JP4196900B2 - Combustion switching control system for compression ignition internal combustion engine - Google Patents

Combustion switching control system for compression ignition internal combustion engine Download PDF

Info

Publication number
JP4196900B2
JP4196900B2 JP2004232527A JP2004232527A JP4196900B2 JP 4196900 B2 JP4196900 B2 JP 4196900B2 JP 2004232527 A JP2004232527 A JP 2004232527A JP 2004232527 A JP2004232527 A JP 2004232527A JP 4196900 B2 JP4196900 B2 JP 4196900B2
Authority
JP
Japan
Prior art keywords
fuel injection
combustion
injection
switching
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004232527A
Other languages
Japanese (ja)
Other versions
JP2006046303A (en
Inventor
清 藤原
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004232527A priority Critical patent/JP4196900B2/en
Publication of JP2006046303A publication Critical patent/JP2006046303A/en
Application granted granted Critical
Publication of JP4196900B2 publication Critical patent/JP4196900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、いわゆる予混合燃焼と拡散燃焼である通常燃焼とを行う圧縮着火内燃機関において、燃焼切替を制御する圧縮着火内燃機関の燃焼切替制御システムに関する。   The present invention relates to a combustion switching control system for a compression ignition internal combustion engine that controls combustion switching in a compression ignition internal combustion engine that performs so-called premixed combustion and normal combustion that is diffusion combustion.

圧縮着火内燃機関において、NOxの抑制とスモークの抑制を目的として予混合燃焼を行う場合、該圧縮着火内燃機関の運転状態が高負荷運転状態となって機関負荷および機関回転速度が上昇するに従い、過早着火が生じる可能性が高くなる。そこで、該圧縮着火内燃機関の運転状態に基づいて、低・中負荷時は予混合燃焼を行い、高負荷時は通常燃焼を行う技術が公開されている(例えば、特許文献1を参照。)。この技術においては、予混合燃焼から通常燃焼への切替は、一サイクル中に予混合燃焼と通常燃焼の双方を行う多段噴射を経由して行われる。これにより、燃焼切替の円滑化を図ろうとするものである。   In a compression ignition internal combustion engine, when premixed combustion is performed for the purpose of suppressing NOx and smoke, as the operation state of the compression ignition internal combustion engine becomes a high load operation state and the engine load and the engine speed increase, The possibility of premature ignition increases. Therefore, a technique for performing premixed combustion at low / medium loads and normal combustion at high loads based on the operating state of the compression ignition internal combustion engine is disclosed (for example, see Patent Document 1). . In this technique, switching from premixed combustion to normal combustion is performed via multistage injection in which both premixed combustion and normal combustion are performed during one cycle. As a result, it is intended to facilitate combustion switching.

また、圧縮着火内燃機関で予混合燃焼を行う場合と通常燃焼を行う場合とにおいて、再循環排気(いわゆるEGRガスであって、既燃焼ガスを含む。)の気筒内への供給量が大きく異なる。即ち、予混合燃焼においては、過早着火を抑制するために通常燃焼時と比べて多量のEGRガスが必要とされる。そこで、圧縮着火内燃機関において予混合燃焼と通常燃焼とを切り替える場合において、EGRガス量が燃焼の切替に適した量となったときに予混合燃焼と通常燃焼との切替を行う技術が公開されている(例えば、特許文献2を参照。)。
特開平11−324764号公報 特開2003−286876号公報 特開2002−327638号公報 特開2003−286880号公報
In addition, the amount of recirculated exhaust (so-called EGR gas, including already burned gas) supplied to the cylinder differs greatly between when premixed combustion is performed in a compression ignition internal combustion engine and when normal combustion is performed. . That is, in premixed combustion, a larger amount of EGR gas is required than in normal combustion in order to suppress premature ignition. Therefore, when switching between premixed combustion and normal combustion in a compression ignition internal combustion engine, a technique for switching between premixed combustion and normal combustion when the EGR gas amount becomes an amount suitable for switching between combustions has been disclosed. (For example, refer to Patent Document 2).
JP-A-11-324964 JP 2003-286876 A JP 2002-327638 A JP 2003-286880 A

運転状態に応じて予混合燃焼と通常燃焼とを切り替えて行う圧縮着火内燃機関において、燃焼の切替時に燃焼が不安定となったりエミッションが悪化したりするのを回避して燃焼切替を円滑に行うために、予混合燃焼および通常燃焼で行われている燃料噴射制御とは異なる燃料噴射制御が行われる。この燃焼切替時の燃料噴射制御として、上記の目的のために、複数回の燃料噴射で構成された多段噴射が行われる場合がある。   In a compression ignition internal combustion engine that switches between premixed combustion and normal combustion according to the operating condition, combustion switching is smoothly performed while avoiding unstable combustion and worsening of emissions when switching combustion. Therefore, fuel injection control different from the fuel injection control performed in the premixed combustion and the normal combustion is performed. As the fuel injection control at the time of this combustion switching, there is a case where multi-stage injection constituted by a plurality of fuel injections is performed for the above purpose.

ここで、圧縮着火内燃機関の燃料噴射弁がいわゆるコモンレール等の蓄圧室に接続される場合には、一定圧に加圧された燃料を噴射することで、燃料噴射量のより精密な制御が可能となる。しかし、上述のように燃焼切替時に複数回の燃料噴射が行われる場合、先の燃料噴射によって生じる蓄圧室内の圧力変動によって、その次の燃料噴射における噴射圧が変動し、正確な燃料噴射量の制御が困難となる。その結果、燃焼切替時の燃料噴射制御の目的を達成することが困難となる虞がある。   Here, when the fuel injection valve of the compression ignition internal combustion engine is connected to a pressure accumulating chamber such as a so-called common rail, more precise control of the fuel injection amount is possible by injecting fuel pressurized to a constant pressure. It becomes. However, if multiple fuel injections are performed at the time of combustion switching as described above, the injection pressure in the subsequent fuel injection fluctuates due to the pressure fluctuation in the pressure accumulating chamber caused by the previous fuel injection, and the accurate fuel injection amount Control becomes difficult. As a result, it may be difficult to achieve the purpose of fuel injection control during combustion switching.

本発明では、上記した問題に鑑み、圧縮着火内燃機関の運転状態に応じて予混合燃焼と通常燃焼とを切り替えて行う圧縮着火内燃機関において、燃焼切替時の燃料噴射量のばらつきを可及的に抑制し、より円滑な燃焼切替を行うことを目的とする。   In the present invention, in view of the problems described above, in a compression ignition internal combustion engine that switches between premixed combustion and normal combustion in accordance with the operating state of the compression ignition internal combustion engine, variations in fuel injection amount at the time of combustion switching are made as much as possible. The purpose is to suppress combustion to smoother combustion switching.

本発明は、上記した課題を解決するために、予混合燃焼から通常燃焼への切替が行われる際の燃料噴射制御において複数回の燃料噴射を行う場合、先の燃料噴射と後の燃料噴射
との間の燃料噴射間隔に着目した。先の燃料噴射によって生じた蓄圧室内の圧力変動によって後の燃料噴射量がばらつくが、そのばらつきが、先の燃料噴射量にかかわらず略一定となる燃料噴射間隔が存在する。そこで、この燃料噴射間隔に従って燃焼切替時の燃料噴射を制御することで、燃焼切替時の燃料噴射量をより正確に制御することが可能となり、より円滑な燃焼切替が達成され得る。
In order to solve the above-described problems, the present invention provides a first fuel injection and a subsequent fuel injection when performing fuel injection a plurality of times in fuel injection control when switching from premixed combustion to normal combustion is performed. We focused on the fuel injection interval. Although the subsequent fuel injection amount varies due to the pressure fluctuation in the pressure accumulating chamber caused by the previous fuel injection, there is a fuel injection interval in which the variation is substantially constant regardless of the previous fuel injection amount. Therefore, by controlling fuel injection at the time of combustion switching according to this fuel injection interval, it becomes possible to more accurately control the fuel injection amount at the time of combustion switching, and smoother combustion switching can be achieved.

詳細には、本発明は、加圧された圧縮着火内燃機関の燃料を貯留する蓄圧室と、前記蓄圧室に貯留された燃料を前記圧縮着火内燃機関の気筒内に噴射する燃料噴射弁と、前記圧縮着火内燃機関の運転状態が、該圧縮着火内燃機関で行われる燃焼に応じた燃焼領域のいずれに属しているかを判定する燃焼領域判定手段と、を備え、前記燃焼領域判定手段によって判定される燃焼領域に応じて、前記燃料噴射弁の燃料噴射条件を制御することで、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とを切り替えて行う圧縮着火内燃機関の燃焼切替制御システムであって、前記燃焼領域判定手段によって前記圧縮着火内燃機関の運転状態が属する燃焼領域が、予混合燃焼が行われる予混合燃焼領域から通常燃焼が行われる通常燃焼領域へ移行したと判定された場合、予混合燃焼時の予混合燃料噴射を、該予混合燃料噴射の燃料噴射時期近くのプレ噴射と該プレ噴射から所定間隔を空けて行われるメイン噴射とに変更し、該燃料噴射の変更後の時間経過に従って、該プレ噴射と該メイン噴射との間隔を該所定間隔に維持した状態で該メイン噴射の噴射時期を通常燃焼における圧縮行程上死点近傍の燃料噴射時期に向けて移行させ、且つ該プレ噴射の燃料噴射量を減量するとともに該メイン噴射の燃料噴射量を増量することで、該圧縮着火内燃機関で行われる燃焼を予混合燃焼から通常燃焼へ切り替える燃焼切替制御手段を備える。   Specifically, the present invention includes a pressure accumulating chamber for storing pressurized compression ignition internal combustion engine fuel, a fuel injection valve for injecting fuel stored in the pressure accumulating chamber into a cylinder of the compression ignition internal combustion engine, Combustion region determination means for determining which of the combustion regions corresponding to the combustion performed in the compression ignition internal combustion engine belongs to the operation state of the compression ignition internal combustion engine, and is determined by the combustion region determination unit By controlling the fuel injection condition of the fuel injection valve in accordance with the combustion region to be generated, so that premixed combustion is performed by forming a premixed gas by fuel injection earlier than the timing near the top dead center of the compression stroke; A combustion switching control system for a compression ignition internal combustion engine that switches between normal combustion performed by fuel injection at a timing near the top dead center of the compression stroke, wherein the compression ignition internal combustion engine is operated by the combustion region determination means When it is determined that the combustion region to which the operating state belongs has shifted from the premixed combustion region in which the premixed combustion is performed to the normal combustion region in which the normal combustion is performed, the premixed fuel injection during the premixed combustion is performed. The pre-injection near the fuel injection timing of the fuel injection is changed to the main injection performed at a predetermined interval from the pre-injection, and the interval between the pre-injection and the main injection is changed over time after the change of the fuel injection. Is maintained at the predetermined interval, the injection timing of the main injection is shifted toward the fuel injection timing near the top dead center of the compression stroke in normal combustion, and the fuel injection amount of the pre-injection is reduced and the main injection The combustion switching control means for switching the combustion performed in the compression ignition internal combustion engine from the premixed combustion to the normal combustion by increasing the amount of fuel injection.

上述の圧縮着火内燃機関においては、圧縮着火内燃機関の機関回転速度や機関負荷等によって決定される運転状態がどの燃焼領域に属するか、即ち燃焼領域判定手段によって判定される燃焼領域が、予混合燃焼が行われる予混合燃焼領域と通常燃焼が行われる通常燃焼領域との何れであるかによって、該内燃機関で行われる燃焼が決定される。この予混合燃焼領域および通常燃焼領域は、予混合燃焼時の過早着火の生じやすさ等に基づいて実験等で決定される。   In the compression ignition internal combustion engine described above, the combustion region to which the operating state determined by the engine rotational speed, the engine load, etc. of the compression ignition internal combustion engine belongs, that is, the combustion region determined by the combustion region determination means is premixed. The combustion performed in the internal combustion engine is determined depending on whether the premixed combustion region where combustion is performed or the normal combustion region where normal combustion is performed. The premixed combustion region and the normal combustion region are determined by experiments or the like based on the likelihood of premature ignition during premixed combustion.

ここで、圧縮着火内燃機関において予混合燃焼を行う場合は、燃料噴射を圧縮行程上死点近傍の時期、即ち通常燃焼時の燃料噴射時期より早い時期に行うことで、吸気と燃料がより混合された予混合気を形成する。これによって、NOxやスモークの抑制を図る。また、通常燃焼時は、圧縮行程上死点近傍の時期に燃料を噴射していわゆる拡散燃焼が行われる。   Here, when premixed combustion is performed in a compression ignition internal combustion engine, the fuel injection is performed at a timing near the top dead center of the compression stroke, that is, at a timing earlier than the fuel injection timing at the time of normal combustion, thereby further mixing the intake air and the fuel. A premixed gas mixture is formed. As a result, NOx and smoke are suppressed. During normal combustion, so-called diffusion combustion is performed by injecting fuel at a time near the top dead center of the compression stroke.

圧縮着火内燃機関で予混合燃焼が行われているときに圧縮着火内燃機関の運転状態が変動し燃焼領域判定手段によって判定された燃焼領域が予混合燃焼領域から通常燃焼領域へ移行することで、予混合燃焼から通常燃焼への切替が行われる。このとき、燃焼状態が不安定になったりエミッションが悪化したりしないように、燃焼切替制御手段による燃料噴射の制御が行われる。尚、本発明における予混合燃焼においては、予混合燃料を一回の燃料噴射で噴射する場合に限られず、気筒の内壁面に燃料が付着するのを回避する等の理由で複数回の燃料噴射によって予混合燃料を噴射する場合も含まれる。   When the pre-combustion combustion is performed in the compression ignition internal combustion engine, the operating state of the compression ignition internal combustion engine fluctuates and the combustion region determined by the combustion region determination means shifts from the premix combustion region to the normal combustion region, Switching from premixed combustion to normal combustion is performed. At this time, the fuel injection control by the combustion switching control means is performed so that the combustion state does not become unstable and the emission does not deteriorate. Note that the premixed combustion in the present invention is not limited to the case where the premixed fuel is injected by a single fuel injection, but a plurality of times of fuel injection for reasons such as avoiding the fuel from adhering to the inner wall surface of the cylinder. This includes the case where the premixed fuel is injected.

この燃焼切替制御手段による燃料噴射制御の特徴点は、燃焼切替時の燃料噴射をプレ噴射とメイン噴射の二段噴射とする点であって、且つプレ噴射とメイン噴射との燃料噴射間隔を所定間隔に維持する点である。ここで、この二段噴射は、その二段噴射開始直後は、プレ噴射の燃料噴射時期を予混合燃焼時の燃料噴射時期の近くとすることで、圧縮着火内燃機関における燃焼状態を予混合燃焼から急激に変更することを回避する。そして、プレ
噴射後に所定間隔を空けてメイン噴射を行うことで、燃焼切替後の通常燃焼における燃料噴射の基礎を形成する。
The feature of fuel injection control by this combustion switching control means is that fuel injection at the time of combustion switching is two-stage injection of pre-injection and main injection, and the fuel injection interval between pre-injection and main injection is predetermined. It is a point to keep at intervals. Here, in this two-stage injection, immediately after the start of the two-stage injection, the pre-injection fuel injection timing is set close to the fuel injection timing at the time of premix combustion, so that the combustion state in the compression ignition internal combustion engine is premix combustion. Avoid sudden changes from. Then, by performing main injection at a predetermined interval after pre-injection, the basis of fuel injection in normal combustion after combustion switching is formed.

このプレ噴射とメイン噴射との燃料噴射間隔である所定間隔とは、プレ噴射が行われるときに生じる蓄圧室内の圧力変動に起因する、プレ噴射後のメイン噴射の燃料噴射量のばらつきが略一定となる燃料噴射間隔である。前記燃料噴射弁は蓄圧室に繋がれており、これは常に一定圧の噴射圧を確保することで燃料噴射弁の開弁時間と燃料噴射量との関係を安定化させ、より正確な燃料噴射量の制御を主に目的とする。ここで、上記のプレ噴射が行われると蓄圧室内の圧力が変動し、圧力脈動が生じる。従って、メイン噴射が行われるときの噴射圧が変化する結果、メイン噴射の燃料噴射量がばらつき、それを正確に制御することが困難となる。   The predetermined interval that is the fuel injection interval between the pre-injection and the main injection is a substantially constant variation in the fuel injection amount of the main injection after the pre-injection due to the pressure fluctuation in the pressure accumulating chamber that occurs when the pre-injection is performed. Is the fuel injection interval. The fuel injection valve is connected to a pressure accumulating chamber, which stabilizes the relationship between the opening time of the fuel injection valve and the fuel injection amount by always ensuring a constant injection pressure, thereby enabling more accurate fuel injection. Mainly for quantity control. Here, when the pre-injection is performed, the pressure in the pressure accumulating chamber fluctuates and pressure pulsation occurs. Therefore, as a result of the change in the injection pressure when the main injection is performed, the fuel injection amount of the main injection varies and it is difficult to accurately control it.

しかし、蓄圧室の構造や容積、燃料噴射弁と蓄圧室との間の油路の距離等の物理的な関係等から、プレ噴射が行われた後であってもメイン噴射の燃料噴射量のばらつきが安定するプレ噴射とメイン噴射との燃料噴射間隔が存在し、これが上記の所定間隔である。換言すると、前記所定間隔は、前記プレ噴射の燃料噴射量と前記メイン噴射の燃料噴射量との比率にかかわらず、該メイン噴射の燃料噴射量のばらつきが略一定となる時間であるということもできる。従って、この所定間隔をもってプレ噴射とメイン噴射を行うことで、メイン噴射の燃料噴射量の安定したばらつきを加味した上で燃料噴射弁の開弁時間を制御して、メイン噴射の燃料噴射量を正確に制御することが可能となる。   However, due to the physical relationship such as the structure and volume of the pressure accumulator chamber and the distance of the oil passage between the fuel injection valve and the pressure accumulator chamber, the fuel injection amount of the main injection can be reduced even after the pre-injection. There is a fuel injection interval between the pre-injection and the main injection where the variation is stable, and this is the predetermined interval. In other words, the predetermined interval is a time during which the variation in the fuel injection amount of the main injection becomes substantially constant regardless of the ratio between the fuel injection amount of the pre-injection and the fuel injection amount of the main injection. it can. Therefore, by performing the pre-injection and the main injection at this predetermined interval, the valve opening time of the fuel injection valve is controlled in consideration of the stable variation in the fuel injection amount of the main injection, and the fuel injection amount of the main injection is reduced. It becomes possible to control accurately.

その後、上記のメイン噴射の燃料噴射時期を通常燃焼における燃料噴射時期に向けて移行させることで、予混合燃焼から通常燃焼への切替を進めていく。このとき、プレ噴射とメイン噴射との燃料噴射間隔は、所定間隔に保たれる。従って、プレ噴射の燃料噴射時期と所定間隔次第では、メイン噴射の燃料噴射時期を通常燃焼における燃料噴射時期に向けて移行させる場合は、メイン噴射を進角させる場合もあれば遅角させる場合もある。   Thereafter, the fuel injection timing of the main injection is shifted toward the fuel injection timing in the normal combustion, so that the switching from the premixed combustion to the normal combustion is advanced. At this time, the fuel injection interval between the pre-injection and the main injection is kept at a predetermined interval. Therefore, depending on the fuel injection timing of the pre-injection and the predetermined interval, when shifting the fuel injection timing of the main injection toward the fuel injection timing in normal combustion, the main injection may be advanced or delayed. is there.

また、メイン噴射の燃料噴射時期を通常燃焼における燃料噴射時期に向けて移行させるとき、プレ噴射の燃料噴射量を減量するとともにメイン噴射の燃料噴射量を増量する。即ち、予混合燃焼時の予混合燃料噴射からプレ噴射とメイン噴射に切り替えた直後は、燃焼状態が予混合燃焼から急激に変化するのを回避するためにプレ噴射の燃料噴射量を多くするとともにメイン噴射の燃料噴射量を少なくし、最終的には切替後の通常燃焼に近づけるべくプレ噴射の燃料噴射量を少なくしメイン噴射の燃料噴射量を多くするものである。   Further, when shifting the fuel injection timing of the main injection toward the fuel injection timing in the normal combustion, the fuel injection amount of the pre-injection is decreased and the fuel injection amount of the main injection is increased. That is, immediately after switching from premixed fuel injection during premixed combustion to preinjection and main injection, the fuel injection amount of preinjection is increased in order to avoid a sudden change in combustion state from premixed combustion. The fuel injection amount of the main injection is decreased, and finally the fuel injection amount of the pre-injection is decreased and the fuel injection amount of the main injection is increased so as to approach the normal combustion after switching.

尚、この燃料噴射時期や燃料噴射量を変化させる制御は、燃焼状態の急変を回避するために徐々に行うのが好ましいと思われるが、燃焼状態が不安定となったりエミッションが悪化したりしない範囲で段階的に行ってもよく、また、急変させてもよい。   It should be noted that the control for changing the fuel injection timing and the fuel injection amount is preferably performed gradually in order to avoid a sudden change in the combustion state, but the combustion state does not become unstable or the emission does not deteriorate. It may be performed step by step in the range, or may be changed suddenly.

以上より、燃焼切替制御手段による燃料噴射制御が行われることで、圧縮着火内燃機関の運転状態に応じて予混合燃焼から通常燃焼への切り替えを行う際の、燃料噴射量のばらつき、特にメイン噴射の燃料噴射量のばらつきを可及的に抑制することが可能となる。その結果、燃焼切替時にプレ噴射とメイン噴射の燃料噴射量をより正確に制御することが可能となり、以てより円滑な燃焼切替を行うことが可能となる。   As described above, the fuel injection control by the combustion switching control means is performed, so that the variation in the fuel injection amount when switching from the premixed combustion to the normal combustion according to the operation state of the compression ignition internal combustion engine, particularly the main injection. It is possible to suppress the variation in the fuel injection amount as much as possible. As a result, it is possible to more accurately control the fuel injection amounts of the pre-injection and the main injection at the time of combustion switching, so that smoother combustion switching can be performed.

上記の燃焼切替制御手段による燃料噴射の制御は、予混合燃焼から通常燃焼への燃焼切替に際して実行される。逆に、通常燃焼から予混合燃焼への燃焼切替が行われる場合は、上記の燃焼切替制御手段による燃料噴射の制御を可逆的に実行すれば、同様に、より円滑な燃焼切替が可能となる。   The fuel injection control by the combustion switching control means is executed when switching from premixed combustion to normal combustion. Conversely, when the combustion switching from the normal combustion to the premixed combustion is performed, if the fuel injection control by the combustion switching control means is reversibly executed, the smoother combustion switching can be similarly performed. .

ここで、上記の圧縮着火内燃機関の燃焼切替制御システムにおいて、前記燃焼切替制御
手段による予混合燃焼から通常燃焼への切替が行われる際の前記燃料噴射弁からの燃料噴射は、予混合燃焼時の燃料噴射時期に近い前記プレ噴射と、該プレ噴射に対して前記所定間隔を空けて該プレ噴射より後の前記メイン噴射とが行われ、且つ該プレ噴射の燃料噴射量を該メイン噴射の燃料噴射量より多い状態とする第一燃料噴射モードと、通常燃焼時の燃料噴射時期に近い前記メイン噴射と、該メイン噴射に対して前記所定間隔を空けて該メイン噴射より前の前記プレ噴射とが行われ、且つ該プレ噴射の燃料噴射量を該メイン噴射の燃料噴射量以下の状態とする第二燃料噴射モードと、を有してもよい。
Here, in the combustion switching control system of the compression ignition internal combustion engine, the fuel injection from the fuel injection valve when switching from premixed combustion to normal combustion by the combustion switching control means is performed during premixed combustion. The pre-injection close to the fuel injection timing and the main injection after the pre-injection at a predetermined interval from the pre-injection, and the fuel injection amount of the pre-injection A first fuel injection mode in which the fuel injection amount is greater than the fuel injection amount, the main injection close to the fuel injection timing during normal combustion, and the pre-injection before the main injection at a predetermined interval from the main injection. And a second fuel injection mode in which the fuel injection amount of the pre-injection is equal to or less than the fuel injection amount of the main injection.

即ち、上述したように、燃焼切替制御手段による燃料噴射制御は、予混合燃焼から通常燃焼への切替時に行われるものであるから、圧縮着火内燃機関における燃焼状態が不安定となるのを回避し、より円滑な燃焼切替を達成するために、予混合燃焼における燃料噴射に近い態様となる第一燃料噴射モードと、通常燃焼に近い態様となる第二燃料噴射モードを有する。そして、第一燃料噴射モードは、予混合燃焼に近い燃料噴射態様であるから、プレ噴射の燃料噴射量がメイン噴射の燃料噴射量より多い。また、第二燃料噴射モードは、通常燃焼に近い燃料噴射態様であるから、プレ噴射の燃料噴射量がメイン噴射の燃料噴射量以下となる。   That is, as described above, the fuel injection control by the combustion switching control means is performed at the time of switching from the premixed combustion to the normal combustion, so that the combustion state in the compression ignition internal combustion engine is prevented from becoming unstable. In order to achieve smoother combustion switching, a first fuel injection mode that is close to fuel injection in premixed combustion and a second fuel injection mode that is close to normal combustion are provided. Since the first fuel injection mode is a fuel injection mode close to premixed combustion, the pre-injection fuel injection amount is larger than the main injection fuel injection amount. Further, since the second fuel injection mode is a fuel injection mode close to normal combustion, the pre-injection fuel injection amount is equal to or less than the main injection fuel injection amount.

当然に、第一燃料噴射モードと第二燃料噴射モードにおいては、プレ噴射とメイン噴射との燃料噴射間隔は、前記所定間隔に維持される。そして、燃料切替制御手段による燃料噴射制御が行われるときは、第一燃料噴射モード、第二燃料噴射モードの順に予混合燃焼から通常燃焼へと切り替えられるが、第一燃料噴射モードと第二燃料噴射モードとの切替は、上述したように、燃焼状態の急変を回避するために徐々に行うのが好ましいと思われるが、燃焼状態が不安定となったりエミッションが悪化したりしない範囲で段階的、若しくは急に行ってもよい。   Naturally, in the first fuel injection mode and the second fuel injection mode, the fuel injection interval between the pre-injection and the main injection is maintained at the predetermined interval. When the fuel injection control by the fuel switching control means is performed, the premixed combustion is switched to the normal combustion in the order of the first fuel injection mode and the second fuel injection mode. As described above, the switching to the injection mode is considered to be performed gradually in order to avoid a sudden change in the combustion state, but stepwise within a range in which the combustion state does not become unstable or the emission does not deteriorate. Or you may go suddenly.

また、上記の圧縮着火内燃機関の燃焼切替制御システムにおいて、前記第一燃料噴射モードにおける前記プレ噴射の燃料噴射開始時期は、前記予混合燃料噴射の燃料噴射開始時期と一致するようにしてもよい。これは、第一燃料噴射モードは、予混合燃焼に近い燃料噴射態様であるから、第一燃料噴射モードにおけるプレ噴射の燃料噴射開始時期を予混合燃焼の燃料噴射開始時期と一致させることで、予混合燃焼から第一燃料噴射モード時の燃焼へと移行する際の、燃焼状態の変化を可及的に抑制することが可能となる。   In the combustion switching control system for the compression ignition internal combustion engine, the fuel injection start timing of the pre-injection in the first fuel injection mode may coincide with the fuel injection start timing of the premixed fuel injection. . This is because the first fuel injection mode is a fuel injection mode close to premixed combustion, so that the fuel injection start timing of pre-injection in the first fuel injection mode matches the fuel injection start timing of premixed combustion, It is possible to suppress the change in the combustion state as much as possible when shifting from the premixed combustion to the combustion in the first fuel injection mode.

更に、予混合燃焼から第一燃料噴射モードによる燃焼へと移行する際の燃焼状態の変化を可及的に抑制するために、燃料噴射量に着目をして、前記第一燃料噴射モードにおける前記プレ噴射の燃料噴射量と前記メイン噴射の燃料噴射量の和が、予混合燃焼時の燃料噴射量と同量となるようにしてもよい。   Furthermore, in order to suppress as much as possible the change in the combustion state when shifting from the premixed combustion to the combustion in the first fuel injection mode, paying attention to the fuel injection amount, the first fuel injection mode The sum of the fuel injection amount of the pre-injection and the fuel injection amount of the main injection may be the same as the fuel injection amount during premix combustion.

また、上記の圧縮着火内燃機関の燃焼切替制御システムにおいて、前記第二燃料噴射モードにおける前記メイン噴射の燃料噴射開始時期は、前記燃焼切替制御手段による通常燃焼への切替が行われたときの該通常燃焼における圧縮上死点近傍の燃料噴射の燃料噴射開始時期と一致するようにしてもよい。これは、第二燃料噴射モードは、通常燃焼に近い燃料噴射態様であるから、第二燃料噴射モードにおけるメイン噴射の燃料噴射開始時期を通常燃焼の燃料噴射開始時期と一致させることで、第二燃料噴射モード時の燃焼から通常燃焼へと移行する際の、燃焼状態の変化を可及的に抑制することが可能となる。   In the combustion switching control system for the compression ignition internal combustion engine, the fuel injection start timing of the main injection in the second fuel injection mode is the same as that when the switching to normal combustion is performed by the combustion switching control means. You may make it correspond with the fuel injection start time of the fuel injection in the vicinity of the compression top dead center in normal combustion. This is because the second fuel injection mode is a fuel injection mode close to normal combustion, so that the second fuel injection mode matches the fuel injection start timing of main injection with the fuel injection start timing of normal combustion. It is possible to suppress the change in the combustion state as much as possible when shifting from the combustion in the fuel injection mode to the normal combustion.

上記の第一燃料噴射モードと第二燃料噴射モードを有する圧縮着火内燃機関の燃焼切替制御システムにおいて、前記燃焼領域判定手段によって判定される燃焼領域に従い、前記圧縮着火内燃機関における燃焼を予混合燃焼又は通常燃焼に切り替える場合に、前記燃焼切替制御手段によって予混合燃焼から通常燃焼へ切り替える際の切替燃焼領域境界を、通常燃焼から予混合燃焼へ切り替える際の切替燃焼領域境界より高負荷側に設定するように
してもよい。
In the combustion switching control system for a compression ignition internal combustion engine having the first fuel injection mode and the second fuel injection mode, the combustion in the compression ignition internal combustion engine is premixed according to the combustion region determined by the combustion region determination means. Alternatively, when switching to normal combustion, the switching combustion region boundary when switching from premixed combustion to normal combustion by the combustion switching control means is set higher than the switching combustion region boundary when switching from normal combustion to premixed combustion You may make it do.

即ち、予混合燃焼と通常燃焼との燃焼切替を行う際に、予混合燃焼から通常燃焼への切替かまたはその逆の燃焼切替かによって、即ち燃焼切替の方向性に基づいて、燃焼切替の基準となる燃焼領域の境界を変更するものである。これは、圧縮着火内燃機関の運転状態によっては、該運転状態が予混合燃焼と通常燃焼との切替が行われる切替燃焼領域境界近傍に比較的長時間滞留する場合が考えられる。このような場合、燃焼切替の方向性にかかわらず切替燃焼領域境界を一定とすると、予混合燃焼と通常燃焼が頻繁に切り替えられるいわゆるハンチング状態が生じる。   That is, when switching between premixed combustion and normal combustion, the standard for combustion switching depends on whether switching from premixed combustion to normal combustion or vice versa, that is, based on the direction of combustion switching. This changes the boundary of the combustion region. This is considered to be a case where the operation state stays for a relatively long time near the switching combustion region boundary where the premixed combustion and the normal combustion are switched depending on the operation state of the compression ignition internal combustion engine. In such a case, if the switching combustion region boundary is constant regardless of the direction of combustion switching, a so-called hunting state in which premixed combustion and normal combustion are frequently switched occurs.

燃焼切替においてハンチング状態が生じると、燃焼状態が不安定となり円滑な燃焼切替が望めない。そこで、上記のように、燃焼切替の方向性に基づいて切替燃焼領域境界を変更させることで、圧縮着火内燃機関の燃焼切替制御にヒステリシスを与えて、ハンチングの抑制を図るものである。ここで、予混合燃焼から通常燃焼への切替時の切替燃焼領域境界を、通常燃焼から予混合燃焼への切替時の切替燃焼領域境界より高負荷側に設定するのは、圧縮着火内燃機関で行われる予混合燃焼または通常燃焼を、可及的に長く継続させて燃焼切替が頻繁に行われて燃焼状態が不安定となるのを回避するためである。   If a hunting state occurs during combustion switching, the combustion state becomes unstable and smooth combustion switching cannot be expected. Therefore, as described above, by changing the switching combustion region boundary based on the direction of combustion switching, hysteresis is given to the combustion switching control of the compression ignition internal combustion engine to suppress hunting. Here, it is a compression ignition internal combustion engine that sets the switching combustion region boundary when switching from premixed combustion to normal combustion to a higher load side than the switching combustion region boundary when switching from normal combustion to premixed combustion. This is because the premixed combustion or the normal combustion that is performed is continued as long as possible to avoid frequent combustion switching and instability of the combustion state.

また、上記の第一燃料噴射モードと第二燃料噴射モードを有する圧縮着火内燃機関の燃焼切替制御システムにおいて、前記燃焼切替制御手段による燃焼切替が行われるとき、第二燃料噴射モードによる燃料噴射が行われる時間が所定滞留時間を超えた場合は、前記圧縮着火内燃機関における燃焼を直ちに予混合燃焼へ戻す滞留禁止手段を、更に備えるようにしてもよい。   Further, in the combustion switching control system for a compression ignition internal combustion engine having the first fuel injection mode and the second fuel injection mode, when the combustion switching is performed by the combustion switching control means, the fuel injection in the second fuel injection mode is performed. A retention prohibiting means for immediately returning the combustion in the compression ignition internal combustion engine to the premixed combustion may be further provided when the performed time exceeds a predetermined residence time.

第二燃料噴射モードによる燃料噴射が行われているときは、予混合燃焼から通常燃焼への切替が行われる過程において、通常燃焼時の燃料噴射の態様に近い燃料噴射制御が行われている。即ち、圧縮行程上死点近傍の時期における燃料噴射量が比較的大きい。一方で、圧縮着火内燃機関の燃焼は完全に通常燃焼に切り替えられているわけではないので、予混合燃焼時の雰囲気が完全に解消されておらず、例えば過早着火回避のための再循環排気が気筒内にいまだ残存している。従って、第二燃料噴射モードによる燃料噴射が行われているときは、気筒内の酸素濃度が低く且つ圧縮行程上死点近傍での燃料噴射量が比較的多いため、燃焼状態が不安定となりやすい。   When fuel injection is being performed in the second fuel injection mode, fuel injection control close to the mode of fuel injection during normal combustion is performed in the process of switching from premixed combustion to normal combustion. That is, the fuel injection amount at the time near the top dead center of the compression stroke is relatively large. On the other hand, since the combustion of the compression ignition internal combustion engine is not completely switched to normal combustion, the atmosphere at the time of premix combustion is not completely eliminated, for example, recirculation exhaust for avoiding premature ignition Still remains in the cylinder. Therefore, when fuel injection is performed in the second fuel injection mode, the combustion state tends to become unstable because the oxygen concentration in the cylinder is low and the fuel injection amount in the vicinity of the top dead center of the compression stroke is relatively large. .

そこで、第二燃料噴射モードによる燃料噴射が行われている時間が所定滞留時間を超えると燃焼状態が不安定となり、失火の虞やエミッションの悪化の虞がある。そこでそのような場合には、滞留禁止手段によって、燃焼切替を行っていた圧縮着火内燃機関においてその燃焼切替を強制的に中断し、再び予混合燃焼へと差し戻すことで、燃焼状態の悪化を抑制する。従って、所定滞留時間とは、第二燃料噴射モードによる燃料噴射が行われ続けることで圧縮着火内燃機関の燃焼状態が悪化すると判定される閾値であり、実験等で予め求めておくことが可能である。   Therefore, if the fuel injection time in the second fuel injection mode exceeds the predetermined residence time, the combustion state becomes unstable, and there is a risk of misfire or deterioration of emission. In such a case, the combustion switching is forcibly interrupted in the compression ignition internal combustion engine that has been switched by the stay prohibiting means, and the combustion state is deteriorated by returning to premixed combustion again. Suppress. Therefore, the predetermined residence time is a threshold value that determines that the combustion state of the compression ignition internal combustion engine is deteriorated by continuing the fuel injection in the second fuel injection mode, and can be obtained in advance by an experiment or the like. is there.

また、上記の第一燃料噴射モードと第二燃料噴射モードを有する圧縮着火内燃機関の燃焼切替制御システムにおいて、前記圧縮着火内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、前記排気再循環装置によって前記圧縮着火内燃機関の吸気系に再循環される排気量を検出し、または推定するEGRガス量検出手段と、を更に備える場合、前記第一燃料噴射モードによる燃料噴射が行われるときに、前記EGRガス量検出手段によって検出され又は推定される排気量と、前記プレ噴射と前記メイン噴射の燃料噴射条件とに基づいて該メイン噴射が失火状態となると判定されると、該第一燃料噴射モードにおける該メイン噴射の燃料噴射時期を進角させて該プレ噴射と該メイン噴射との間隔を前記所定間隔より短くしてもよい。   In the combustion switching control system for a compression ignition internal combustion engine having the first fuel injection mode and the second fuel injection mode, a part of the exhaust discharged from the compression ignition internal combustion engine is recirculated to an intake system. The first fuel injection mode, further comprising: a circulation device; and an EGR gas amount detection means for detecting or estimating an exhaust amount recirculated to the intake system of the compression ignition internal combustion engine by the exhaust gas recirculation device It is determined that the main injection becomes misfired based on the exhaust amount detected or estimated by the EGR gas amount detection means and the fuel injection conditions of the pre-injection and the main injection when fuel injection is performed by Then, the fuel injection timing of the main injection in the first fuel injection mode is advanced so that the interval between the pre-injection and the main injection is shorter than the predetermined interval. It may be.

第一燃料噴射モードによる燃料噴射が行われているときは、予混合燃焼から通常燃焼への切替が行われる過程において、予混合燃焼時の燃料噴射の態様に近い燃料噴射制御が行われている。更に、予混合燃焼時の燃焼状態の影響を受け、過早着火回避の為に排気再循環装置によって再循環される排気量は比較的多い。そのため、再循環排気量や燃料噴射量によっては、メイン噴射の噴射燃料が良好に燃焼せず失火する虞がある。例えば、再循環排気量が比較的多い場合、又はプレ噴射の燃料噴射量が比較的少ない場合には、メイン噴射の噴射燃料が失火する可能性が高い。   When fuel injection is being performed in the first fuel injection mode, fuel injection control close to the mode of fuel injection during premixed combustion is performed in the process of switching from premixed combustion to normal combustion. . Furthermore, the amount of exhaust gas recirculated by the exhaust gas recirculation device to avoid premature ignition is relatively large due to the influence of the combustion state during premixed combustion. For this reason, depending on the recirculation exhaust amount and the fuel injection amount, the injected fuel of the main injection may not burn well and may misfire. For example, when the recirculation exhaust amount is relatively large or when the pre-injection fuel injection amount is relatively small, there is a high possibility that the injected fuel of the main injection will misfire.

そこで、このような場合には、プレ噴射とメイン噴射との燃料噴射間隔を所定間隔に維持せずに、短縮することで燃焼状態が失火状態となるのを可及的に回避する。即ち、燃料噴射間隔を所定間隔に維持することでメイン噴射の燃料噴射量をより正確に制御することより、燃焼状態が失火状態となることをより確実に回避させることを優先して燃焼切替を行う。尚、メイン噴射が失火状態になると判定された後、失火状態にならないと判定されれば、プレ噴射とメイン噴射との燃料噴射間隔を再び所定間隔に戻してもよい。   Therefore, in such a case, it is possible to avoid as much as possible that the combustion state becomes a misfire state by shortening the fuel injection interval between the pre-injection and the main injection without maintaining the predetermined interval. In other words, maintaining the fuel injection interval at a predetermined interval more accurately controls the fuel injection amount of the main injection, so that the combustion switching is prioritized to more reliably avoid the combustion state from becoming a misfire state. Do. If it is determined that the main injection becomes misfired, and if it is determined that the misfire state does not occur, the fuel injection interval between the pre-injection and the main injection may be returned to the predetermined interval again.

また、上記の第一燃料噴射モードと第二燃料噴射モードを有する圧縮着火内燃機関の燃焼切替制御システムにおいて、前記圧縮着火内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、前記排気再循環装置によって前記圧縮着火内燃機関の吸気系に再循環される排気量を検出し、または推定するEGRガス量検出手段と、を更に備える場合、前記第二燃料噴射モードによる燃料噴射が行われるときに、前記EGRガス量検出手段によって検出され又は推定されるEGRガス量が所定ガス量より多いと、該第二燃料噴射モードによる燃料噴射を行わないようにしてもよい。   In the combustion switching control system for a compression ignition internal combustion engine having the first fuel injection mode and the second fuel injection mode, a part of the exhaust discharged from the compression ignition internal combustion engine is recirculated to an intake system. The second fuel injection mode, further comprising: a circulation device; and an EGR gas amount detection means for detecting or estimating an exhaust amount recirculated to the intake system of the compression ignition internal combustion engine by the exhaust gas recirculation device When the EGR gas amount is detected and estimated by the EGR gas amount detection means is larger than a predetermined gas amount, the fuel injection in the second fuel injection mode may not be performed. .

上述したように、第二燃料噴射モードによる燃料噴射が行われているときは、予混合燃焼から通常燃焼への切替が行われる過程において、通常燃焼時の燃料噴射の態様に近い燃料噴射制御が行われている。即ち、圧縮行程上死点近傍の時期における燃料噴射量が比較的大きい。一方で、圧縮着火内燃機関の燃焼は完全に通常燃焼に切り替えられているわけではないので、予混合燃焼時の雰囲気が完全に解消されておらず、過早着火回避のための再循環排気が気筒内にいまだ残存している。再循環排気が比較的多い状態で圧縮行程上死点近傍での燃料噴射量が多いと、気筒内の酸素過少により煤の発生量が増加する虞がある。   As described above, when fuel injection is performed in the second fuel injection mode, fuel injection control close to the mode of fuel injection during normal combustion is performed in the process of switching from premixed combustion to normal combustion. Has been done. That is, the fuel injection amount at the time near the top dead center of the compression stroke is relatively large. On the other hand, since the combustion of the compression ignition internal combustion engine is not completely switched to normal combustion, the atmosphere at the time of premix combustion is not completely eliminated, and recirculation exhaust for avoiding premature ignition is not performed. It still remains in the cylinder. If the amount of fuel injection near the top dead center of the compression stroke is large with a relatively large amount of recirculated exhaust gas, there is a risk that the amount of soot generated will increase due to insufficient oxygen in the cylinder.

そこで、そのような場合は、第二燃料噴射モードによる燃料噴射を行わないようにし、即ち、本来は第二燃料噴射モードによる燃料噴射を行う状態であっても、第一燃料噴射モードによる燃料噴射を継続することで、煤の大量発生を回避することが可能となる。   Therefore, in such a case, the fuel injection in the second fuel injection mode is not performed, that is, the fuel injection in the first fuel injection mode is performed even in the state where the fuel injection is originally performed in the second fuel injection mode. By continuing the process, it becomes possible to avoid a large amount of soot.

ここで、上述までの圧縮着火内燃機関の燃焼切替制御システムにおいて、前記燃焼切替制御手段による通常燃焼への切替が行われたとき、該通常燃焼における圧縮行程上死点近傍の燃料噴射より早い時期に、該燃料噴射に対してパイロット用燃料噴射間隔をもってパイロット噴射が行われるようにしてもよい。パイロット噴射を行うことで、通常燃焼時の燃焼騒音を抑制することが可能となる。   Here, in the combustion switching control system of the compression ignition internal combustion engine up to the above, when switching to the normal combustion is performed by the combustion switching control means, the timing earlier than the fuel injection in the vicinity of the compression stroke top dead center in the normal combustion In addition, pilot injection may be performed with a fuel injection interval for pilot with respect to the fuel injection. By performing the pilot injection, it is possible to suppress combustion noise during normal combustion.

ここで、パイロット用燃料噴射間隔は、上記の所定間隔とは意義の異なる燃料噴射間隔である。即ち、通常燃焼時は、燃焼切替時とは異なり、燃焼騒音の抑制に重点を置いて二つの燃料噴射(パイロット噴射と圧縮行程上死点近傍での燃料噴射)の間隔を決定する。   Here, the pilot fuel injection interval is a fuel injection interval that is different from the predetermined interval. That is, during normal combustion, unlike the combustion switching, the interval between two fuel injections (pilot injection and fuel injection near the top dead center of the compression stroke) is determined with emphasis on suppression of combustion noise.

また、上記の圧縮着火内燃機関の燃焼切替制御システムにおいて、前記パイロット用燃料噴射間隔と前記所定間隔とは、互いに独立した制御マップに基づいて決定されるようにしてもよい。   In the combustion switching control system for the compression ignition internal combustion engine, the pilot fuel injection interval and the predetermined interval may be determined based on control maps independent of each other.

上述したように、パイロット用燃料噴射間隔は、通常燃焼時の燃焼騒音を抑制するために設定され、所定間隔は、蓄圧室内の圧力変動によって生じるメイン噴射の燃料噴射量のばらつきを抑制するために設定される。燃焼切替において最終的に通常燃焼へ移行を完了するとき、前後の燃料噴射間隔を所定間隔からパイロット用燃料噴射間隔に可及的に直ちに切り替えなければ、通常燃焼時の燃焼騒音が顕著となる虞がある。そこで、各燃料噴射間隔を決定するための制御マップを独立に用意して、燃料噴射間隔を決定するときにその制御マップを切り替えることで、直ちに燃料噴射間隔を所定間隔からパイロット用燃料噴射間隔に切り替えることが可能となる。   As described above, the pilot fuel injection interval is set to suppress combustion noise during normal combustion, and the predetermined interval is used to suppress variations in the fuel injection amount of the main injection caused by pressure fluctuations in the pressure accumulating chamber. Is set. When the transition to normal combustion is finally completed in the combustion switching, the combustion noise during normal combustion may become significant unless the front and rear fuel injection intervals are switched from the predetermined interval to the pilot fuel injection interval as soon as possible. There is. Therefore, by preparing a control map for determining each fuel injection interval independently and switching the control map when determining the fuel injection interval, the fuel injection interval is immediately changed from the predetermined interval to the pilot fuel injection interval. It is possible to switch.

圧縮着火内燃機関の運転状態に応じて予混合燃焼と通常燃焼とを切り替えて行う圧縮着火内燃機関において、燃焼切替時の燃料噴射量のばらつきを可及的に抑制し、より円滑な燃焼切替を行うことが可能となる。   In a compression ignition internal combustion engine that switches between premixed combustion and normal combustion according to the operating state of the compression ignition internal combustion engine, variation in fuel injection amount at the time of combustion switching is suppressed as much as possible, and smoother combustion switching is achieved. Can be done.

ここで、本発明に係る圧縮着火内燃機関の燃焼切替制御システムの実施の形態について図面に基づいて説明する。   Here, an embodiment of a combustion switching control system for a compression ignition internal combustion engine according to the present invention will be described based on the drawings.

図1は、本発明が適用される圧縮着火内燃機関(以下、単に「内燃機関」という。)1およびその制御系統の概略構成を表すブロック図である。内燃機関1は、4つの気筒2を有する圧縮着火式内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、所定圧に加圧された燃料を貯留する蓄圧室4と接続されている。内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、吸気ポートを介して燃焼室に接続される。同様に、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管は排気ポートを介して燃焼室に接続される。ここで、吸気ポートおよび排気ポートには、各々吸気弁および排気弁が設けられている。   FIG. 1 is a block diagram showing a schematic configuration of a compression ignition internal combustion engine (hereinafter simply referred to as “internal combustion engine”) 1 to which the present invention is applied and a control system thereof. The internal combustion engine 1 is a compression ignition type internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulating chamber 4 that stores fuel pressurized to a predetermined pressure. An intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 is connected to a combustion chamber via an intake port. Similarly, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 is connected to a combustion chamber via an exhaust port. Here, the intake port and the exhaust port are provided with an intake valve and an exhaust valve, respectively.

また、吸気枝管7は吸気管8に接続されている。更に、吸気管8における吸気枝管7の直上流に位置する部位には、吸気管8内を流れる吸気の流量を調節する吸気絞り弁10が、更に吸気絞り弁10の上流側には、吸気管8を流れる吸入空気量を検出するエアフローメータ9が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。一方、内燃機関1には、EGR装置21が設けられている。EGR装置21は排気枝管12を流れる排気の一部を吸気枝管7へ再循環させる。EGR装置21は、排気枝管12(上流側)から吸気枝管7(下流側)へ延出しているEGR通路22と、EGR通路22上に上流側から順に設けられたEGRガス冷却用のEGRクーラ23と、EGRガスの流量調整用のEGR弁24と、から構成される。   The intake branch pipe 7 is connected to the intake pipe 8. Further, an intake throttle valve 10 that adjusts the flow rate of the intake air flowing through the intake pipe 8 is located at a portion of the intake pipe 8 that is located immediately upstream of the intake branch pipe 7. An air flow meter 9 for detecting the amount of intake air flowing through the pipe 8 is provided. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10. On the other hand, the internal combustion engine 1 is provided with an EGR device 21. The EGR device 21 recirculates a part of the exhaust gas flowing through the exhaust branch pipe 12 to the intake branch pipe 7. The EGR device 21 includes an EGR passage 22 extending from the exhaust branch pipe 12 (upstream side) to the intake branch pipe 7 (downstream side), and an EGR for cooling EGR gas provided in order from the upstream side on the EGR passage 22. A cooler 23 and an EGR valve 24 for adjusting the flow rate of EGR gas are included.

エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する過給機16のコンプレッサ側が設けられ、排気枝管12には過給機16のタービン側が設けられている。ここで、過給機16は、図2に示すように、低圧側過給機16bと高圧側過給機16aが直列に構成される二段過給機である。先ず、排気によって低圧側過給機16bによって一段階目の過給圧に加圧された後に下流の吸気管に設けられた吸気冷却用のインタークーラ16cによって冷却され、更に高圧側過給機16aによって目的の過給圧へと加圧される。ここで、過給機16における高圧側過給機16aは、いわゆる可変容量型遠心過給機であって、高圧側過給機16aの可変ノズルの開度が調整されることで、最終的に到達する過給圧を細かく調整することが可能となる。   An intake pipe 8 positioned between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor side of a supercharger 16 that operates using exhaust energy as a drive source. A turbine side is provided. Here, as shown in FIG. 2, the supercharger 16 is a two-stage supercharger in which a low-pressure supercharger 16b and a high-pressure supercharger 16a are configured in series. First, after being pressurized to the first stage supercharging pressure by the low pressure side supercharger 16b by exhaust, it is cooled by the intake air cooling intercooler 16c provided in the downstream intake pipe, and further, the high pressure side supercharger 16a. To increase the desired supercharging pressure. Here, the high-pressure side supercharger 16a in the supercharger 16 is a so-called variable displacement centrifugal supercharger, and is finally adjusted by adjusting the opening of the variable nozzle of the high-pressure side supercharger 16a. It is possible to finely adjust the supercharging pressure to be reached.

また、過給機16の高圧側過給機16aのタービン側に排気が流入するのを回避するためのバイパス路17が、高圧側過給機16aの上流側の排気枝管12の部位から、高圧側過給機16aのタービン側と低圧側過給機16bのタービン側の間の排気通路の部位へと繋がっている。そして、後者の部位にはバイパス通路17における排気の流れを制御する流路切替弁18が設けられている。従って、流路切替弁18が閉弁しているときは、排気は、高圧側過給機16a、低圧側過給機16bのタービン側に順次流れ込むことで、内燃機関1において比較的高い過給圧を発生させる。一方で、流路切替弁18が開弁しているときは、排気は高圧側過給機16aのタービン側には流れ込まずに低圧側過給機16bのタービン側にのみ流れ込む。従って、過給機16によって行われる過給が一段過給となり、流路切替弁18は閉弁されて二段過給される場合と比べて最終的な過給圧が低下する。流路切替弁18による排気の流れの切替は、内燃機関1での燃焼に応じて行われ、その制御については後述する。   Further, a bypass passage 17 for avoiding exhaust gas flowing into the turbine side of the high pressure side supercharger 16a of the supercharger 16 is provided from the site of the exhaust branch pipe 12 upstream of the high pressure side supercharger 16a. It connects with the site | part of the exhaust passage between the turbine side of the high voltage | pressure side supercharger 16a, and the turbine side of the low voltage | pressure side supercharger 16b. A flow path switching valve 18 for controlling the flow of exhaust gas in the bypass passage 17 is provided in the latter part. Therefore, when the flow path switching valve 18 is closed, the exhaust gas sequentially flows into the turbine side of the high pressure side supercharger 16a and the low pressure side supercharger 16b, so that the internal combustion engine 1 has a relatively high supercharge. Generate pressure. On the other hand, when the flow path switching valve 18 is open, the exhaust gas does not flow into the turbine side of the high-pressure supercharger 16a but flows into only the turbine side of the low-pressure supercharger 16b. Therefore, the supercharging performed by the supercharger 16 becomes a one-stage supercharging, and the final supercharging pressure is reduced as compared with the case where the flow path switching valve 18 is closed and the two-stage supercharging is performed. The switching of the exhaust flow by the flow path switching valve 18 is performed according to the combustion in the internal combustion engine 1, and the control thereof will be described later.

図1に戻って、過給機16より下流の吸気管8には、過給機16における高圧側過給機16aによって加圧されて高温となった吸入空気を冷却するためのインタークーラ15が設けられている。また、過給機16のタービン側は、排気管13と接続され、この排気管13は、下流にてマフラーに接続されている。そして、排気管13の途中には、内燃機関1からの排気を浄化する排気浄化触媒14が設けられている。   Returning to FIG. 1, an intercooler 15 for cooling the intake air that has been pressurized by the high-pressure supercharger 16 a in the supercharger 16 and is heated to the intake pipe 8 downstream from the supercharger 16. Is provided. Further, the turbine side of the supercharger 16 is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected to a muffler downstream. An exhaust purification catalyst 14 that purifies exhaust from the internal combustion engine 1 is provided in the middle of the exhaust pipe 13.

また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)20が併設されている。このECU20は、CPUの他、後述する各種のプログラム及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。   The internal combustion engine 1 is also provided with an electronic control unit (hereinafter referred to as “ECU”) 20 for controlling the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, and the like for storing various programs and maps to be described later, and controls the operating conditions of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's request. Unit.

ここで、燃料噴射弁3は、ECU20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3からの燃料噴射時期および燃料噴射量が、内燃機関1の機関負荷や機関回転速度等の運転状態に応じて、噴射弁毎に制御され、以て内燃機関1において予混合燃焼や、通常燃焼が行われる。内燃機関1で行われる燃焼制御につては、後述する。また、EGR弁24、アクチュエータ11、高圧側過給機16aの可変ノズルの開度、流路切替弁18の開閉等も、ECU20からの指令に従って制御される。   Here, the fuel injection valve 3 performs an opening / closing operation by a control signal from the ECU 20. That is, according to a command from the ECU 20, the fuel injection timing and the fuel injection amount from the fuel injection valve 3 are controlled for each injection valve in accordance with the operation state such as the engine load and engine speed of the internal combustion engine 1. In the internal combustion engine 1, premixed combustion or normal combustion is performed. The combustion control performed in the internal combustion engine 1 will be described later. Further, the opening degree of the EGR valve 24, the actuator 11, the variable nozzle of the high-pressure supercharger 16a, the opening / closing of the flow path switching valve 18 and the like are also controlled according to commands from the ECU 20.

更に、アクセル開度センサ26がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関負荷等を算出する。また、クランクポジションセンサ25がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や、該機関回転速度とギア比等から内燃機関1が搭載されている車両の車両速度等を算出する。   Further, an accelerator opening sensor 26 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine load required for the internal combustion engine 1 based on the signal. The crank position sensor 25 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1, the engine rotational speed and the gear. The vehicle speed or the like of the vehicle on which the internal combustion engine 1 is mounted is calculated from the ratio or the like.

更に、エアフローメータ9がECU20と電気的に接続され、吸気管8を流れる吸入空気量をECU20が取得する。また、気筒2内の圧力を検出する気筒内圧力センサ27が設けられており、ECU20と電気的に接続されることで、ECU20は気筒内圧力を取得する。また、吸気枝管7内の吸気の酸素濃度を検出する酸素濃度センサ28が設けられており、ECU20と電気的に接続されることで、ECU20は吸気の酸素濃度を取得する。また、吸気枝管7内の吸気圧を検出する吸気圧センサ29が設けられており、ECU20と電気的に接続されることで、ECU20は吸気圧を取得する。   Further, the air flow meter 9 is electrically connected to the ECU 20, and the ECU 20 acquires the amount of intake air flowing through the intake pipe 8. Further, an in-cylinder pressure sensor 27 that detects the pressure in the cylinder 2 is provided, and the ECU 20 acquires the in-cylinder pressure by being electrically connected to the ECU 20. Further, an oxygen concentration sensor 28 for detecting the oxygen concentration of the intake air in the intake branch pipe 7 is provided, and the ECU 20 acquires the oxygen concentration of the intake air by being electrically connected to the ECU 20. Further, an intake pressure sensor 29 for detecting the intake pressure in the intake branch pipe 7 is provided, and the ECU 20 acquires the intake pressure by being electrically connected to the ECU 20.

ここで、上記の内燃機関1においては、機関回転速度および機関負荷で表される内燃機関1の運転状態に基づいて、予混合燃焼と通常燃焼との切替が行われる。図3に、内燃機関1の運転状態の属する燃焼領域と内燃機関1で行われる燃焼との関係を示す。尚、図3
に示すグラフの横軸は内燃機関1の機関回転速度で、縦軸は内燃機関1の機関負荷を表す。ここで、内燃機関1の運転状態は機関回転速度と機関負荷とで表され、低負荷側の予混合燃焼領域R1、高負荷側の通常燃焼領域R2の何れかの燃焼領域に属する。
Here, in the internal combustion engine 1 described above, switching between premixed combustion and normal combustion is performed based on the operating state of the internal combustion engine 1 represented by the engine speed and the engine load. FIG. 3 shows the relationship between the combustion region to which the operating state of the internal combustion engine 1 belongs and the combustion performed in the internal combustion engine 1. FIG. 3
The horizontal axis of the graph shown in FIG. 4 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1. Here, the operating state of the internal combustion engine 1 is represented by the engine rotational speed and the engine load, and belongs to one of the combustion regions of the premix combustion region R1 on the low load side and the normal combustion region R2 on the high load side.

内燃機関1の機関負荷が大きくなり燃焼室に供給される燃料量が増大すると、又は機関回転速度が高くなり燃焼室内に予混合気を形成する実質的な時間が短くなると、燃焼室に形成される予混合気が均一とならず、過早着火が生じやすくなる。そこで、内燃機関1の運転状態が、過早着火を回避し得る予混合燃焼領域R1に属するときは予混合燃焼を行うことで、エミッションの改善や燃焼騒音の低減を図る。また、内燃機関1が、過早着火の回避が困難となる通常燃焼領域R2に属するときは予混合燃焼ではなく、いわゆる拡散燃焼である通常燃焼を行うことで、高機関出力の発揮を図る。   When the engine load of the internal combustion engine 1 increases and the amount of fuel supplied to the combustion chamber increases, or when the engine rotation speed increases and the substantial time for forming the premixed gas in the combustion chamber decreases, it is formed in the combustion chamber. The premixed gas mixture is not uniform and pre-ignition tends to occur. Therefore, when the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1 in which premature ignition can be avoided, premixed combustion is performed to improve emissions and reduce combustion noise. Further, when the internal combustion engine 1 belongs to the normal combustion region R2 where it is difficult to avoid premature ignition, high engine output is achieved by performing normal combustion which is so-called diffusion combustion instead of premixed combustion.

上述したように、内燃機関1の運転状態が属する燃焼領域に応じて、予混合燃焼又は通常燃焼が行われるが、予混合燃焼時には、燃料噴射時期が圧縮行程上死点近傍の時期より早い時期において燃料噴射弁3から燃料が噴射されることで、気筒2内に予混合気が形成される。そして、予混合燃焼時の過早着火を抑制するために、内燃機関1の運転状態が予混合燃焼領域R1に属すると、ECU20によってEGR弁24の開度が、内燃機関1の運転状態が通常燃焼領域R2に属する場合よりも開き側に制御され、より多くのEGRガスが吸気枝管7を経て気筒2内に供給される。即ち、予混合燃焼と通常燃焼が行われるときとでは、EGR弁24の開度は、それぞれの燃焼に適した開度に制御される。   As described above, premixed combustion or normal combustion is performed according to the combustion region to which the operating state of the internal combustion engine 1 belongs, but at the time of premixed combustion, the fuel injection timing is earlier than the timing near the top dead center of the compression stroke. As a result, fuel is injected from the fuel injection valve 3 to form a premixed gas in the cylinder 2. In order to suppress premature ignition at the time of premixed combustion, when the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1, the opening degree of the EGR valve 24 is set by the ECU 20 and the operating state of the internal combustion engine 1 is normally set. The EGR gas is controlled to be opened more than when belonging to the combustion region R2, and more EGR gas is supplied into the cylinder 2 through the intake branch pipe 7. That is, when premixed combustion and normal combustion are performed, the opening degree of the EGR valve 24 is controlled to an opening degree suitable for each combustion.

ここで、内燃機関1において予混合燃焼が行われるときは、気筒2内に吸気を導入すべく比較的高い過給圧が要求される。そこで、予混合燃焼時には、流路切替弁18を閉弁状態として内燃機関1における過給圧を上昇させる。一方で、通常燃焼時は、排気枝管12内の排気圧の上昇に伴う燃焼状態の悪化を回避するために流路切替弁18を開弁状態とする。   Here, when premixed combustion is performed in the internal combustion engine 1, a relatively high boost pressure is required to introduce intake air into the cylinder 2. Therefore, during premix combustion, the flow path switching valve 18 is closed to increase the boost pressure in the internal combustion engine 1. On the other hand, at the time of normal combustion, the flow path switching valve 18 is opened to avoid the deterioration of the combustion state accompanying the increase in the exhaust pressure in the exhaust branch pipe 12.

このように構成される内燃機関1において、内燃機関1の機関負荷が上昇して、内燃機関1の運転状態が属する燃焼領域が予混合燃焼領域R1から通常燃焼領域R2へ変化したとき、予混合燃焼から通常燃焼への切替を行う必要がある。しかし、このような場合であっても、ECU20からの指令によってEGR弁24の開度が予混合燃焼から通常燃焼に適した閉じ側の開度に制御されても、吸気枝管7やEGR通路22の容積等によって気筒2内に供給されるEGRガス量は通常燃焼に適したEGRガス量に直ちに変化しない。その結果、燃焼状態が不安定になったりエミッションが悪化したりする虞がある。   In the internal combustion engine 1 configured as described above, when the engine load of the internal combustion engine 1 increases and the combustion region to which the operating state of the internal combustion engine 1 belongs changes from the premixed combustion region R1 to the normal combustion region R2, premixing is performed. It is necessary to switch from combustion to normal combustion. However, even in such a case, even if the opening degree of the EGR valve 24 is controlled from the premixed combustion to the closing side suitable for normal combustion by a command from the ECU 20, the intake branch pipe 7 and the EGR passage The amount of EGR gas supplied into the cylinder 2 due to the volume of 22 or the like does not immediately change to the amount of EGR gas suitable for normal combustion. As a result, the combustion state may become unstable or the emission may be deteriorated.

そこで、予混合燃焼から通常燃焼への切替時には、その過渡状態に応じた燃焼が内燃機関1で行われることで、燃焼状態が不安定になったりエミッションが悪化したりしないように、燃料噴射弁3からの燃料噴射が制御される。その燃焼切替時の燃料噴射制御について、図4および図5に基づいて説明する。   Therefore, at the time of switching from premixed combustion to normal combustion, the fuel injection valve is operated so that combustion according to the transient state is performed in the internal combustion engine 1 so that the combustion state does not become unstable or the emission deteriorates. The fuel injection from 3 is controlled. The fuel injection control at the time of the combustion switching will be described based on FIGS. 4 and 5.

図4は、予混合燃焼から通常燃焼への切替が行われる際の、燃料噴射の様子を示す。予混合燃焼時の燃料噴射の様子は図4(a)に示され、内燃機関1の機関負荷が上昇するに従い、図4(b)、(c)の順に燃料噴射が制御され、最終的に図4(d)に示すような通常燃焼時の燃料噴射が行われる。   FIG. 4 shows the state of fuel injection when switching from premixed combustion to normal combustion is performed. The state of fuel injection during premixed combustion is shown in FIG. 4 (a). As the engine load of the internal combustion engine 1 increases, fuel injection is controlled in the order of FIGS. 4 (b) and 4 (c). Fuel injection during normal combustion is performed as shown in FIG.

先ず、予混合燃焼時は、図4(a)に示すように、圧縮行程上死点TDCより早い時期の予混合燃焼時噴射開始時期HCCI_ainjに、燃料噴射弁3から燃料噴射が行われる。尚、図中Qとあるのは、燃料噴射量を意味する。従って、本実施例においては、予混合燃焼時噴射開始時期HCCI_ainjに燃料噴射量25の燃料噴射が行われている予混合燃焼から、通常燃焼への切替が行われる。図4中の燃料噴射量は一例示であり、本発
明の実施例はこの燃料噴射量に限定されない。
First, during premix combustion, as shown in FIG. 4A, fuel injection is performed from the fuel injection valve 3 at a premix combustion injection start timing HCCI_ainj earlier than the compression stroke top dead center TDC. Incidentally, Q in the figure means the fuel injection amount. Therefore, in the present embodiment, switching from premixed combustion in which fuel injection of fuel injection amount 25 is performed at premixed combustion injection start timing HCCI_ainj to normal combustion is performed. The fuel injection amount in FIG. 4 is merely an example, and the embodiment of the present invention is not limited to this fuel injection amount.

ここで、通常燃焼への第一段階として、図4(b)に示される燃料噴射が行われる。図4(b)に示す燃料噴射の態様を、第一燃料噴射モードという。第一燃料噴射モードでは、早い時期行われるプレ噴射と該プレ噴射の後に行われるメイン噴射の二段噴射が行われる。これは、予混合燃焼から通常燃焼への切替時において燃焼状態が急激に変化しないように、切替前の予混合燃焼における燃料噴射と切替後の通常燃焼における燃料噴射とを複合させた過渡的な燃料噴射の態様である。   Here, fuel injection shown in FIG. 4B is performed as the first stage for normal combustion. The mode of fuel injection shown in FIG. 4B is referred to as a first fuel injection mode. In the first fuel injection mode, pre-injection that is performed at an early stage and two-stage injection that is performed after the pre-injection are performed. This is a transient combination of fuel injection in premix combustion before switching and fuel injection in normal combustion after switching so that the combustion state does not change suddenly when switching from premix combustion to normal combustion. This is a mode of fuel injection.

このときプレ噴射の燃料噴射開始時期Pre_ainjは予混合燃焼時噴射開始時期HCCI_ainjと同時期であり、プレ噴射の燃料噴射量(Q=23)とメイン噴射の燃料噴射量(Q=2)との和は、切替直前の予混合燃焼時の燃料噴射量(Q=25)と同量である。即ち、予混合燃焼から燃焼切替が開始された段階の第一燃料噴射モードでは、予混合燃焼時の燃料噴射態様に近づけることで、燃焼状態が急激に変化するのが抑制される。   At this time, the pre-injection fuel injection start timing Pre_ainj is coincident with the premixed combustion injection start timing HCCI_ainj, and the pre-injection fuel injection amount (Q = 23) and the main injection fuel injection amount (Q = 2). The sum is the same as the fuel injection amount (Q = 25) at the time of premix combustion just before switching. That is, in the first fuel injection mode at the stage where the combustion switching is started from the premixed combustion, it is possible to suppress a sudden change in the combustion state by approaching the fuel injection mode during the premixed combustion.

ここで、燃料噴射弁3からは蓄圧室4内に貯留された加圧燃料が噴射されるが、一度燃料噴射弁3が開弁すると蓄圧室4内の圧力が局所的に低下し、その圧力の変動波が蓄圧室4の内壁に反射されて圧力脈動が生じる。この圧力脈動は時間の経過とともに減衰するが、まだ圧力脈動が顕著なときに再び燃料噴射弁3から燃料噴射を行うべく開弁しても、燃料噴射弁3の噴射圧がばらつくため開弁時間と燃料噴射量との関係がばらつき正確な燃料噴射量の制御が困難となる。これは、図4(b)に示すようなプレ噴射とメイン噴射の二段噴射を行う場合、メイン噴射の燃料噴射量のばらつきの要因になる。   Here, pressurized fuel stored in the pressure accumulating chamber 4 is injected from the fuel injection valve 3, but once the fuel injection valve 3 is opened, the pressure in the pressure accumulating chamber 4 is locally reduced. Are reflected on the inner wall of the pressure accumulating chamber 4 to cause pressure pulsation. This pressure pulsation attenuates with the passage of time, but even when the pressure pulsation is still remarkable, even if the fuel injection valve 3 is opened again to perform fuel injection, the injection pressure of the fuel injection valve 3 varies, so the valve opening time And the fuel injection amount vary, and it becomes difficult to accurately control the fuel injection amount. This causes a variation in the fuel injection amount of the main injection when performing the two-stage injection of the pre-injection and the main injection as shown in FIG.

更に、プレ噴射の燃料噴射量が多いほど蓄圧室4内の圧力変動が大きくなるため、メイン噴射の燃料噴射量のばらつきも大きくなる傾向がある。メイン噴射量のばらつきが大きくなると、燃焼切替時に対応した燃料噴射が困難となり、燃焼状態が不安定となったりエミッションが悪化したりする虞がある。   Furthermore, since the pressure fluctuation in the pressure accumulating chamber 4 increases as the fuel injection amount for pre-injection increases, the variation in the fuel injection amount for main injection also tends to increase. When the variation in the main injection amount becomes large, it becomes difficult to inject fuel corresponding to the combustion switching, and there is a possibility that the combustion state becomes unstable or the emission deteriorates.

そこで、第一燃料噴射モードにおいては、プレ噴射とメイン噴射との燃料噴射間隔が所定間隔Pint2に維持される。この所定間隔Pint2は、燃料噴射弁3と蓄圧室4との相関によって決定される時間である。図5に、燃料噴射弁3からプレ噴射を行いその後メイン噴射を行ったときの、該メイン噴射の燃料噴射量のばらつきを実験によって計測した結果である。図5のグラフの横軸は、プレ噴射とメイン噴射との燃料噴射間隔であり、縦軸はメイン噴射の燃料噴射のばらつきΔQである。このばらつきは、目標とする燃料噴射量を達成する開弁時間において、燃料噴射弁3から実際に噴射された燃料噴射量と目標とする燃料噴射量との差である。   Therefore, in the first fuel injection mode, the fuel injection interval between the pre-injection and the main injection is maintained at the predetermined interval Pint2. The predetermined interval Pint2 is a time determined by the correlation between the fuel injection valve 3 and the pressure accumulating chamber 4. FIG. 5 shows the result of experimentally measuring the variation in the fuel injection amount of the main injection when pre-injection is performed from the fuel injection valve 3 and then main injection is performed. The horizontal axis of the graph of FIG. 5 is the fuel injection interval between the pre-injection and the main injection, and the vertical axis is the fuel injection variation ΔQ of the main injection. This variation is a difference between the fuel injection amount actually injected from the fuel injection valve 3 and the target fuel injection amount during the valve opening time for achieving the target fuel injection amount.

図5中には、プレ噴射とメイン噴射の合計燃料噴射量は同量であって、プレ噴射の燃料噴射量とメイン噴射の燃料噴射量との比率が異なる三通りの燃料噴射態様において、燃料噴射間隔に対するメイン噴射の燃料噴射量のばらつきが示されている。このように、プレ噴射とメイン噴射との関係によって、メイン噴射の燃料噴射量のばらつきは変動するが、その中でも、プレ噴射の燃料噴射量とメイン噴射の燃料噴射との比率にかかわらず、該メイン噴射の燃料噴射量のばらつきが略一定となる燃料噴射間隔が存在する。本実施例においては、燃料噴射間隔が2.5msec近傍のときに、メイン噴射の燃料噴射量のばらつきが略一定となると認められる。   In FIG. 5, the total fuel injection amount of the pre-injection and the main injection is the same amount, and the fuel injection mode is different in the ratio between the fuel injection amount of the pre-injection and the fuel injection amount of the main injection. A variation in the fuel injection amount of the main injection with respect to the injection interval is shown. As described above, the variation in the fuel injection amount of the main injection varies depending on the relationship between the pre-injection and the main injection, and among them, regardless of the ratio between the fuel injection amount of the pre-injection and the fuel injection of the main injection, There is a fuel injection interval in which the variation in the fuel injection amount of the main injection becomes substantially constant. In the present embodiment, it is recognized that the variation in the fuel injection amount of the main injection becomes substantially constant when the fuel injection interval is in the vicinity of 2.5 msec.

これは、プレ噴射において燃料噴射弁3が開弁することで蓄圧室4内に生じる圧力脈動が、蓄圧室4の形状や燃料噴射弁3と蓄圧室4との接続状態によって、略一定となることが原因の一つと考えられ得る。従って、このメイン噴射の燃料噴射量のばらつきが略一定
となる燃料噴射間隔は、実際の燃料噴射弁3や蓄圧室4の状況に応じて決定される。
This is because the pressure pulsation generated in the pressure accumulating chamber 4 by opening the fuel injection valve 3 in the pre-injection becomes substantially constant depending on the shape of the pressure accumulating chamber 4 and the connection state between the fuel injection valve 3 and the pressure accumulating chamber 4. This can be considered as one of the causes. Therefore, the fuel injection interval at which the variation in the fuel injection amount of the main injection becomes substantially constant is determined according to the actual conditions of the fuel injection valve 3 and the pressure accumulating chamber 4.

ここで、第一燃料噴射モードにおける所定間隔Pint2を2.5msec近傍の時間に設定すると、プレ噴射とメイン噴射の相関にかかわらずメイン噴射の燃料噴射量のばらつきが略一定とすることが可能となるため、そのばらつきを解消すべくメイン噴射における燃料噴射弁3の開弁時間を調整することで、メイン噴射の燃料噴射量をより正確に制御することが可能となる。   Here, if the predetermined interval Pint2 in the first fuel injection mode is set to a time in the vicinity of 2.5 msec, the variation in the fuel injection amount of the main injection can be made substantially constant regardless of the correlation between the pre-injection and the main injection. Therefore, it is possible to more accurately control the fuel injection amount of the main injection by adjusting the valve opening time of the fuel injection valve 3 in the main injection to eliminate the variation.

第一燃料噴射モードにおいては、プレ噴射の燃料噴射開始時期Pre_ainjは、予混合燃焼時噴射開始時期HCCI_ainjと同時期とし、該プレ噴射における燃料噴射弁3の開弁時間τ1は目標の燃料噴射量(Q=23)を噴射し得る時間である。そして、プレ噴射の終了後、所定間隔Pint2をもってメイン噴射が開始される。従って、メイン噴射の燃料噴射開始時期Main_ainjは、プレ噴射の燃料噴射開始時期Pre_ainjから、プレ噴射の開弁時間τ1と所定間隔Pint2が経過した時期となる。そのため、プレ噴射の開弁時間τ1と所定間隔Pint2次第で、メイン噴射の燃料噴射開始時期Main_ainjが圧縮行程上死点TDCの前後の何れになるかが決定される。   In the first fuel injection mode, the pre-injection fuel injection start timing Pre_ainj is the same period as the premixed combustion injection start timing HCCI_ainj, and the valve opening time τ1 of the pre-injection is the target fuel injection amount. This is the time during which (Q = 23) can be injected. And after completion | finish of pre-injection, main injection is started with the predetermined space | interval Pint2. Accordingly, the fuel injection start timing Main_ainj of the main injection is a timing when the pre-injection valve opening time τ1 and the predetermined interval Pint2 have elapsed from the fuel injection start timing Pre_ainj of the pre-injection. Therefore, depending on the valve opening time τ1 of the pre-injection and the predetermined interval Pint2, it is determined whether the fuel injection start timing Main_ainj of the main injection is before or after the compression stroke top dead center TDC.

次に、第一燃料噴射モードによる燃料噴射が開始されてから時間の経過とともに、プレ噴射とメイン噴射の各燃料噴射時期を進角側に移行する。このときプレ噴射とメイン噴射との燃料噴射間隔は、所定間隔Pint2に維持される。そして、この燃料噴射時期の進角側への移行にともない、プレ噴射の燃料噴射量を減少させ且つメイン噴射の燃料噴射量を増加させる。   Next, the fuel injection timings of the pre-injection and the main injection are shifted to the advance side as time elapses after the fuel injection in the first fuel injection mode is started. At this time, the fuel injection interval between the pre-injection and the main injection is maintained at a predetermined interval Pint2. As the fuel injection timing shifts to the advance side, the pre-injection fuel injection amount is decreased and the main injection fuel injection amount is increased.

燃料噴射時期の進角側への移行は、メイン噴射の燃料噴射開始時期Main_ainjが、燃焼切替後に行われる通常燃焼での圧縮行程TDC近傍での燃料噴射時期と同時期となるまで行われる。これにより、燃焼切替時の燃料噴射態様が、第一燃料噴射モードから第二燃料噴射モードへと移行する。この第二燃料噴射モードによる燃料噴射の様子が、図4(c)に示されている。   The shift of the fuel injection timing to the advance side is performed until the fuel injection start timing Main_ainj of the main injection coincides with the fuel injection timing in the vicinity of the compression stroke TDC in the normal combustion performed after the combustion switching. Thereby, the fuel injection mode at the time of combustion switching shifts from the first fuel injection mode to the second fuel injection mode. The state of fuel injection in the second fuel injection mode is shown in FIG.

第二燃料噴射モードにおいては、上述したように、プレ噴射の燃料噴射量(Q=2)は、第一燃料噴射モードにおけるプレ噴射の燃料噴射量より減量され、且つメイン噴射の燃料噴射量(Q=23)は、第一燃料噴射モードにおけるメイン噴射の燃料噴射量より増量される。そして、メイン噴射の燃料噴射開始時期Main_ainjは、燃焼切替後の通常燃焼での圧縮行程TDC近傍での燃料噴射時期と同時期であって、プレ噴射とメイン噴射との燃料噴射間隔は所定間隔Pint2である。従って、プレ噴射の燃料噴射開始時期Pre_ainjは、メイン噴射の燃料噴射開始時期Main_ainjより、プレ噴射の開弁時間τ2と所定間隔Pint2前の時期となる。   In the second fuel injection mode, as described above, the fuel injection amount (Q = 2) of the pre-injection is reduced from the fuel injection amount of the pre-injection in the first fuel injection mode, and the fuel injection amount of the main injection ( Q = 23) is increased from the fuel injection amount of the main injection in the first fuel injection mode. The fuel injection start timing Main_ainj of the main injection is the same period as the fuel injection timing in the vicinity of the compression stroke TDC in the normal combustion after the combustion switching, and the fuel injection interval between the pre-injection and the main injection is a predetermined interval Pint2. It is. Therefore, the pre-injection fuel injection start timing Pre_ainj is a time before the pre-injection valve opening time τ2 and the predetermined interval Pint2 from the main injection fuel injection start timing Main_ainj.

以上より、第二燃料噴射モードは、予混合燃焼時の燃料噴射態様に近い第一燃料噴射モードから、通常燃焼時の燃料噴射態様により近づいた燃料噴射態様と言い得る。この第二燃料噴射モードを経ることで、予混合燃焼から通常燃焼への燃焼切替をより円滑に行うことが可能となる。   From the above, the second fuel injection mode can be said to be a fuel injection mode that is closer to the fuel injection mode during normal combustion than the first fuel injection mode that is close to the fuel injection mode during premixed combustion. By passing through the second fuel injection mode, it becomes possible to smoothly switch the combustion from the premixed combustion to the normal combustion.

次に、図4(c)に示す第二燃料噴射モードが行われた後、図4(d)に示す通常燃焼時の燃料噴射態様へと切り替えられ、予混合燃焼から通常燃焼への燃焼切替が終了する。尚、本実施例においては、メイン噴射に加えて、該メイン噴射より早い時期のパイロット噴射が行われる。このパイロット噴射は、燃焼切替時のプレ噴射とは異なり、図5に示すメイン噴射の燃料噴射量のばらつきを可及的に抑制し得る燃料噴射間隔をメイン噴射に対して有する燃料噴射ではなく、メイン噴射による燃焼騒音を可及的に抑制し得るパイロット用燃料噴射間隔Pint0をメイン噴射に対して有する燃料噴射である。   Next, after the second fuel injection mode shown in FIG. 4 (c) is performed, the mode is switched to the fuel injection mode during normal combustion shown in FIG. 4 (d), and the combustion is switched from premixed combustion to normal combustion. Ends. In this embodiment, in addition to the main injection, pilot injection at a timing earlier than the main injection is performed. Unlike the pre-injection at the time of combustion switching, this pilot injection is not a fuel injection having a fuel injection interval that can suppress the variation in the fuel injection amount of the main injection shown in FIG. This fuel injection has a pilot fuel injection interval Pint0 that can suppress combustion noise caused by the main injection as much as possible with respect to the main injection.

従って、通常燃焼時は、パイロット噴射によって生じるメイン噴射の燃料噴射量のばらつき抑制より、メイン噴射の燃焼騒音の抑制を優先して、パイロット噴射とメイン噴射の燃料噴射間隔が設定される。そこで、パイロット噴射の燃料噴射開始時期Pilot_ainjは、メイン噴射の燃料噴射開始時期Main_ainjより、パイロット噴射の開弁時間τ3とパイロット用燃料噴射間隔Pint0前の時期となる。   Therefore, during normal combustion, the fuel injection interval between the pilot injection and the main injection is set by giving priority to the suppression of the combustion noise of the main injection over the suppression of the variation in the fuel injection amount of the main injection caused by the pilot injection. Therefore, the pilot injection fuel injection start timing Pilot_ainj is a time before the pilot injection valve opening time τ3 and the pilot fuel injection interval Pint0 from the main injection fuel injection start timing Main_ainj.

尚、本実施例においては、通常燃焼切替直後の燃料噴射量は、パイロット噴射でQ=2、メイン噴射でQ=25となり、合計でQ=27となる。これは、予混合燃焼から通常燃焼への移行の過程で、内燃機関1の機関負荷が増加していることに対応して、燃料噴射量の合計が増加したものである。   In this embodiment, the fuel injection amount immediately after the normal combustion switching is Q = 2 for pilot injection, Q = 25 for main injection, and Q = 27 in total. This is because the total fuel injection amount has increased in response to an increase in the engine load of the internal combustion engine 1 during the transition from premixed combustion to normal combustion.

図4に示すように、予混合燃焼から通常燃焼への切替時に、第一燃料噴射モードと第二燃料噴射モードによる燃料噴射態様を経ることで、メイン噴射の燃料噴射量のばらつきを可及的に抑制してより正確な燃料噴射を行うことで、より円滑な燃焼切替が可能となる。ここで、内燃機関1において予混合燃焼から通常燃焼への燃焼切り替えを行う際に、より円滑な燃焼切替を行うべく、図6に示す燃焼切替制御が行われる。以下に、燃焼切替制御について説明する。尚、本実施例における燃焼切替制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。   As shown in FIG. 4, when the premixed combustion is switched to the normal combustion, the fuel injection amount of the main injection can be varied as much as possible through the fuel injection modes of the first fuel injection mode and the second fuel injection mode. By performing the fuel injection more accurately while suppressing the above, smoother combustion switching is possible. Here, when switching the combustion from the premixed combustion to the normal combustion in the internal combustion engine 1, the combustion switching control shown in FIG. 6 is performed in order to perform smoother combustion switching. Hereinafter, the combustion switching control will be described. Note that the combustion switching control in the present embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle.

S101では、内燃機関1の機関回転速度と機関負荷で表される運転状態が、予混合燃焼領域R1に属しているか否かが判定される。該運転状態が予混合燃焼領域R1に属していると判定されるとS102へ進み、該運転状態が予混合燃焼領域R1に属していないと判定されると本制御を終了する。   In S101, it is determined whether or not the operating state represented by the engine speed and the engine load of the internal combustion engine 1 belongs to the premixed combustion region R1. When it is determined that the operating state belongs to the premixed combustion region R1, the process proceeds to S102, and when it is determined that the operating state does not belong to the premixed combustion region R1, this control is terminated.

S102では、S101で予混合燃焼領域R1に属していると判定された内燃機関1の運転状態が、通常燃焼領域R2に移行したか否かが判定される。即ち、内燃機関1での燃焼を予混合燃焼から通常燃焼へと切り替える条件である燃焼領域の変更が生じたかを判定する。該運転状態が通常燃焼領域R2に移行したと判定されると、S103へ進む。該運転状態が通常燃焼領域R2に移行していないと判定されると、本制御を終了する。   In S102, it is determined whether or not the operating state of the internal combustion engine 1 determined to belong to the premixed combustion region R1 in S101 has shifted to the normal combustion region R2. That is, it is determined whether a change in the combustion region, which is a condition for switching the combustion in the internal combustion engine 1 from the premixed combustion to the normal combustion, has occurred. If it is determined that the operating state has shifted to the normal combustion region R2, the process proceeds to S103. If it is determined that the operating state has not shifted to the normal combustion region R2, this control is terminated.

S103では、図4(b)に示した第一燃料噴射モードによる燃料噴射が開始される。即ち、燃料噴射がプレ噴射とメイン噴射の二段で構成され、且つその燃料噴射間隔が所定間隔Pint2に維持される。ここで、所定間隔Pint2は、図7(a)に示すPint2算出用の制御マップから算出される。該制御マップは、内燃機関1の機関回転速度をパラメータとして、各機関回転速度に対応する所定間隔Pint2が格納される制御マップである。   In S103, fuel injection in the first fuel injection mode shown in FIG. 4B is started. That is, the fuel injection is composed of two stages of pre-injection and main injection, and the fuel injection interval is maintained at the predetermined interval Pint2. Here, the predetermined interval Pint2 is calculated from the control map for calculating Pint2 shown in FIG. The control map is a control map in which a predetermined interval Pint2 corresponding to each engine rotation speed is stored using the engine rotation speed of the internal combustion engine 1 as a parameter.

そして、第一燃料噴射モードによる燃料噴射が開始されてから時間の経過とともに、上述したようにプレ噴射とメイン噴射は燃料噴射間隔を所定間隔Pint2に維持しながら、進角側に移行される。このとき、プレ噴射の燃料噴射量は減量されながら、メイン噴射の燃料噴射量は増量されていく。S103の処理が終了すると、S104へ進む。   Then, as time passes after the fuel injection in the first fuel injection mode is started, as described above, the pre-injection and the main injection are shifted to the advance side while maintaining the fuel injection interval at the predetermined interval Pint2. At this time, the fuel injection amount of the main injection is increased while the fuel injection amount of the pre-injection is decreased. When the process of S103 ends, the process proceeds to S104.

S104では、第一燃料噴射モードにおける燃料噴射を行う際に、目標とする量の燃料が噴射されるべく、プレ噴射およびメイン噴射における燃料噴射弁3の開弁時間が調整される。具体的には、燃料噴射弁3からの実際の燃料噴射量は、蓄圧室4内の所定圧(即ち、燃料の噴射圧)と気筒2内の圧力との圧力差に影響され得る。即ち、燃料噴射弁3の開弁時期において、気筒2内の圧力が高くなるに従い、単位時間あたりの燃料噴射量は減少する。   In S104, when performing fuel injection in the first fuel injection mode, the valve opening times of the fuel injection valves 3 in pre-injection and main injection are adjusted so that a target amount of fuel is injected. Specifically, the actual fuel injection amount from the fuel injection valve 3 can be influenced by a pressure difference between a predetermined pressure in the pressure accumulation chamber 4 (that is, fuel injection pressure) and the pressure in the cylinder 2. That is, at the opening timing of the fuel injection valve 3, the fuel injection amount per unit time decreases as the pressure in the cylinder 2 increases.

そこで、気筒内圧力センサ27によって検出される気筒内圧力や、吸気圧センサ29によって検出される吸気圧、更にはプレ噴射やメイン噴射の燃料噴射条件に基づいて、燃料噴射弁3の開弁時間を補正し、プレ噴射やメイン噴射で目標とする燃料が噴射されるようにする。例えば、吸気圧センサ29によって検出される吸気圧が高くなるに従い、目標とする量の燃料を噴射するために燃料噴射弁3の開弁時間を長く補正し、またプレ噴射時よりメイン噴射時の方が気筒2内の圧力は高くなるので、メイン噴射時は目標とする量の燃料を噴射するために燃料噴射弁3の開弁時間を、プレ噴射時より長く補正する。   Therefore, the valve opening time of the fuel injection valve 3 is determined based on the cylinder pressure detected by the cylinder pressure sensor 27, the intake pressure detected by the intake pressure sensor 29, and the fuel injection conditions for pre-injection and main injection. The target fuel is injected by pre-injection or main injection. For example, as the intake pressure detected by the intake pressure sensor 29 becomes higher, the opening time of the fuel injection valve 3 is corrected to be longer in order to inject a target amount of fuel, and at the time of main injection than during pre-injection. Since the pressure in the cylinder 2 is higher, the opening time of the fuel injection valve 3 is corrected to be longer than that during pre-injection in order to inject a target amount of fuel during main injection.

また、メイン噴射時の燃料噴射弁3の開弁時間を決定するに際しては、プレ噴射とメイン噴射との燃料噴射間隔を所定間隔Pint2とすることで安定的に生じるメイン噴射量のばらつきも考慮する。S104の処理が終了すると、S105へ進む。   Further, when determining the valve opening time of the fuel injection valve 3 at the time of main injection, the variation in the main injection amount that is stably generated by setting the fuel injection interval between the pre-injection and the main injection to the predetermined interval Pint2 is also taken into consideration. . When the process of S104 ends, the process proceeds to S105.

S105では、第一燃料噴射モードの燃料噴射が開始されてから第一所定時間t1が経過したか否かが判定される。第一所定時間t1とは、予混合燃焼から通常燃焼への切替が行われる際に第一燃料噴射モードによる燃料噴射が継続される、予め決められた時間である。第一所定時間t1が経過したと判定されるとS106へ進み、第一所定時間t1が経過していないと判定されるとS104以降の処理が再び行われる。   In S105, it is determined whether or not a first predetermined time t1 has elapsed since the start of fuel injection in the first fuel injection mode. The first predetermined time t1 is a predetermined time during which fuel injection in the first fuel injection mode is continued when switching from premixed combustion to normal combustion is performed. When it is determined that the first predetermined time t1 has elapsed, the process proceeds to S106, and when it is determined that the first predetermined time t1 has not elapsed, the processes after S104 are performed again.

S106では、図4(c)に示した第二燃料噴射モードによる燃料噴射が開始される。即ち、第一燃料噴射モードによるプレ噴射とメイン噴射の燃料噴射時期を進角させてメイン噴射の燃料噴射時期を圧縮行程上上死点近傍の時期とし、且つその燃料噴射間隔が所定間隔Pint2に維持される。このとき、上述したように、メイン噴射の燃料噴射量はプレ噴射の燃料噴射量より多い、通常燃焼時の燃料噴射態様に近い燃料噴射態様となっている。S106の処理が終了すると、S107へ進む。   In S106, fuel injection in the second fuel injection mode shown in FIG. 4C is started. That is, the fuel injection timing of the pre-injection and the main injection in the first fuel injection mode is advanced to make the fuel injection timing of the main injection near the top dead center in the compression stroke, and the fuel injection interval is set to the predetermined interval Pint2. Maintained. At this time, as described above, the fuel injection amount of the main injection is larger than the fuel injection amount of the pre-injection, which is close to the fuel injection mode during normal combustion. When the process of S106 ends, the process proceeds to S107.

S107では、S104と同様に、第二燃料噴射モードにおける燃料噴射を行う際に、目標とする量の燃料が噴射されるべく、プレ噴射およびメイン噴射における燃料噴射弁3の開弁時間が調整される。S107の処理が終了すると、S108へ進む。   In S107, as in S104, when performing fuel injection in the second fuel injection mode, the valve opening times of the fuel injection valves 3 in pre-injection and main injection are adjusted so that a target amount of fuel is injected. The When the process of S107 ends, the process proceeds to S108.

S108では、第二燃料噴射モードの燃料噴射が開始されてから第二所定時間t2が経過したか否かが判定される。第二所定時間t2は、予混合燃焼から通常燃焼への切替が行われる際に第二燃料噴射モードによる燃料噴射が継続される、予め決められた時間である。第二所定時間t2が経過したと判定されるとS109へ進み、第二所定時間t2が経過していないと判定されるとS107以降の処理が再び行われる。   In S108, it is determined whether or not a second predetermined time t2 has elapsed since the start of fuel injection in the second fuel injection mode. The second predetermined time t2 is a predetermined time during which fuel injection in the second fuel injection mode is continued when switching from premixed combustion to normal combustion is performed. If it is determined that the second predetermined time t2 has elapsed, the process proceeds to S109, and if it is determined that the second predetermined time t2 has not elapsed, the processes after S107 are performed again.

S109では、図4(d)に示した通常燃焼時の燃料噴射が行われる。尚、通常燃焼時は、圧縮行程上死点近傍の時期のメイン噴射に加えて、上述したパイロット噴射が行われる。ここで、パイロット噴射とメイン噴射との燃料噴射間隔であるパイロット用燃料噴射間隔Pint0は、図7(a)に示すPint2算出用の制御マップとは独立した制御マップである、図7(b)に示すPint0算出用の制御マップから算出される。該制御マップは、内燃機関1の機関回転速度をパラメータとして、各機関回転速度に対応するパイロット用燃料噴射間隔Pint0が格納される制御マップである。   In S109, fuel injection at the time of normal combustion shown in FIG. 4 (d) is performed. During normal combustion, the above-described pilot injection is performed in addition to the main injection at the timing near the top dead center of the compression stroke. Here, the pilot fuel injection interval Pint0, which is the fuel injection interval between the pilot injection and the main injection, is a control map that is independent of the control map for calculating Pint2 shown in FIG. 7 (a). It is calculated from the control map for calculating Pint0 shown in FIG. The control map is a control map in which the pilot fuel injection interval Pint0 corresponding to each engine speed is stored using the engine speed of the internal combustion engine 1 as a parameter.

このように、所定間隔Pint2とパイロット用燃料噴射間隔Pint0との算出用の制御マップを独立させたのは、前者はプレ噴射によるメイン噴射のばらつきを抑制するための燃料噴射間隔であり、後者はメイン噴射による燃焼騒音を抑制するための燃料噴射間隔であり、それぞれの設定目的が異なるからである。これにより、第二燃料噴射モードによる燃料噴射態様から通常燃焼時の燃料噴射態様に直ちに切り替えることが可能となり、以て通常燃焼時の燃焼騒音をより確実に抑制することが可能となる。   As described above, the control map for calculating the predetermined interval Pint2 and the pilot fuel injection interval Pint0 is independent of the former in the fuel injection interval for suppressing variations in main injection due to pre-injection, and the latter is This is because it is a fuel injection interval for suppressing combustion noise due to main injection, and the setting purpose of each is different. As a result, it is possible to immediately switch from the fuel injection mode in the second fuel injection mode to the fuel injection mode during normal combustion, thereby more reliably suppressing combustion noise during normal combustion.

本制御によると、第一燃料噴射モードおよび第二燃料噴射モードによる燃料噴射を行うことで、燃料噴射量のばらつきを可及的に抑制し、より円滑な燃焼切替を行うことが可能となる。また、本制御において、主にS101およびS102の処理が本発明における燃焼領域判定手段に相当し、主にS103からS109までの処理が本発明における燃焼切替制御手段に相当する。   According to this control, by performing fuel injection in the first fuel injection mode and the second fuel injection mode, it is possible to suppress variation in the fuel injection amount as much as possible and perform smoother combustion switching. In this control, the processing of S101 and S102 mainly corresponds to the combustion region determination means in the present invention, and the processing from S103 to S109 mainly corresponds to the combustion switching control means in the present invention.

尚、本制御においては、第一燃料噴射モードによる燃料噴射が開始されてから、時間の経過とともにプレ噴射やメイン噴射の燃料噴射時期の進角化等が行われ、且つ第一所定時間t1経過後に第二燃料噴射モードによる燃料噴射に切り替えられる。ここで、第一所定時間t1の経過の判断を行わず、第一燃料噴射モードによる燃料噴射から、プレ噴射およびメイン噴射の燃料噴射時期や燃料噴射量を除変させて第二燃料噴射モードによる燃料噴射へと移行させてもよい。   In this control, pre-injection and advancement of the fuel injection timing of the main injection are performed with the passage of time after the fuel injection in the first fuel injection mode is started, and the first predetermined time t1 has elapsed. Later, the fuel injection is switched to the second fuel injection mode. Here, without determining whether the first predetermined time t1 has elapsed, the fuel injection timing and the fuel injection amount of the pre-injection and the main injection are changed from the fuel injection in the first fuel injection mode, and the second fuel injection mode is used. You may make it transfer to fuel injection.

図4もしくは図6に示す燃焼切替時の燃料噴射は、予混合燃焼から通常燃焼への切替時に行われる。ここで、通常燃焼から予混合燃焼への切替を行うときは、上記の燃焼切替時の燃料噴射制御を可逆的に行えばよい。即ち、通常燃焼が行われている状態から、第二燃料噴射モードによる燃料噴射を開始する。そして、時間の経過とともに、所定間隔Pint2を維持した状態でプレ噴射とメイン噴射を遅角側に移行させるとともに、プレ噴射の燃料噴射量を増加させ、且つメイン噴射の燃料噴射量を減量させる。そして、第一燃料噴射モードによる燃料噴射を経て、予混合燃焼への移行を達成する。   The fuel injection at the time of combustion switching shown in FIG. 4 or FIG. 6 is performed at the time of switching from premixed combustion to normal combustion. Here, when switching from the normal combustion to the premixed combustion, the fuel injection control at the time of switching the combustion may be performed reversibly. That is, fuel injection in the second fuel injection mode is started from the state where normal combustion is performed. Then, with the passage of time, the pre-injection and the main injection are shifted to the retard side while maintaining the predetermined interval Pint2, the pre-injection fuel injection amount is increased, and the main injection fuel injection amount is decreased. Then, the shift to the premixed combustion is achieved through the fuel injection in the first fuel injection mode.

ここで、図8に、予混合燃焼から通常燃焼への切替時、通常燃焼から予混合燃焼への切替時の燃焼領域の境界を示す。図8(a)は、予混合燃焼から通常燃焼への切替時の燃焼領域の境界であって、図3に示す燃焼領域の境界と同じである。図8(b)は、通常燃焼から予混合燃焼への切替時の燃焼領域の境界であって、該境界は実線で示されている。尚、図8(b)中の点線の境界は、図8(a)に示す境界である。即ち、内燃機関1において通常燃焼と予混合燃焼の燃焼切替を行う場合、予混合燃焼から通常燃焼への切替を判断するための燃焼領域の境界を、通常燃焼から予混合燃焼への切替を判断するための燃焼領域の境界より高負荷側に設定する。   Here, FIG. 8 shows the boundaries of the combustion region at the time of switching from premixed combustion to normal combustion and at the time of switching from normal combustion to premixed combustion. FIG. 8A is a boundary of the combustion region at the time of switching from premixed combustion to normal combustion, and is the same as the boundary of the combustion region shown in FIG. FIG. 8B is a boundary of the combustion region at the time of switching from normal combustion to premixed combustion, and this boundary is indicated by a solid line. In addition, the boundary of the dotted line in FIG.8 (b) is a boundary shown to Fig.8 (a). That is, when switching between normal combustion and premixed combustion in the internal combustion engine 1, the boundary of the combustion region for determining switching from premixed combustion to normal combustion is determined as switching from normal combustion to premixed combustion. Set to a higher load side than the boundary of the combustion region for

このように、燃焼切替の判断を行うための燃料領域の境界に、燃焼切替の方向(予混合燃焼から通常燃焼への切替か、または通常燃焼から予混合燃焼への切替か)によって、ヒステリシスを与えることで、燃焼切替時にいわゆるハンチング状態となるのを回避することが可能となる。ここで、予混合燃焼から通常燃焼への切替時の燃焼領域の境界を、通常燃焼から予混合燃焼への切替時の燃焼領域の境界より高負荷側に設定したのは、切替前に内燃機関1で行われている燃焼(予混合燃焼または通常燃焼のいずれか)を可及的に長く継続させることで、燃焼切替の頻度を低減させて燃焼状態が不安定となるのを回避するためである。   As described above, hysteresis is applied to the boundary of the fuel region for determining the combustion switching depending on the direction of the combustion switching (switching from premixed combustion to normal combustion or switching from normal combustion to premixed combustion). By giving, it becomes possible to avoid a so-called hunting state at the time of combustion switching. Here, the boundary of the combustion region at the time of switching from the premixed combustion to the normal combustion is set on the higher load side than the boundary of the combustion region at the time of switching from the normal combustion to the premixed combustion. In order to prevent the combustion state from becoming unstable by reducing the frequency of combustion switching by continuing the combustion performed in 1 (either premixed combustion or normal combustion) as long as possible. is there.

次に、図1に示す内燃機関1において予混合燃焼から通常燃焼への燃焼切替を行う燃焼切替制御の別の実施例について、図9および図10に基づいて説明する。尚、本実施例における燃焼切替制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。また、図6に示す燃焼切替制御と同一の処理については、同一の参照番号を付することで詳細な説明は省略する。   Next, another embodiment of the combustion switching control for switching the combustion from the premixed combustion to the normal combustion in the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. 9 and FIG. Note that the combustion switching control in the present embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle. Moreover, about the process same as combustion switching control shown in FIG. 6, detailed description is abbreviate | omitted by attaching | subjecting the same reference number.

尚、本実施例においては、図10に示すように、予混合燃焼から通常燃焼への切替を行うための内燃機関1の運転状態が属する燃焼領域S1(第一燃料噴射モードによる燃料噴射が行われる燃焼領域)およびS2(第二燃料噴射モードによる燃料噴射が行われる燃焼領域)が設定される。即ち、内燃機関1の運転状態が予混合燃焼領域R1に属していると
きは、内燃機関1において予混合燃焼が行われ、機関負荷の増加に従い運転状態の属する燃焼領域がS1、S2、R2と変化することで、以下に述べる各燃焼領域に対応する燃料噴射が行われる。
In this embodiment, as shown in FIG. 10, the combustion region S1 (fuel injection in the first fuel injection mode is performed) to which the operating state of the internal combustion engine 1 for switching from premixed combustion to normal combustion belongs. Combustion region) and S2 (combustion region in which fuel injection is performed in the second fuel injection mode) are set. That is, when the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1, premixed combustion is performed in the internal combustion engine 1, and the combustion region to which the operating state belongs is S1, S2, R2 as the engine load increases. By changing, fuel injection corresponding to each combustion region described below is performed.

本制御においては、S101において内燃機関1の運転状態が予混合燃焼領域R1に属していると判定されるとS201へ進む。S201では、機関負荷の上昇に伴い内燃機関1の運転状態が燃焼領域S1に属しているときは、上述した第一燃料噴射モードの燃料噴射が実行される。即ち、燃料噴射がプレ噴射とメイン噴射の二段で構成され、且つその燃料噴射間隔が所定間隔Pint2に維持される。そして、第一燃料噴射モードによる燃料噴射が開始されてからの時間の経過とともに、即ち機関負荷の増加とともに、上述したようにプレ噴射とメイン噴射は燃料噴射間隔を所定間隔Pint2に維持しながら、進角側に移行される。このとき、プレ噴射の燃料噴射量は減量されながら、メイン噴射の燃料噴射量は増量されていく。S201の処理が終了すると、S202へ進む。   In this control, if it is determined in S101 that the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1, the process proceeds to S201. In S201, when the operating state of the internal combustion engine 1 belongs to the combustion region S1 as the engine load increases, the fuel injection in the first fuel injection mode described above is executed. That is, the fuel injection is composed of two stages of pre-injection and main injection, and the fuel injection interval is maintained at the predetermined interval Pint2. And as time passes since the fuel injection in the first fuel injection mode is started, that is, as the engine load increases, the pre-injection and the main injection maintain the fuel injection interval at the predetermined interval Pint2, as described above. It is shifted to the advance side. At this time, the fuel injection amount of the main injection is increased while the fuel injection amount of the pre-injection is decreased. When the process of S201 ends, the process proceeds to S202.

S202では、機関負荷の上昇に伴い内燃機関1の運転状態が燃焼領域S2に属しているときは、上述した第二燃料噴射モードの燃料噴射が実行される。即ち、第一燃料噴射モードによるプレ噴射とメイン噴射の燃料噴射時期を進角させてメイン噴射の燃料噴射時期を圧縮行程上上死点近傍の時期とし、且つその燃料噴射間隔が所定間隔Pint2に維持される。このとき、上述したようにメイン噴射の燃料噴射量はプレ噴射の燃料噴射量より多い、通常燃焼時の燃料噴射態様に近い燃料噴射態様となっている。S202の処理が終了すると、S203へ進む。   In S202, when the operating state of the internal combustion engine 1 belongs to the combustion region S2 as the engine load increases, the fuel injection in the second fuel injection mode described above is executed. That is, the fuel injection timing of the pre-injection and the main injection in the first fuel injection mode is advanced to make the fuel injection timing of the main injection near the top dead center in the compression stroke, and the fuel injection interval is set to the predetermined interval Pint2. Maintained. At this time, as described above, the fuel injection amount of the main injection is larger than the fuel injection amount of the pre-injection, and the fuel injection mode is close to the fuel injection mode during normal combustion. When the process of S202 ends, the process proceeds to S203.

ここで、第二燃料噴射モードによる燃料噴射は、上述したようにメイン噴射の燃料噴射量はプレ噴射の燃料噴射量より多い、通常燃焼時の燃料噴射態様に近い燃料噴射態様を有している。一方で、予混合燃焼から通常燃焼への切替が行われるとき、上述したようにEGR弁24の開度が通常燃焼に適した開度、即ちEGRガスの量を減少させる開度に設定される。しかし、EGR弁24の開度が目的とする開度に変更されても気筒2内のEGRガスの量は直ちに目標とする量には変更されない。そのため、EGRガスが通常燃焼時より多い気筒2内の雰囲気において、通常燃焼時の燃料噴射態様に近い第二燃料噴射モードによる燃料噴射が行われることで、エミッションが悪化し、特に煤の発生が顕著となる虞がある。   Here, the fuel injection in the second fuel injection mode has a fuel injection mode close to the fuel injection mode at the time of normal combustion in which the fuel injection amount of the main injection is larger than the fuel injection amount of the pre-injection as described above. . On the other hand, when switching from premixed combustion to normal combustion is performed, as described above, the opening degree of the EGR valve 24 is set to an opening degree suitable for normal combustion, that is, an opening degree that reduces the amount of EGR gas. . However, even if the opening degree of the EGR valve 24 is changed to the target opening degree, the amount of EGR gas in the cylinder 2 is not immediately changed to the target amount. Therefore, in the atmosphere in the cylinder 2 where the EGR gas is higher than that in the normal combustion, the fuel injection in the second fuel injection mode close to the fuel injection mode in the normal combustion is performed, so that the emission is deteriorated, and soot is generated. May become noticeable.

そこで、S203では、第二燃料噴射モードによる燃料噴射時間が長期化して、煤の発生が顕著となるのを回避するために、内燃機関1の運転状態が燃焼領域S2に継続して滞留しているS2滞留時間ts2が、所定滞留時間t3を超えたか否かが判定される。即ち、S202によって実行された第二燃料噴射モードによる燃料噴射が、所定滞留時間t3を超えて実行されているか否かが判定される。従って、所定滞留時間t3は、第二燃料噴射モードによる燃料噴射時間が長期化することで煤の発生が顕著となることを判定するための閾値である。そして、S2滞留時間ts2が所定滞留時間t3を超えたと判定されるとS204へ進み、S2滞留時間ts2が所定滞留時間t3を超えていないと判定されるとS205へ進む。   Therefore, in S203, the operating state of the internal combustion engine 1 continuously stays in the combustion region S2 in order to avoid that the fuel injection time in the second fuel injection mode is prolonged and the generation of soot becomes significant. It is determined whether or not the existing S2 residence time ts2 exceeds the predetermined residence time t3. That is, it is determined whether or not the fuel injection in the second fuel injection mode executed in S202 is executed beyond the predetermined residence time t3. Therefore, the predetermined residence time t3 is a threshold value for determining that the generation of soot becomes significant as the fuel injection time in the second fuel injection mode becomes longer. If it is determined that the S2 residence time ts2 exceeds the predetermined residence time t3, the process proceeds to S204. If it is determined that the S2 residence time ts2 does not exceed the predetermined residence time t3, the process proceeds to S205.

S204では、S2滞留時間ts2が所定滞留時間t3を超えているため煤の発生が懸念されることをもって、内燃機関1の運転状態が燃焼領域S2に属している状態であっても、内燃機関1の燃焼状態を予混合燃焼へと差し戻す。従って、図4(a)に示すような燃料噴射が行われることになる。また、燃料噴射態様だけでなく、EGR弁24や過給機16の状態も予混合燃焼に対応した状態とする。S204の処理後、本制御を終了する。   In S204, since the S2 residence time ts2 exceeds the predetermined residence time t3, there is a concern about the occurrence of soot, and even if the operation state of the internal combustion engine 1 belongs to the combustion region S2, the internal combustion engine 1 The combustion state is returned to premixed combustion. Accordingly, fuel injection as shown in FIG. 4A is performed. Further, not only the fuel injection mode but also the states of the EGR valve 24 and the supercharger 16 are set to a state corresponding to the premixed combustion. After the process of S204, this control is terminated.

S205では、内燃機関1の運転状態が通常燃焼領域R2に属したことをもって、図4(d)に示した通常燃焼時の燃料噴射が行われる。更に、通常燃焼時は、圧縮行程上死点
近傍の時期のメイン噴射に加えて、上述したパイロット噴射が行われる。S205の処理後、本制御を終了する。
In S205, when the operating state of the internal combustion engine 1 belongs to the normal combustion region R2, fuel injection during normal combustion shown in FIG. 4D is performed. Furthermore, during normal combustion, in addition to the main injection at the timing near the top dead center of the compression stroke, the above-described pilot injection is performed. After the process of S205, this control is terminated.

本制御によると、第一燃料噴射モードおよび第二燃料噴射モードによる燃料噴射を行うことで、燃料噴射量のばらつきを可及的に抑制し、より円滑な燃焼切替を行うことが可能となる。更に、第二燃料噴射モードによる燃料噴射が行われる時間を制限することで、燃焼切替時に煤の発生が顕著となるのを回避することが可能となる。また、本制御において、主にS101の処理が本発明における燃焼領域判定手段に相当し、主にS201およびS202の処理が本発明における燃焼切替制御手段に相当し、主にS203およびS204の処理が本発明における滞留禁止手段に相当する。   According to this control, by performing fuel injection in the first fuel injection mode and the second fuel injection mode, it is possible to suppress variation in the fuel injection amount as much as possible and perform smoother combustion switching. Furthermore, by limiting the time during which fuel injection is performed in the second fuel injection mode, it becomes possible to avoid the occurrence of soot at the time of combustion switching. In this control, the process of S101 mainly corresponds to the combustion region determination means in the present invention, the process of S201 and S202 mainly corresponds to the combustion switching control means in the present invention, and the processes of S203 and S204 are mainly performed. This corresponds to the retention prohibiting means in the present invention.

次に、図1に示す内燃機関1において予混合燃焼から通常燃焼への燃焼切替を行う燃焼切替制御の別の実施例について、図11に基づいて説明する。尚、本実施例における燃焼切替制御は、ECU20によって一定のサイクルで繰り返し実行されるルーチンである。また、図6に示す燃焼切替制御と同一の処理については、同一の参照番号を付することで詳細な説明は省略する。尚、本実施例においては、実施例2と同様に、図10に示すように、予混合燃焼から通常燃焼への切替を行うための内燃機関1の運転状態が属する燃焼領域S1およびS2が設定される。   Next, another embodiment of the combustion switching control for switching the combustion from the premixed combustion to the normal combustion in the internal combustion engine 1 shown in FIG. 1 will be described based on FIG. Note that the combustion switching control in the present embodiment is a routine that is repeatedly executed by the ECU 20 at a constant cycle. Moreover, about the process same as the combustion switching control shown in FIG. 6, detailed description is abbreviate | omitted by attaching | subjecting the same reference number. In the present embodiment, as in the second embodiment, as shown in FIG. 10, combustion regions S1 and S2 to which the operating state of the internal combustion engine 1 for switching from premixed combustion to normal combustion belongs are set. Is done.

本制御においては、S101において内燃機関1の運転状態が予混合燃焼領域R1に属していると判定されるとS301へ進む。S301では、実施例2における燃焼切替制御中のS201と同様に、機関負荷の上昇に伴い内燃機関1の運転状態が燃焼領域S1に属しているときは、上述した第一燃料噴射モードの燃料噴射が実行される。S301の処理が終了すると、S302へ進む。   In this control, if it is determined in S101 that the operating state of the internal combustion engine 1 belongs to the premixed combustion region R1, the process proceeds to S301. In S301, as in S201 during the combustion switching control in the second embodiment, when the operating state of the internal combustion engine 1 belongs to the combustion region S1 as the engine load increases, the fuel injection in the first fuel injection mode described above is performed. Is executed. When the process of S301 ends, the process proceeds to S302.

S302では、第一燃料噴射モードにおけるメイン噴射の噴射燃料の着火時期が推定される。具体的には、酸素濃度センサ28や吸気圧センサ29からの信号に基づいて推定されるEGRガス量が多くなるに従い、メイン噴射による噴射燃料の着火時期は遅くなると推定され、またプレ噴射による噴射燃料の量が少なくなるに従い、メイン噴射による噴射燃料の着火時期は遅くなると推定される。S302の処理が終了すると、S303へ進む。   In S302, the ignition timing of the injected fuel of the main injection in the first fuel injection mode is estimated. Specifically, as the amount of EGR gas estimated based on signals from the oxygen concentration sensor 28 and the intake pressure sensor 29 increases, it is estimated that the ignition timing of the injected fuel by the main injection is delayed, and the injection by the pre-injection As the amount of fuel decreases, it is estimated that the ignition timing of the injected fuel by the main injection is delayed. When the process of S302 ends, the process proceeds to S303.

S303では、S302で推定されたメイン噴射による噴射燃料の着火時期に基づいて、該噴射燃料が着火せずに失火状態になっているか否かを判定する。例えば、推定された着火時期が基準時期より遅い場合は失火状態になっていると判定する。S303でメイン噴射による噴射燃料が失火状態になっていると判定されるとS305へ進み、該噴射燃料が失火状態になっていないと判定されるとS304へ進む。   In S303, based on the ignition timing of the injected fuel by the main injection estimated in S302, it is determined whether or not the injected fuel is in a misfire state without igniting. For example, if the estimated ignition timing is later than the reference timing, it is determined that the vehicle is misfiring. If it is determined in S303 that the fuel injected by the main injection is misfired, the process proceeds to S305, and if it is determined that the injected fuel is not misfired, the process proceeds to S304.

S304では、第一燃料噴射モードにおけるプレ噴射とメイン噴射との燃料噴射間隔を所定間隔Pint2に設定する。即ち、プレ噴射とメイン噴射との燃料噴射間隔が所定間隔Pint2であればその状態を維持し、後述するS305によってプレ噴射とメイン噴射との燃料噴射間隔が短縮されているときは、燃料噴射間隔を所定間隔Pint2に戻す。S304の処理が終了すると、S306へ進む。   In S304, the fuel injection interval between the pre-injection and the main injection in the first fuel injection mode is set to a predetermined interval Pint2. That is, if the fuel injection interval between the pre-injection and the main injection is the predetermined interval Pint2, that state is maintained, and when the fuel injection interval between the pre-injection and the main injection is shortened by S305 described later, the fuel injection interval To the predetermined interval Pint2. When the process of S304 ends, the process proceeds to S306.

S305では、第一燃料噴射モードにおけるプレ噴射とメイン噴射との燃料噴射間隔を短縮する。第一燃料噴射モードにおけるメイン噴射の燃料噴射開始時期は、上述のようにプレ噴射終了後から所定間隔Pint2経過後である。これは、プレ噴射によるメイン噴射の燃料噴射量のばらつきを安定化させるためである。しかし、この所定間隔Pint2を維持することでメイン噴射の燃料噴射開始時期が遅れ、その噴射燃料が失火状態になる
のは好ましくない。そこで、S303において該噴射燃料が失火状態になっていると判定されるときは、プレ噴射とメイン噴射の燃料噴射間隔を短縮し、メイン噴射による噴射燃料が失火状態になるのを回避することを優先させる。S305の処理が終了すると、S306へ進む。
In S305, the fuel injection interval between the pre-injection and the main injection in the first fuel injection mode is shortened. The fuel injection start timing of the main injection in the first fuel injection mode is after the elapse of the predetermined interval Pint2 from the end of the pre-injection as described above. This is to stabilize the variation in the fuel injection amount of the main injection due to the pre-injection. However, it is not preferable that the fuel injection start timing of the main injection is delayed by maintaining the predetermined interval Pint2 and the injected fuel enters a misfire state. Therefore, when it is determined in S303 that the injected fuel is in a misfire state, the fuel injection interval between the pre-injection and the main injection is shortened to prevent the injected fuel from the main injection from becoming in a misfire state. Prioritize. When the process of S305 ends, the process proceeds to S306.

S306では、酸素濃度センサ28や吸気圧センサ29からの信号に基づいて推定される、気筒2へ供給されるEGRガス量が、所定ガス量E0より多いか否かが判定される。この所定ガス量E0とは、第二燃料噴射モードによる燃料噴射を開始するか否かを判定するための閾値である。本制御においては、内燃機関1の運転状態が燃焼領域R2に属しているときは、原則として第二燃料噴射モードによる燃料噴射が実行される。しかし、第二燃料噴射モードによる燃料噴射は、上述したように通常燃焼時の燃料噴射に近い燃料噴射態様であるため、気筒2内のEGRガス量が比較的多い状態で第二燃料噴射モードによる燃料噴射が実行されると、煤の発生が顕著となる。   In S306, it is determined whether or not the amount of EGR gas supplied to the cylinder 2 estimated based on signals from the oxygen concentration sensor 28 and the intake pressure sensor 29 is larger than a predetermined gas amount E0. This predetermined gas amount E0 is a threshold value for determining whether or not to start fuel injection in the second fuel injection mode. In this control, when the operating state of the internal combustion engine 1 belongs to the combustion region R2, fuel injection in the second fuel injection mode is performed in principle. However, since the fuel injection in the second fuel injection mode is a fuel injection mode close to the fuel injection at the time of normal combustion as described above, the fuel injection mode in the second fuel injection mode with a relatively large amount of EGR gas in the cylinder 2 is used. When fuel injection is executed, soot formation becomes significant.

そこで、本制御においては、気筒2内に供給されるEGRガス量が所定ガス量E0より多いときは、たとえ内燃機関1の運転状態が燃焼領域R2に属していても、第二燃料噴射モードによる燃料噴射は行われず、第一燃料噴射モードによる燃料噴射が継続される。従って、S306で気筒2へ供給されるEGRガス量が所定ガス量E0より多いと判定されると、再びS302以降の処理が行われる。一方で、気筒2へ供給されるEGRガス量が所定ガス量E0以下であるときは、S307へ進む。   Therefore, in this control, when the EGR gas amount supplied into the cylinder 2 is larger than the predetermined gas amount E0, even if the operating state of the internal combustion engine 1 belongs to the combustion region R2, the second fuel injection mode is used. Fuel injection is not performed, and fuel injection in the first fuel injection mode is continued. Therefore, if it is determined in S306 that the amount of EGR gas supplied to the cylinder 2 is greater than the predetermined gas amount E0, the processing from S302 is performed again. On the other hand, when the amount of EGR gas supplied to the cylinder 2 is equal to or less than the predetermined gas amount E0, the process proceeds to S307.

S307では、気筒2へ供給されるEGRガス量が所定ガス量E0以下である状態で、且つ内燃機関1の運転状態が燃焼領域S2に属している間、第二燃料噴射モードによる燃料噴射が実行される。S307の処理が終了すると、S308へ進む。   In S307, fuel injection in the second fuel injection mode is executed while the EGR gas amount supplied to the cylinder 2 is equal to or less than the predetermined gas amount E0 and the operation state of the internal combustion engine 1 belongs to the combustion region S2. Is done. When the process of S307 ends, the process proceeds to S308.

S308では、内燃機関1の運転状態が通常燃焼領域R2に属したことをもって、図4(d)に示した通常燃焼時の燃料噴射が行われる。尚、通常燃焼時は、圧縮行程上死点近傍の時期のメイン噴射に加えて、上述したパイロット噴射が行われる。S308の処理後、本制御を終了する。   In S308, fuel injection during normal combustion shown in FIG. 4 (d) is performed when the operating state of the internal combustion engine 1 belongs to the normal combustion region R2. During normal combustion, the above-described pilot injection is performed in addition to the main injection at the timing near the top dead center of the compression stroke. After the processing of S308, this control is terminated.

本制御によると、第一燃料噴射モードおよび第二燃料噴射モードによる燃料噴射を行うことで、燃料噴射量のばらつきを可及的に抑制し、より円滑な燃焼切替を行うことが可能となる。更に、第一燃料噴射モードによる燃料噴射実行時の失火の回避、および第二燃料噴射モードによる燃料噴射実行時の煤の発生の回避が可能となる。また、本制御において、主にS101の処理が本発明における燃焼領域判定手段に相当し、主にS301からS308までの処理が本発明における燃焼切替制御手段に相当する。   According to this control, by performing fuel injection in the first fuel injection mode and the second fuel injection mode, it is possible to suppress variation in the fuel injection amount as much as possible and perform smoother combustion switching. Furthermore, it is possible to avoid misfire when fuel injection is executed in the first fuel injection mode, and to avoid generation of soot when fuel injection is executed in the second fuel injection mode. In this control, the process of S101 mainly corresponds to the combustion region determination means in the present invention, and the processes from S301 to S308 mainly correspond to the combustion switching control means in the present invention.

本発明の実施例に係る圧縮着火内燃機関の燃焼切替制御システムが適用される圧縮着火内燃機関の概略構成を表す図である。It is a figure showing the schematic structure of the compression ignition internal combustion engine to which the combustion switching control system of the compression ignition internal combustion engine which concerns on the Example of this invention is applied. 本発明の実施例に係る圧縮着火内燃機関の燃焼切替制御システムに用いられる二段過給機の概略構成を表す図である。It is a figure showing schematic structure of the two-stage supercharger used for the combustion switching control system of the compression ignition internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、圧縮着火内燃機関の運転状態が属する燃焼領域を示す図である。In the combustion switching control system of the compression ignition internal combustion engine according to the embodiment of the present invention, it is a diagram showing a combustion region to which the operation state of the compression ignition internal combustion engine belongs. 本発明の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、予混合燃焼から通常燃焼への切替時に行われる燃料噴射態様の変遷を示す図である。It is a figure which shows the transition of the fuel-injection aspect performed at the time of the switching from premix combustion to normal combustion in the combustion switching control system of the compression ignition internal combustion engine which concerns on the Example of this invention. 本発明の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、燃料噴射弁から二段噴射を行う際の、後側の燃料噴射における燃料噴射量のばらつきと、二段噴射の燃料噴射間隔との相関を示す図である。In the combustion switching control system for a compression ignition internal combustion engine according to the embodiment of the present invention, the variation in the fuel injection amount in the rear fuel injection and the fuel injection interval of the two-stage injection when performing the two-stage injection from the fuel injection valve FIG. 本発明の第一の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、予混合燃焼から通常燃焼への切替時に行われる燃焼切替制御に関するフローチャートである。4 is a flowchart relating to combustion switching control performed when switching from premixed combustion to normal combustion in the combustion switching control system for a compression ignition internal combustion engine according to the first embodiment of the present invention. 本発明の第一の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、燃焼切替時の燃料噴射間隔を決定する制御マップと、通常燃焼時の燃料噴射間隔を決定する制御マップとを示す図である。In the combustion switching control system for a compression ignition internal combustion engine according to the first embodiment of the present invention, a control map for determining a fuel injection interval at the time of combustion switching and a control map for determining a fuel injection interval at the time of normal combustion are shown. FIG. 本発明の第一の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、予混合燃焼から通常燃焼への燃焼切替を決定する燃焼領域の境界と、通常燃焼から予混合燃焼への燃焼切替を決定する燃焼領域の境界と、を示す図である。In the combustion switching control system for a compression ignition internal combustion engine according to the first embodiment of the present invention, the boundary of the combustion region that determines the combustion switching from premixed combustion to normal combustion, and the combustion switching from normal combustion to premixed combustion It is a figure which shows the boundary of the combustion area | region which determines these. 本発明の第二の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、予混合燃焼から通常燃焼への切替時に行われる燃焼切替制御に関するフローチャートである。7 is a flowchart relating to combustion switching control performed when switching from premixed combustion to normal combustion in a combustion switching control system for a compression ignition internal combustion engine according to a second embodiment of the present invention. 本発明の第二の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、圧縮着火内燃機関の運転状態が属する燃焼領域を示す図である。In the combustion switching control system of the compression ignition internal combustion engine according to the second embodiment of the present invention, it is a diagram showing a combustion region to which the operation state of the compression ignition internal combustion engine belongs. 本発明の第三の実施例に係る圧縮着火内燃機関の燃焼切替制御システムにおいて、予混合燃焼から通常燃焼への切替時に行われる燃焼切替制御に関するフローチャートである。It is a flowchart regarding the combustion switching control performed at the time of switching from the premixed combustion to the normal combustion in the combustion switching control system of the compression ignition internal combustion engine according to the third embodiment of the present invention.

符号の説明Explanation of symbols

1・・・・圧縮着火内燃機関(内燃機関)
7・・・・吸気枝管
8・・・・吸気管
12・・・・排気枝管
16・・・・過給機
20・・・・ECU
21・・・・EGR装置
25・・・・クランクポジションセンサ
26・・・・アクセル開度センサ
27・・・・気筒内圧力センサ
28・・・・酸素濃度センサ
29・・・・吸気圧センサ
R1・・・・予混合燃焼領域
R2・・・・通常燃焼領域
Pint2・・・・所定間隔
Pint0・・・・パイロット用燃料噴射間隔
1. Compression compression internal combustion engine (internal combustion engine)
7 .... Intake branch pipe 8 .... Intake pipe 12 .... Exhaust branch pipe 16 .... Supercharger 20 .... ECU
21 ... EGR device 25 ... Crank position sensor 26 ... Accelerator opening sensor 27 ... In-cylinder pressure sensor 28 ... Oxygen concentration sensor 29 ... Intake pressure sensor R1・ ・ ・ ・ Premixed combustion area R2 ・ ・ ・ Normal combustion area Pint2 ・ ・ ・ Predetermined interval Pint0 ・ ・ ・ ・ ・ ・ Fuel injection interval for pilot

Claims (12)

加圧された圧縮着火内燃機関の燃料を貯留する蓄圧室と、
前記蓄圧室に貯留された燃料を前記圧縮着火内燃機関の気筒内に噴射する燃料噴射弁と、
前記圧縮着火内燃機関の運転状態が、該圧縮着火内燃機関で行われる燃焼に応じた燃焼領域のいずれに属しているかを判定する燃焼領域判定手段と、を備え、
前記燃焼領域判定手段によって判定される燃焼領域に応じて、前記燃料噴射弁の燃料噴射条件を制御することで、圧縮行程上死点近傍の時期より早い時期の燃料噴射によって予混合気を形成することで行われる予混合燃焼と圧縮行程上死点近傍の時期の燃料噴射によって行われる通常燃焼とを切り替えて行う圧縮着火内燃機関の燃焼切替制御システムであって、
前記燃焼領域判定手段によって前記圧縮着火内燃機関の運転状態が属する燃焼領域が、予混合燃焼が行われる予混合燃焼領域から通常燃焼が行われる通常燃焼領域へ移行したと判定された場合、予混合燃焼時の予混合燃料噴射を、該予混合燃料噴射の燃料噴射時期近くのプレ噴射と該プレ噴射から所定間隔を空けて行われるメイン噴射とに変更し、該燃料噴射の変更後の時間経過に従って、該プレ噴射と該メイン噴射との間隔を該所定間隔に維持した状態で該メイン噴射の噴射時期を通常燃焼における圧縮行程上死点近傍の燃料噴射時期に向けて移行させ、且つ該プレ噴射の燃料噴射量を減量するとともに該メイン噴射の燃料噴射量を増量することで、該圧縮着火内燃機関で行われる燃焼を予混合燃焼から通常燃焼へ切り替える燃焼切替制御手段を備えることを特徴とする圧縮着火内燃機関の燃焼切替制御システム。
A pressure accumulating chamber for storing fuel of a pressurized compression ignition internal combustion engine;
A fuel injection valve for injecting fuel stored in the pressure accumulating chamber into a cylinder of the compression ignition internal combustion engine;
Combustion region determination means for determining which operation state of the compression ignition internal combustion engine belongs to which of the combustion regions corresponding to the combustion performed in the compression ignition internal combustion engine,
By controlling the fuel injection condition of the fuel injection valve in accordance with the combustion region determined by the combustion region determining means, the premixed gas is formed by fuel injection earlier than the timing near the top dead center of the compression stroke. A combustion switching control system for a compression ignition internal combustion engine that performs switching between premixed combustion performed in this way and normal combustion performed by fuel injection at a timing near the compression stroke top dead center,
When it is determined by the combustion region determination means that the combustion region to which the operation state of the compression ignition internal combustion engine belongs has shifted from the premixed combustion region where premixed combustion is performed to the normal combustion region where normal combustion is performed, The premixed fuel injection at the time of combustion is changed to a pre-injection near the fuel injection timing of the premixed fuel injection and a main injection performed at a predetermined interval from the pre-injection, and the time elapsed after the change of the fuel injection Accordingly, the injection timing of the main injection is shifted toward the fuel injection timing in the vicinity of the compression stroke top dead center in the normal combustion in a state where the interval between the pre-injection and the main injection is maintained at the predetermined interval. Combustion switching control for switching combustion performed in the compression ignition internal combustion engine from premixed combustion to normal combustion by reducing the fuel injection amount of the injection and increasing the fuel injection amount of the main injection Combustion switching control system for a compression ignition internal combustion engine, characterized in that it comprises a stage.
前記所定間隔は、前記プレ噴射の燃料噴射量と前記メイン噴射の燃料噴射量との比率にかかわらず、該メイン噴射の燃料噴射量のばらつきが略一定となる時間であることを特徴とする請求項1に記載の圧縮着火内燃機関の燃焼切替制御システム。   The predetermined interval is a time during which a variation in the fuel injection amount of the main injection becomes substantially constant regardless of a ratio between the fuel injection amount of the pre-injection and the fuel injection amount of the main injection. Item 4. A combustion switching control system for a compression ignition internal combustion engine according to Item 1. 前記燃焼切替制御手段による予混合燃焼から通常燃焼への切替が行われる際の前記燃料噴射弁からの燃料噴射は、
予混合燃焼時の燃料噴射時期に近い前記プレ噴射と、該プレ噴射に対して前記所定間隔を空けて該プレ噴射より後の前記メイン噴射とが行われ、且つ該プレ噴射の燃料噴射量を該メイン噴射の燃料噴射量より多い状態とする第一燃料噴射モードと、
通常燃焼時の燃料噴射時期に近い前記メイン噴射と、該メイン噴射に対して前記所定間隔を空けて該メイン噴射より前の前記プレ噴射とが行われ、且つ該プレ噴射の燃料噴射量を該メイン噴射の燃料噴射量以下の状態とする第二燃料噴射モードと、
を有することを特徴とする請求項1又は請求項2に記載の圧縮着火内燃機関の燃焼切替制御システム。
Fuel injection from the fuel injection valve when switching from premixed combustion to normal combustion is performed by the combustion switching control means,
The pre-injection close to the fuel injection timing at the time of premixed combustion, the main injection after the pre-injection is performed at a predetermined interval with respect to the pre-injection, and the fuel injection amount of the pre-injection is set. A first fuel injection mode in which the fuel injection amount is greater than the main fuel injection amount;
The main injection close to the fuel injection timing at the time of normal combustion and the pre-injection before the main injection at a predetermined interval from the main injection are performed, and the fuel injection amount of the pre-injection is A second fuel injection mode in which the fuel injection amount is less than or equal to the main injection;
The combustion switching control system for a compression ignition internal combustion engine according to claim 1 or 2, characterized by comprising:
前記第一燃料噴射モードにおける前記プレ噴射の燃料噴射開始時期は、前記予混合燃料噴射の燃料噴射開始時期と一致することを特徴とする請求項3に記載の圧縮着火内燃機関の燃焼切替制御システム。   The combustion switching control system for a compression ignition internal combustion engine according to claim 3, wherein the fuel injection start timing of the pre-injection in the first fuel injection mode coincides with the fuel injection start timing of the premixed fuel injection. . 前記第二燃料噴射モードにおける前記メイン噴射の燃料噴射開始時期は、前記燃焼切替制御手段による通常燃焼への切替が行われたときの該通常燃焼における圧縮上死点近傍の燃料噴射の燃料噴射開始時期と一致することを特徴とする請求項3に記載の圧縮着火内燃機関の燃焼切替制御システム。   The fuel injection start timing of the main injection in the second fuel injection mode is the fuel injection start of the fuel injection in the vicinity of the compression top dead center in the normal combustion when switching to normal combustion is performed by the combustion switching control means 4. The combustion switching control system for a compression ignition internal combustion engine according to claim 3, wherein the timing coincides with the timing. 前記第一燃料噴射モードにおける前記プレ噴射の燃料噴射量と前記メイン噴射の燃料噴射量の和は、予混合燃焼時の燃料噴射量と同量であることを特徴とする請求項3から請求項5の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。   The sum of the fuel injection amount of the pre-injection and the fuel injection amount of the main injection in the first fuel injection mode is the same as the fuel injection amount during premixed combustion. The combustion switching control system for a compression ignition internal combustion engine according to any one of claims 5 to 6. 前記燃焼領域判定手段によって判定される燃焼領域に従い、前記圧縮着火内燃機関における燃焼を予混合燃焼又は通常燃焼に切り替える場合において、前記燃焼切替制御手段によって予混合燃焼から通常燃焼へ切り替える際の切替燃焼領域境界を、通常燃焼から予混合燃焼へ切り替える際の切替燃焼領域境界より高負荷側に設定することを特徴とする請求項3から請求項6の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。   Switching combustion when switching from premixed combustion to normal combustion by the combustion switching control means when switching combustion in the compression ignition internal combustion engine to premixed combustion or normal combustion according to the combustion region determined by the combustion region determining means The combustion switching of the compression ignition internal combustion engine according to any one of claims 3 to 6, wherein the region boundary is set to a higher load side than the switching combustion region boundary when switching from normal combustion to premixed combustion. Control system. 前記燃焼切替制御手段による燃焼切替が行われるとき、第二燃料噴射モードによる燃料噴射が行われる時間が所定滞留時間を超えた場合は、前記圧縮着火内燃機関における燃焼を直ちに予混合燃焼へ戻す滞留禁止手段を、更に備えることを特徴とする請求項3から請求項6の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。   When combustion switching is performed by the combustion switching control means, if the time during which fuel injection is performed in the second fuel injection mode exceeds a predetermined residence time, the residence in which the combustion in the compression ignition internal combustion engine immediately returns to premixed combustion The combustion switching control system for a compression ignition internal combustion engine according to any one of claims 3 to 6, further comprising prohibition means. 前記圧縮着火内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、
前記排気再循環装置によって前記圧縮着火内燃機関の吸気系に再循環される排気量を検出し、または推定するEGRガス量検出手段と、を更に備え、
前記第一燃料噴射モードによる燃料噴射が行われるときに、前記EGRガス量検出手段によって検出され又は推定される排気量と、前記プレ噴射と前記メイン噴射の燃料噴射条件とに基づいて該メイン噴射が失火状態となると判定される場合は、該第一燃料噴射モードにおける該メイン噴射の燃料噴射時期を進角させて該プレ噴射と該メイン噴射との間隔を前記所定間隔より短くすることを特徴とする請求項3から請求項6の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。
An exhaust gas recirculation device for recirculating a part of the exhaust gas discharged from the compression ignition internal combustion engine to an intake system;
EGR gas amount detection means for detecting or estimating the amount of exhaust gas recirculated to the intake system of the compression ignition internal combustion engine by the exhaust gas recirculation device,
When fuel injection is performed in the first fuel injection mode, the main injection is performed based on the exhaust amount detected or estimated by the EGR gas amount detection means and the fuel injection conditions of the pre-injection and the main injection. Is determined to be in a misfire state, the fuel injection timing of the main injection in the first fuel injection mode is advanced so that the interval between the pre-injection and the main injection is shorter than the predetermined interval. A combustion switching control system for a compression ignition internal combustion engine according to any one of claims 3 to 6.
前記圧縮着火内燃機関から排出される排気の一部を吸気系に再循環する排気再循環装置と、
前記排気再循環装置によって前記圧縮着火内燃機関の吸気系に再循環される排気量を検出し、または推定するEGRガス量検出手段と、を更に備え、
前記第二燃料噴射モードによる燃料噴射が行われるときに、前記EGRガス量検出手段によって検出され又は推定されるEGRガス量が所定ガス量より多い場合は、該第二燃料噴射モードによる燃料噴射を行わないことを特徴とする請求項3から請求項6の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。
An exhaust gas recirculation device for recirculating a part of the exhaust gas discharged from the compression ignition internal combustion engine to an intake system;
EGR gas amount detection means for detecting or estimating the amount of exhaust gas recirculated to the intake system of the compression ignition internal combustion engine by the exhaust gas recirculation device,
If the EGR gas amount detected or estimated by the EGR gas amount detection means is larger than a predetermined gas amount when fuel injection is performed in the second fuel injection mode, fuel injection in the second fuel injection mode is performed. The combustion switching control system for a compression ignition internal combustion engine according to any one of claims 3 to 6, wherein the combustion switching control system is not performed.
前記燃焼切替制御手段による予混合燃焼から通常燃焼への切替が行われたとき、該通常燃焼における圧縮上死点近傍の燃料噴射より早い時期に、該燃料噴射に対してパイロット用燃料噴射間隔をもってパイロット噴射が行われることを特徴とする請求項1から請求項6の何れかに記載の圧縮着火内燃機関の燃焼切替制御システム。   When switching from premixed combustion to normal combustion is performed by the combustion switching control means, a pilot fuel injection interval is provided for the fuel injection at a time earlier than fuel injection near the compression top dead center in the normal combustion. The combustion switching control system for a compression ignition internal combustion engine according to any one of claims 1 to 6, wherein pilot injection is performed. 前記パイロット用燃料噴射間隔と前記所定間隔とは、互いに独立した制御マップに基づいて決定されることを特徴とする請求項11に記載の圧縮着火内燃機関の燃焼切替制御システム。   The combustion switching control system for a compression ignition internal combustion engine according to claim 11, wherein the pilot fuel injection interval and the predetermined interval are determined based on mutually independent control maps.
JP2004232527A 2004-08-09 2004-08-09 Combustion switching control system for compression ignition internal combustion engine Expired - Fee Related JP4196900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232527A JP4196900B2 (en) 2004-08-09 2004-08-09 Combustion switching control system for compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232527A JP4196900B2 (en) 2004-08-09 2004-08-09 Combustion switching control system for compression ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006046303A JP2006046303A (en) 2006-02-16
JP4196900B2 true JP4196900B2 (en) 2008-12-17

Family

ID=36025157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232527A Expired - Fee Related JP4196900B2 (en) 2004-08-09 2004-08-09 Combustion switching control system for compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP4196900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414971A (en) * 2014-01-22 2017-02-15 丰田自动车株式会社 Control apparatus for internal combustion engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752479B2 (en) * 2005-12-13 2011-08-17 いすゞ自動車株式会社 Diesel engine control device
JP4735519B2 (en) * 2006-11-17 2011-07-27 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
US8887691B2 (en) 2007-04-17 2014-11-18 GM Global Technology Operations LLC Method and apparatus for selecting a combustion mode for an internal combustion engine
JP5446706B2 (en) * 2009-10-13 2014-03-19 いすゞ自動車株式会社 Internal combustion engine control method and internal combustion engine
US8776762B2 (en) 2009-12-09 2014-07-15 GM Global Technology Operations LLC HCCI mode switching control system and method
JP5392293B2 (en) * 2010-06-29 2014-01-22 マツダ株式会社 On-vehicle diesel engine and control method of diesel engine
US9151240B2 (en) 2011-04-11 2015-10-06 GM Global Technology Operations LLC Control system and method for a homogeneous charge compression ignition (HCCI) engine
JP6094735B2 (en) * 2012-12-26 2017-03-15 三菱自動車工業株式会社 Engine fuel injection control device
JP6413563B2 (en) * 2014-09-30 2018-10-31 三菱自動車工業株式会社 Engine control device
JP7375696B2 (en) * 2020-07-17 2023-11-08 株式会社豊田自動織機 Internal combustion engine control device and control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845930B2 (en) * 1997-01-21 2006-11-15 いすゞ自動車株式会社 Fuel injection system for diesel engine
JP2003286880A (en) * 2002-03-28 2003-10-10 Mazda Motor Corp Combustion control device for diesel engine
JP4114199B2 (en) * 2002-09-27 2008-07-09 マツダ株式会社 Engine combustion control device
JP4055537B2 (en) * 2002-09-30 2008-03-05 マツダ株式会社 Diesel engine combustion control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414971A (en) * 2014-01-22 2017-02-15 丰田自动车株式会社 Control apparatus for internal combustion engine
CN106414971B (en) * 2014-01-22 2019-04-23 丰田自动车株式会社 Control equipment for internal combustion engine

Also Published As

Publication number Publication date
JP2006046303A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US8050846B2 (en) Apparatus and method for controlling engine
US20150192087A1 (en) Fuel injection control device of diesel engine
US10995692B2 (en) Internal combustion engine and control device for internal combustion engine
JP6052190B2 (en) Fuel injection control device for diesel engine
KR20060051868A (en) Engine
WO2006038601A1 (en) Diesel engine controller
US20080046128A1 (en) Control system for internal combustion engine
US10337446B2 (en) Control device for internal combustion engine
JP2008274927A (en) Combustion controller for compression-ignition direct-injection engine and engine control system for same
JP4196900B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP4525373B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP2000352326A (en) Control unit for diesel engine
US10626810B2 (en) Control apparatus and control method for diesel engine
JP4419860B2 (en) Combustion control system for compression ignition internal combustion engine
JP4888297B2 (en) Diesel engine exhaust gas recirculation control device
JP4483794B2 (en) Control device for compression ignition type internal combustion engine
JPH11315739A (en) Diesel engine combustion control system
WO2013038805A1 (en) Combustion control device
JP3835238B2 (en) Diesel engine control device
JP4419855B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP2006046299A (en) Combustion control system of compression ignition internal combustion engine
JP2005299570A (en) Premixed combustion control system for compression ignition internal combustion engine
JP2009085117A (en) Control device of diesel engine
JP4821248B2 (en) Combustion switching control system for compression ignition internal combustion engine
JP2008031874A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees