JP2013060836A - Fuel supply device for gas engine - Google Patents

Fuel supply device for gas engine Download PDF

Info

Publication number
JP2013060836A
JP2013060836A JP2011198591A JP2011198591A JP2013060836A JP 2013060836 A JP2013060836 A JP 2013060836A JP 2011198591 A JP2011198591 A JP 2011198591A JP 2011198591 A JP2011198591 A JP 2011198591A JP 2013060836 A JP2013060836 A JP 2013060836A
Authority
JP
Japan
Prior art keywords
fuel
valve
gas engine
gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198591A
Other languages
Japanese (ja)
Other versions
JP5400844B2 (en
Inventor
Masakuni Fujinuma
正訓 藤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011198591A priority Critical patent/JP5400844B2/en
Publication of JP2013060836A publication Critical patent/JP2013060836A/en
Application granted granted Critical
Publication of JP5400844B2 publication Critical patent/JP5400844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel supply device for a gas engine, configured to immediately start and actuate the gas engine without preheating a fuel passage by an electric heater even in a low-temperature condition where it is difficult to gasify a liquefied fuel.SOLUTION: To a fuel cylinder 15, a first fuel passage for supplying a fuel delivered therefrom and converted into a gas phase to a mixer, and a second fuel passage 19 for supplying a liquid-phase fuel delivered from the fuel cylinder 15 to the mixer 3 are connected in parallel to each other; a first gas phase/liquid phase operation switching valve 22 which is normally closed, and is opened when the temperature of a gas engine is set above a predetermined value is interposed in the first fuel passage 18; and a second gas phase/liquid phase operation switching valve 42 which is opened at the start and during operation of the gas engine E, and is closed upon opening of the first gas phase/liquid phase operation switching valve 22 is interposed in the second fuel passage 19.

Description

本発明は,液化燃料を詰めた燃料ボンベと,ガスエンジンに混合気を供給するミキサと,前記燃料ボンベから送出されて気相となった燃料を前記ミキサに供給する燃料通路と,この燃料通路に設けられ,前記気相となった燃料を減圧する減圧装置とを備えるガスエンジン用燃料供給装置の改良に関する。   The present invention includes a fuel cylinder filled with liquefied fuel, a mixer for supplying an air-fuel mixture to a gas engine, a fuel passage for supplying fuel that has been sent from the fuel cylinder into a gas phase to the mixer, and the fuel passage And a fuel supply device for a gas engine provided with a decompression device for decompressing the fuel in the gas phase.

従来,かゝるガスエンジン用燃料供給装置は,下記特許文献1に開示されるように,既に知られている。   Conventionally, such a fuel supply device for a gas engine is already known as disclosed in Patent Document 1 below.

特開2011−85115号公報JP 2011-85115 A

従来のかゝる燃料供給装置では,液化燃料の気化が困難な低温状態でのガスエンジンの運転時には,バッテリの電力で作動する電気ヒータで燃料通路を予熱して,燃料通路を通過する液相燃料を気化させるようにしている。   In such a conventional fuel supply device, when the gas engine is operated in a low temperature state where it is difficult to vaporize the liquefied fuel, the fuel passage is preheated by an electric heater operated by battery power, and the liquid phase fuel passing through the fuel passage I am trying to vaporize.

こうしたものでは,バッテリ及び電気ヒータの設置によりコスト高となり,しかもその電気ヒータによる加熱により第1燃料通路内の液相燃料を気化させるまでに少なからず時間がかかるため,ガスエンジンを即座に始動することもできない不都合がある。   In such a case, the installation of the battery and the electric heater increases the cost, and since it takes time to vaporize the liquid phase fuel in the first fuel passage due to the heating by the electric heater, the gas engine is started immediately. There is an inconvenience that cannot be done.

本発明は,かゝる事情に鑑みてなされたもので,液化燃料の気化が困難な低温状態でも,電気ヒータによる燃料通路の予熱を行うことなく,ガスエンジンを即座に始動,運転させ得るようにしたガスエンジン用燃料供給装置を提供することを目的とする。   The present invention has been made in view of such circumstances. Even in a low temperature state where vaporization of liquefied fuel is difficult, the gas engine can be immediately started and operated without preheating the fuel passage by an electric heater. An object of the present invention is to provide a fuel supply device for a gas engine.

上記目的を達成するために,本発明は,液化燃料を詰めた燃料ボンベと,ガスエンジンに混合気を供給するミキサと,前記燃料ボンベから送出されて気相となった燃料を前記ミキサに供給する第1燃料通路と,この第1燃料通路に設けられ,前記気相となった燃料を減圧する減圧装置とを備えるガスエンジン用燃料供給装置において,前記燃料ボンベから送出される液相燃料を前記ミキサに供給する第2燃料通路を前記第1燃料通路と並列に設け,前記第1燃料通路には,通常は閉弁していてガスエンジン温度が所定温度以上になると開弁する第1気相・液相運転切換弁を介装する一方,前記第2燃料通路に,ガスエンジンの始動及び運転時には開弁するが,前記第1気相・液相運転切換弁の開弁に連動して閉弁する第2気相・液相運転切換弁を介装したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a fuel cylinder filled with liquefied fuel, a mixer for supplying an air-fuel mixture to a gas engine, and a fuel which is sent from the fuel cylinder and becomes a gas phase to the mixer. In the fuel supply device for a gas engine, which is provided in the first fuel passage and is provided in the first fuel passage and depressurizes the fuel in the gas phase, the liquid-phase fuel delivered from the fuel cylinder is A second fuel passage for supplying to the mixer is provided in parallel with the first fuel passage, and the first fuel passage is normally closed, and is opened when the gas engine temperature exceeds a predetermined temperature. While interposing a phase / liquid phase operation switching valve, the second fuel passage is opened when the gas engine is started and operated, but in conjunction with the opening of the first gas phase / liquid phase operation switching valve. Second gas phase / liquid phase operation switching to close It has interposed a first said.

また本発明は,第1の特徴に加えて,前記減圧装置を,前記第1気相・液相運転切換弁の開弁によりそれを通過した気相燃料を所定圧力まで減圧する減圧弁と,この減圧弁で減圧された燃料を略大気圧まで減圧して前記ミキサに供給するゼロガバナとで構成し,前記第2気相・液相運転切換弁は,前記減圧弁から送出される気相燃料の前記所定圧力を受けて閉弁するように構成されることを第2の特徴とする。   According to the present invention, in addition to the first feature, the decompression device comprises a decompression valve that decompresses the gas-phase fuel passing therethrough to a predetermined pressure by opening the first gas-phase / liquid-phase operation switching valve; A zero governor configured to depressurize the fuel decompressed by the decompression valve to approximately atmospheric pressure and supply the fuel to the mixer. The second gas phase / liquid phase operation switching valve is a gas phase fuel delivered from the decompression valve. A second feature is that the valve is closed in response to the predetermined pressure.

さらに本発明は,第1又は第2の特徴に加えて,前記第2気相・液相運転切換弁は,前記第1気相・液相運転切換弁の閉弁時には,前記ガスエンジンの始動及び運転時,そのクランク室内に発生する負圧を受けて開弁するように構成されることを第3の特徴とする。   Further, in addition to the first or second feature, the present invention provides that the second gas phase / liquid phase operation switching valve starts the gas engine when the first gas phase / liquid phase operation switching valve is closed. A third feature is that the valve is configured to open by receiving a negative pressure generated in the crank chamber during operation.

さらにまた本発明は,第1の特徴に加えて,前記第2燃料通路には,該第2燃料通路における燃料流量を,前記燃料ボンベ内の蒸気圧に反比例して制御する燃料流量制御弁を介装したことを第4の特徴とする。   In addition to the first feature, the present invention further includes a fuel flow rate control valve for controlling the fuel flow rate in the second fuel passage in inverse proportion to the vapor pressure in the fuel cylinder. The intervening feature is the fourth feature.

