JP2013058619A - Component built-in wiring board and manufacturing method of the same - Google Patents

Component built-in wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2013058619A
JP2013058619A JP2011196220A JP2011196220A JP2013058619A JP 2013058619 A JP2013058619 A JP 2013058619A JP 2011196220 A JP2011196220 A JP 2011196220A JP 2011196220 A JP2011196220 A JP 2011196220A JP 2013058619 A JP2013058619 A JP 2013058619A
Authority
JP
Japan
Prior art keywords
built
component
wall surface
core substrate
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196220A
Other languages
Japanese (ja)
Other versions
JP5635958B2 (en
Inventor
Daisuke Yamashita
大輔 山下
Tetsuji Tsukada
哲司 塚田
Ichiei Higo
一詠 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011196220A priority Critical patent/JP5635958B2/en
Publication of JP2013058619A publication Critical patent/JP2013058619A/en
Application granted granted Critical
Publication of JP5635958B2 publication Critical patent/JP5635958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a component built-in wiring board which enables built-in components to be accurately positioned without performing a complicated process when the built-in components are housed in a housing part of a core substrate.SOLUTION: A component built-in wiring board 10 includes: a core substrate 11; a housing part 21 penetrating through the core substrate 11; a built-in component 50 housed in the housing part 21; and wiring lamination parts 12, 13 formed so as to be laminated on an upper surface and a lower surface of the core substrate 11. The housing part 21 is defined by an inner wall surface 20 of the core substrate 11 which includes first and second inner wall surfaces respectively formed in different directions in a plain view. The built-in component 50 is housed in the housing part 21 while partially contacting with the first and second inner wall surfaces. A resin filler F fills an area in a gap between the inner wall surface 20 and the built-in component 50 where the built-in component 50 does not contact with the first and second inner wall surfaces.

Description

本発明は、コア基板の上面及び下面を貫通する収容部に内蔵部品を収容した部品内蔵配線基板に関するものである。   The present invention relates to a component built-in wiring board in which a built-in component is housed in a housing portion that penetrates an upper surface and a lower surface of a core substrate.

従来から、コア基板の上面側と下面側に導体層及び絶縁層を交互に積層してビルドアップ層を形成した配線基板が用いられている。このような配線基板の構造として、コア基板を上下に貫通する収容部を設け、この収容部内に内蔵部品を収容した部品内蔵配線基板が知られている。例えば、部品内蔵配線基板の収容部内に内蔵部品としてのコンデンサを内蔵し、半導体素子に供給される電源電圧の配線にコンデンサを接続することにより、電源電圧の安定化とノイズ低減を実現することができる。このような部品内蔵配線基板を作製する際には、平面視で内蔵部品より外形が大きい収容部を形成し、この収容部の略中央に内蔵部品を位置決めした後、収容部においてコア基板の内壁面と内蔵部品との間隙部に樹脂充填材を充填する手順が一般的である。例えば、内蔵部品がビアアレイ型のコンデンサである場合は、その表面及び裏面に形成された外部電極と上下のビルドアップ層との間で積層方向の電気的接続が形成されることになる。よって、内蔵部品に対し積層方向の電気的接続を確保するには、収容部内で内蔵部品の正確な位置決めを行うことが重要となる。例えば、特許文献1には、基板に設けた収容部を上方に行くほど広くなるテーパ状とし(例えば、図2の挿入孔3の形状)、収容部の上方から内蔵部品を挿入した際、収容部の下側の形状が内蔵部品に合致することによって適切な位置決めを行うことができる配線基板の構造が開示されている。   Conventionally, a wiring board is used in which a buildup layer is formed by alternately laminating conductor layers and insulating layers on the upper surface side and the lower surface side of a core substrate. As a structure of such a wiring board, there is known a component built-in wiring board in which a housing part that vertically penetrates a core substrate is provided and a built-in component is housed in the housing part. For example, it is possible to stabilize the power supply voltage and reduce noise by incorporating a capacitor as a built-in component in the housing part of the component built-in wiring board and connecting the capacitor to the power supply voltage wiring supplied to the semiconductor element. it can. When manufacturing such a component built-in wiring board, a housing portion having an outer shape larger than that of the built-in component in a plan view is formed, and after positioning the built-in component at the approximate center of the housing portion, A procedure for filling a resin filler in a gap between a wall surface and a built-in component is general. For example, when the built-in component is a via array type capacitor, electrical connection in the stacking direction is formed between the external electrodes formed on the front and back surfaces of the built-in component and the upper and lower buildup layers. Therefore, in order to ensure electrical connection in the stacking direction with respect to the built-in component, it is important to accurately position the built-in component within the housing portion. For example, in Patent Document 1, the accommodation portion provided on the substrate is tapered so as to go upward (for example, the shape of the insertion hole 3 in FIG. 2), and when the built-in component is inserted from above the accommodation portion, the accommodation portion is accommodated. A structure of a wiring board is disclosed in which proper positioning can be performed by matching the shape of the lower side of the portion with the built-in component.

特開平6−120673号公報JP-A-6-120673

しかしながら、上記特許文献1に開示された配線基板の構造においては、収容部をテーパ状に形成するとともに、その下側の形状が内蔵部品に合致するようにしなければならず、コア基板に収容部を開口する際の加工の難易度が高くなる。また、多様な内蔵部品を用いる場合、それぞれの形状に応じて収容部の形状を変更する必要があり煩雑である。また、内蔵部品の形状と収容部の下側の形状に誤差がある場合は、内蔵部品が傾くなどし、正確な位置決めが困難になる。このように、従来の部品内蔵配線基板においては、コア基板を貫通する収容部が平面視で矩形状あっても、あるいはテーパ状であっても、収容部内に内蔵部品を高い精度で位置決めすることは容易でないという問題があった。   However, in the structure of the wiring board disclosed in Patent Document 1, the housing portion must be formed in a tapered shape, and the shape on the lower side must match the built-in component. Difficulty of processing when opening a hole becomes high. Moreover, when using various built-in components, it is necessary to change the shape of the accommodating portion according to each shape, which is complicated. In addition, when there is an error between the shape of the built-in component and the shape of the lower side of the housing portion, the built-in component is inclined, and accurate positioning becomes difficult. As described above, in the conventional component-embedded wiring board, even if the housing portion penetrating the core substrate is rectangular or tapered in plan view, the built-in component is positioned with high accuracy in the housing portion. There was a problem that was not easy.

本発明はこれらの問題を解決するためになされたものであり、コア基板の収容部内に内蔵部品を収容する際、複雑な加工を行うことなく正確な位置決めが可能な部品内蔵配線基板を提供することを目的とする。   The present invention has been made to solve these problems, and provides a component-embedded wiring board capable of accurate positioning without performing complicated processing when housing a built-in component in a housing portion of a core substrate. For the purpose.

上記課題を解決するために、本発明の部品内蔵配線基板は、コア基板と、当該コア基板の上面及び下面を貫通する収容部と、前記収容部に収容された内蔵部品と、前記コア基板の上面側と下面側の少なくとも一方に絶縁層及び導体層を交互に積層形成した配線積層部と、を備えた部品内蔵配線基板において、前記収容部は、平面視で互いに異なる方向に延びる第1の内壁面及び第2の内壁面を含む前記コア基板の内壁面によって画定され、前記内蔵部品は、前記第1の内壁面及び前記第2の内壁面のそれぞれと部分的に接した状態で前記収容部に収容され、前記内壁面と前記内蔵部品との間隙部において、前記内蔵部品が前記第1の内壁面及び前記第2の内壁面と接していない領域に樹脂充填材が充填されていることを特徴としている。   In order to solve the above-described problems, a component-embedded wiring board according to the present invention includes a core substrate, a housing portion penetrating the upper and lower surfaces of the core substrate, a built-in component housed in the housing portion, and the core substrate. In the component built-in wiring board comprising: a wiring laminated portion in which an insulating layer and a conductor layer are alternately laminated on at least one of the upper surface side and the lower surface side. The housing is defined by an inner wall surface of the core substrate including an inner wall surface and a second inner wall surface, and the built-in component is in the state of being in partial contact with each of the first inner wall surface and the second inner wall surface. In a gap between the inner wall surface and the built-in component, a resin filler is filled in a region where the built-in component is not in contact with the first inner wall surface and the second inner wall surface. It is characterized by.

本発明の部品内蔵配線基板によれば、部品内蔵配線基板のコア基板を貫通する収容部に内蔵部品を収容する際、内蔵部品を収容部の略中央に配置するのではなく、収容部を画定するコア基板の内壁面のうち第1及び第2の内壁面と部分的に接する位置に片寄せして配置し、内蔵部品が接していない側の内壁面との間隙部に樹脂充填材を充填する。これにより、収容部内の内蔵部品の位置はコア基板の内壁面によって規制されるので正確な位置決めが可能となり、内蔵部品と配線積層部との間で積層方向の電気的接続の信頼性を高めることができる。また、内蔵部品の各側面の多くの部分が樹脂充填材に接した状態で配置されるので、樹脂充填材の作用によって熱膨張係数の差に起因する変形を吸収することができるとともに、収容部内において内蔵部品を確実に固定することができる。   According to the wiring board with a built-in component of the present invention, when the built-in component is housed in the housing portion that penetrates the core substrate of the wiring board with the built-in component, the housing portion is defined rather than arranged at the approximate center of the housing portion. Of the inner wall surface of the core substrate to be placed in a position where it is partially in contact with the first and second inner wall surfaces, and the resin filler is filled in the gap between the inner wall surface on the side where the built-in components are not in contact To do. As a result, the position of the built-in component in the housing portion is regulated by the inner wall surface of the core substrate, so that accurate positioning is possible, and the reliability of electrical connection in the stacking direction between the built-in component and the wiring laminated portion is improved. Can do. In addition, since many portions of each side surface of the built-in component are arranged in contact with the resin filler, the deformation due to the difference in thermal expansion coefficient can be absorbed by the action of the resin filler, It is possible to securely fix the built-in components.

前記収容部を画定する前記第1の内壁面及び前記第2の内壁面には、一又は複数の凹部からなる座ぐり部を設け、当該座ぐり部のそれぞれの前記凹部に前記樹脂充填材を充填してもよい。このような座ぐり部を設けることにより、座ぐり部の各凹部以外の部分が内蔵部品の側面に接した状態で位置決めをしつつ、座ぐり部の各凹部には樹脂充填材が充填されるので、より確実に内蔵部品を固定することができる。この場合、座ぐり部は、積層方向に沿って形成された複数の溝状凹部を有する構造で形成することができる。また、座ぐり部は、積層方向に沿って形成された複数の溝状凹部に加えて、平面方向に沿って形成された複数の溝状凹部を有する構造で形成することができる。   The first inner wall surface and the second inner wall surface that define the housing portion are provided with counterbore portions made of one or a plurality of recesses, and the resin filler is placed in the respective recesses of the counterbore portions. It may be filled. By providing such counterbore parts, positioning is performed in a state in which parts other than the respective recesses of the counterbore part are in contact with the side surface of the built-in component, and each recess of the counterbore part is filled with a resin filler. Therefore, it is possible to more securely fix the built-in component. In this case, the spot facing portion can be formed with a structure having a plurality of groove-shaped recesses formed along the stacking direction. The counterbore part can be formed with a structure having a plurality of groove-like recesses formed along the plane direction in addition to the plurality of groove-like recesses formed along the stacking direction.

前記収容部及び前記内蔵部品は、当該内蔵部品が第1及び第2の内壁面と部分的に接している限り、平面視で多様な形状に形成することができる。例えば、収容部及び内蔵部品を平面視で略矩形に形成し、内蔵部品を収容部よりも小さい外形としてもよい。この場合、収容部には、第1及び第2の内壁面によって少なくとも1つの角部が形成され、その角部に内蔵部品を配置し、内蔵部品の互いに交差する第1及び第2の側面のうち、第1の側面が第1の内壁面に接し、第2の側面が第2内壁面に接するようにしてもよい。このような形状と配置により、収容部と内蔵部品の各形状を複雑にすることなく、内蔵部品の位置決めを容易に行うことができる。   The housing part and the built-in component can be formed in various shapes in plan view as long as the built-in component is partially in contact with the first and second inner wall surfaces. For example, the housing portion and the built-in component may be formed in a substantially rectangular shape in plan view, and the built-in component may have a smaller outer shape than the housing portion. In this case, at least one corner portion is formed in the housing portion by the first and second inner wall surfaces, and the built-in component is disposed at the corner portion, and the first and second side surfaces of the built-in component intersect each other. Of these, the first side surface may be in contact with the first inner wall surface, and the second side surface may be in contact with the second inner wall surface. With such a shape and arrangement, it is possible to easily position the built-in component without complicating the shapes of the accommodating portion and the built-in component.

また、前記収容部に配置される前記内蔵部品の個数は1つに限られない。例えば、収容部内において、略矩形の4つの前記角部にそれぞれ配置された4つの内蔵部品を収容してもよい。   Further, the number of the built-in components arranged in the housing portion is not limited to one. For example, you may accommodate four built-in components each arrange | positioned at four said substantially rectangular corner | angular parts in an accommodating part.

前記内蔵部品としては多様な部品を用いることができる。例えば、収容部内に内蔵部品としてのコンデンサを収容して電源配線に接続すれば、部品内蔵配線基板における電源電圧の安定化とノイズ低減の効果を得ることができる。   Various components can be used as the built-in component. For example, if a capacitor as a built-in component is housed in the housing portion and connected to the power supply wiring, the effect of stabilizing the power supply voltage and reducing noise in the component built-in wiring board can be obtained.

また、上記課題を解決するために、本発明の部品内蔵配線基板の製造方法は、コア基板を準備し、当該コア基板の上面及び下面を貫通するとともに平面視で互いに異なる方向に延びる第1の内壁面及び第2の内壁面を含む前記コア基板の内壁面によって画定される収容部を形成する収容部形成工程と、内蔵部品を準備し、前記コア基板の前記第1の内壁面及び前記第2の内壁面のそれぞれと部分的に接するように前記内蔵部品を位置決めする位置決め工程と、前記内壁面と前記内蔵部品との間隙部のうち、前記内蔵部品が前記第1の内壁面及び前記第2の内壁面と接していない領域に樹脂充填材を充填する充填工程と、前記コア基板の上面側と下面側の少なくとも一方に絶縁層及び導体層を交互に積層形成する積層工程と、を含むことを特徴としている。なお、コア基板の第1の内壁面及び前記第2の内壁面に、一又は複数の凹部からなる座ぐり部を形成してもよい。   In order to solve the above-described problem, a method for manufacturing a wiring board with a built-in component according to the present invention provides a core board, passes through the upper and lower surfaces of the core board and extends in different directions in plan view. An accommodating portion forming step for forming an accommodating portion defined by the inner wall surface of the core substrate including an inner wall surface and a second inner wall surface, and a built-in component are prepared, and the first inner wall surface and the first inner surface of the core substrate are prepared. Positioning step of positioning the built-in component so as to partially contact each of the two inner wall surfaces, and the built-in component is the first inner wall surface and the first of the gap portions between the inner wall surface and the built-in component. A filling step of filling a region that is not in contact with the inner wall surface of 2 and a lamination step of alternately forming insulating layers and conductor layers on at least one of the upper surface side and the lower surface side of the core substrate. That features It is. A counterbore part composed of one or a plurality of recesses may be formed on the first inner wall surface and the second inner wall surface of the core substrate.

本発明の部品内蔵配線基板の製造方法によれば、本発明の部品内蔵配線基板を製造する際には、複雑な工程を経ることなく本発明の上述の効果を享受することができる。すなわち、上記従来の部品内蔵配線基板のように、収容部を上方に行くほど広くなるテーパ状に形成して中央部に内蔵部品を配置する必要がなく、かつ内蔵部品を収容部内に配置する際は内蔵部品の側面が第1及び第2の内壁面に接するように位置決めすればよいので、製造工程の簡素化が可能となる。   According to the method for manufacturing a component built-in wiring board of the present invention, when the component built-in wiring board of the present invention is manufactured, the above-described effects of the present invention can be enjoyed without going through complicated steps. That is, unlike the above-described conventional component built-in wiring board, there is no need to arrange the built-in component in the central portion by forming the housing portion in a tapered shape so as to go upward, and when placing the built-in component in the housing portion Can be positioned so that the side surfaces of the built-in components are in contact with the first and second inner wall surfaces, so that the manufacturing process can be simplified.

本発明によれば、部品内蔵配線基板の収容部に内蔵部品を収容する際、コア基板の内壁面と部分的に接するように内蔵部品を片寄せして配置し、内蔵部品が接していない側の内壁面との間隙部に樹脂充填材を充填したので、複雑な加工を要することなく内蔵部品の正確な位置決めが可能となり、電気的接続の信頼性を高めることができる。また、収容部内で内蔵部品が配置されていない領域に充填される樹脂充填材によって熱膨張係数の差に起因する変形を吸収するとともに、収容部内で内蔵部品を確実に固定することができる。   According to the present invention, when a built-in component is housed in the housing portion of the component built-in wiring board, the built-in component is arranged so as to be in partial contact with the inner wall surface of the core substrate, and the side on which the built-in component is not in contact Since the resin filler is filled in the gap with the inner wall surface, the built-in component can be accurately positioned without requiring complicated processing, and the reliability of electrical connection can be improved. In addition, it is possible to absorb the deformation caused by the difference in thermal expansion coefficient by the resin filler filled in the region where the built-in component is not arranged in the housing portion, and to securely fix the built-in component in the housing portion.

本実施形態の部品内蔵配線基板の概略の断面構造図である。1 is a schematic cross-sectional structure diagram of a component built-in wiring board according to an embodiment. 図1のコンデンサ50の断面構造図である。FIG. 2 is a cross-sectional structure diagram of a capacitor 50 in FIG. 1. 図1の配線基板10のうち収容部21を含む範囲の模式的な平面図である。FIG. 2 is a schematic plan view of a range including a housing portion 21 in the wiring board 10 of FIG. 1. 図3において、座ぐり部20aが形成された1つの内壁面20yの表面状態の一例を示す図であるIn FIG. 3, it is a figure which shows an example of the surface state of one inner wall surface 20y in which the spot facing part 20a was formed. 座ぐり部20aに関する一変形例を示す図である。It is a figure which shows one modification regarding the spot facing part 20a. 収容部21内のコンデンサ50の配置に関する一変形例を示す平面図である。FIG. 10 is a plan view showing a modified example regarding the arrangement of the capacitors 50 in the accommodating portion 21. 内壁面20の形状に関する変形例を示す平面図である。FIG. 6 is a plan view showing a modified example related to the shape of the inner wall surface 20. 本実施形態の配線基板10の製造方法を説明する第1の断面構造図である。It is a 1st sectional view explaining the manufacturing method of wiring board 10 of this embodiment. 本実施形態の配線基板10の製造方法を説明する第2の断面構造図である。It is a 2nd sectional structure figure explaining a manufacturing method of wiring board 10 of this embodiment. 本実施形態の配線基板10の製造方法を説明する第3の断面構造図である。It is a 3rd sectional view explaining the manufacturing method of wiring board 10 of this embodiment.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

以下の実施形態では、本発明を具体化した部品内蔵配線基板の一例について説明する。図1は、本実施形態の部品内蔵配線基板10(以下、単に配線基板10と呼ぶ)の概略の断面構造図を示している。図1に示すように、本実施形態の配線基板10は、例えばガラス繊維を含んだエポキシ樹脂からなるコア基板11と、コア基板11の上面側のビルドアップ層12(配線積層部)と、コア基板11の下面側のビルドアップ層13(配線積層部)とを含む構造を有している。本実施形態の配線基板10の上部には、半導体素子である半導体チップ100が載置されている。   In the following embodiments, an example of a component built-in wiring board embodying the present invention will be described. FIG. 1 shows a schematic cross-sectional structure diagram of a component built-in wiring board 10 (hereinafter simply referred to as a wiring board 10) of the present embodiment. As shown in FIG. 1, the wiring board 10 of the present embodiment includes a core substrate 11 made of, for example, an epoxy resin containing glass fiber, a buildup layer 12 (wiring laminated portion) on the upper surface side of the core substrate 11, It has a structure including a buildup layer 13 (wiring laminated portion) on the lower surface side of the substrate 11. A semiconductor chip 100 that is a semiconductor element is placed on the upper part of the wiring substrate 10 of the present embodiment.

コア基板11には、中央領域を平面視で方形状に貫通する収容部21が形成され、この収容部21には、内蔵部品としてのコンデンサ50が埋め込まれた状態で収容されている。収容部21の平面形状は、コア基板11の内壁面20(図1)によって画定される。本実施形態においては、図1に示すように、収容部21内のコンデンサ50が、両側に対向する内壁面20のうちの片側の内壁面20に寄った状態で配置されているが、詳しくは後述する。収容部21において、コア基板11の内壁面20とコンデンサ50との間隙部には、樹脂充填材Fが充填されている。樹脂充填材Fは、例えば熱硬化性樹脂などの高分子材料からなり、樹脂充填材Fの弾性変形により、コア基板11及びコンデンサ50との熱膨張率の差に起因する変形を吸収する作用がある。一方、コア基板11には、外周領域を積層方向に貫通する複数のスルーホール導体22が形成され、スルーホール導体22の内部が例えばガラスエポキシ等からなる閉塞体23で埋められている。   The core substrate 11 is formed with a housing portion 21 penetrating the central region in a square shape in plan view, and the housing portion 21 houses a capacitor 50 as a built-in component. The planar shape of the accommodating portion 21 is defined by the inner wall surface 20 (FIG. 1) of the core substrate 11. In the present embodiment, as shown in FIG. 1, the capacitor 50 in the housing portion 21 is arranged in a state of being close to the inner wall surface 20 on one side of the inner wall surfaces 20 facing both sides. It will be described later. In the accommodating portion 21, a resin filler F is filled in a gap portion between the inner wall surface 20 of the core substrate 11 and the capacitor 50. The resin filler F is made of a polymer material such as a thermosetting resin, for example, and has an action of absorbing deformation caused by the difference in thermal expansion coefficient between the core substrate 11 and the capacitor 50 due to elastic deformation of the resin filler F. is there. On the other hand, the core substrate 11 is formed with a plurality of through-hole conductors 22 penetrating the outer peripheral region in the laminating direction, and the inside of the through-hole conductor 22 is filled with a closing body 23 made of, for example, glass epoxy.

コンデンサ50は、正極と負極の間に所定の容量を形成するビアアレイ型の積層セラミックコンデンサである。コンデンサ50は、両面にそれぞれ形成された外部電極層51、52を介して、上下のビルドアップ層12、13の各導体層31、41のそれぞれと電気的に接続される。ここで、図2は、図1のコンデンサ50の断面構造図を示している。本実施形態のコンデンサ50は、例えばチタン酸バリウム等の高誘電率セラミックの焼結体からなり、複数のセラミック誘電体層53を積層形成した構造を有する。図2に示すように、各々のセラミック誘電体層53の間には、内部電極層60と内部電極層61が交互に形成されている。一方の内部電極層60は負極用の電極として機能し、他方の内部電極層61は正極用の電極として機能し、両電極が各セラミック誘電体層53を挟んで対向することで所定の容量が形成される。   The capacitor 50 is a via array type multilayer ceramic capacitor that forms a predetermined capacity between the positive electrode and the negative electrode. The capacitor 50 is electrically connected to each of the conductor layers 31 and 41 of the upper and lower buildup layers 12 and 13 via external electrode layers 51 and 52 formed on both surfaces, respectively. Here, FIG. 2 shows a sectional structural view of the capacitor 50 of FIG. The capacitor 50 of the present embodiment is made of a sintered body of a high dielectric constant ceramic such as barium titanate, for example, and has a structure in which a plurality of ceramic dielectric layers 53 are laminated. As shown in FIG. 2, internal electrode layers 60 and internal electrode layers 61 are alternately formed between the ceramic dielectric layers 53. One internal electrode layer 60 functions as an electrode for a negative electrode, the other internal electrode layer 61 functions as an electrode for a positive electrode, and both electrodes face each other with each ceramic dielectric layer 53 interposed therebetween, thereby providing a predetermined capacity. It is formed.

コンデンサ50には、全てのセラミック誘電体層53を積層方向に貫通する多数のビアホールに導体材料を埋め込んだ複数のビア導体70、71が形成されている。そして、負極用のビア導体70は内部電極層60に接続されるとともに、正極用のビア導体71は内部電極層61に接続される。コンデンサ50の表面の外部電極層51には、負極用の複数の外部電極80と正極用の複数の外部電極81が形成されている。また、コンデンサ50の裏面の外部電極層52には、負極用の複数の外部電極82と正極用の複数の外部電極83が形成されている。これにより、複数のビア導体70は、上端側の外部電極80及び下端側の外部電極82とそれぞれ電気的に接続される。また、複数のビア導体71は、上端側の外部電極81及び下端側の外部電極83とそれぞれ電気的に接続される。図2のコンデンサ50において、負極用のビア導体70及び外部電極80、82と、正極用のビア導体71及び外部電極81、83は、平面視で格子状あるいは千鳥状に配置されている。   The capacitor 50 is formed with a plurality of via conductors 70 and 71 in which a conductor material is embedded in a large number of via holes penetrating all the ceramic dielectric layers 53 in the stacking direction. The negative electrode via conductor 70 is connected to the internal electrode layer 60, and the positive electrode via conductor 71 is connected to the internal electrode layer 61. The external electrode layer 51 on the surface of the capacitor 50 is formed with a plurality of negative external electrodes 80 and a plurality of positive external electrodes 81. The external electrode layer 52 on the back surface of the capacitor 50 is formed with a plurality of negative external electrodes 82 and a plurality of positive external electrodes 83. As a result, the plurality of via conductors 70 are electrically connected to the external electrode 80 on the upper end side and the external electrode 82 on the lower end side, respectively. The plurality of via conductors 71 are electrically connected to the external electrode 81 on the upper end side and the external electrode 83 on the lower end side, respectively. In the capacitor 50 of FIG. 2, the via conductors 70 and the external electrodes 80 and 82 for the negative electrode, and the via conductors 71 and the external electrodes 81 and 83 for the positive electrode are arranged in a grid pattern or a staggered pattern in plan view.

図1に戻って、一方のビルドアップ層12は、コア基板11の上部の樹脂絶縁層14と、樹脂絶縁層14の上部の樹脂絶縁層15と、樹脂絶縁層15の上部のソルダーレジスト層16とが積層形成されてなる。樹脂絶縁層14の上面には導体層31が形成され、樹脂絶縁層15の上面には複数の端子パッド33が形成されている。樹脂絶縁層14の所定箇所には、スルーホール導体22の上端電極及びコンデンサ50の外部電極層51を、導体層31と積層方向に接続導通する複数のビア導体30が設けられている。また、樹脂絶縁層15の所定箇所には、導体層31と複数の端子パッド33を積層方向に接続導通する複数のビア導体32が設けられている。ソルダーレジスト層16は、複数箇所が開口されて複数の端子パッド33が露出し、そこに複数の半田バンプ34が形成されている。各々の半田バンプ34は、配線基板10に載置される半導体チップ100の各パッド101に接続される。   Returning to FIG. 1, one build-up layer 12 includes a resin insulating layer 14 above the core substrate 11, a resin insulating layer 15 above the resin insulating layer 14, and a solder resist layer 16 above the resin insulating layer 15. Are laminated. A conductor layer 31 is formed on the upper surface of the resin insulating layer 14, and a plurality of terminal pads 33 are formed on the upper surface of the resin insulating layer 15. A plurality of via conductors 30 are provided at predetermined positions of the resin insulating layer 14 to connect and connect the upper electrode of the through-hole conductor 22 and the external electrode layer 51 of the capacitor 50 to the conductor layer 31 in the stacking direction. In addition, a plurality of via conductors 32 that connect and conduct the conductor layer 31 and the plurality of terminal pads 33 in the stacking direction are provided at predetermined positions of the resin insulating layer 15. The solder resist layer 16 is opened at a plurality of locations to expose a plurality of terminal pads 33, and a plurality of solder bumps 34 are formed there. Each solder bump 34 is connected to each pad 101 of the semiconductor chip 100 placed on the wiring substrate 10.

また、他方のビルドアップ層13は、コア基板11の下部の樹脂絶縁層17と、樹脂絶縁層17の下部の樹脂絶縁層18と、樹脂絶縁層18の下部のソルダーレジスト層19とが積層形成されてなる。樹脂絶縁層17の下面には導体層41が形成され、樹脂絶縁層18の下面には複数のBGA用パッド43が形成されている。樹脂絶縁層17の所定箇所には、スルーホール導体22の下端電極及びコンデンサ50の外部電極層52を、導体層41と積層方向に接続導通する複数のビア導体40が設けられている。また、樹脂絶縁層18の所定箇所には、導体層41と複数のBGA用パッド43を積層方向に接続導通する複数のビア導体42が設けられている。ソルダーレジスト層19は、複数箇所が開口されて複数のBGA用パッド43が露出し、そこに複数の半田ボール44が接続される。複数の半田ボール44は、図示されない外部基材と電気的に接続可能な構造を有する。   The other buildup layer 13 is formed by laminating a resin insulation layer 17 below the core substrate 11, a resin insulation layer 18 below the resin insulation layer 17, and a solder resist layer 19 below the resin insulation layer 18. Being done. A conductor layer 41 is formed on the lower surface of the resin insulating layer 17, and a plurality of BGA pads 43 are formed on the lower surface of the resin insulating layer 18. A plurality of via conductors 40 are provided at predetermined positions of the resin insulating layer 17 to connect and connect the lower electrode of the through-hole conductor 22 and the external electrode layer 52 of the capacitor 50 to the conductor layer 41 in the stacking direction. A plurality of via conductors 42 are provided at predetermined positions of the resin insulating layer 18 to connect and connect the conductor layer 41 and the plurality of BGA pads 43 in the stacking direction. The solder resist layer 19 is opened at a plurality of locations to expose a plurality of BGA pads 43 to which a plurality of solder balls 44 are connected. The plurality of solder balls 44 have a structure that can be electrically connected to an external substrate (not shown).

図1の断面構造において、例えば、半導体チップ100に供給される電源電圧とグランド電位のうち、電源電圧がコンデンサ50の正極に接続され、グランド電位がコンデンサ50の負極に接続される。従って、コンデンサ50の上側では、図1の半田バンプ34、端子パッド33、ビア導体32、導体層31、ビア導体30を経由して、半導体チップ100のグランド電位用のパッド101と外部電極80との間、及び、半導体チップ100の電源電圧用のパッド101と外部電極81の間がそれぞれ電気的に接続される。同様に、コンデンサ50の下側では、図1のビア導体40、導体層41、ビア導体42、BGA用パッド43、半田ボール44を経由して、外部電極82と外部基材のグランド電位用の端子の間、及び、外部電極83と外部基材の電源電圧用の端子の間がそれぞれ電気的に接続される。   In the cross-sectional structure of FIG. 1, for example, among the power supply voltage and the ground potential supplied to the semiconductor chip 100, the power supply voltage is connected to the positive electrode of the capacitor 50 and the ground potential is connected to the negative electrode of the capacitor 50. Therefore, on the upper side of the capacitor 50, the ground potential pad 101 and the external electrode 80 of the semiconductor chip 100 are connected via the solder bump 34, the terminal pad 33, the via conductor 32, the conductor layer 31, and the via conductor 30 of FIG. And the power supply voltage pad 101 of the semiconductor chip 100 and the external electrode 81 are electrically connected to each other. Similarly, on the lower side of the capacitor 50, via the via conductor 40, the conductor layer 41, the via conductor 42, the BGA pad 43, and the solder ball 44 of FIG. The terminals and the external electrodes 83 and the power supply voltage terminals of the external base material are electrically connected.

次に、本実施形態の配線基板10において、コア基板11の内壁面20の構造と収容部21内のコンデンサ50の配置について具体的に説明する。図3は、図1の配線基板10のうち、収容部21を含む範囲の模式的な平面図を示している。図3の下部には、便宜上、互いに直交するX方向及びY方向の座標軸を示している。X方向は図1の紙面横方向に一致し、Y方向は図1の紙面奥行き方向に一致する。図3の平面図においては、コア基板11の内壁面20によって画定される方形の収容部21と、収容部21の内部に収容されるコンデンサ50と、内壁面20とコンデンサ50との間隙部に充填された樹脂充填材Fが示されている。なお、実際には図3のコンデンサ50の表面に外部電極層51が存在するが、図示を省略している。   Next, in the wiring board 10 of the present embodiment, the structure of the inner wall surface 20 of the core substrate 11 and the arrangement of the capacitors 50 in the housing portion 21 will be specifically described. FIG. 3 shows a schematic plan view of a range including the accommodating portion 21 in the wiring board 10 of FIG. In the lower part of FIG. 3, coordinate axes in the X direction and the Y direction that are orthogonal to each other are shown for convenience. The X direction coincides with the horizontal direction in FIG. 1, and the Y direction coincides with the depth direction in FIG. In the plan view of FIG. 3, a rectangular accommodating portion 21 defined by the inner wall surface 20 of the core substrate 11, a capacitor 50 accommodated in the accommodating portion 21, and a gap between the inner wall surface 20 and the capacitor 50 are illustrated. A filled resin filler F is shown. In practice, the external electrode layer 51 exists on the surface of the capacitor 50 in FIG. 3, but the illustration is omitted.

図3の内壁面20は平面視で1辺が長さL1の方形に形成され、X方向に延びる2辺に沿う2つの内壁面20xと、Y方向に延びる2辺に沿う2つの内壁面20yと、4つの角部20cとを含んで構成されている。また、内壁面20を構成する1対の内壁面20x、20yには、平面視で収容部21の外周側に向って突出した複数の凹部からなる座ぐり部20aが形成されている。そして、コンデンサ50は平面視で1辺が長さL2の方形に形成され、当該方形のうちの直交する2辺の2つの側面が、座ぐり部20aが形成された2つの内壁面20x、20yに接する状態で配置される。すなわち、コンデンサ50は、その1つの角部が内壁面20の1つの角部20cに合致する位置に配置される。そして、内壁面20x、20yに形成された座ぐり部20aのそれぞれの凹部の内部には樹脂充填材Fが充填されている。   The inner wall surface 20 of FIG. 3 is formed in a square shape with one side having a length L1 in plan view, and two inner wall surfaces 20x along two sides extending in the X direction and two inner wall surfaces 20y along two sides extending in the Y direction. And four corners 20c. Further, a pair of inner wall surfaces 20x and 20y constituting the inner wall surface 20 are formed with counterbore portions 20a formed of a plurality of concave portions protruding toward the outer peripheral side of the housing portion 21 in plan view. The capacitor 50 is formed in a square shape with one side having a length L2 in plan view, and two side surfaces of two orthogonal sides of the square are two inner wall surfaces 20x and 20y on which counterbore portions 20a are formed. It is arranged in a state of touching. That is, the capacitor 50 is arranged at a position where one corner thereof matches one corner 20 c of the inner wall surface 20. And the resin filler F is filled in the inside of each recessed part of the spot facing part 20a formed in the inner wall surfaces 20x and 20y.

ここで、図4は、図3において座ぐり部20aが形成された1つの内壁面20yの表面状態の一例を示している。図4の例においては、一方の内壁面20yに、Z方向(積層方向)に延びる5個の溝状凹部からなる座ぐり部20aが示されている。座ぐり部20aを構成する各々の溝状凹部は、XY面内で半円状の断面形状を有している。また、座ぐり部20aの5本の溝状凹部は同一形状であって、均等な間隔で並列に配置されている。各溝状凹部は、例えば、直径100μmの半円形状に形成される。他方の内壁面20xの側の座ぐり部20aについても同様の5個の溝状凹部から構成されている。なお、図4の例に限られることなく、座ぐり部20aの溝状凹部の個数を加工可能の範囲内で増やしてもよい。   Here, FIG. 4 shows an example of the surface state of one inner wall surface 20y in which the spot facing portion 20a is formed in FIG. In the example of FIG. 4, a counterbore 20 a made up of five groove-like recesses extending in the Z direction (stacking direction) is shown on one inner wall surface 20 y. Each groove-like recess constituting the spot facing 20a has a semicircular cross-sectional shape in the XY plane. Further, the five groove-like recesses of the spot facing portion 20a have the same shape and are arranged in parallel at equal intervals. Each groove-like recess is formed in a semicircular shape having a diameter of 100 μm, for example. The counterbore 20a on the side of the other inner wall surface 20x is also composed of the same five groove-like recesses. It should be noted that the number of groove-like recesses of the spot facing portion 20a may be increased within a processable range without being limited to the example of FIG.

図3に戻って、収容部21において樹脂充填材Fが充填された間隙部は幅Wであり、収容部21及びコンデンサ50のサイズに対し、L1=L2+Wの関係がある。間隙部の幅Wは、樹脂充填材Fの変形吸収作用と配線基板10全体のサイズに応じて適宜に設定される。コンデンサ50の四方の各側面に着目すると、間隙部に面する2つの側面は全ての部分が樹脂充填材Fに接しているのに対し、内壁面20に面する2つの側面は部分的に座ぐり部20a内の樹脂充填材Fに接している。この場合、コンデンサ50の各側面のうち内壁面20に面する2つの側面の面積に対して、座ぐり部20a内の樹脂充填材Fに接する面積の比率は特に制約されないが、コンデンサ50を内壁面20に十分に固定できる程度の比率に設定される。   Returning to FIG. 3, the gap portion filled with the resin filler F in the accommodating portion 21 has a width W, and there is a relationship of L1 = L2 + W with respect to the sizes of the accommodating portion 21 and the capacitor 50. The width W of the gap is appropriately set according to the deformation absorbing action of the resin filler F and the overall size of the wiring board 10. When attention is paid to each side surface of the capacitor 50, the two side surfaces facing the gap are all in contact with the resin filler F, whereas the two side surfaces facing the inner wall surface 20 are partially seated. It is in contact with the resin filler F in the bore portion 20a. In this case, the ratio of the area in contact with the resin filler F in the counterbore 20a to the area of the two side surfaces facing the inner wall surface 20 of each side surface of the capacitor 50 is not particularly limited. The ratio is set such that it can be sufficiently fixed to the wall surface 20.

本実施形態においては、図3の構造を採用することにより、コンデンサ50を収容部21内に配置する際の位置決め精度を高めることができる。すなわち、仮にコンデンサ50を片側に寄った位置ではなく、収容部21の中央位置に配置する場合を想定すると、図3の例ではコンデンサ50の4つの側面がそれぞれ対向する内壁面20と均等な間隔W/2だけ離して配置する必要がある。しかし、コンデンサ50及び収容部21はともに小型化するほど高い位置決め精度が要求されることになり、コンデンサ50を収容部21の中央位置に正確に配置することが困難になる。その結果、コンデンサ50の位置ずれに起因して、上下の外部電極80、81、82、83とビア導体30、40との間の電気的接続に不具合を生じる恐れがある。これに対し、図3の構造では、コンデンサ50の1つの角部を挟んだ2つの側面を、2つの内壁面20x、20yと間隔を置かずに配置すればよいので、工程の負荷をかけることなく必然的に高い位置決め精度を確保でき、コンデンサ50をコア基板11と概ね同じ位置精度で配置することができる。よって、コンデンサ50の位置ずれに起因する電気的接続の不具合を有効に防止することができる。   In the present embodiment, by adopting the structure of FIG. 3, it is possible to increase the positioning accuracy when the capacitor 50 is arranged in the housing portion 21. That is, assuming that the capacitor 50 is not located at one side but at the central position of the housing portion 21, in the example of FIG. 3, the four side surfaces of the capacitor 50 are equally spaced from the inner wall surfaces 20 facing each other. It is necessary to arrange them apart by W / 2. However, as the capacitor 50 and the accommodating portion 21 are both downsized, higher positioning accuracy is required, and it is difficult to accurately place the capacitor 50 at the center position of the accommodating portion 21. As a result, there may be a problem in the electrical connection between the upper and lower external electrodes 80, 81, 82, 83 and the via conductors 30, 40 due to the displacement of the capacitor 50. On the other hand, in the structure of FIG. 3, the two side surfaces sandwiching one corner of the capacitor 50 may be arranged without being spaced from the two inner wall surfaces 20x and 20y. Inevitably, high positioning accuracy can be ensured, and the capacitor 50 can be arranged with substantially the same positional accuracy as the core substrate 11. Therefore, it is possible to effectively prevent a failure in electrical connection caused by the displacement of the capacitor 50.

なお、本実施形態では、収容部21及びコンデンサ50がいずれも平面視で方形である場合を示したが、方形には限られず、より複雑な多角形であってもよい。すなわち、収容部21を画定する内壁面20のうち、少なくとも隣接する2つの内壁面の部分がコンデンサ50の側面に接する限り、収容部21及びコンデンサ50の形状は制約されない。また、内壁面20の角部20cの形状は、図3の例に限られず、平面視でR面取りやC面取り等の面取り加工を施してもよい。   In the present embodiment, the case in which both the accommodating portion 21 and the capacitor 50 are square in plan view is shown, but the shape is not limited to a square and may be a more complex polygon. In other words, as long as at least two adjacent inner wall surfaces of the inner wall surface 20 defining the housing portion 21 are in contact with the side surface of the capacitor 50, the shapes of the housing portion 21 and the capacitor 50 are not limited. Further, the shape of the corner 20c of the inner wall surface 20 is not limited to the example of FIG. 3, and chamfering such as R chamfering or C chamfering may be performed in a plan view.

本実施形態において、コア基板11の内壁面20に形成される座ぐり部20aは図3及び図4の構造に限られず、多様な変更が可能である。図5は、座ぐり部20aに関する一変形例を示す図であって、図4と同様の内壁面20yの表面状態に対応している。図5の内壁面20yには、図4と同様のZ方向(積層方向)に延びる複数の溝状凹部に加えて、Y方向(水平方向)に延びる複数の溝状凹部を含む座ぐり部20aが形成されている。すなわち、Y方向に延びる各凹部はXZ面内で半円状の断面形状を有し、Z方向に延びる各凹部と互いに直交している。図5の例では、積層方向の5本の溝状凹部と水平方向の2本の溝状凹部が組み合わされているが、それぞれの本数や間隔は適宜に設定することができる。図5の変形例を採用することにより、図4と比べると、座ぐり部20aの各溝状凹部が相互に連結されているため内部に樹脂充填材Fを円滑に充填することができ、かつ樹脂充填材Fの部分の面積を容易に増やすことができ、内壁面20に面するコンデンサ50を確実に固定することができる。   In the present embodiment, the spot facing portion 20a formed on the inner wall surface 20 of the core substrate 11 is not limited to the structure shown in FIGS. 3 and 4, and various changes can be made. FIG. 5 is a diagram showing a modification of the spot facing portion 20a, and corresponds to the surface state of the inner wall surface 20y similar to FIG. 5 has a counterbore 20a including a plurality of groove-like recesses extending in the Y direction (horizontal direction) in addition to a plurality of groove-like recesses extending in the Z direction (stacking direction) similar to FIG. Is formed. That is, each recess extending in the Y direction has a semicircular cross-sectional shape in the XZ plane, and is orthogonal to each recess extending in the Z direction. In the example of FIG. 5, five groove-like recesses in the stacking direction and two groove-like recesses in the horizontal direction are combined, but the number and interval of each can be set as appropriate. By adopting the modification of FIG. 5, compared with FIG. 4, the groove-like recesses of the counterbore part 20 a are connected to each other, so that the resin filler F can be smoothly filled therein, and The area of the resin filler F can be easily increased, and the capacitor 50 facing the inner wall surface 20 can be reliably fixed.

また、本実施形態において、コア基板11に設けた収容部21におけるコンデンサ50の配置に関しても、図3の平面図の例に限られず、多様な変更が可能である。図6は、収容部21内のコンデンサ50の配置に関する一変形例を示す平面図である。図6の変形例においては、収容部21内に4個のコンデンサ50が配置されている。すなわち、コア基板11の内壁面20の4つの角部20cのそれぞれに各1個のコンデンサ50が配置されている。そして、図3と同様の長さL1を用いて、収容部21は平面視で1辺が長さL1の方形であり、各コンデンサ50は平面視で1辺が長さL3の方形である。また、各コンデンサ50の間隙部は幅Wであって、樹脂充填材Fが充填された部分のトータルの面積は図3と等しくなっている。この場合、L1=2×L3+Wの関係があるので、図6のコンデンサ50の1辺の長さL3は、図3の長さL2の半分である。図6の変形例を採用することにより、複数のコンデンサ50を小型化して1つの収容部21内に効率的に配置しつつ、それぞれのコンデンサ50の位置決め精度を高めることができる。なお、コア基板11の収容部21に4個のコンデンサ50を配置する場合に限られず、収容部21内の2つ又は3つの角部20cに2個又は3個のコンデンサ50を配置してもよい。   In the present embodiment, the arrangement of the capacitors 50 in the accommodating portion 21 provided on the core substrate 11 is not limited to the example of the plan view of FIG. 3, and various changes can be made. FIG. 6 is a plan view showing a modification regarding the arrangement of the capacitors 50 in the accommodating portion 21. In the modification of FIG. 6, four capacitors 50 are arranged in the accommodating portion 21. That is, one capacitor 50 is disposed in each of the four corners 20 c of the inner wall surface 20 of the core substrate 11. Then, using the same length L1 as in FIG. 3, the accommodating portion 21 has a square shape with one side length L1 in plan view, and each capacitor 50 has a square shape with one side length L3 in plan view. Further, the gap portion of each capacitor 50 has a width W, and the total area of the portion filled with the resin filler F is equal to that in FIG. In this case, since there is a relationship of L1 = 2 × L3 + W, the length L3 of one side of the capacitor 50 in FIG. 6 is half of the length L2 in FIG. By adopting the modified example of FIG. 6, it is possible to increase the positioning accuracy of each capacitor 50 while reducing the size of the plurality of capacitors 50 and efficiently disposing them in one accommodating portion 21. Note that the present invention is not limited to the case where the four capacitors 50 are disposed in the accommodating portion 21 of the core substrate 11, and two or three capacitors 50 may be disposed in the two or three corner portions 20 c in the accommodating portion 21. Good.

また、本実施形態において、コア基板11の内壁面20の平面視の断面形状に関しても、図3の半円状の断面形状の例に限られず、多様な変更が可能である。図7には、内壁面20の座ぐり部20aの断面形状の複数の具体例を示している。例えば、図7(A)に示すように、四角形状の断面形状を有する座ぐり部20aを内壁面20に形成してもよい。また例えば、図7(B)に示すように、三角形状の断面形状を有する座ぐり部20aを内壁面20に形成してもよい。また例えば、図7(C)に示すように、波状の断面形状を有する座ぐり部20aを内壁面20に形成してもよい。なお、図7(C)の例では、内壁面20の断面形状に直線部分が含まれないため、内壁面20とコンデンサ50との接触面積は小さくなるが、コンデンサ50の位置決めには支障がない。以上のように、コンデンサ50の位置決めが可能で、樹脂充填材Fを部分的に充填可能な形状であれば、内壁面20の断面形状を自在に設定することができる。   Further, in the present embodiment, the sectional shape of the inner wall surface 20 of the core substrate 11 in plan view is not limited to the example of the semicircular sectional shape in FIG. 3, and various changes can be made. FIG. 7 shows a plurality of specific examples of the cross-sectional shape of the spot facing portion 20a of the inner wall surface 20. For example, as illustrated in FIG. 7A, a counterbore portion 20 a having a square cross-sectional shape may be formed on the inner wall surface 20. Further, for example, as illustrated in FIG. 7B, a counterbore portion 20 a having a triangular cross-sectional shape may be formed on the inner wall surface 20. Further, for example, as shown in FIG. 7C, a counterbore 20 a having a wavy cross-sectional shape may be formed on the inner wall surface 20. In the example of FIG. 7C, since the linear shape is not included in the cross-sectional shape of the inner wall surface 20, the contact area between the inner wall surface 20 and the capacitor 50 is reduced, but there is no hindrance to the positioning of the capacitor 50. . As described above, the cross-sectional shape of the inner wall surface 20 can be freely set as long as the capacitor 50 can be positioned and can be partially filled with the resin filler F.

次に、本実施形態の配線基板10の製造方法の概要を説明する。まず、配線基板10に用いるコア基板11の基材を準備する。通常は、複数の配線基板10を多数個取り可能なサイズの基材を用いるが、簡単のため1個の配線基板10の構成部分のみを図示する。図8に示すように、コア基板11となる基材に対して、例えば、ルータを用いた加工を施すことにより、収容部21を画定する内壁面20に沿って貫通孔を形成すればよい。この際、内壁面20に対し同時に座ぐり部20aを形成することができる。例えば、図3に示す座ぐり部20aを形成する際には、2辺に沿う内壁面20x、20yに対しルータによって半円状の断面形状に沿って加工することで複数の溝状凹部を形成すればよい。あるいは、座ぐり部20aの形成位置にドリル機を用いた孔あけ加工を予め施して積層方向の複数の溝状凹部を形成し、その後にコア基板11の上方から打ち抜き加工を施して収容部21を形成してもよい。なお、図5に示すように水平方向に延びる溝状凹部を含む座ぐり部20aを形成する際は、各溝状凹部の両端を貫通する加工ができない。この場合は、水平方向に延びる多層のガラス繊維層を縞状に配置したコア基板11を用い、薬液処理によって内壁面20に露出するガラス繊維層を選択的に溶融させることで、水平方向に延びる複数の溝状凹部を含む座ぐり部20aを形成することができる。   Next, an outline of a method for manufacturing the wiring board 10 of this embodiment will be described. First, the base material of the core substrate 11 used for the wiring substrate 10 is prepared. In general, a base material having a size capable of obtaining a plurality of wiring boards 10 is used, but only the components of one wiring board 10 are illustrated for simplicity. As shown in FIG. 8, a through-hole may be formed along the inner wall surface 20 that defines the accommodating portion 21 by, for example, performing processing using a router on the base material that becomes the core substrate 11. At this time, the counterbore 20 a can be formed on the inner wall surface 20 at the same time. For example, when the counterbore 20a shown in FIG. 3 is formed, a plurality of groove-shaped recesses are formed by processing the inner wall surfaces 20x and 20y along the two sides along a semicircular cross-sectional shape by a router. do it. Alternatively, drilling using a drilling machine is performed in advance at the position where the counterbore 20a is formed to form a plurality of groove-shaped recesses in the stacking direction, and thereafter punching is performed from above the core substrate 11 to accommodate the accommodating portion 21. May be formed. As shown in FIG. 5, when the counterbore 20a including the groove-shaped recess extending in the horizontal direction is formed, it is not possible to process the both ends of each groove-shaped recess. In this case, by using the core substrate 11 in which a plurality of glass fiber layers extending in the horizontal direction are arranged in a stripe pattern, the glass fiber layer exposed to the inner wall surface 20 is selectively melted by chemical treatment, thereby extending in the horizontal direction. A counterbore 20a including a plurality of groove-shaped recesses can be formed.

一方、図2に示すコンデンサ50を準備する。例えば、セラミックグリーンシートを用いた周知の手法で内部電極層60、61を有する積層体を積層形成した後、積層体に対してビア導体70、71及び外部電極80〜83を形成し、積層体に対する焼成工程を経て、コンデンサ50が完成する。また、図9に示すように、ドリル機を用いた孔あけ加工により、コア基板11のスルーホール導体22の形成位置に貫通孔を形成した後、この貫通孔に対して無電解銅めっき及び電解銅めっきを施すことによりスルーホール導体22を形成する。そして、スルーホール導体22の空洞部にエポキシ樹脂を主成分とするペーストを印刷した後、硬化することにより閉塞体23を形成する。   On the other hand, the capacitor 50 shown in FIG. 2 is prepared. For example, after a laminated body having the internal electrode layers 60 and 61 is formed by a known method using a ceramic green sheet, the via conductors 70 and 71 and the external electrodes 80 to 83 are formed on the laminated body, and the laminated body The capacitor 50 is completed through the firing process. Moreover, as shown in FIG. 9, after forming a through-hole in the formation position of the through-hole conductor 22 of the core board | substrate 11 by the drilling process using a drill machine, electroless copper plating and electrolysis are carried out with respect to this through-hole. Through-hole conductors 22 are formed by performing copper plating. And after the paste which has an epoxy resin as a main component is printed in the cavity part of the through-hole conductor 22, the obstruction | occlusion body 23 is formed by hardening.

次いで、図9に示すように、コア基板11の底部に、剥離可能な粘着テープ200を密着配置する。この粘着テープ200は支持台201により支持される。この状態で、マウント装置を用いてコンデンサ50をコア基板11の上方から位置決めしつつ、収容部21の所定位置に載置する。このとき、図3の平面図に示すように、コンデンサ50が1つの角部20c及び2つの内壁面20x、20yと部分的に接するように若干の押圧力を加えることで、図3の平面図の状態を保ちつつコンデンサ50の底面を粘着テープ200に貼り付けて仮固定することができる。なお、マウント装置に代え、工程の作業者が直接コンデンサ50を収容部21の所定位置に載置してもよい。   Next, as shown in FIG. 9, a peelable adhesive tape 200 is placed in close contact with the bottom of the core substrate 11. The adhesive tape 200 is supported by a support table 201. In this state, the capacitor 50 is placed at a predetermined position in the housing portion 21 while being positioned from above the core substrate 11 using the mounting device. At this time, as shown in the plan view of FIG. 3, a slight pressing force is applied so that the capacitor 50 is partially in contact with one corner 20c and the two inner wall surfaces 20x and 20y. The bottom surface of the capacitor 50 can be attached to the adhesive tape 200 and temporarily fixed while maintaining this state. Instead of the mounting device, an operator of the process may directly place the capacitor 50 at a predetermined position in the housing portion 21.

次いで、コア基板11の内壁面20とコンデンサ50の側面との間隙部に、ディスペンサ装置を用いて熱硬化性樹脂からなる樹脂充填材Fを充填する。このとき、コンデンサ50が接する内壁面20の座ぐり部20aを構成する各凹部の内部に樹脂充填材Fが侵入する。そして、樹脂充填材Fに加熱処理を施して硬化させることで、収容部21の内部における内壁面20と部分的に接した状態でコンデンサ50が固定される。その後、図10に示すように、コンデンサ50の固定後に粘着テープ200を剥離し、コア基板11の下面とコンデンサ50の裏面の外部電極層52に残存する粘着材は溶剤で除去する。   Next, the gap between the inner wall surface 20 of the core substrate 11 and the side surface of the capacitor 50 is filled with a resin filler F made of a thermosetting resin using a dispenser device. At this time, the resin filler F enters the inside of each recess that constitutes the counterbore 20a of the inner wall surface 20 with which the capacitor 50 contacts. And the capacitor | condenser 50 is fixed in the state which contacted the inner wall surface 20 in the inside of the accommodating part 21 by heat-processing and hardening the resin filler F. FIG. Thereafter, as shown in FIG. 10, the adhesive tape 200 is peeled after the capacitor 50 is fixed, and the adhesive material remaining on the lower surface of the core substrate 11 and the external electrode layer 52 on the back surface of the capacitor 50 is removed with a solvent.

ここで、図8〜図10では、収容部21の内部にコンデンサ50を収容した後に樹脂充填材Fを充填する手順を説明したが、かかる手順を逆にしてもよい。すなわち、コンデンサ50を収容部21内の所定位置に収容するのに先立って、収容部21の内部に予め樹脂充填材Fを充填してもよい。この場合、樹脂充填材Fの粘度が高いとコンデンサ50を収容部21内に載置するのが困難になるので、粘度が低い樹脂充填材Fを用いることが望ましい。上記と同様、樹脂充填材Fに加熱処理を施して硬化させた後は、コンデンサ50を内壁面20に固定することができる。   Here, in FIG. 8 to FIG. 10, the procedure for filling the resin filler F after the capacitor 50 is accommodated in the accommodating portion 21 has been described, but such a procedure may be reversed. That is, prior to housing the capacitor 50 at a predetermined position in the housing portion 21, the inside of the housing portion 21 may be filled with the resin filler F in advance. In this case, if the viscosity of the resin filler F is high, it is difficult to place the capacitor 50 in the housing portion 21. Therefore, it is desirable to use the resin filler F having a low viscosity. Similarly to the above, after the resin filler F is heated and cured, the capacitor 50 can be fixed to the inner wall surface 20.

次に図1に戻って、周知の手法に従って、コンデンサ50を収容したコア基板11の上下のビルドアップ層12、13を形成する。すなわち、エポキシ樹脂を主成分とするフィルム状絶縁樹脂材料を積層して加圧加熱することにより絶縁樹脂材料を硬化させ、コア基板11の上面及び下面に樹脂絶縁層14、17を形成する。次いで、上下の樹脂絶縁層14、17にレーザー加工を施して複数のビアホールを形成し、デスミア処理を施した後に各ビアホール内に複数のビア導体30、40を形成する。そして、樹脂絶縁層14、17の表面にパターニングを施し、導体層31、41を形成する。次いで、樹脂絶縁層14、17の表面に、さらに上記フィルム状絶縁樹脂材料を積層して加圧加熱することにより絶縁樹脂材料を硬化させ、樹脂絶縁層15、18を形成する。そして、樹脂絶縁層15、18に、上述のビア導体30、40と同様の手法で複数のビア導体32、42を形成する。   Next, referring back to FIG. 1, the upper and lower buildup layers 12 and 13 of the core substrate 11 containing the capacitor 50 are formed according to a known method. That is, the insulating resin material is cured by laminating a film-like insulating resin material containing epoxy resin as a main component and pressurizing and heating, and the resin insulating layers 14 and 17 are formed on the upper and lower surfaces of the core substrate 11. Next, laser processing is performed on the upper and lower resin insulating layers 14 and 17 to form a plurality of via holes, and after a desmear treatment, a plurality of via conductors 30 and 40 are formed in each via hole. Then, patterning is performed on the surfaces of the resin insulating layers 14 and 17 to form the conductor layers 31 and 41. Next, the film-like insulating resin material is further laminated on the surfaces of the resin insulating layers 14 and 17, and the insulating resin material is cured by pressurizing and heating to form the resin insulating layers 15 and 18. Then, a plurality of via conductors 32 and 42 are formed in the resin insulating layers 15 and 18 by the same method as the via conductors 30 and 40 described above.

次に図1に示すように、樹脂絶縁層15の上部に複数の端子パッド33を形成し、樹脂絶縁層18の下部に複数のBGA用パッド43を形成する。次いで、樹脂絶縁層15の上面と樹脂絶縁層18の下面に、それぞれ感光性エポキシ樹脂を塗布して硬化させることにより、ソルダーレジスト層16、19を形成する。その後、ソルダーレジスト層16に開口部をパターニングし、複数の端子パッド33に接続される複数の半田バンプ34を形成する。また、ソルダーレジスト層19に開口部をパターニングし、複数のBGA用パッド43に接続される複数の半田ボール44を形成する。以上の手順により本実施形態の配線基板10が完成する。   Next, as shown in FIG. 1, a plurality of terminal pads 33 are formed above the resin insulating layer 15, and a plurality of BGA pads 43 are formed below the resin insulating layer 18. Next, solder resist layers 16 and 19 are formed by applying and curing a photosensitive epoxy resin on the upper surface of the resin insulating layer 15 and the lower surface of the resin insulating layer 18, respectively. Thereafter, openings are patterned in the solder resist layer 16 to form a plurality of solder bumps 34 connected to the plurality of terminal pads 33. Also, the openings are patterned in the solder resist layer 19 to form a plurality of solder balls 44 connected to the plurality of BGA pads 43. The wiring board 10 of this embodiment is completed by the above procedure.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態では、コア基板11に設けた収容部21に内蔵部品としてのコンデンサ50を収容した配線基板10について説明したが、例えば、インダクタ等のコンデンサ50以外の内蔵部品を収容部21に収容する場合であっても広く本発明を適用する。また、その他の点についても上記実施形態により本発明の内容が限定されるものではなく、本発明の作用効果を得られる限り、上記実施形態に開示した内容には限定されることなく適宜に変更可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the present embodiment, the wiring board 10 in which the capacitor 50 as a built-in component is housed in the housing portion 21 provided in the core substrate 11 has been described. For example, a built-in component other than the capacitor 50 such as an inductor is included in the housing portion 21. The present invention is widely applied even when accommodated. In addition, the contents of the present invention are not limited by the above-described embodiment with respect to other points, and are appropriately modified without being limited to the contents disclosed in the above-described embodiment as long as the effects of the present invention can be obtained. Is possible.

10…配線基板
11…コア基板
12、13…ビルドアップ層
14、15、17、18…樹脂絶縁層
16、19…ソルダーレジスト層
20…コア基板の内壁面
20a…座ぐり部
20c…角部
20x…内壁面(X方向)
20y…内壁面(Y方向)
21…収容部
22…スルーホール導体
23…閉塞体
31、41…導体層
30、32、40、42…ビア導体
33…端子パッド
34…半田バンプ
43…BGA用パッド
44…半田ボール
50…コンデンサ
51、52…外部電極層
53…セラミック誘電体層
60、61…内部電極層
70、71…ビア導体
80、81、82、83…外部電極
100…半導体チップ
101…パッド
F…樹脂充填材
DESCRIPTION OF SYMBOLS 10 ... Wiring board 11 ... Core board | substrate 12, 13 ... Buildup layer 14, 15, 17, 18 ... Resin insulation layer 16, 19 ... Solder resist layer 20 ... Inner wall surface 20a of core board | substrate ... Counterbore part 20c ... Corner | angular part 20x ... Inner wall surface (X direction)
20y ... Inner wall surface (Y direction)
21 ... Housing 22 ... Through-hole conductor 23 ... Closures 31, 41 ... Conductor layers 30, 32, 40, 42 ... Via conductor 33 ... Terminal pad 34 ... Solder bump 43 ... BGA pad 44 ... Solder ball 50 ... Capacitor 51 52 ... external electrode layer 53 ... ceramic dielectric layers 60, 61 ... internal electrode layers 70, 71 ... via conductors 80, 81, 82, 83 ... external electrode 100 ... semiconductor chip 101 ... pad F ... resin filler

Claims (10)

コア基板と、当該コア基板の上面及び下面を貫通する収容部と、前記収容部に収容された内蔵部品と、前記コア基板の上面側と下面側の少なくとも一方に絶縁層及び導体層を交互に積層形成した配線積層部と、を備えた部品内蔵配線基板において、
前記収容部は、平面視で互いに異なる方向に延びる第1の内壁面及び第2の内壁面を含む前記コア基板の内壁面によって画定され、
前記内蔵部品は、前記第1の内壁面及び前記第2の内壁面のそれぞれと部分的に接した状態で前記収容部に収容され、
前記内壁面と前記内蔵部品との間隙部において、前記内蔵部品が前記第1の内壁面及び前記第2の内壁面と接していない領域に樹脂充填材が充填されている、
ことを特徴とする部品内蔵配線基板。
A core substrate, a housing portion penetrating the upper and lower surfaces of the core substrate, a built-in component housed in the housing portion, and an insulating layer and a conductor layer alternately on at least one of the upper surface side and the lower surface side of the core substrate In the wiring board with built-in components provided with the laminated wiring layer,
The accommodating portion is defined by an inner wall surface of the core substrate including a first inner wall surface and a second inner wall surface extending in different directions in plan view;
The built-in component is housed in the housing portion in a state of being in partial contact with each of the first inner wall surface and the second inner wall surface,
In the gap between the inner wall surface and the built-in component, a resin filler is filled in a region where the built-in component is not in contact with the first inner wall surface and the second inner wall surface.
A wiring board with a built-in component.
前記収容部を画定する前記第1の内壁面及び前記第2の内壁面は、一又は複数の凹部からなる座ぐり部を有し、当該座ぐり部のそれぞれの前記凹部に前記樹脂充填材が充填されていることを特徴とする請求項1に記載の部品内蔵配線基板。   The first inner wall surface and the second inner wall surface that define the housing portion have a counterbore portion composed of one or a plurality of recesses, and the resin filler is placed in each recess of the counterbore portion. The component built-in wiring board according to claim 1, wherein the wiring board is filled. 前記座ぐり部は、積層方向に沿って形成された複数の溝状凹部を有することを特徴とする請求項2に記載の部品内蔵配線基板。   3. The component built-in wiring board according to claim 2, wherein the counterbore part includes a plurality of groove-shaped recesses formed along a stacking direction. 前記座ぐり部は、積層方向に沿って形成された複数の溝状凹部と平面方向に沿って形成された複数の溝状凹部とを有することを特徴とする請求項2に記載の部品内蔵配線基板。   3. The component built-in wiring according to claim 2, wherein the spot facing portion includes a plurality of groove-shaped recesses formed along the stacking direction and a plurality of groove-shaped recesses formed along the planar direction. substrate. 前記収容部及び前記内蔵部品は平面視で略矩形に形成され、前記内蔵部品は前記収容部よりも外形が小さく、
前記収容部は、前記第1の内壁面と前記第2の内壁面によって角部が少なくとも1つ形成され、
前記内蔵部品は、当該内蔵部品の互いに交差する第1の側面及び第2の側面がそれぞれ前記第1の内壁面及び前記第2の内壁面に接するよう前記角部に配置されている、
ことを特徴とする請求項1から4のいずれか一項に記載の部品内蔵配線基板。
The housing part and the built-in component are formed in a substantially rectangular shape in plan view, and the built-in component has a smaller outer shape than the housing part,
The accommodating portion is formed with at least one corner portion by the first inner wall surface and the second inner wall surface,
The built-in component is arranged at the corner so that the first side surface and the second side surface of the built-in component that intersect each other are in contact with the first inner wall surface and the second inner wall surface, respectively.
The component built-in wiring board according to any one of claims 1 to 4, wherein the wiring board has a built-in component.
前記収容部には、略矩形の4つの前記角部にそれぞれ配置された4つの前記内蔵部品が収容されていることを特徴とする請求項5に記載の部品内蔵配線基板。   The component built-in wiring board according to claim 5, wherein the housing portion houses four built-in components respectively disposed at four corners of a substantially rectangular shape. 前記内蔵部品は、コンデンサであることを特徴とする請求項1から6のいずれか一項に記載の部品内蔵配線基板。   The component built-in wiring board according to claim 1, wherein the built-in component is a capacitor. コア基板を準備し、当該コア基板の上面及び下面を貫通するとともに平面視で互いに異なる方向に延びる第1の内壁面及び第2の内壁面を含む前記コア基板の内壁面によって画定される収容部を形成する収容部形成工程と、
内蔵部品を準備し、前記コア基板の前記第1の内壁面及び前記第2の内壁面のそれぞれと部分的に接するように前記内蔵部品を位置決めする位置決め工程と、
前記内壁面と前記内蔵部品との間隙部のうち、前記内蔵部品が前記第1の内壁面及び前記第2の内壁面と接していない領域に樹脂充填材を充填する充填工程と、
前記コア基板の上面側と下面側の少なくとも一方に絶縁層及び導体層を交互に積層形成する積層工程と、
を含むことを特徴とする部品内蔵配線基板の製造方法。
A housing portion that is prepared by an inner wall surface of the core substrate that includes a first inner wall surface and a second inner wall surface that prepare a core substrate and penetrate the upper and lower surfaces of the core substrate and extend in different directions in plan view An accommodating portion forming step for forming
A positioning step of preparing a built-in component and positioning the built-in component so as to partially contact each of the first inner wall surface and the second inner wall surface of the core substrate;
A filling step of filling a resin filler in a region where the built-in component is not in contact with the first inner wall surface and the second inner wall surface in the gap between the inner wall surface and the built-in component;
A laminating step of alternately laminating insulating layers and conductor layers on at least one of the upper surface side and the lower surface side of the core substrate;
The manufacturing method of the component built-in wiring board characterized by including.
コア基板を準備し、当該コア基板の上面及び下面を貫通するとともに平面視で互いに異なる方向に延びる第1の内壁面及び第2の内壁面を含む前記コア基板の内壁面によって画定される収容部を形成する収容部形成工程と、
前記収容部に樹脂充填材を充填する充填工程と、
内蔵部品を準備し、前記収容部に樹脂充填材を充填した状態で、前記コア基板の前記第1の内壁面及び前記第2の内壁面のそれぞれと部分的に接するように前記内蔵部品を位置決めした後、前記樹脂充填材を硬化させる位置決め工程と、
前記コア基板の上面側と下面側の少なくとも一方に絶縁層及び導体層を交互に積層形成する積層工程と、
を含むことを特徴とする部品内蔵配線基板の製造方法。
A housing portion that is prepared by an inner wall surface of the core substrate that includes a first inner wall surface and a second inner wall surface that prepare a core substrate and penetrate the upper and lower surfaces of the core substrate and extend in different directions in plan view An accommodating portion forming step for forming
A filling step of filling the container with a resin filler;
A built-in component is prepared, and the built-in component is positioned so as to be partially in contact with each of the first inner wall surface and the second inner wall surface of the core substrate in a state where the housing portion is filled with a resin filler. Then, a positioning step of curing the resin filler,
A laminating step of alternately laminating insulating layers and conductor layers on at least one of the upper surface side and the lower surface side of the core substrate;
The manufacturing method of the component built-in wiring board characterized by including these.
前記収容部形成工程では、前記コア基板の前記第1の内壁面及び前記第2の内壁面に、一又は複数の凹部からなる座ぐり部を形成することを特徴とする請求項8又は9に記載の部品内蔵配線基板の製造方法。   In the said accommodating part formation process, the counterbore part which consists of a 1 or several recessed part is formed in the said 1st inner wall surface and the said 2nd inner wall surface of the said core board | substrate, The Claim 8 or 9 characterized by the above-mentioned. The manufacturing method of the component built-in wiring board of description.
JP2011196220A 2011-09-08 2011-09-08 Component built-in wiring board and manufacturing method thereof Expired - Fee Related JP5635958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196220A JP5635958B2 (en) 2011-09-08 2011-09-08 Component built-in wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196220A JP5635958B2 (en) 2011-09-08 2011-09-08 Component built-in wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013058619A true JP2013058619A (en) 2013-03-28
JP5635958B2 JP5635958B2 (en) 2014-12-03

Family

ID=48134239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196220A Expired - Fee Related JP5635958B2 (en) 2011-09-08 2011-09-08 Component built-in wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5635958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412002B1 (en) * 2013-09-12 2014-02-12 太陽誘電株式会社 Component built-in board
US10524361B2 (en) 2018-02-02 2019-12-31 Shinko Electric Industries Co., Ltd. Electronic component-embedded substrate and electronic component device
JP7518395B2 (en) 2021-12-20 2024-07-18 日亜化学工業株式会社 Circuit board, light emitting device, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105345A (en) * 2007-10-25 2009-05-14 Ngk Spark Plug Co Ltd Wiring substrate with built-in plate-like component
JP2010205877A (en) * 2009-03-03 2010-09-16 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor device, semiconductor device, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105345A (en) * 2007-10-25 2009-05-14 Ngk Spark Plug Co Ltd Wiring substrate with built-in plate-like component
JP2010205877A (en) * 2009-03-03 2010-09-16 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor device, semiconductor device, and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412002B1 (en) * 2013-09-12 2014-02-12 太陽誘電株式会社 Component built-in board
CN103730425A (en) * 2013-09-12 2014-04-16 太阳诱电株式会社 Component built-in substrate
US9101075B2 (en) 2013-09-12 2015-08-04 Taiyo Yuden Co., Ltd Substrate with built-in component
CN103730425B (en) * 2013-09-12 2016-01-06 太阳诱电株式会社 Built-in substrate
US10524361B2 (en) 2018-02-02 2019-12-31 Shinko Electric Industries Co., Ltd. Electronic component-embedded substrate and electronic component device
JP7518395B2 (en) 2021-12-20 2024-07-18 日亜化学工業株式会社 Circuit board, light emitting device, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5635958B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
TWI454200B (en) Wiring substrate with built-in capacitor and wiring substrate with built-in member
JP5715009B2 (en) Component built-in wiring board and manufacturing method thereof
KR101475172B1 (en) Wiring substrate having built-in component
JP5111342B2 (en) Wiring board
JP2015106615A (en) Printed wiring board and method for manufacturing printed wiring board
KR101343296B1 (en) Method for manufacturing electric component and electric component
KR20140041345A (en) Wiring substrate
JP5462450B2 (en) Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
JP6634696B2 (en) Method of manufacturing printed circuit board having capacitor
KR101383137B1 (en) Substrate with built-in component
JP2013110329A (en) Capacitor module built-in wiring board
JP5635958B2 (en) Component built-in wiring board and manufacturing method thereof
KR20140039993A (en) Wiring substrate
US9433108B2 (en) Method of fabricating a circuit board structure having an embedded electronic element
JP2008244029A (en) Wiring board with built-in component, and component used therefor
JP2009289789A (en) Printed wiring board with built-in component and its manufacturing method
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP5283492B2 (en) Wiring board
JP5330105B2 (en) Wiring board built-in capacitor, wiring board
JP5095456B2 (en) Manufacturing method of wiring board with built-in components
JP2008311508A (en) Electronic component package and manufacturing method thereof
KR100653247B1 (en) Printed circuit board having embedded electric components and fabricating method therefore
KR20130048161A (en) Wiring board and method for manufacturing wiring board
JP5172410B2 (en) Manufacturing method of wiring board with built-in components
JP2009124004A (en) Electronic circuit module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5635958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees