this case, the spray travel distance of the fuel is extended, and the amount of spray adhering to the wall surface of the combustion chamber 4 is large. For this reason, the inhibitory effect of HC and CO increase may fall.
 燃焼室4内への吸気圧が基準圧力よりも低いときに、エンジン負荷が低負荷側閾値よりも低い低負荷領域にある状況下では、燃焼室4内の空燃比が基準圧力時に設定される空燃比に対してリーン化される。これにより、燃焼室4内に吸入される空気量が十分多く、第1の燃料噴射の燃料噴射時期が進角されなくても、燃料と空気との予混合気の着火時期が早い。このため、予混合気の着火時期が、吸気圧が基準圧力であるときの着火時期とほぼ一致し、熱発生率波形が、吸気圧が基準圧力であるときに得られる熱発生率波形に近づく。したがって、予混合気の燃焼が適切に行われ、燃焼騒音の増大、並びに、未燃分のHC及びCOの増加を抑制することができる。 When the intake pressure into the combustion chamber 4 is lower than the reference pressure, the air-fuel ratio in the combustion chamber 4 is set at the reference pressure under a condition where the engine load is in the low load region lower than the low load threshold. It is made lean with respect to the air fuel ratio. As a result, the amount of air taken into the combustion chamber 4 is sufficiently large, and the ignition timing of the premixed mixture of fuel and air is earlier even if the fuel injection timing of the first fuel injection is not advanced. Therefore, the ignition timing of the premixed gas substantially coincides with the ignition timing when the intake pressure is the reference pressure, and the heat release rate waveform approaches the heat release rate waveform obtained when the intake pressure is the reference pressure. . Therefore, the combustion of the premixed gas is properly performed, and it is possible to suppress an increase in combustion noise and an increase in HC and CO of unburned components.
 図3は、エンジン負荷が低負荷領域にある状況下での熱発生率波形の例を示すグラフである。図3では、様々な条件下で得られた複数の熱発生率波形が示されている。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表している。細実線Qは、吸気圧が基準圧力よりも20kPaだけ低いときの熱発生率波形を表している。太実線Rは、吸気圧が基準圧力よりも20kPaだけ低く、且つ、吸気圧が基準圧力であるときの空燃比に対して空燃比がリーン化されたときの熱発生率波形を表している。 FIG. 3 is a graph showing an example of a heat release rate waveform under a situation where the engine load is in a low load region. In FIG. 3, a plurality of heat release rate waveforms obtained under various conditions are shown. The broken line P represents the heat release rate waveform when the intake pressure is the reference pressure. The thin solid line Q represents the heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa. A thick solid line R represents a heat generation rate waveform when the air fuel ratio is made lean with respect to the air fuel ratio when the intake pressure is lower than the reference pressure by 20 kPa and the intake pressure is the reference pressure.
 図3から分かるように、吸気圧が基準圧力よりも20kPaだけ低い場合、着火遅れによって、熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形から大きくずれる(破線P及び細実線Q参照)。吸気圧が基準圧力よりも20kPaだけ低い場合でも、吸気圧が基準圧力であるときの空燃比に対して空燃比がリーン化されることにより、熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形に近づく(破線P及び太実線R参照)。 As can be seen from FIG. 3, when the intake pressure is lower than the reference pressure by 20 kPa, the ignition delay causes the heat release rate waveform to deviate significantly from the heat release rate waveform when the intake pressure is the reference pressure (broken line P and fine See solid line Q). Even when the intake pressure is lower than the reference pressure by 20 kPa, the air release ratio is made lean with respect to the air-fuel ratio when the intake pressure is the reference pressure, whereby the heat release rate waveform is the intake pressure being the reference pressure It approaches the heat release rate waveform of time (see the broken line P and the thick solid line R).
 図4は、エンジン負荷が低負荷領域にある状況下での、燃焼騒音のレベル、並びに、HC及びCOの排出濃度の例を示すグラフである。図4では、図3に示された複数の熱発生率波形が得られた各条件と同じ条件での、燃焼騒音のレベル、並びに、HC及びCOの排出濃度の例が示されている。図4から分かるように、吸気圧が基準圧力(Pref)よりも20kPaだけ低い場合でも、吸気圧が基準圧力(Pref)であるときの空燃比に対して空燃比がリーン化されることにより、燃焼騒音のレベル、並びに、HC及びCOの発生率は、吸気圧が基準圧力(Pref)であるときと比べて殆ど変化しない。特に、HC及びCOの排出濃度は、吸気圧が基準圧力(Pref)よりも20kPaだけ低く且つ空燃比がリーン化されない場合に比べて、十分低い。 FIG. 4 is a graph showing an example of the level of combustion noise and the emission concentration of HC and CO under a situation where the engine load is in a low load region. FIG. 4 shows an example of the level of combustion noise and the emission concentration of HC and CO under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 3 were obtained. As can be seen from FIG. 4, even when the intake pressure is lower than the reference pressure (P ref ) by 20 kPa, the air-fuel ratio is made lean relative to the air-fuel ratio when the intake pressure is the reference pressure (P ref ) Thus, the level of combustion noise and the generation rates of HC and CO hardly change compared to when the intake pressure is the reference pressure (P ref ). In particular, the exhaust concentration of HC and CO is sufficiently lower than the case where the intake pressure is 20 kPa lower than the reference pressure (P ref ) and the air fuel ratio is not leaned.
 図5は、エンジン負荷が中負荷領域にある状況下での熱発生率波形の例を示すグラフある。図5でも、様々な条件下で得られた複数の熱発生率波形が示されている。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表している。1点鎖線Qは、吸気圧が基準圧力よりも20kPaだけ低いときの熱発生率波形を表している。細実線Rは、吸気圧が基準圧力よりも20kPaだけ低く、且つ、吸気圧が基準圧力であるときの空燃比に対して空燃比がリーン化されたときの熱発生率波形を表している。太実線Sは、吸気圧が基準圧力よりも20kPaだけ低く、且つ、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角されたときの熱発生率波形を表している。 FIG. 5 is a graph showing an example of the heat release rate waveform under the condition that the engine load is in the medium load region. Also in FIG. 5, a plurality of heat release rate waveforms obtained under various conditions are shown. The broken line P represents the heat release rate waveform when the intake pressure is the reference pressure. An alternate long and short dash line Q represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa. The thin solid line R represents the heat release rate waveform when the air fuel ratio is made lean with respect to the air fuel ratio when the intake pressure is lower than the reference pressure by 20 kPa and the intake pressure is the reference pressure. A thick solid line S represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 20 kPa and the fuel injection timing of the first fuel injection and the second fuel injection is advanced.
 図5から分かるように、吸気圧が基準圧力よりも20kPaだけ低い場合、着火遅れによって、熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形から大きくずれている(破線P及び1点鎖線Q参照)。吸気圧が基準圧力よりも20kPaだけ低い場合でも、吸気圧が基準圧力であるときの空燃比に対して空燃比がリーン化される、又は、燃料噴射時期が進角されることにより、1回目の燃料噴射による熱発生率波形が、吸気圧が基準圧力であるときの時の熱発生率波形に近づく(破線P、細実線R、及び太実線S参照)。 As can be seen from FIG. 5, when the intake pressure is lower than the reference pressure by 20 kPa, the heat release rate waveform is largely deviated from the heat release rate waveform when the intake pressure is the reference pressure (broken line P). And one-dotted chain line Q). Even when the intake pressure is lower than the reference pressure by 20 kPa, the air-fuel ratio is made lean with respect to the air-fuel ratio when the intake pressure is the reference pressure, or the fuel injection timing is advanced. The heat release rate waveform due to fuel injection approaches the heat release rate waveform when the intake pressure is the reference pressure (see dashed line P, thin solid line R, and thick solid line S).
 図6は、エンジン負荷が中負荷領域にある状況下での、NOxの発生量、及び、燃焼騒音のレベルの例を示すグラフである。図6では、図5に示された複数の熱発生率波形が得られた各条件と同じ条件での、NOxの発生量、及び、燃焼騒音のレベルが示されている。図6から分かるように、吸気圧が基準圧力(Pref)よりも20kPaだけ低い場合でも、燃料噴射時期が進角されることにより、燃焼騒音のレベルは、吸気圧が基準圧力(Pref)であるときと比べて殆ど変化しない。吸気圧が基準圧力(Pref)よりも20kPaだけ低いときに、燃料噴射時期が進角されたた場合には、吸気圧が基準圧力(Pref)であるときの空燃比に対して空燃比がリーン化された場合に比べて、NOxの発生量が十分少ない。 FIG. 6 is a graph showing an example of the amount of generated NOx and the level of combustion noise in a situation where the engine load is in the medium load region. FIG. 6 shows the generation amount of NOx and the level of combustion noise under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 5 were obtained. As can be seen from FIG. 6, even if the intake pressure is lower than the reference pressure (P ref ) by 20 kPa, the fuel injection timing is advanced, so that the combustion noise level is equal to the reference pressure (P ref ). It hardly changes compared to when. When the fuel injection timing is advanced when the intake pressure is lower than the reference pressure (P ref ) by 20 kPa, the air-fuel ratio with respect to the air-fuel ratio when the intake pressure is the reference pressure (P ref ) The amount of NOx generated is sufficiently smaller than when the engine is leaned.
 図7は、エンジン負荷が高負荷領域にある状況下での熱発生率波形の例を示すグラフである。図7でも、様々な条件下での複数の熱発生率波形が示されている。破線Pは、吸気圧が基準圧力であるときの熱発生率波形を表している。1点鎖線Qは、吸気圧が基準圧力よりも30kPaだけ低いときの熱発生率波形を表している。細実線Rは、吸気圧が基準圧力よりも30kPaだけ低いときに、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角された場合の熱発生率波形を表している。太実線Sは、吸気圧が基準圧力よりも30kPaだけ低いときに、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期の進角に加え、コモンレール圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量された場合の熱発生率波形を表している。 FIG. 7 is a graph showing an example of the heat release rate waveform under the condition where the engine load is in the high load region. Also shown in FIG. 7 are multiple heat release rate waveforms under various conditions. The broken line P represents the heat release rate waveform when the intake pressure is the reference pressure. An alternate long and short dash line Q represents a heat release rate waveform when the intake pressure is lower than the reference pressure by 30 kPa. A thin solid line R represents a heat release rate waveform when the fuel injection timing of the first fuel injection and the second fuel injection is advanced when the intake pressure is lower than the reference pressure by 30 kPa. In the thick solid line S, when the intake pressure is lower than the reference pressure by 30 kPa, in addition to the advance angle of the fuel injection timing of the first fuel injection and the second fuel injection, the common rail pressure is reduced and the second It represents the heat release rate waveform when the fuel injection amount of the fuel injection is reduced.
 図7から分かるように、吸気圧が基準圧力よりも30kPaだけ低い場合、着火遅れによって、熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形から大きくずれている(破線P及び1点鎖線Q参照)。吸気圧が基準圧力よりも30kPaだけ低い場合でも、燃料噴射時期が進角されることにより、1回目の燃料噴射による熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形に近づく(破線P、細実線R、及び太実線S参照)。 As can be seen from FIG. 7, when the intake pressure is lower than the reference pressure by 30 kPa, the heat release rate waveform is largely deviated from the heat release rate waveform when the intake pressure is the reference pressure (broken line P). And one-dotted chain line Q). Even if the intake pressure is lower than the reference pressure by 30 kPa, the fuel injection timing is advanced, so that the heat release rate waveform due to the first fuel injection is a heat release rate waveform when the intake pressure is the reference pressure. It approaches (refer broken line P, thin solid line R, and thick solid line S).
 図8は、エンジン負荷が高負荷領域にある状況下での、スモークの発生率、及び、2回目の燃料噴射による予混合時間の例を示すグラフである。図8では、図7に示された複数の熱発生率波形が得られた各条件と同じ条件での、スモークの発生率、及び、2回目の燃料噴射による予混合時間が示されている。図8から分かるように、吸気圧が基準圧力(Pref)よりも30kPaだけ低い場合でも、燃料噴射時期の進角に加え、コモンレール圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量されることにより、スモークの発生率は、吸気圧が基準圧力(Pref)であるときと比べて殆ど変化しない。コモンレール圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量された場合には、これらの処理が行われない場合に比べて、2回目の燃料噴射による予混合時間が長いため、スモークの発生率が低い。 FIG. 8 is a graph showing an example of the smoke generation rate and the premixing time by the second fuel injection under a situation where the engine load is in the high load range. FIG. 8 shows the smoke generation rate and the premixing time by the second fuel injection under the same conditions as the conditions under which the plurality of heat release rate waveforms shown in FIG. 7 were obtained. As can be seen from FIG. 8, even when the intake pressure is lower than the reference pressure (P ref ) by 30 kPa, the common rail pressure is reduced in addition to the advance of the fuel injection timing, and the fuel injection amount for the second fuel injection As a result, the smoke generation rate hardly changes compared to when the intake pressure is the reference pressure (P ref ). When the common rail pressure is reduced and the fuel injection amount for the second fuel injection is reduced, the premixing time by the second fuel injection is longer than when the processing is not performed, The incidence of smoke is low.
 以上のように、本実施形態によれば、燃焼室4内への吸気圧が基準圧力よりも低い場合でも、エンジン負荷にかかわらず、1回目の燃料噴射による燃焼波形が、吸気圧が基準圧力であるときの燃焼波形に近づく。これにより、吸気圧が基準圧力であるときとほぼ同様の予混合圧縮着火燃焼が実現される。その結果、燃焼騒音の増大やエミッションの悪化を抑制することができる。 As described above, according to the present embodiment, even when the intake pressure into the combustion chamber 4 is lower than the reference pressure, the combustion waveform by the first fuel injection and the intake pressure become the reference pressure regardless of the engine load. It approaches the combustion waveform when it is. Thereby, substantially the same premixed compression ignition combustion is realized as when the intake pressure is the reference pressure. As a result, it is possible to suppress an increase in combustion noise and a deterioration in emission.
 別の観点では、本実施形態は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、燃焼室内に空気を吸入するための吸気通路と、燃焼室内から燃焼後の排気ガスを排出するための排気通路と、燃焼室内への吸気圧を検出する吸気圧センサと、燃料噴射弁を操作するコントローラと、を備え、コントローラは、燃料噴射量及び燃料噴射時期を決定し、決定した燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように燃料噴射弁を操作し、吸気圧センサにより検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正する。コントローラは、第1の燃料噴射及び第1の燃料噴射の後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定し、決定した燃料噴射量及び燃料噴射時期に応じて第1の燃料噴射及び第2の燃料噴射を順次実施するように、燃料噴射弁を操作し、吸気圧センサにより検出された吸気圧が上記所定圧力よりも低いときに、第1の燃料噴射による着火時期を進角させるように補正してもよい。コントローラは、吸気圧センサにより検出された吸気圧が上記所定圧力よりも低いときに、第1の燃料噴射の燃料噴射時期を進角させ、燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御してもよい。燃焼制御装置は、エンジンの負荷を検出する負荷センサを更に備え、コントローラは、吸気圧センサにより検出された吸気圧が上記所定圧力よりも低く、かつ、負荷センサにより検出されたエンジンの負荷が第1の所定値よりも高いときに、第1の燃料噴射の燃料噴射時期を進角させ、燃焼室内の空燃比を所定圧力時での空燃比に維持するように制御してもよい。コントローラは、吸気圧センサにより検出された吸気圧が上記所定圧力よりも低く、かつ、負荷センサにより検出されたエンジンの負荷が上記第1の所定値よりも低いときに、燃焼室内の空燃比を所定圧力時での空燃比に対してリーン化するように制御してもよい。燃焼制御装置は、排気通路と吸気通路とを繋ぐように配置され、排気ガスの一部を排気再循環ガスとして燃焼室内に還流させる排気再循環通路と、排気再循環通路に配置され、排気再循環ガスの還流量を調整するバルブと、を更に備え、コントローラは、排気再循環ガスの還流量が減少するようにバルブを制御することで、燃焼室内の空燃比を制御してもよい。コントローラは、負荷センサにより検出されたエンジンの負荷が上記第1の所定値よりも大きい第2の所定値よりも高いときに、第1の燃料噴射及び第2の燃料噴射の燃料噴射圧を低下させるように制御してもよい。コントローラは、負荷センサにより検出された上記第2の所定値よりも高いときに、第2の燃料噴射の燃料噴射量を減量してもよい。 In another aspect, the present embodiment is a combustion control device for an engine that performs premixed compression ignition combustion, including a fuel injection valve that injects fuel into a combustion chamber of the engine, and intake air for drawing air into the combustion chamber. The fuel cell system includes a passage, an exhaust passage for discharging exhaust gas after combustion from the combustion chamber, an intake pressure sensor for detecting an intake pressure into the combustion chamber, and a controller for operating a fuel injection valve. The fuel injection valve is operated to determine the injection amount and the fuel injection timing, and the fuel injection is performed according to the determined fuel injection amount and the fuel injection timing, and the intake pressure detected by the intake pressure sensor is higher than a predetermined pressure When it is low, correction is made to advance the ignition timing by fuel injection. The controller determines a fuel injection amount and a fuel injection timing of the second fuel injection to be performed after the first fuel injection and the first fuel injection, and the first according to the determined fuel injection amount and the fuel injection timing. The fuel injection valve is operated so that the second fuel injection and the second fuel injection are sequentially performed, and when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, the ignition timing by the first fuel injection It may be corrected to advance the The controller advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, and sets the air-fuel ratio in the combustion chamber to the air-fuel ratio at the predetermined pressure. It may be controlled to maintain. The combustion control device further includes a load sensor for detecting a load of the engine, and the controller is configured to set an engine load detected by the load sensor at a lower intake pressure detected by the intake pressure sensor than the predetermined pressure. When it is higher than the predetermined value of 1, the fuel injection timing of the first fuel injection may be advanced to maintain the air-fuel ratio in the combustion chamber at the air-fuel ratio at the predetermined pressure. When the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure and the load of the engine detected by the load sensor is lower than the first predetermined value, the controller determines the air fuel ratio in the combustion chamber Control may be performed to make the air-fuel ratio lean at a predetermined pressure. The combustion control device is disposed to connect the exhaust passage and the intake passage, and is disposed in an exhaust gas recirculation passage for recirculating a portion of the exhaust gas as exhaust gas recirculation gas into the combustion chamber, and disposed in the exhaust gas recirculation passage. The air-fuel ratio in the combustion chamber may be controlled by further comprising a valve for adjusting the amount of recirculation of the circulating gas, and the controller controls the valve so as to reduce the amount of recirculation of the exhaust gas recirculation. The controller reduces the fuel injection pressure of the first fuel injection and the second fuel injection when the engine load detected by the load sensor is higher than a second predetermined value larger than the first predetermined value. It may be controlled to The controller may decrease the fuel injection amount of the second fuel injection when it is higher than the second predetermined value detected by the load sensor.
 更に別の観点では、本実施形態は、予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、燃焼室内に空気を吸入するための吸気通路と、燃焼室内から燃焼後の排気ガスを排出するための排気通路と、燃焼室内への吸気圧を検出する吸気圧センサと、燃料噴射量及び燃料噴射時期を決定し、決定した燃料噴射量及び燃料噴射時期に応じて燃料噴射を実施するように燃料噴射弁を操作し、吸気圧センサにより検出された吸気圧が所定圧力よりも低いときに、燃料噴射による着火時期を進角させるように補正するように構成されたコントローラと、を備えている。 In yet another aspect, the present embodiment is a combustion control device for an engine that performs premixed compression ignition combustion, including a fuel injection valve that injects fuel into a combustion chamber of the engine, and a device for drawing air into the combustion chamber. An intake passage, an exhaust passage for discharging exhaust gas after combustion from the combustion chamber, an intake pressure sensor for detecting an intake pressure into the combustion chamber, a fuel injection amount and a fuel injection timing are determined, and the fuel injection determined The fuel injection valve is operated to carry out the fuel injection according to the amount and the fuel injection timing, and when the intake pressure detected by the intake pressure sensor is lower than the predetermined pressure, the ignition timing by the fuel injection is advanced. And a controller configured to correct.
 なお、本発明は、上記実施形態に限定されない。たとえば、上記実施形態では、エンジン負荷が低負荷側閾値よりも高いときは、1回目の燃料噴射及び2回目の燃料噴射の燃料噴射時期が進角されるが、2回目の燃料噴射の燃料噴射時期が進角されることなく、1回目の燃料噴射の燃料噴射時期のみが進角されてもよい。この場合の燃焼波形が、図9の実線Xで示される波形である。図9に示された破線Yは、2回目の燃料噴射の燃料噴射時期が進角された場合の燃焼波形を示している。これにより、1回目の燃料噴射及び2回目の燃料噴射による熱発生率波形が、吸気圧が基準圧力であるときの熱発生率波形に更に近づき、吸気圧が変化した場合でも音色変化が少ない。 The present invention is not limited to the above embodiment. For example, in the above embodiment, when the engine load is higher than the low load threshold, the fuel injection timing of the first fuel injection and the second fuel injection is advanced, but the fuel injection of the second fuel injection is performed Only the fuel injection timing of the first fuel injection may be advanced without advancing the timing. The combustion waveform in this case is a waveform shown by a solid line X in FIG. The broken line Y shown in FIG. 9 shows the combustion waveform when the fuel injection timing of the second fuel injection is advanced. As a result, the heat release rate waveform by the first fuel injection and the second fuel injection further approaches the heat release rate waveform when the intake pressure is the reference pressure, and there is little change in timbre even when the intake pressure changes.
 上記実施形態では、エンジン負荷が高負荷側閾値よりも高いときには、コモンレール圧が低下されると共に、2回目の燃料噴射の燃料噴射量が減量されているが、制御態様はこれに限られない。コモンレール圧の低下及び2回目の燃料噴射の燃料噴射量の減量のうちのいずれか一方のみを実施してもよい。 In the above embodiment, when the engine load is higher than the high load threshold, the common rail pressure is reduced and the fuel injection amount for the second fuel injection is reduced, but the control mode is not limited to this. Only one of the decrease in common rail pressure and the decrease in fuel injection amount of the second fuel injection may be performed.
 上記実施形態では、エンジン負荷が高負荷側閾値よりも高いときには、コモンレール圧が低下された場合において、1回目の燃料噴射の燃料噴射時期の進角量が変更されていないが、制御態様はこれに限られない。コモンレール圧が低下された場合、1回目の燃料噴射の燃料噴射時期がさらに進角されてもよい。この場合、熱発生率波形が、吸気圧が基準圧力であるときに得られる熱発生率波形に更に近づく。コモンレール圧の低下量が可変とされた場合、1回目の燃料噴射の燃料噴射時期の進角量が、コモンレール圧の低下量に応じた量に変更されてもよい。 In the above embodiment, when the engine load is higher than the high load threshold, the advance amount of the fuel injection timing of the first fuel injection is not changed when the common rail pressure is reduced, but the control mode is the same. It is not limited to. When the common rail pressure is reduced, the fuel injection timing of the first fuel injection may be further advanced. In this case, the heat release rate waveform is closer to the heat release rate waveform obtained when the intake pressure is the reference pressure. When the amount of decrease of the common rail pressure is made variable, the amount of advance of the fuel injection timing of the first fuel injection may be changed to an amount according to the amount of decrease of the common rail pressure.
 上記実施形態では、EGRバルブ23によりEGRガスの流量が調整されることにより、燃焼室4内の空燃比が制御されているが、空燃比の制御態様は、これに限られない。たとえば、ターボ過給機の過給圧が変更されることにより、燃焼室4内の空燃比が制御されてもよい。 In the above embodiment, the air-fuel ratio in the combustion chamber 4 is controlled by adjusting the flow rate of the EGR gas by the EGR valve 23, but the control aspect of the air-fuel ratio is not limited to this. For example, the air-fuel ratio in the combustion chamber 4 may be controlled by changing the supercharging pressure of the turbocharger.
 上記実施形態では、メインの燃料噴射が、1回目の燃料噴射と2回目の燃料噴射との2回に分けられているが、燃料噴射の態様はこれに限られない。メインの燃料噴射が1回のみ実施されてもよい。この場合、エンジン負荷が低負荷閾値よりも低い場合は、吸気圧が基準圧力であるときの空燃比に対して空燃比がリーン化され、エンジン負荷が低負荷閾値よりも高い場合は、吸気圧が基準圧力であるときの空燃比が維持されたまま、メインの燃料噴射時期が進角される。 In the above embodiment, the main fuel injection is divided into the first fuel injection and the second fuel injection twice, but the aspect of the fuel injection is not limited to this. The main fuel injection may be performed only once. In this case, if the engine load is lower than the low load threshold, the air-fuel ratio is made leaner than the air-fuel ratio when the intake pressure is the reference pressure, and if the engine load is higher than the low load threshold, the intake pressure The main fuel injection timing is advanced while maintaining the air-fuel ratio when the reference pressure is the reference pressure.
 本発明は、予混合圧縮着火燃焼を行うエンジンの燃料噴射装置に利用できる。 The present invention is applicable to a fuel injection device of an engine that performs premixed compression ignition combustion.
 1…ディーゼルエンジン、4…燃焼室、5…インジェクタ(燃料噴射弁)、10…吸気通路、12…排気通路、22…EGR通路(排気再循環通路)、23…EGRバルブ(バルブ手段)、27…ECU(決定手段、噴射制御手段、補正手段、空燃比制御手段、噴射時期進角手段、噴射圧制御手段、噴射量減量手段)、29…アクセル開度センサ(負荷検出手段)、30…吸気圧センサ(吸気圧検出手段)、31…燃焼制御装置。 DESCRIPTION OF SYMBOLS 1 ... diesel engine, 4 ... combustion chamber, 5 ... injector (fuel injection valve), 10 ... intake passage, 12 ... exhaust passage, 22 ... EGR passage (exhaust recirculation passage), 23 ... EGR valve (valve means), 27 ... ECU (determination means, injection control means, correction means, air-fuel ratio control means, injection timing advance means, injection pressure control means, injection amount reduction means), 29 ... accelerator opening sensor (load detection means), 30 ... suction Pressure sensor (intake pressure detection means), 31 ... combustion control device.

Claims (8)

  1.  予混合圧縮着火燃焼を行うエンジンの燃焼制御装置であって、
     前記エンジンの燃焼室内に燃料を噴射する燃料噴射弁と、
     燃料噴射量及び燃料噴射時期を決定する決定手段と、
     前記燃料噴射量及び前記燃料噴射時期に応じて燃料噴射を実施するように、前記燃料噴射弁を制御する噴射制御手段と、
     前記燃焼室内に空気を吸入するための吸気通路と、
     前記燃焼室内から燃焼後の排気ガスを排出するための排気通路と、
     前記燃焼室内への吸気圧を検出する吸気圧検出手段と、
     前記吸気圧検出手段により検出された前記吸気圧が所定圧力よりも低いときに、前記燃料噴射による着火時期を進角させるように補正する補正手段と、を備える。
    An engine combustion control device for performing premixed compression ignition combustion, comprising:
    A fuel injection valve for injecting fuel into a combustion chamber of the engine;
    Determining means for determining a fuel injection amount and a fuel injection timing;
    Injection control means for controlling the fuel injection valve so as to carry out fuel injection according to the fuel injection amount and the fuel injection timing;
    An intake passage for drawing air into the combustion chamber;
    An exhaust passage for discharging exhaust gas after combustion from the combustion chamber;
    Intake pressure detection means for detecting an intake pressure into the combustion chamber;
    And a correction unit that corrects the ignition timing by the fuel injection to advance when the intake pressure detected by the intake pressure detection unit is lower than a predetermined pressure.
  2.  請求項1に記載の燃焼制御装置であって、
     前記決定手段は、第1の燃料噴射及び前記第1の燃料噴射の後に実施される第2の燃料噴射の燃料噴射量及び燃料噴射時期を決定し、
     前記噴射制御手段は、前記燃料噴射量及び前記燃料噴射時期に応じて前記第1の燃料噴射及び前記第2の燃料噴射を順次実施するように、前記燃料噴射弁を制御し、
     前記補正手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低いときに、前記第1の燃料噴射による着火時期を進角させるように補正する。
    The combustion control device according to claim 1, wherein
    The determination means determines a fuel injection amount and a fuel injection timing of a first fuel injection and a second fuel injection to be performed after the first fuel injection,
    The injection control means controls the fuel injection valve so that the first fuel injection and the second fuel injection are sequentially performed according to the fuel injection amount and the fuel injection timing,
    The correction means corrects the ignition timing by the first fuel injection to advance when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure.
  3.  請求項2に記載の燃焼制御装置であって、
     前記補正手段は、前記燃焼室内の空燃比を制御する空燃比制御手段と、前記決定手段により決定された前記第1の燃料噴射の燃料噴射時期を進角させる噴射時期進角手段と、を有し、
     前記噴射時期進角手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低いときに、前記第1の燃料噴射の燃料噴射時期を進角させ、
     前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低いときに、前記燃焼室内の空燃比を前記所定圧力時での空燃比に維持するように制御する。
    The combustion control device according to claim 2,
    The correction means has an air fuel ratio control means for controlling an air fuel ratio in the combustion chamber, and an injection timing advance means for advancing the fuel injection timing of the first fuel injection determined by the determination means. And
    The injection timing advance means advances the fuel injection timing of the first fuel injection when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure,
    The air-fuel ratio control means controls the air-fuel ratio in the combustion chamber to be maintained at the air-fuel ratio at the predetermined pressure when the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure. Do.
  4.  請求項3に記載の燃焼制御装置であって、
     前記エンジンの負荷を検出する負荷検出手段を更に備え、
     前記噴射時期進角手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が第1の所定値よりも高いときに、前記第1の燃料噴射の燃料噴射時期を進角させ、
     前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも高いときに、前記燃焼室内の空燃比を前記所定圧力時での空燃比に維持するように制御する。
    The combustion control device according to claim 3,
    The apparatus further comprises load detection means for detecting the load of the engine,
    The injection timing advance means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the load of the engine detected by the load detection means is greater than a first predetermined value. When it is high, advance the fuel injection timing of the first fuel injection,
    The air-fuel ratio control means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the load of the engine detected by the load detection means is greater than the first predetermined value. When it is high, the air-fuel ratio in the combustion chamber is controlled to be maintained at the air-fuel ratio at the predetermined pressure.
  5.  請求項4に記載の燃焼制御装置であって、
     前記空燃比制御手段は、前記吸気圧検出手段により検出された前記吸気圧が前記所定圧力よりも低く、かつ、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも低いときに、前記燃焼室内の空燃比を前記所定圧力時での空燃比に対してリーン化するように制御する。
    The combustion control device according to claim 4,
    The air-fuel ratio control means is configured such that the intake pressure detected by the intake pressure detection means is lower than the predetermined pressure, and the load of the engine detected by the load detection means is greater than the first predetermined value. When the pressure is low, the air-fuel ratio in the combustion chamber is controlled to be lean with respect to the air-fuel ratio at the predetermined pressure.
  6.  請求項4又は5に記載の燃焼制御装置であって、
     前記補正手段は、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも大きい第2の所定値よりも高いときに、前記第1の燃料噴射及び前記第2の燃料噴射の燃料噴射圧を低下させるように制御する噴射圧制御手段を更に有する。
    The combustion control device according to claim 4 or 5, wherein
    The correction means is configured to perform the first fuel injection and the second fuel when the load of the engine detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. The fuel injection system further includes injection pressure control means for controlling to decrease the fuel injection pressure of the injection.
  7.  請求項4~6のいずれか一項に記載の燃焼制御装置であって、
     前記補正手段は、前記負荷検出手段により検出された前記エンジンの負荷が前記第1の所定値よりも大きい第2の所定値よりも高いときに、前記第2の燃料噴射の燃料噴射量を減量する噴射量減量手段を更に有する。
    The combustion control device according to any one of claims 4 to 6, wherein
    The correction means decreases the fuel injection amount of the second fuel injection when the load of the engine detected by the load detection means is higher than a second predetermined value larger than the first predetermined value. Means for reducing the amount of injection.
  8.  請求項3~7のいずれか一項に記載の燃焼制御装置であって、
     前記排気通路と前記吸気通路とを繋ぐように配置され、前記排気ガスの一部を排気再循環ガスとして前記燃焼室内に還流するための排気再循環通路と、
     前記排気再循環通路に配置され、前記排気再循環ガスの還流量を調整するバルブ手段と、を更に備え、
     前記空燃比制御手段は、前記排気再循環ガスの還流量が減少するように前記バルブ手段を制御することで、前記燃焼室内の空燃比を制御する。
    The combustion control device according to any one of claims 3 to 7, wherein
    An exhaust gas recirculation passage disposed so as to connect the exhaust gas passage and the intake gas passage, for recirculating a portion of the exhaust gas into the combustion chamber as an exhaust gas recirculation gas;
    And valve means disposed in the exhaust gas recirculation passage for adjusting the amount of recirculation of the exhaust gas recirculation.
    The air-fuel ratio control means controls the air-fuel ratio in the combustion chamber by controlling the valve means so as to reduce the amount of recirculation of the exhaust gas recirculation.
PCT/JP2012/068337 2011-09-14 2012-07-19 Combustion control device WO2013038805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201062A JP5146581B1 (en) 2011-09-14 2011-09-14 Combustion control device
JP2011-201062 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013038805A1 true WO2013038805A1 (en) 2013-03-21

Family

ID=47883047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068337 WO2013038805A1 (en) 2011-09-14 2012-07-19 Combustion control device

Country Status (2)

Country Link
JP (1) JP5146581B1 (en)
WO (1) WO2013038805A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2809291C (en) 2013-03-12 2014-11-25 Westport Power Inc. Fuel system diagnostics
JP6244160B2 (en) * 2013-10-15 2017-12-06 株式会社豊田自動織機 Combustion control device
JP6975890B2 (en) * 2018-04-09 2021-12-01 株式会社豊田自動織機 Internal combustion engine control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635142A (en) * 1986-06-26 1988-01-11 Toyota Motor Corp Fuel injection timing control method for diesel engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635142A (en) * 1986-06-26 1988-01-11 Toyota Motor Corp Fuel injection timing control method for diesel engine
JP2003286879A (en) * 2002-03-27 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP2007120330A (en) * 2005-10-25 2007-05-17 Toyota Industries Corp Internal combustion engine performing premixed compression ignition combustion

Also Published As

Publication number Publication date
JP5146581B1 (en) 2013-02-20
JP2013060922A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US20170292462A1 (en) Control system for internal combustion engine
JP2004176593A (en) Diesel engine
JP2007146779A (en) Control device for compression ignition type multi-cylinder internal combustion engine
JP6141801B2 (en) Control device for internal combustion engine
JP2015137543A (en) Fuel injection control device of diesel engine
JP6508186B2 (en) Control device for internal combustion engine
US10273888B2 (en) GDCI transient EGR error compensation
WO2012121299A1 (en) Combustion control device
JP5083440B1 (en) Combustion control device
WO2013038805A1 (en) Combustion control device
JP4196900B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP4998632B1 (en) Combustion control device
JP6175343B2 (en) Combustion control device
JP2010236459A (en) Combustion control device and combustion control method for diesel engine
JP5141807B1 (en) Combustion control device
JP4483794B2 (en) Control device for compression ignition type internal combustion engine
JP5158245B1 (en) Combustion control device
JP2009074382A (en) Exhaust gas recirculation controller for diesel engine
JP6075166B2 (en) Combustion control device
WO2010106830A1 (en) Control device and control method for internal combustion engine
JP6190238B2 (en) Combustion control device
EP1176300A2 (en) System, method and computer program for controlling fuel injection in a diesel engine
JP2015078617A (en) Combustion control system
JP2002038995A (en) Fuel injection device for diesel engine
WO2013161132A1 (en) Combustion control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831217

Country of ref document: EP

Kind code of ref document: A1