さらにまた本発明は,第4の特徴に加えて,前記燃料流量制御弁が,前記第2燃料通路における燃料流量を,前記ミキサのベンチュリ部に発生するベンチュリ負圧の上昇に応じて増加するように構成されることを第5の特徴とする。   In addition to the fourth feature of the present invention, the fuel flow rate control valve increases the fuel flow rate in the second fuel passage according to an increase in the venturi negative pressure generated in the venturi portion of the mixer. The fifth feature is to be configured as follows.

さらにまた本発明は,第4の特徴に加えて,前記第2燃料通路には,該第2燃料通路における燃料流量を,前記ミキサのスロットル弁の開度に比例して制御する第2の燃料流量制御弁を介装したことを第6の特徴とする。   In addition to the fourth feature of the present invention, the second fuel passage further includes a second fuel passage for controlling a fuel flow rate in the second fuel passage in proportion to an opening of a throttle valve of the mixer. A sixth feature is that a flow control valve is interposed.

さらにまた本発明は,第1の特徴に加えて,前記ミキサに,前記第2気相・液相運転切換弁の開弁時,前記第2燃料通路の液相燃料を噴射し得る燃料噴射弁を取り付け,この燃料噴射弁に,ガスエンジンの運転状態に応じて該燃料噴射弁の燃料噴射量を制御する電子制御ユニットを接続したことを第7の特徴とする。   In addition to the first feature, the present invention provides a fuel injection valve capable of injecting liquid phase fuel in the second fuel passage into the mixer when the second gas phase / liquid phase operation switching valve is opened. A seventh feature is that an electronic control unit for controlling the fuel injection amount of the fuel injection valve according to the operating state of the gas engine is connected to the fuel injection valve.

本発明の第1の特徴によれば,ガスエンジンへの気相燃料の供給が困難な低温状態であるときは,第1気相・液相運転切換弁は閉弁して第1燃料通路を遮断する一方,ガスエンジンの始動時には,第2気相・液相運転切換弁が開弁して第2燃料通路を導通させるので,燃料ボンベの液相燃料は第2燃料通路を通してミキサに供給され,ガスエンジンは始動し,暖機運転が可能となる。このように,ガスエンジンは,液相燃料による始動及び暖機運転が可能となるので,ガスエンジンの運転可能の低温領域を大幅に広げることができる。したがって電気ヒータによる第1燃料通路の予熱を行うことなく,ガスエンジンを即座に始動,運転させることが可能となる。   According to the first feature of the present invention, when the gas phase fuel is difficult to be supplied to the gas engine at a low temperature, the first gas phase / liquid phase operation switching valve is closed to open the first fuel passage. On the other hand, when the gas engine is started, the second gas phase / liquid phase operation switching valve is opened and the second fuel passage is conducted, so that the liquid phase fuel in the fuel cylinder is supplied to the mixer through the second fuel passage. , The gas engine starts and warms up. Thus, since the gas engine can be started and warmed up with liquid phase fuel, the low temperature region in which the gas engine can be operated can be greatly expanded. Therefore, it is possible to immediately start and operate the gas engine without preheating the first fuel passage by the electric heater.

ガスエンジンの暖機運転によりガスエンジン温度が所定温度に達すれば,第2気相・液相運転切換弁は閉弁して第2燃料通路を遮断する一方,第1気相・液相運転切換弁が開弁して第1燃料通路を導通させるので,燃料ボンベを出た燃料は,第1燃料通路を通過する間にマフラ及びガスエンジンにより加熱されて気相燃料と化し,そして第1気相・液相運転切換弁を通過し,減速装置により減圧されてミキサに供給される。こうして,ガスエンジンは,液相燃料による運転から気相燃料による運転へとスムーズに切り換えられ,本来の低燃費性が確保される。   When the gas engine temperature reaches a predetermined temperature due to the warm-up operation of the gas engine, the second gas phase / liquid phase operation switching valve is closed to shut off the second fuel passage, while the first gas phase / liquid phase operation switching is performed. Since the valve is opened and the first fuel passage is conducted, the fuel that has exited the fuel cylinder is heated by the muffler and the gas engine while passing through the first fuel passage to be converted into a gas-phase fuel, and then the first gas passage. After passing through the phase / liquid phase operation switching valve, the pressure is reduced by the speed reducer and supplied to the mixer. In this way, the gas engine is smoothly switched from operation with liquid phase fuel to operation with gas phase fuel, and the original low fuel consumption is ensured.

本発明の第2の特徴によれば,第2気相・液相運転切換弁は,第1気相・液相運転切換弁の開弁に伴ない減圧弁から送出される気相燃料の所定圧力を受けて閉弁するので,簡単な構造をもって,第1気相・液相運転切換弁の開弁に連動して第2気相・液相運転切換弁を閉弁させることができる。   According to the second feature of the present invention, the second gas phase / liquid phase operation switching valve has a predetermined gas phase fuel delivered from the pressure reducing valve when the first gas phase / liquid phase operation switching valve is opened. Since the valve is closed under pressure, the second gas phase / liquid phase operation switching valve can be closed with a simple structure in conjunction with the opening of the first gas phase / liquid phase operation switching valve.

本発明の第3の特徴によれば,低温時,通常閉弁している第2気相・液相運転切換弁をガスエンジンの始動操作に連動して開弁させることができ,ガスエンジンの液相燃料による始動及び運転を可能にすることができる。   According to the third feature of the present invention, the second gas phase / liquid phase operation switching valve, which is normally closed at a low temperature, can be opened in conjunction with the starting operation of the gas engine. Startup and operation with liquid fuel can be made possible.

本発明の第4の特徴によれば,第2燃料通路からミキサへの液相燃料供給量を燃料ボンベ内の蒸気圧に反比例して制御することができ,ミキサで生成される混合気の空燃比の適正化を図ることができる。   According to the fourth aspect of the present invention, the amount of liquid-phase fuel supplied from the second fuel passage to the mixer can be controlled in inverse proportion to the vapor pressure in the fuel cylinder, and the empty air-fuel mixture generated by the mixer can be controlled. It is possible to optimize the fuel ratio.

本発明の第5の特徴によれば,第2燃料通路からミキサへの液相燃料供給量を燃料ボンベ内の蒸気圧に反比例して制御することに加えて,上記液相燃料供給量をベンチュリ部に発生するベンチュリ負圧の上昇に応じて増加するように制御することができ,これによりミキサで生成される混合気の空燃比の一層の適正化を図ることができる。   According to the fifth aspect of the present invention, in addition to controlling the amount of liquid-phase fuel supplied from the second fuel passage to the mixer in inverse proportion to the vapor pressure in the fuel cylinder, the amount of liquid-phase fuel supplied is controlled by the venturi. It can be controlled so as to increase in accordance with the rise of the venturi negative pressure generated in the section, whereby the air-fuel ratio of the air-fuel mixture generated by the mixer can be further optimized.

本発明の第6の特徴によれば,第2燃料通路からミキサへの液相燃料供給量を燃料ボンベ内の蒸気圧に反比例して制御することに加えて,上記液相燃料供給量をスロットル弁の開度に比例して制御することができ,これによりミキサで生成される混合気の空燃比の一層の適正化を図ることができる。   According to the sixth aspect of the present invention, in addition to controlling the amount of liquid phase fuel supplied from the second fuel passage to the mixer in inverse proportion to the vapor pressure in the fuel cylinder, the amount of liquid phase fuel supplied is throttled. Control can be performed in proportion to the opening of the valve, thereby further optimizing the air-fuel ratio of the air-fuel mixture generated by the mixer.

本発明の第7の特徴によれば,ガスエンジンの液相燃料による始動及び運転時,ミキサへの燃料噴射量をガスエンジンの運転状態に応じてきめ細かく制御して,ガスエンジンに,そのアイドリングから負荷運転までの広い運転域にわたり適正空燃比の混合気を供給することができ,出力性能と低燃費性の向上に寄与し得る。   According to the seventh aspect of the present invention, at the start and operation of the gas engine with the liquid phase fuel, the fuel injection amount to the mixer is finely controlled according to the operation state of the gas engine, and the gas engine is controlled from its idling. It is possible to supply an air-fuel mixture with an appropriate air-fuel ratio over a wide operating range up to load operation, which can contribute to improvements in output performance and fuel efficiency.

本発明の第1実施形態に係るガスエンジン用燃料供給装置の概要図。1 is a schematic diagram of a fuel supply device for a gas engine according to a first embodiment of the present invention. 本発明の第2実施形態に係るガスエンジン用燃料供給装置の概要図。The schematic diagram of the fuel supply apparatus for gas engines which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るガスエンジン用燃料供給装置の概要図。The schematic diagram of the fuel supply apparatus for gas engines which concerns on 3rd Embodiment of this invention.

本発明の実施の形態を添付図面にに基づき以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず,図1に示す本発明の第1実施形態より説明する。ガスエンジンEには,その吸気ポートに連通する吸気通路2を有するミキサ3が装着され,このミキサ3には,吸気通路2を通る吸入空気を濾過するエアクリーナ4が接続され,また吸気通路2を,そのベンチュリ部2aの下流側で開閉するスロットル弁5が軸支される。ガスエンジンEは,発電機や各種作業機の駆動に供される。   First, the first embodiment of the present invention shown in FIG. 1 will be described. The gas engine E is equipped with a mixer 3 having an intake passage 2 communicating with the intake port. The mixer 3 is connected to an air cleaner 4 for filtering intake air passing through the intake passage 2. The throttle valve 5 that opens and closes downstream of the venturi 2a is pivotally supported. The gas engine E is used to drive a generator and various work machines.

ガスエンジンEの排気管6にはマフラ6が接続され,またガスエンジンEの図示しないクランク軸にはオルタネータ8及びリコイル式のスタータ9が取り付けられる。   A muffler 6 is connected to the exhaust pipe 6 of the gas engine E, and an alternator 8 and a recoil type starter 9 are attached to a crankshaft (not shown) of the gas engine E.

前記ミキサ3には,吸気通路2のベンチュリ部2aに開口する第1及び第2メインノズル11,12と,第2メインノズル12から分岐してスロットル弁5より下流の吸気通路2に開口するアイドルポート13とが設けられる。   The mixer 3 includes first and second main nozzles 11 and 12 that open to the venturi portion 2 a of the intake passage 2, and an idle that branches from the second main nozzle 12 and opens to the intake passage 2 downstream of the throttle valve 5. Port 13 is provided.

上記第1及び第2メインノズル11,12に本発明の燃料供給装置Sが接続される。この燃料供給装置Sは,ブタンやプロパン等のガス燃料を液化して詰めたカッセト式の燃料ボンベ15と,この燃料ボンベ15に手動コック17で開閉される主燃料通路16が接続され,この主燃料通路16に,第1燃料通路18及び第2燃料通路19が並列に接続される。燃料ボンベ15は断熱ケース14に収容される。   The fuel supply device S of the present invention is connected to the first and second main nozzles 11 and 12. This fuel supply device S is connected to a cassette type fuel cylinder 15 liquefied and packed with gas fuel such as butane and propane, and a main fuel passage 16 opened and closed by a manual cock 17 is connected to the fuel cylinder 15. A first fuel passage 18 and a second fuel passage 19 are connected in parallel to the fuel passage 16. The fuel cylinder 15 is accommodated in the heat insulating case 14.

第1燃料通路18には,その上流側から自動開閉弁20,第1気相・液相運転切換弁22,減圧弁23が順次介装される。第1燃料通路18の下流端は,前記ミキサ3に設けられるゼロガバナ24に接続される。このゼロガバナ24は,前記ミキサ3に形成されるゼロガバナ室25に配設され,このゼロガバナ室25に前記第1メインノズル11の上流端が開口する。また第1燃料通路18は,第1気相・液相運転切換弁22の上流側で前記マフラ6の放射熱で加熱されるよう,マフラ6に近接して配置される。   An automatic opening / closing valve 20, a first gas phase / liquid phase operation switching valve 22, and a pressure reducing valve 23 are sequentially inserted in the first fuel passage 18 from the upstream side. A downstream end of the first fuel passage 18 is connected to a zero governor 24 provided in the mixer 3. The zero governor 24 is disposed in a zero governor chamber 25 formed in the mixer 3, and an upstream end of the first main nozzle 11 is opened in the zero governor chamber 25. The first fuel passage 18 is disposed close to the muffler 6 so as to be heated by the radiant heat of the muffler 6 on the upstream side of the first gas phase / liquid phase operation switching valve 22.

前記自動開閉弁20は負圧応動型に構成され,その作動部にガスエンジンEのクランク室10から延出した第1負圧伝達通路21が接続され,ガスエンジンEの始動及び運転時,クランク室10に発生する負圧を取り入れて自動的に開弁するようになっている。   The automatic open / close valve 20 is configured as a negative pressure responsive type, and a first negative pressure transmission passage 21 extending from the crank chamber 10 of the gas engine E is connected to an operating portion thereof. The negative pressure generated in the chamber 10 is taken in and automatically opened.

前記第1気相・液相運転切換弁22は,ガスエンジンEの高温部,例えばシリンダヘッドに取り付けられる第1弁ハウジング27を備えており,この第1弁ハウジング27には,上方から順にシリンダ室28,弁ばね室29,燃料入口室30及び燃料出口室31が同軸状に形成される。シリンダ室28は,それに摺動可能に嵌装される感温ピストン32により,上部の感温室33と下部の大気室34とに仕切られ,感温室33には,ワックス等の熱膨張材35が封入される。   The first gas phase / liquid phase operation switching valve 22 is provided with a first valve housing 27 attached to a high temperature portion of the gas engine E, for example, a cylinder head. The chamber 28, the valve spring chamber 29, the fuel inlet chamber 30, and the fuel outlet chamber 31 are formed coaxially. The cylinder chamber 28 is divided into an upper temperature-sensitive chamber 33 and a lower atmospheric chamber 34 by a temperature-sensitive piston 32 slidably fitted therein. The thermal chamber 33 is provided with a thermal expansion material 35 such as wax. Enclosed.

前記燃料入口室30及び燃料出口室31間の隔壁には,両室30,31間を連通する弁孔37と,その弁孔37を囲繞して燃料入口室30側に隆起する弁座38とが設けられ,その弁座38と協働して弁孔37を開閉する弁体39に,弁孔37を貫通する弁杆36が結合される。この弁杆36は,更にシリンダ室28,弁ばね室29及び燃料出口室31の各間の隔壁を摺動自在に貫通して前記感温ピストン32の下面に当接可能に配置され,この弁杆36を弁体39の閉弁方向,即ち弁座38との着座方向に付勢する弁ばね40が前記弁ばね室29に収容される。   The partition wall between the fuel inlet chamber 30 and the fuel outlet chamber 31 includes a valve hole 37 communicating between the chambers 30 and 31, and a valve seat 38 surrounding the valve hole 37 and protruding toward the fuel inlet chamber 30. The valve rod 36 that penetrates the valve hole 37 is coupled to a valve body 39 that opens and closes the valve hole 37 in cooperation with the valve seat 38. The valve rod 36 is further slidably passed through the partition walls between the cylinder chamber 28, the valve spring chamber 29 and the fuel outlet chamber 31 so as to be in contact with the lower surface of the temperature-sensitive piston 32. A valve spring 40 that biases the rod 36 in the valve closing direction of the valve body 39, that is, in the seating direction with the valve seat 38, is accommodated in the valve spring chamber 29.

前記第1気相・液相運転切換弁22は,ガスエンジンEの,シリンダヘッド等の高温部に取り付けられてガスエンジンEから加熱されるようになっている。また熱膨張材35は,ガスエンジンEへの気相燃料の供給が可能となる所定温度(例えばブタンの場合は5°〜10°C)まで加熱されると,熱膨張により感温ピストン32を弁ばね40の付勢力に抗して押圧して,弁体39を開き,熱膨張材35が前記所定温度未満であるときは,弁ばね40の付勢力で弁体39を閉弁するようになっている。弁体39の開弁時には,気相燃料が燃料入口室30から弁孔37を通して燃料出口室31に移り,減圧弁23へと向かうようになる。   The first gas phase / liquid phase operation switching valve 22 is attached to a high temperature portion of the gas engine E, such as a cylinder head, and is heated from the gas engine E. Further, when the thermal expansion material 35 is heated to a predetermined temperature at which gas-phase fuel can be supplied to the gas engine E (for example, 5 ° C. to 10 ° C. in the case of butane), the thermal expansion piston 35 is moved by thermal expansion. The valve body 39 is opened by pressing against the urging force of the valve spring 40, and the valve body 39 is closed by the urging force of the valve spring 40 when the thermal expansion material 35 is below the predetermined temperature. It has become. When the valve body 39 is opened, the vapor phase fuel moves from the fuel inlet chamber 30 to the fuel outlet chamber 31 through the valve hole 37 and heads toward the pressure reducing valve 23.

前記減圧弁23は公知のもので,その入口が前記燃料出口室31に連通していて,燃料出口室31を出た気相燃料の圧力を,例えば10kPaの所定圧力まで下げるようになっている。   The pressure reducing valve 23 is a known one, and its inlet communicates with the fuel outlet chamber 31 so that the pressure of the gas phase fuel exiting the fuel outlet chamber 31 is reduced to a predetermined pressure of, for example, 10 kPa. .

ゼロガバナ24も公知のもので,減圧弁23で減圧された気相燃料の圧力を略大気圧まで下げるようになっている。したがって,前記弁体39の開弁時には,略大気圧状態の気相燃料がゼロガバナ室25に満たされることになる。上記減圧弁23及びゼロガバナ24によって減圧装置が構成される。   The zero governor 24 is also a known one, and the pressure of the gas-phase fuel decompressed by the pressure reducing valve 23 is reduced to approximately atmospheric pressure. Therefore, when the valve element 39 is opened, the zero governor chamber 25 is filled with the vapor fuel at substantially atmospheric pressure. The pressure reducing valve 23 and the zero governor 24 constitute a pressure reducing device.

前記第2燃料通路19は前記第2メインノズル12に接続されるもので,この第2燃料通路19から第2メインノズル12への燃料の供給遮断を制御する第2気相・液相運転切換弁42と,第2メインノズル12へ供給する燃料流量を制御する燃料流量制御弁43とが前記ミキサ3に配設される。   The second fuel passage 19 is connected to the second main nozzle 12, and the second gas phase / liquid phase operation switching is performed to control the fuel supply cut-off from the second fuel passage 19 to the second main nozzle 12. A valve 42 and a fuel flow rate control valve 43 that controls the flow rate of fuel supplied to the second main nozzle 12 are disposed in the mixer 3.

第2気相・液相運転切換弁42は,ミキサ3の一側に形成される第2弁ハウジング44を備えており,この第2弁ハウジング44には,第1ダイヤフラム室45と,その外側に隣接する第2ダイヤフラム室46とが設けられる。第1ダイヤフラム室45には,その内部を内側(ミキサ3側)のばね室48と外側の第1受圧室47とに仕切る第1ダイヤフラム49が張設され,この第1ダイヤフラム49に,第2燃料通路19のミキサ3を通る部分を開閉するピストン弁54が連結される。そして第1受圧室47には,前記減圧弁23より下流の第1燃料通路18から分岐した圧力伝達通路53が接続され,第1受圧室47に減圧弁23の出口圧が供給されるようになっている。ばね室48には,第1ダイヤフラム49を介してピストン弁54を開き方向に付勢する開弁ばね55が収容される。   The second gas phase / liquid phase operation switching valve 42 includes a second valve housing 44 formed on one side of the mixer 3, and the second valve housing 44 includes a first diaphragm chamber 45 and an outer side thereof. And a second diaphragm chamber 46 adjacent thereto. The first diaphragm chamber 45 is provided with a first diaphragm 49 that divides the inside into an inner (mixer 3 side) spring chamber 48 and an outer first pressure receiving chamber 47, and the second diaphragm 49 includes a second diaphragm 49. A piston valve 54 that opens and closes a portion of the fuel passage 19 passing through the mixer 3 is connected. The first pressure receiving chamber 47 is connected to a pressure transmission passage 53 branched from the first fuel passage 18 downstream from the pressure reducing valve 23 so that the outlet pressure of the pressure reducing valve 23 is supplied to the first pressure receiving chamber 47. It has become. The spring chamber 48 accommodates a valve opening spring 55 that urges the piston valve 54 in the opening direction via the first diaphragm 49.

第2ダイヤフラム室46には,その内部を内側の大気室50と外側の第2受圧室51とに仕切る第2ダイヤフラム52が張設され,この第2ダイヤフラム52に,第1及び第2ダイヤフラム室44,45間の隔壁を摺動自在に貫通して前記ピストン弁54の後端に離間可能に当接する作動ロッド56が連結される。そして第2受圧室51には,第2ダイヤフラム52を介して作動ロッド56をピストン弁54の閉じ方向に付勢する閉弁ばね57が収容される。さらに第2受圧室51には,ガスエンジンEのクランク室10から延出した第2負圧伝達通路58が接続され,ガスエンジンEの始動及び運転時,クランク室10に発生する負圧を取り入れ,閉弁ばね57のセット荷重に抗して第2ダイヤフラム52を作動ロッド56の後退方向へ変位させるようになっている。   The second diaphragm chamber 46 is provided with a second diaphragm 52 that divides the interior of the second diaphragm chamber 46 into an inner atmosphere chamber 50 and an outer second pressure receiving chamber 51, and the first and second diaphragm chambers are provided on the second diaphragm 52. An actuating rod 56 that slidably penetrates the partition wall 44 and 45 and contacts the rear end of the piston valve 54 so as to be separable is connected. The second pressure receiving chamber 51 accommodates a valve closing spring 57 that biases the operating rod 56 in the closing direction of the piston valve 54 via the second diaphragm 52. Further, the second pressure receiving chamber 51 is connected to a second negative pressure transmission passage 58 extending from the crank chamber 10 of the gas engine E, and takes in the negative pressure generated in the crank chamber 10 when the gas engine E is started and operated. The second diaphragm 52 is displaced in the retracting direction of the operating rod 56 against the set load of the valve closing spring 57.

以上において,閉弁ばね57のセット荷重は,開弁ばね55のセット荷重より大きく設定される。   In the above, the set load of the valve closing spring 57 is set larger than the set load of the valve opening spring 55.

前記燃料流量制御弁43は,ミキサ3内の第2燃料通路19と第2メインノズル12との間を接続するメインジェット61と,このメインジェット61の開口面積を調節するニードル弁62とを備える。このニードル弁62は,ミキサ3に形成されるシリンダ室63に摺動自在に嵌装される制御ピストン64に連結される。シリンダ室63は,この制御ピストン64によりばね室65と,第2燃料通路19に連通する第3受圧室66とに仕切られ,ばね室65には,制御ピストン64を第3受圧室66側に付勢する制御ばね67が収容される。またシリンダ室63には,制御ピストン64の下降及び上昇限界を規定するストッパ68,69が設けられる。   The fuel flow control valve 43 includes a main jet 61 that connects the second fuel passage 19 in the mixer 3 and the second main nozzle 12, and a needle valve 62 that adjusts the opening area of the main jet 61. The needle valve 62 is connected to a control piston 64 slidably fitted in a cylinder chamber 63 formed in the mixer 3. The cylinder chamber 63 is partitioned by the control piston 64 into a spring chamber 65 and a third pressure receiving chamber 66 communicating with the second fuel passage 19, and the control piston 64 is placed on the third pressure receiving chamber 66 side in the spring chamber 65. A biasing control spring 67 is accommodated. Further, the cylinder chamber 63 is provided with stoppers 68 and 69 that define the lowering and raising limits of the control piston 64.

ミキサ3には,さらに,シリンダ室63の下方に隣接するダイヤフラム室70が設けられ,このダイヤフラム室70には,その内部を上部の大気室71と下部の受圧室72とに仕切るダイヤフラム73が張設され,受圧室72は,ベンチュリ負圧伝達通路74を介して前記吸気通路2のベンチュリ部2aに接続される。そしてダイヤフラム73には,前記制御ピストン64から延出してシリンダ室28及びダイヤフラム室70間の隔壁を摺動自在に貫通するピストンロッド75が連結される。   The mixer 3 is further provided with a diaphragm chamber 70 adjacent to the lower side of the cylinder chamber 63. The diaphragm chamber 70 is provided with a diaphragm 73 that divides the inside into an upper atmosphere chamber 71 and a lower pressure receiving chamber 72. The pressure receiving chamber 72 is connected to the venturi portion 2 a of the intake passage 2 through a venturi negative pressure transmission passage 74. The diaphragm 73 is connected to a piston rod 75 extending from the control piston 64 and slidably passing through a partition between the cylinder chamber 28 and the diaphragm chamber 70.

次に,この第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

ガスエンジンEの運転に際しては,先ず室温又は体温で温めたカッセト式の燃料ボンベ15を断熱ケース14に収容し,燃料コック17を開放する。   When the gas engine E is operated, first, the cassette-type fuel cylinder 15 heated to room temperature or body temperature is accommodated in the heat insulating case 14 and the fuel cock 17 is opened.

いま,ガスエンジンEへの気相燃料の供給が困難な低温状態であるとする。この場合,第1気相・液相運転切換弁22では,熱膨張材35が収縮して感温ピストン32が上昇すると共に,弁ばね40が,その付勢力により弁杆36を押し上げて弁体39を閉弁している。これにより第1燃料通路18は遮断状態となる。したがって,第1気相・液相運転切換弁22より下流に位置する減圧弁23の出口圧力は大気圧となっているので,圧力伝達通路53を介して減圧弁23の出口に連通する第2気相・液相運転切換弁42の第1受圧室47も大気圧となる。これに伴ない開弁ばね55が,その付勢力で第1ダイヤフラム49を介してピストン弁54を開く態勢となるが,その開弁ばね55のセット荷重は,閉弁ばね57のセット荷重より小さいため,この段階ではまだピストン弁54は閉弁状態に保持される。   It is assumed that the gas phase fuel supply to the gas engine E is difficult at a low temperature. In this case, in the first gas phase / liquid phase operation switching valve 22, the thermal expansion material 35 contracts and the temperature-sensitive piston 32 rises, and the valve spring 40 pushes up the valve rod 36 by its urging force to cause the valve body. 39 is closed. As a result, the first fuel passage 18 is cut off. Therefore, since the outlet pressure of the pressure reducing valve 23 located downstream from the first gas phase / liquid phase operation switching valve 22 is atmospheric pressure, the second pressure communicating with the outlet of the pressure reducing valve 23 via the pressure transmission passage 53 is provided. The first pressure receiving chamber 47 of the gas phase / liquid phase operation switching valve 42 also becomes atmospheric pressure. Along with this, the valve opening spring 55 is urged to open the piston valve 54 via the first diaphragm 49 by its urging force, but the set load of the valve opening spring 55 is smaller than the set load of the valve closing spring 57. Therefore, at this stage, the piston valve 54 is still kept closed.

一方,燃料流量制御弁43の第3受圧には,手動コック17の開放により,燃料ボンベ15内の蒸気圧が第2燃料通路19を通して伝達され,制御ピストン64は,その蒸気圧による押圧力と制御ばね67の荷重とがバランスする位置までニードル弁62を伴って移動して,メインジェット61の開度をガスエンジンEの始動及び運転に適した開度に制御する。   On the other hand, the third pressure received by the fuel flow control valve 43 is transmitted through the second fuel passage 19 by the opening of the manual cock 17, and the control piston 64 receives the pressing force by the vapor pressure. The needle valve 62 is moved to a position where the load of the control spring 67 is balanced, and the opening degree of the main jet 61 is controlled to an opening degree suitable for starting and operation of the gas engine E.

そこで,ガスエンジンEを始動すべく,手動コック17を開いてリコイル式のスタータ9を操作すると,ガスエンジンEのクランク室10に発生する負圧が第2気相・液相運転切換弁42の第2受圧室51に伝達して第2ダイヤフラム52を閉弁ばね57の付勢力に抗して変位させ,作動ロッド56を後退させるので,ピストン弁54は開弁ばね55の付勢力で開弁し,第2燃料通路19を導通状態にする。したがって,燃料ボンベ15から第2燃料通路19へ出た高圧の液相燃料は,第2気相・液相運転切換弁42を通過し,次いで燃料流量制御弁43により流量を制御されながらアイドルポート13もしくは第2メインノズル12から吸気通路2に噴出し,吸気通路2を通過する吸気と混合して混合気を生成するので,ガスエンジンEは,その混合気を吸入して始動し,暖機運転状態に入る。その際,ガスエンジンEのアイドリング時には主としてアイドルポート13が,負荷運転時には主として第2メインノズル12がそれぞれ燃料を噴出する。   Therefore, when the manual cock 17 is opened and the recoil type starter 9 is operated in order to start the gas engine E, the negative pressure generated in the crank chamber 10 of the gas engine E causes the second gas phase / liquid phase operation switching valve 42 to operate. Since it transmits to the 2nd pressure receiving chamber 51, the 2nd diaphragm 52 is displaced against the urging | biasing force of the valve-closing spring 57, and the actuating rod 56 is retracted, The piston valve 54 is opened by the urging force of the valve-opening spring 55. Then, the second fuel passage 19 is made conductive. Therefore, the high-pressure liquid-phase fuel that has flowed from the fuel cylinder 15 to the second fuel passage 19 passes through the second gas-phase / liquid-phase operation switching valve 42 and then the flow rate is controlled by the fuel flow rate control valve 43 while the idle port 13 or the second main nozzle 12 is injected into the intake passage 2 and mixed with the intake air passing through the intake passage 2 to generate an air-fuel mixture. Therefore, the gas engine E starts by sucking the air-fuel mixture and warms up. Enter the driving state. At this time, the idle port 13 mainly ejects fuel during idling of the gas engine E, and the second main nozzle 12 mainly ejects fuel during load operation.

而して,ガスエンジンEの液相燃料による運転中は,吸気通路2のベンチュリ部2aに発生するベンチュリ負圧がベンチュリ負圧伝達通路74を通して受圧室72に伝達して,ダイヤフラム73をピストンロッド75と共に下方へ引き寄せるので,制御ピストン64に対する制御力には,燃料ボンベ15内の蒸気圧の他に,ベンチュリ負圧,換言すれば吸気量の要素が加えられる。これにより,第2メインノズル12からの液相燃料の噴出量は,燃料ボンベ15内の蒸気圧に反比例し,吸気量に比例するように制御され,ミキサ3で生成される混合気の空燃比が適正化される。   Thus, during operation of the gas engine E with liquid phase fuel, the venturi negative pressure generated in the venturi portion 2a of the intake passage 2 is transmitted to the pressure receiving chamber 72 through the venturi negative pressure transmission passage 74, and the diaphragm 73 is moved to the piston rod. Since the pressure is drawn downward together with 75, the control force for the control piston 64 is added with a venturi negative pressure, in other words, an intake air amount element in addition to the vapor pressure in the fuel cylinder 15. As a result, the amount of liquid fuel ejected from the second main nozzle 12 is controlled to be inversely proportional to the vapor pressure in the fuel cylinder 15 and proportional to the intake air amount, and the air-fuel ratio of the air-fuel mixture generated by the mixer 3 is controlled. Is optimized.

このような液相燃料による運転中のガスエンジンEによって第1気相・液相運転切換弁22は加熱され,またマフラ6によって第1燃料通路18は加熱される。   The first gas phase / liquid phase operation switching valve 22 is heated by the gas engine E in operation with such liquid phase fuel, and the first fuel passage 18 is heated by the muffler 6.

かくして,ガスエンジンEは,液相燃料による始動及び暖機運転が可能となるので,ガスエンジンEの運転可能の低温領域を大幅に広げることができる。   Thus, since the gas engine E can be started and warmed up by liquid phase fuel, the low temperature region in which the gas engine E can be operated can be greatly expanded.

第1気相・液相運転切換弁22の熱膨張材35が,ガスエンジンEへの気相燃料の供給が可能になる温度までガスエンジンEにより加熱されると,熱膨張材35の熱膨張により感温ピストン32が弁ばね40の付勢力に抗して下降し,弁杆36を介して弁体39を開弁させることで,第1燃料通路18は導通状態となる。   When the thermal expansion material 35 of the first gas phase / liquid phase operation switching valve 22 is heated by the gas engine E to a temperature at which the gas fuel can be supplied to the gas engine E, the thermal expansion of the thermal expansion material 35 As a result, the temperature-sensitive piston 32 descends against the urging force of the valve spring 40, and the valve body 39 is opened via the valve rod 36, whereby the first fuel passage 18 is brought into a conducting state.

而して,燃料ボンベ15の液化燃料は,マフラ6で加熱された第1燃料通路18を通過することで気相燃料と化し,そして第1気相・液相運転切換弁22を通過し,減圧弁23により所定圧力まで減圧され,更にゼロガバナ24により略大気圧まで減圧されてゼロガバナ室25を満たすので,その気相燃料は,第1メインノズル11から,吸気通路2のベンチュリ部2aを通過する吸気により吸出され,その吸気と混合してガスエンジンEに吸入されるようになる。   Thus, the liquefied fuel in the fuel cylinder 15 passes through the first fuel passage 18 heated by the muffler 6 to become gas phase fuel, and passes through the first gas phase / liquid phase operation switching valve 22. Since the pressure is reduced to a predetermined pressure by the pressure reducing valve 23 and further reduced to substantially the atmospheric pressure by the zero governor 24 to fill the zero governor chamber 25, the gas phase fuel passes from the first main nozzle 11 through the venturi portion 2 a of the intake passage 2. The air is sucked out by the intake air, and is mixed with the intake air and is sucked into the gas engine E.

また減圧弁23の減圧作動が開始されるや否や,その出口圧力は,圧力伝達通路53を経て第2気相・液相運転切換弁42の第1受圧室47へと供給されるので,その圧力を受けた第1ダイヤフラム49は,開弁ばね55の付勢力に抗して変位してピストン弁54を直ちに開弁させ,第2燃料通路19を遮断して吸気通路2への液相燃料の噴出を停止する。   Further, as soon as the pressure reducing operation of the pressure reducing valve 23 is started, the outlet pressure is supplied to the first pressure receiving chamber 47 of the second gas phase / liquid phase operation switching valve 42 through the pressure transmission passage 53, The first diaphragm 49 that has received the pressure is displaced against the urging force of the valve opening spring 55 to immediately open the piston valve 54, shut off the second fuel passage 19, and liquid-phase fuel to the intake passage 2. Stop erupting.

こうして,ガスエンジンEは,液相燃料による運転から気相燃料による運転へとスムーズに切り換えられ,本来の低燃費性が確保される。   In this way, the gas engine E is smoothly switched from the operation using the liquid phase fuel to the operation using the gas phase fuel, and the original low fuel consumption is ensured.

次に,図2に示す本発明の第2実施形態について説明する。   Next, a second embodiment of the present invention shown in FIG. 2 will be described.

この第2実施形態では,第2燃料通路19に第1燃料流量制御弁43′及び第2燃料流量制御弁80が直列に介装される。その第1燃料流量制御弁43′は,前記第1実施形態の燃料流量制御弁43の,ダイヤフラム73を含むベンチュリ負圧制御系を具備しない点を除けば第1実施形態の燃料流量制御弁43と同様の構成である。第2燃料流量制御弁80は,メインジェット61及び第2メインノズル12間を結ぶ第2燃料通路19に第2のジェット81と,この第2のジェット81の開口面積を調節する第2のニードル弁82とを備え,この第2のニードル弁82には,これをスロットル弁5の開度増加に応じて開き方向に作動するよう,スロットル弁5が連動機構83を介して連結される。その連動機構83は,スロットル弁5の弁軸の回転に連動するピニオン84と,第2のニードル弁82の外周に形成され,上記ピニオン84により駆動されるラック85とで構成される。その他の構成は前記第1実施形態と同様であるので,図2中,第1実施形態に対応する部分には同一の参照符号を付して,重複する説明を省略する。   In the second embodiment, a first fuel flow rate control valve 43 ′ and a second fuel flow rate control valve 80 are interposed in series in the second fuel passage 19. The first fuel flow control valve 43 'is the same as the fuel flow control valve 43 of the first embodiment except that it does not include the venturi negative pressure control system including the diaphragm 73. It is the same composition as. The second fuel flow control valve 80 includes a second jet 81 in the second fuel passage 19 connecting the main jet 61 and the second main nozzle 12, and a second needle valve that adjusts the opening area of the second jet 81. The throttle valve 5 is connected to the second needle valve 82 via an interlocking mechanism 83 so that the second needle valve 82 operates in the opening direction in response to an increase in the opening of the throttle valve 5. The interlocking mechanism 83 includes a pinion 84 that interlocks with the rotation of the valve shaft of the throttle valve 5, and a rack 85 that is formed on the outer periphery of the second needle valve 82 and is driven by the pinion 84. Since other configurations are the same as those of the first embodiment, portions corresponding to those of the first embodiment are denoted by the same reference numerals in FIG.

而して,スロットル弁5の開度は,ガスエンジンEの吸気量を反映するので,この第3実施形態によれば,第1実施形態と同様に,ガスエンジンEの液相燃料による運転時,第2メインノズル12からの燃料噴出量は,燃料ボンベ15内の蒸気圧に反比例し,且つ吸気量に比例するように制御されることになり,これによりミキサ3で生成される混合気の空燃比を適正化することができる。   Thus, since the opening of the throttle valve 5 reflects the intake air amount of the gas engine E, according to the third embodiment, as in the first embodiment, when the gas engine E is operated with the liquid phase fuel. The amount of fuel ejected from the second main nozzle 12 is controlled so as to be inversely proportional to the vapor pressure in the fuel cylinder 15 and proportional to the intake air amount. The air-fuel ratio can be optimized.

最後に,図3に示す本発明の第3実施形態について説明する。   Finally, a third embodiment of the present invention shown in FIG. 3 will be described.

この第3実施形態は,前記第1実施形態中の第2メインノズル12及びアイドルポート13に代えて,スロットル弁5より下流の吸気通路2に液相燃料を噴射し得る燃料噴射弁90をミキサ3に装着したもので,この燃料噴射弁90には電子制御ユニット91が接続される。この電子制御ユニット91は,オルタネータ8から電力を供給されると共に,ガスエンジンEの回転数を検出するエンジン回転数センサ92及び,スロットル弁5の開度を検出するスロットルセンサ93の出力信号等のガスエンジン運転情報に基づいて燃料噴射弁90の燃料噴射量が制御するようになっている。その他の構成は前記第1実施形態と同様であるので,図3中,第1実施形態に対応する部分には同一の参照符号を付して,重複する説明を省略する。   In the third embodiment, instead of the second main nozzle 12 and the idle port 13 in the first embodiment, a fuel injection valve 90 capable of injecting liquid phase fuel into the intake passage 2 downstream from the throttle valve 5 is mixed. 3, an electronic control unit 91 is connected to the fuel injection valve 90. The electronic control unit 91 is supplied with electric power from the alternator 8, and outputs an engine rotation speed sensor 92 for detecting the rotation speed of the gas engine E and an output signal of the throttle sensor 93 for detecting the opening degree of the throttle valve 5. The fuel injection amount of the fuel injection valve 90 is controlled based on the gas engine operation information. Since other configurations are the same as those of the first embodiment, portions corresponding to those of the first embodiment are denoted by the same reference numerals in FIG.

この第3実施形態によれば,ガスエンジンEの液相燃料による始動及び運転時,ミキサ3への燃料噴射量をガスエンジン回転数及びスロットル開度に応じてきめ細かく制御して,ガスエンジンEに,そのアイドリングから負荷運転までの広い運転域にわたり適正空燃比の混合気を供給することができ,出力性能と低燃費性の向上に寄与し得る。   According to the third embodiment, when the gas engine E is started and operated with liquid phase fuel, the fuel injection amount to the mixer 3 is finely controlled according to the gas engine speed and the throttle opening, Therefore, it is possible to supply an air-fuel mixture having an appropriate air-fuel ratio over a wide operating range from idling to load operation, which can contribute to improvement in output performance and fuel efficiency.

本発明は,上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。尚,前記第1気相・液相運転切換弁22では,感温ピストン32に代えてダイヤフラムを使用することもできる。   The present invention is not limited to the above embodiments, and various design changes can be made without departing from the scope of the invention. In the first gas phase / liquid phase operation switching valve 22, a diaphragm can be used instead of the temperature-sensitive piston 32.

E・・・・・ガスエンジン
S・・・・・燃料供給装置
3・・・・・ミキサ
5・・・・・スロットル弁
10・・・・クランク室
15・・・・燃料ボンベ
18・・・・第1燃料通路
19・・・・第2燃料通路
22・・・・第1気相・液相運転切換弁
23,24・・・減圧装置(減圧弁,ゼロガバナ)
42・・・・第2気相・液相運転切換弁
43・・・・燃料流量制御弁
43′・・・燃料流量制御弁(第1燃料流量制御弁)
80・・・・第2の燃料流量制御弁(第2燃料流量制御弁)
90・・・・燃料噴射弁
91・・・・電子制御ユニット
E ... Gas engine S ... Fuel supply device 3 ... Mixer 5 ... Throttle valve 10 ... Crank chamber 15 ... Fuel cylinder 18 ... First fuel passage 19 ... Second fuel passage 22 ... First gas phase / liquid phase operation switching valve 23, 24 ... Pressure reducing device (pressure reducing valve, zero governor)
42... Second gas phase / liquid phase operation switching valve 43... Fuel flow control valve 43 ′ Fuel flow control valve (first fuel flow control valve)
80... Second fuel flow control valve (second fuel flow control valve)
90 ... Fuel injection valve 91 ... Electronic control unit

Claims (7)

液化燃料を詰めた燃料ボンベ(15)と,ガスエンジン(E)に混合気を供給するミキサ(3)と,前記燃料ボンベ(15)から送出されて気相となった燃料を前記ミキサ(3)に供給する第1燃料通路(18)と,この第1燃料通路(18)に設けられ,前記気相となった燃料を減圧する減圧装置(23,24)とを備えるガスエンジン用燃料供給装置において,
前記燃料ボンベ(15)から送出される液相燃料を前記ミキサ(3)に供給する第2燃料通路(19)を前記第1燃料通路(18)と並列に設け,
前記第1燃料通路(18)には,通常は閉弁していてガスエンジン温度が所定温度以上になると開弁する第1気相・液相運転切換弁(22)を介装する一方,
前記第2燃料通路(19)に,ガスエンジン(E)の始動及び運転時には開弁するが,前記第1気相・液相運転切換弁(22)の開弁に連動して閉弁する第2気相・液相運転切換弁(42)を介装したことを特徴とするガスエンジン用燃料供給装置。
A fuel cylinder (15) filled with liquefied fuel, a mixer (3) for supplying an air-fuel mixture to the gas engine (E), and a fuel that has been sent from the fuel cylinder (15) into a gas phase is supplied to the mixer (3 ) And a decompression device (23, 24) provided in the first fuel passage (18) for decompressing the fuel in the gas phase. In the device,
A second fuel passage (19) for supplying liquid fuel delivered from the fuel cylinder (15) to the mixer (3) is provided in parallel with the first fuel passage (18);
The first fuel passage (18) is normally closed and is provided with a first gas phase / liquid phase operation switching valve (22) that opens when the gas engine temperature exceeds a predetermined temperature,
The second fuel passage (19) is opened when the gas engine (E) is started and operated, but is closed in conjunction with the opening of the first gas phase / liquid phase operation switching valve (22). A fuel supply device for a gas engine, comprising a two-gas phase / liquid phase operation switching valve (42).
請求項1記載のガスエンジン用燃料供給装置において,
前記減圧装置を,前記第1気相・液相運転切換弁(22)の開弁によりそれを通過した気相燃料を所定圧力まで減圧する減圧弁(23)と,この減圧弁(23)で減圧された燃料を略大気圧まで減圧して前記ミキサ(3)に供給するゼロガバナ(24)とで構成し,前記第2気相・液相運転切換弁(42)は,前記減圧弁(23)から送出される気相燃料の前記所定圧力を受けて閉弁するように構成されることを特徴とするガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 1,
The pressure reducing device includes a pressure reducing valve (23) for reducing the gas-phase fuel passing therethrough to a predetermined pressure by opening the first gas phase / liquid phase operation switching valve (22), and the pressure reducing valve (23). A zero governor (24) for reducing the decompressed fuel to approximately atmospheric pressure and supplying it to the mixer (3) is provided. The second gas phase / liquid phase operation switching valve (42) includes the pressure reducing valve (23 The gas engine fuel supply device is configured to be closed by receiving the predetermined pressure of the vapor-phase fuel delivered from the gas generator.
請求項1又は2記載のガスエンジン用燃料供給装置において,
前記第2気相・液相運転切換弁(42)は,前記第1気相・液相運転切換弁(22)の閉弁時には,前記ガスエンジン(E)の始動及び運転時,そのクランク室(10)内に発生する負圧を受けて開弁するように構成されることを特徴とする,ガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 1 or 2,
The second gas phase / liquid phase operation switching valve (42) is configured such that when the first gas phase / liquid phase operation switching valve (22) is closed, when the gas engine (E) is started and operated, its crank chamber (10) A fuel supply device for a gas engine, which is configured to open by receiving a negative pressure generated in the gas engine.
請求項1記載のガスエンジン用燃料供給装置において,
前記第2燃料通路(19)には,該第2燃料通路(19)における燃料流量を,前記燃料ボンベ(15)内の蒸気圧に反比例して制御する燃料流量制御弁(43,43′)を介装したことを特徴とするガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 1,
The second fuel passage (19) has a fuel flow control valve (43, 43 ') for controlling the fuel flow rate in the second fuel passage (19) in inverse proportion to the vapor pressure in the fuel cylinder (15). A fuel supply device for a gas engine, characterized in that
請求項4記載のガスエンジン用燃料供給装置において,
前記燃料流量制御弁(43)は,前記第2燃料通路(19)における燃料流量を,前記ミキサ(3)のベンチュリ部に発生するベンチュリ負圧の上昇に応じて増加するように構成されることを特徴とするガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 4,
The fuel flow control valve (43) is configured to increase the fuel flow rate in the second fuel passage (19) in response to an increase in the venturi negative pressure generated in the venturi section of the mixer (3). A fuel supply device for a gas engine.
請求項4記載のガスエンジン用燃料供給装置において,
前記第2燃料通路(19)には,該第2燃料通路(19)における燃料流量を,前記ミキサ(3)のスロットル弁(5)の開度に比例して制御する第2の燃料流量制御弁(80)を介装したことを特徴とするガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 4,
The second fuel passage (19) has a second fuel flow rate control for controlling the fuel flow rate in the second fuel passage (19) in proportion to the opening of the throttle valve (5) of the mixer (3). A fuel supply device for a gas engine, characterized by comprising a valve (80).
請求項1記載のガスエンジン用燃料供給装置において,
前記ミキサ(3)に,前記第2気相・液相運転切換弁(42)の開弁時,前記第2燃料通路(19)の液相燃料を噴射し得る燃料噴射弁(90)を取り付け,この燃料噴射弁(90)に,ガスエンジン(E)の運転状態に応じて該燃料噴射弁(90)の燃料噴射量を制御する電子制御ユニット(91)を接続したことを特徴とするガスエンジン用燃料供給装置。
The fuel supply device for a gas engine according to claim 1,
A fuel injection valve (90) capable of injecting liquid phase fuel in the second fuel passage (19) when the second gas phase / liquid phase operation switching valve (42) is opened is attached to the mixer (3). The fuel injection valve (90) is connected to an electronic control unit (91) for controlling the fuel injection amount of the fuel injection valve (90) according to the operating state of the gas engine (E). Engine fuel supply system.
JP2011198591A 2011-09-12 2011-09-12 Fuel supply system for gas engine Expired - Fee Related JP5400844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198591A JP5400844B2 (en) 2011-09-12 2011-09-12 Fuel supply system for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198591A JP5400844B2 (en) 2011-09-12 2011-09-12 Fuel supply system for gas engine

Publications (2)

Publication Number Publication Date
JP2013060836A true JP2013060836A (en) 2013-04-04
JP5400844B2 JP5400844B2 (en) 2014-01-29

Family

ID=48185710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198591A Expired - Fee Related JP5400844B2 (en) 2011-09-12 2011-09-12 Fuel supply system for gas engine

Country Status (1)

Country Link
JP (1) JP5400844B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183980A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183983A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183988A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183979A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183982A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183987A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183981A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183984A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183986A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014204856A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204853A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204859A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204858A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204855A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204852A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
CN106979084A (en) * 2017-04-26 2017-07-25 杭州舸瑞新能源科技有限公司 Electric-controlled gas engine integrated form throttle body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210153A (en) * 1981-06-17 1982-12-23 Takahiro Tsuruga Supplying method of gasified fuel to internal combustion engine
JPH11210557A (en) * 1998-01-30 1999-08-03 Aisan Ind Co Ltd Liquefied gas fuel supply device for engine
JP2000282955A (en) * 1999-03-29 2000-10-10 Toyota Motor Corp Fuel supply device
JP2006057550A (en) * 2004-08-20 2006-03-02 Yanmar Co Ltd Gas engine
JP2006250149A (en) * 2006-05-08 2006-09-21 Nikki Co Ltd Lpg supply device for engine
JP2007321572A (en) * 2006-05-30 2007-12-13 Mazda Motor Corp Control device for vehicle having high-pressure gas fuel tank
JP2011085115A (en) * 2009-10-19 2011-04-28 Honda Motor Co Ltd Gas fuel supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210153A (en) * 1981-06-17 1982-12-23 Takahiro Tsuruga Supplying method of gasified fuel to internal combustion engine
JPH11210557A (en) * 1998-01-30 1999-08-03 Aisan Ind Co Ltd Liquefied gas fuel supply device for engine
JP2000282955A (en) * 1999-03-29 2000-10-10 Toyota Motor Corp Fuel supply device
JP2006057550A (en) * 2004-08-20 2006-03-02 Yanmar Co Ltd Gas engine
JP2006250149A (en) * 2006-05-08 2006-09-21 Nikki Co Ltd Lpg supply device for engine
JP2007321572A (en) * 2006-05-30 2007-12-13 Mazda Motor Corp Control device for vehicle having high-pressure gas fuel tank
JP2011085115A (en) * 2009-10-19 2011-04-28 Honda Motor Co Ltd Gas fuel supply device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183980A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183983A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183988A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183979A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183982A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183987A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183981A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183984A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014183986A (en) * 2013-03-22 2014-10-02 Universal Entertainment Corp Game machine
JP2014204856A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204853A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204859A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204858A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204855A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
JP2014204852A (en) * 2013-04-12 2014-10-30 株式会社ユニバーサルエンターテインメント Game machine
CN106979084A (en) * 2017-04-26 2017-07-25 杭州舸瑞新能源科技有限公司 Electric-controlled gas engine integrated form throttle body

Also Published As

Publication number Publication date
JP5400844B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5400844B2 (en) Fuel supply system for gas engine
JP4742975B2 (en) Engine fuel injector
US9212643B2 (en) Dual fuel system for an internal combustion engine
US7854216B2 (en) General purpose internal combustion engine
JPH02157465A (en) Fuel-supply apparatus for
CN101225774A (en) Low temperature cold starting device of methanol engine and control method thereof
US4018856A (en) Fuel increase system for engine
WO2002031337A1 (en) Mixer for gas fuel
JP2011220235A (en) Control device of internal combustion engine
JP4011876B2 (en) Fuel supply device for internal combustion engine
KR101819897B1 (en) Liquid petroleum-gas direct injection system
JP4441149B2 (en) Engine operation control device
KR100663618B1 (en) Apparatus and method For controlling Pressure of fuel in LPI car
JP7383998B2 (en) Bi-fuel car fuel injection system
JP4114135B2 (en) Engine positive pressure gas fuel supply method
JPH109062A (en) Gas engine using liquid fuel
JPS6363738B2 (en)
JP3540708B2 (en) Dual fuel engine
JP5387475B2 (en) Control device for internal combustion engine
JP2003074415A (en) Fuel supply method in internal combustion engine and its device
JPH0771327A (en) Air-fuel mixture formation device of gas fuel engine
JPH09296750A (en) Gas-fueled engine having pressure regulator
JPH10122055A (en) Gas-fueled engine provided with pressure regulator
JP2002089373A (en) Liquefied gas supplying method for engine
JP2010001772A (en) Fuel supply device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees