JP2013055799A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2013055799A
JP2013055799A JP2011192441A JP2011192441A JP2013055799A JP 2013055799 A JP2013055799 A JP 2013055799A JP 2011192441 A JP2011192441 A JP 2011192441A JP 2011192441 A JP2011192441 A JP 2011192441A JP 2013055799 A JP2013055799 A JP 2013055799A
Authority
JP
Japan
Prior art keywords
refrigerant
rotor
rotor shaft
shaft
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011192441A
Other languages
Japanese (ja)
Other versions
JP5765149B2 (en
Inventor
Tsutomu Hirabayashi
勉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011192441A priority Critical patent/JP5765149B2/en
Publication of JP2013055799A publication Critical patent/JP2013055799A/en
Application granted granted Critical
Publication of JP5765149B2 publication Critical patent/JP5765149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To stably cool a stator or a rotor of a rotary electric machine even when a rotational axis of the rotor is inclined in the horizontal direction.SOLUTION: A motor generator 100 comprises a hollow shape type rotor shaft 21 through which a power shaft 51 arranged coaxially and transmitting power penetrates. The power shaft 51 internally includes: a center hole 52 extending in the axial direction; and a through hole 53 which extends from the center hole 52 in the radial direction and reaches to an outer face 51b of the power shaft 51. An interspace 21d is formed between the outer face 51b of the power shaft 51 and an inner face 21a of the rotor shaft 21. A coolant shunt 31 is disposed on the inner face 21a of the rotor shaft 21 in the vicinity of a portion facing the through hole 53 to shunt coolant so that a flow volume ratio of the coolant flowing from the through hole 53 to both sides of the axial direction of the interspace 21d becomes a prescribed value.

Description

本発明は、回転電機の冷却構造に関する。   The present invention relates to a cooling structure for a rotating electrical machine.

モータやモータジェネレータのような回転電機では、運転中にステータのコイルエンド等の温度が上昇するのでコイルエンドを冷却することが必要となる。このため、ロータシャフトの内部に冷却油を供給する中空部と、この中空部とロータのエンドプレートの内部とを連通する連通孔とを設け、冷却油をロータシャフトの中空部からエンドプレートの中の空間に送り、エンドプレート端部に設けた噴出孔からステータのコイルエンド冷却油を吹きつけてコイルエンドを冷却する方法が提案されている(例えば、特許文献1参照)。   In a rotating electrical machine such as a motor or a motor generator, the temperature of the coil end of the stator rises during operation, and thus it is necessary to cool the coil end. For this reason, a hollow portion for supplying cooling oil to the inside of the rotor shaft and a communication hole for communicating the hollow portion and the inside of the end plate of the rotor are provided, and the cooling oil is provided in the end plate from the hollow portion of the rotor shaft. A method for cooling the coil end by blowing the coil end cooling oil of the stator from the ejection hole provided in the end portion of the end plate is proposed (for example, see Patent Document 1).

また、回転電機ではロータシャフトを中空形状とし、その中に車輪を駆動する駆動シャフトを通す構造をとる場合がある。この場合、駆動シャフトの外面とロータシャフトの内面との隙間を冷却油の供給路とし、この供給路から連通孔を通してロータコアの内部の冷却油流路に冷却油を流してロータコアを冷却する方法が提案されている(例えば、特許文献2参照)。   Further, in some cases, a rotating electrical machine has a structure in which a rotor shaft is formed in a hollow shape and a drive shaft for driving wheels is passed through the rotor shaft. In this case, there is a method of cooling the rotor core by using a gap between the outer surface of the drive shaft and the inner surface of the rotor shaft as a cooling oil supply path and flowing the cooling oil from the supply path to the cooling oil flow path inside the rotor core through the communication hole. It has been proposed (see, for example, Patent Document 2).

特開2010−45894号公報JP 2010-45894 A 特開2007−228669号公報JP 2007-228669 A

ところで、回転電機のステータは、軸方向の両端にコイルエンドが形成されている。このため、特許文献1に記載された従来技術では、ロータの中空部の冷却流路から軸方向の両端のロータエンドプレートに冷却油を導き、各端のコイルエンドの冷却油噴出孔からステータ両端の各コイルエンドに冷却油を吹き付けるようにして、各コイルエンドの冷却を行う。この場合、冷却油は、ロータの一端側から中空部に流入するので、中空部の圧力損失によって冷却油の流入端側のコイルエンドに吹き付けられる冷却油の流量が反対側のコイルエンドに吹き付けられる冷却油の流量よりも大きくなってしまい、各コイルエンドに吹き付けられる冷却油の流量が不均一となってしまうという問題があった。   By the way, the stator of the rotating electrical machine has coil ends formed at both ends in the axial direction. For this reason, in the prior art described in Patent Document 1, cooling oil is guided from the cooling flow path of the hollow portion of the rotor to the rotor end plates at both ends in the axial direction, and from both ends of the stator to the cooling oil ejection holes at the coil ends at each end. Each coil end is cooled by spraying cooling oil on each coil end. In this case, since the cooling oil flows into the hollow portion from one end side of the rotor, the flow rate of the cooling oil blown to the coil end on the cooling oil inflow end side is blown to the coil end on the opposite side due to the pressure loss of the hollow portion. There is a problem that the flow rate of the cooling oil becomes larger than the flow rate of the cooling oil, and the flow rate of the cooling oil sprayed to each coil end becomes non-uniform.

また、電動車両等の移動機械に搭載される回転電機のように、車両の走行状態によってロータの回転軸が水平に対して傾斜するような場合がある。例えば、冷却油流入側端が低くなるようにロータの回転軸が傾斜した場合には、冷却油流入側端の冷却油の圧力が高くなるので冷却油流入端側のコイルエンドに吹き掛けられる冷却油の流量は多くなり、逆に反対側のコイルエンドに吹き付けられる冷却油の流量は低下し、各コイルエンドに吹き付けられる冷却油の流量に偏差が生じてしまう。反対に、冷却油流入側端が高くなるようにロータの回転軸が傾斜した場合には、静圧差によって冷却油流入側端の冷却油の圧力が低下し、反対端の冷却油の圧力が高くなることから、冷却油流入側のコイルエンドに吹き付けられる冷却油の流量は低下し、反対側のコイルエンドに吹き付けられる冷却油の流量が大きくなり、やはり、各コイルエンドに吹き付けられる冷却油の流量に偏差が生じてしまう。このように、ロータの回転軸が水平に対して傾斜すると各端のコイルエンドに吹き付けられる冷却油の流量が変化してしまい、コイルエンドの冷却が不安定となってしまうという問題があった。   In addition, like a rotating electrical machine mounted on a mobile machine such as an electric vehicle, the rotor rotation shaft may be inclined with respect to the horizontal depending on the traveling state of the vehicle. For example, when the rotating shaft of the rotor is inclined so that the cooling oil inflow side end is lowered, the cooling oil pressure at the cooling oil inflow side end is increased, so that the cooling sprayed on the coil end on the cooling oil inflow end side The flow rate of the oil increases, and conversely, the flow rate of the cooling oil sprayed to the opposite coil end decreases, and a deviation occurs in the flow rate of the cooling oil sprayed to each coil end. On the other hand, when the rotor rotation shaft is tilted so that the cooling oil inflow side end becomes higher, the cooling oil pressure at the cooling oil inflow side end decreases due to the static pressure difference, and the cooling oil pressure at the opposite end increases. Therefore, the flow rate of cooling oil sprayed to the coil end on the cooling oil inflow side decreases, the flow rate of cooling oil sprayed to the coil end on the opposite side increases, and the flow rate of cooling oil sprayed to each coil end again Deviations will occur. As described above, when the rotation shaft of the rotor is inclined with respect to the horizontal, the flow rate of the cooling oil sprayed to the coil ends at each end changes, and there is a problem that the cooling of the coil ends becomes unstable.

本発明は、回転電機のロータの回転軸が水平方向に対して傾斜した場合でも、ステータまたはロータを安定して冷却することを目的とする。   An object of the present invention is to stably cool a stator or a rotor even when a rotating shaft of a rotor of a rotating electrical machine is inclined with respect to a horizontal direction.

本発明の回転電機は、同軸に配置され、動力を伝達する動力シャフトが貫通する中空形状のロータシャフトを備える回転電機であって、前記動力シャフトは、内部に軸方向に延びる第1冷媒流路と、前記第1冷媒流路から半径方向に延びて前記動力シャフトの外面に達する第2冷媒流路とを含み、前記動力シャフトの外面と前記ロータシャフトの内面との間の隙間は、軸方向に延びる第3冷媒流路を成形し、前記ロータシャフトの内面の前記第2冷媒流路に対向する位置の近傍に配置され、前記第2冷媒流路から流出して前記第3冷媒流路内の軸方向の両側に向かう冷媒の各流量の割合が所定の値になるように冷媒を分流する冷媒分流器を備えること、を特徴とする。   A rotating electrical machine according to the present invention is a rotating electrical machine that includes a hollow rotor shaft that is coaxially disposed and through which a power shaft that transmits power passes, wherein the power shaft extends in an axial direction therein. And a second refrigerant passage extending in a radial direction from the first refrigerant passage and reaching the outer surface of the power shaft, and a gap between the outer surface of the power shaft and the inner surface of the rotor shaft is axially A third refrigerant flow path extending to the inner surface of the rotor shaft is disposed in the vicinity of a position facing the second refrigerant flow path on the inner surface of the rotor shaft, and flows out of the second refrigerant flow path to enter the third refrigerant flow path. It comprises a refrigerant flow divider that diverts the refrigerant so that the ratio of the flow rate of the refrigerant toward both sides in the axial direction becomes a predetermined value.

本発明の回転電機において、前記冷媒分流器は、前記第2冷媒流路に対向する位置の軸方向両側にそれぞれ配置され、前記ロータシャフトの内面から外面に向かって凹んだ凹部と前記ロータシャフトの内面の前記第2冷媒流路に対向する位置に配置され、前記各凹部の間を仕切る仕切り壁と、を有すること、としても好適である。   In the rotating electrical machine of the present invention, the refrigerant flow distributor is disposed on both sides in the axial direction at a position facing the second refrigerant flow path, and a concave portion recessed from the inner surface of the rotor shaft toward the outer surface and the rotor shaft. It is also preferable to have a partition wall disposed at a position facing the second refrigerant flow path on the inner surface and partitioning between the recesses.

本発明の回転電機において、前記各凹部は、前記ロータシャフトの各端に向かうにつれて浅くなっていること、としても好適である。   In the rotating electrical machine of the present invention, it is also preferable that each of the recesses becomes shallower toward each end of the rotor shaft.

本発明の回転電機において、前記仕切り壁は、周方向に連続又は断続した円環板状で、
前記仕切り壁近傍の前記各凹部表面は円筒面で、前記仕切り壁の軸方向側の側面は、前記各凹部表面に対して略直角であること、としても好適である。
In the rotating electrical machine of the present invention, the partition wall is a circular plate shape that is continuous or intermittent in the circumferential direction,
It is also preferable that the surface of each recess in the vicinity of the partition wall is a cylindrical surface, and the side surface on the axial direction side of the partition wall is substantially perpendicular to the surface of each recess.

本発明の回転電機において、前記ロータシャフトの外周に固定されたロータコアと、
前記ロータコアの外周に配置されるステータコアと、前記ステータコアの軸方向両端面に配置されるコイルエンドと、前記ロータシャフトの内面から前記ロータシャフトの軸方向両端近傍の各外面に連通し、前記第3冷媒流路から前記各コイルエンドに向かって冷媒を噴出させる複数の第4冷媒流路と、を備え、前記第2冷媒流路は、前記ロータコアの軸方向の中央に配置されていること、としても好適である。
In the rotating electrical machine of the present invention, a rotor core fixed to the outer periphery of the rotor shaft;
A stator core disposed on the outer periphery of the rotor core; coil ends disposed on both axial end surfaces of the stator core; communicating from the inner surface of the rotor shaft to outer surfaces near both axial ends of the rotor shaft; A plurality of fourth refrigerant channels that eject refrigerant from the refrigerant channel toward the coil ends, and the second refrigerant channel is disposed in the center of the rotor core in the axial direction. Is also suitable.

本発明は、回転電機のロータ回転軸が水平方向に対して傾斜した場合でも、ステータまたはロータを安定して冷却することができるという効果を奏する。   The present invention has an effect that the stator or the rotor can be stably cooled even when the rotor rotation shaft of the rotating electrical machine is inclined with respect to the horizontal direction.

本発明の実施形態における回転電機の断面図である。It is sectional drawing of the rotary electric machine in embodiment of this invention. 本発明の実施形態における回転電機の冷媒分流器近傍の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant of the refrigerant | coolant flow divider vicinity of the rotary electric machine in embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について説明する。図1に示す様に、本発明の実施形態の回転電機であるモータジェネレータ100は、ケーシング10と、ケーシング10の内面に固定されたステータ40と、ステータ40の内周側に配置され、ケーシング10に回転自在に支持されるロータ20とを備えている。ステータ40は、薄い電磁鋼板を積層し、内周側に複数のスロットを備えるステータコア41と、ステータコア41の各スロットに巻回されたコイルがステータコア41の軸方向の両端面からそれぞれ突出した第1、第2コイルエンド42,43とを備えている。ロータ20は、中空形状のロータシャフト21と、薄い電磁鋼板を積層し、ロータシャフト21の外面21bに固定されたロータコア22と、ロータコア22を軸方向に両側から挟みこむ第1、第2エンドプレート23,24とを備えている。ロータシャフト21の第1、第2端部21e,21fは、ケーシング10の第1端板11、第2端板12にそれぞれ取り付けられた第1、第2ボールベアリング13,14によって回転軸81の周りに回転自在にケーシング10に取り付けられている。また、ステータコア41とロータコア22とは中心軸82に対して軸方向に対象に配置されている。換言すると、中心軸82は、ステータコア41、ロータコア22の軸方向の中央の位置を示す線である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a motor generator 100 that is a rotating electrical machine according to an embodiment of the present invention is arranged on a casing 10, a stator 40 fixed to the inner surface of the casing 10, an inner peripheral side of the stator 40, and the casing 10. And a rotor 20 supported rotatably. The stator 40 is formed by laminating thin electromagnetic steel plates, and a stator core 41 having a plurality of slots on the inner peripheral side, and a coil wound around each slot of the stator core 41 protrudes from both end surfaces of the stator core 41 in the axial direction. The second coil ends 42 and 43 are provided. The rotor 20 includes a hollow rotor shaft 21, a thin electromagnetic steel plate laminated, a rotor core 22 fixed to the outer surface 21 b of the rotor shaft 21, and first and second end plates that sandwich the rotor core 22 from both sides in the axial direction. 23, 24. The first and second end portions 21e and 21f of the rotor shaft 21 are connected to the rotary shaft 81 by first and second ball bearings 13 and 14 respectively attached to the first end plate 11 and the second end plate 12 of the casing 10. It is attached to the casing 10 so as to be rotatable around. In addition, the stator core 41 and the rotor core 22 are arranged in an axial direction with respect to the central axis 82. In other words, the central axis 82 is a line indicating the center position of the stator core 41 and the rotor core 22 in the axial direction.

ロータシャフト21の中心の中空部分21cには、動力を伝達する動力シャフト51がロータ20と同軸に設けられている。動力シャフト51は、例えば、エンジン或いは他のモータジェネレータ等の動力出力装置の出力(動力)を伝達するものであってもよいし、モータジェネレータ100の出力を同軸に配置された減速機(図示せず)によって減速した出力を伝達するものであってもよい。動力シャフト51は、冷媒が回転軸81の方向に流れる第1冷媒流路である中心孔52を備えている。   In the hollow portion 21 c at the center of the rotor shaft 21, a power shaft 51 that transmits power is provided coaxially with the rotor 20. The power shaft 51 may transmit, for example, the output (power) of a power output device such as an engine or another motor generator, or the output of the motor generator 100 is coaxially arranged (not shown). May be used to transmit the output decelerated. The power shaft 51 includes a center hole 52 that is a first refrigerant flow path through which the refrigerant flows in the direction of the rotation shaft 81.

動力シャフト51は、ロータコア22の軸方向の中央(中心軸82の位置)に配置され、動力シャフト51の内面51a或いは中心孔52の表面から動力シャフト51の外面51bに向かって延びる貫通孔53を備えている。貫通孔53は、第1冷媒流路である中心孔52と、動力シャフト51の外面51bとロータシャフト21の内面21aとの間の隙間21dとを連通する第2冷媒流路である。また、動力シャフト51の外面51bとロータシャフト21の内面21aとの間の隙間21dは第3冷媒流路である。   The power shaft 51 is disposed at the center in the axial direction of the rotor core 22 (position of the center shaft 82), and has a through hole 53 extending from the inner surface 51a of the power shaft 51 or the surface of the center hole 52 toward the outer surface 51b of the power shaft 51. I have. The through hole 53 is a second refrigerant flow path that communicates the center hole 52 that is the first refrigerant flow path, and the gap 21 d between the outer surface 51 b of the power shaft 51 and the inner surface 21 a of the rotor shaft 21. A gap 21d between the outer surface 51b of the power shaft 51 and the inner surface 21a of the rotor shaft 21 is a third refrigerant flow path.

図1に示す様に、ロータシャフト21の内面21aのロータコア22の軸方向の中央(中心軸82の位置)に設けられた貫通孔53(第2冷媒流路)に対向する位置には、冷媒分流器31が設けられている。冷媒分流器31は、貫通孔53(第2冷媒流路)に対向する位置(中心軸82の位置)の軸方向両側にそれぞれ配置され、ロータシャフト21の各端部21e,21f近傍の内面21aから外面21bに向かって凹んだ第1、第2凹部37,38と、ロータシャフト21の内面21aの貫通孔53(第2冷媒流路)に対向する位置(中心軸82の位置)に配置され、各凹部37,38の間を仕切る仕切り壁32と、を含んでいる。仕切り壁32は、周方向に連続又は断続した円環板状であり、その内周面は、各凹部37,38以外のロータシャフト21の各端部21e,21f近傍の内面21aと同一面となっている。また、各凹部37,38は、それぞれ仕切り壁32に接続する第1、第2円筒面33,34と、各円筒面33,34からロータシャフト21の第1端部21e、第2端部21fに向かって内径が小さくなる第1、第2テーパ面35,36とを備えている。つまり、各凹部37,38は、仕切り壁32の近傍からロータシャフト21の各端部21e,21fに向かうにつれてロータシャフト21の各端部21e,21f近傍の内面21aからの凹みが浅くなるように構成されている。また、仕切り壁32のロータシャフト21の第1端部21e側の第1側面32aと第2端部21f側の第2側面32bとは、それぞれ、各円筒面33,34に対して直角となっている。また、本実施形態では、各凹部37,38の各円筒面33,34と、各テーパ面35,36はそれぞれ同一の内径、長さとなっている。   As shown in FIG. 1, there is a refrigerant at a position opposite to a through hole 53 (second refrigerant flow path) provided in the center of the inner surface 21 a of the rotor shaft 21 in the axial direction of the rotor core 22 (position of the central axis 82). A shunt 31 is provided. The refrigerant flow dividers 31 are respectively arranged on both sides in the axial direction of the position (the position of the central shaft 82) facing the through hole 53 (second refrigerant flow path), and the inner surface 21a in the vicinity of the end portions 21e and 21f of the rotor shaft 21. The first and second recesses 37 and 38 that are recessed from the outer surface 21b toward the outer surface 21b and the through hole 53 (second refrigerant flow path) of the inner surface 21a of the rotor shaft 21 are disposed (position of the central axis 82). , And a partition wall 32 that partitions between the recesses 37 and 38. The partition wall 32 has an annular plate shape that is continuous or intermittent in the circumferential direction, and the inner peripheral surface thereof is the same surface as the inner surface 21 a in the vicinity of the end portions 21 e and 21 f of the rotor shaft 21 other than the concave portions 37 and 38. It has become. The concave portions 37 and 38 are respectively connected to the partition wall 32, and the first and second cylindrical surfaces 33 and 34, and the first and second end portions 21e and 21f of the rotor shaft 21 from the cylindrical surfaces 33 and 34, respectively. The first and second taper surfaces 35 and 36 having an inner diameter that decreases toward the end. That is, the recesses 37 and 38 are formed such that the recesses from the inner surface 21a near the ends 21e and 21f of the rotor shaft 21 become shallower from the vicinity of the partition wall 32 toward the ends 21e and 21f of the rotor shaft 21. It is configured. The first side surface 32a on the first end 21e side and the second side surface 32b on the second end 21f side of the rotor shaft 21 of the partition wall 32 are perpendicular to the cylindrical surfaces 33 and 34, respectively. ing. In the present embodiment, the cylindrical surfaces 33 and 34 of the recesses 37 and 38 and the tapered surfaces 35 and 36 have the same inner diameter and length, respectively.

ロータ20の第1、第2エンドプレート23,24は、その内面に半径方向に延びる半径方向孔27,28と、各半径方向孔27,28からそれぞれロータシャフト21の第1端部21e、第2端部21fに向かって軸方向に延びる第1、第2冷媒吹き出し孔29,30とを備えている。また、ロータシャフト21の各半径方向孔27,28に対向する位置には、それぞれ各半径方向孔27,28に連通する第1、第2貫通孔25,26が設けられている。各貫通孔25,26と、各半径方向孔27,28と、各冷媒吹き出し孔29,30とは、それぞれ第4冷媒流路を構成する。   The first and second end plates 23 and 24 of the rotor 20 have radial holes 27 and 28 extending radially on the inner surfaces thereof, and the first end 21e and the first end 21e of the rotor shaft 21 from the radial holes 27 and 28, respectively. First and second refrigerant blowing holes 29 and 30 extending in the axial direction toward the two end portions 21f are provided. Further, first and second through holes 25 and 26 communicating with the respective radial holes 27 and 28 are provided at positions facing the respective radial holes 27 and 28 of the rotor shaft 21. Each through-hole 25, 26, each radial direction hole 27, 28, and each refrigerant | coolant blowing hole 29, 30 comprise a 4th refrigerant | coolant flow path, respectively.

以上、説明したように構成されている本実施形態のモータジェネレータ100の冷媒の流れについて説明する。図1の矢印60に示す様に、冷媒は動力シャフト51の第1端側から中心孔52(第1冷媒流路)に流入する。中心孔52に流入した冷媒は、図1の矢印61,62に示す様に動力シャフト51の貫通孔53(第2冷媒流路)から動力シャフト51の外面51bとロータシャフト21の内面21aとの間の隙間21d(第3冷媒流路)に向かって半径方向に流れ出す。   The flow of the refrigerant of the motor generator 100 of the present embodiment configured as described above will be described. As indicated by an arrow 60 in FIG. 1, the refrigerant flows into the center hole 52 (first refrigerant flow path) from the first end side of the power shaft 51. As shown by arrows 61 and 62 in FIG. 1, the refrigerant flowing into the center hole 52 is formed between the outer surface 51 b of the power shaft 51 and the inner surface 21 a of the rotor shaft 21 from the through hole 53 (second refrigerant flow path) of the power shaft 51. It flows out in the radial direction toward the gap 21d (third refrigerant flow path).

図2に示す様に、貫通孔53から半径方向に流れ出した冷媒は、仕切り壁32の頂面32cに当たって、図2の矢印63,64に示す様に、ロータシャフト21の第1端部21e、第2端部21fに向かう流れに分流される。そして、冷媒は、図2に示す矢印65,66のように第1凹部37、第2凹部38の各円筒面33,34の表面近傍に沿ってそれぞれロータシャフト21の第1端部21e,第2端部21fの方向に流れていく。そして、冷媒は、各円筒面33,34に続く各テーパ面35,36の表面に沿ってロータシャフト21の第1端部21e、第2端部21fに向かって流れてから、動力シャフト51の外面51bとロータシャフト21の各端部21e,21f近傍の内面21aとの間の第1、第2隙間54,55に流れていく。   As shown in FIG. 2, the refrigerant that has flowed out in the radial direction from the through hole 53 hits the top surface 32 c of the partition wall 32, and as shown by arrows 63 and 64 in FIG. 2, the first end 21 e of the rotor shaft 21, The flow is divided into a flow toward the second end 21f. Then, as indicated by the arrows 65 and 66 shown in FIG. It flows in the direction of the two end portions 21f. Then, the refrigerant flows toward the first end 21e and the second end 21f of the rotor shaft 21 along the surfaces of the tapered surfaces 35 and 36 following the cylindrical surfaces 33 and 34, and then the power shaft 51 It flows in the first and second gaps 54 and 55 between the outer surface 51b and the inner surface 21a in the vicinity of the end portions 21e and 21f of the rotor shaft 21.

図1に示す様に、冷媒は、各隙間54,55をそれぞれロータシャフト21の第1端部21e、第2端部21fに向かって流れ、ロータシャフト21の第1、第2貫通孔25,26に達すると、各貫通孔25,26を通って半径方向に流れる。そして、冷媒は、各貫通孔25,26から第1、第2エンドプレート23,24の各半径方向孔27,28を通って各冷媒吹き出し孔29,30からロータシャフト21の外面に吹き出す。各冷媒吹き出し孔29,30から吹き出した冷媒は、遠心力によって半径方向に向かって飛散し、各コイルエンド42,43に吹き付けられ、各コイルエンド42,43を冷却する。   As shown in FIG. 1, the refrigerant flows through the gaps 54 and 55 toward the first end 21e and the second end 21f of the rotor shaft 21, respectively, and the first and second through holes 25, When it reaches 26, it flows through the through holes 25, 26 in the radial direction. Then, the refrigerant blows out from the through holes 25 and 26 to the outer surface of the rotor shaft 21 from the refrigerant blowing holes 29 and 30 through the radial holes 27 and 28 of the first and second end plates 23 and 24. The refrigerant blown out from the refrigerant blowout holes 29 and 30 is scattered in the radial direction by centrifugal force and blown to the coil ends 42 and 43 to cool the coil ends 42 and 43.

本実施形態では、図2に示す様に、貫通孔53から流出した冷媒が各端部21e,21f近傍の各隙間54,55よりも流路面積の大きい各凹部37,38の各円筒面33,34の部分に流れ込み、軸方向に向かう流速が一旦低下した後、各凹部37,38の各テーパ部35,36によってそれぞれ第1端部21e、第2端部21fに向かって軸方向の流速を早めながら各端部21e,21f近傍の各隙間54,55に流れていくので、第1端部21e、第2端部21fにそれぞれ流れる冷媒の流量の割合を所定の値に保持することができる。本実施形態のように、貫通孔53、仕切り壁32をロータコア22の中心軸82の位置(ロータコア22の軸方向中央部)に配置し、各凹部37,38の各円筒面33,34と、各テーパ面35,36とをそれぞれ同一の内径、長さとした場合、第1端部21e、第2端部21fに向かう冷媒の流量はそれぞれ等しい流量となり、各コイルエンド42,43を均等に冷却することができる。   In the present embodiment, as shown in FIG. 2, each cylindrical surface 33 of each recess 37, 38 in which the refrigerant flowing out from the through hole 53 has a larger flow area than each gap 54, 55 near each end 21e, 21f. , 34 and the axial flow velocity decreases once, and then the axial flow velocity toward the first end portion 21e and the second end portion 21f by the tapered portions 35, 36 of the concave portions 37, 38, respectively. The flow rate of the refrigerant flowing through the first end portion 21e and the second end portion 21f can be maintained at a predetermined value. it can. As in the present embodiment, the through hole 53 and the partition wall 32 are disposed at the position of the central axis 82 of the rotor core 22 (the axial center of the rotor core 22), and the cylindrical surfaces 33 and 34 of the recesses 37 and 38, When the taper surfaces 35 and 36 have the same inner diameter and length, the flow rates of the refrigerant toward the first end 21e and the second end 21f are equal to each other, and the coil ends 42 and 43 are evenly cooled. can do.

また、各凹部37,38と仕切り壁32によって第1隙間54と第2隙間55との間の冷媒の流通を遮断することができるので、図2に示す矢印71,72のように、第1凹部37から第2凹部38に向かう流れ、或いは逆に第2凹部38から第1凹部37に向かう冷媒の流れを遮断することができる。このため、ロータシャフト21の回転軸81が水平面に対して傾斜した場合であっても、第1端部21e、第2端部21fに向かう冷媒の流量が変化せず、冷媒の流量を安定させ、各コイルエンド42,43を安定して冷却することができる。特に、仕切り壁32の各側面32a,32bが各凹部37,38の各円筒面33,34に対して直角となっているので、冷媒が仕切り壁32を越えて反対側の各凹部37,38に流れ込むことを抑制することができ、確実に第1端部21e、第2端部21fに向かう冷媒の流量の割合を所定の値に安定させることができる。更に、仕切り壁32を設けることによりロータシャフト21の内面積が増加し、ロータシャフト21の冷却が促進される。   In addition, since the refrigerant flow between the first gap 54 and the second gap 55 can be blocked by the recesses 37 and 38 and the partition wall 32, the first and second arrows 71 and 72 shown in FIG. The flow from the concave portion 37 toward the second concave portion 38, or conversely, the refrigerant flow from the second concave portion 38 toward the first concave portion 37 can be blocked. For this reason, even if the rotating shaft 81 of the rotor shaft 21 is inclined with respect to the horizontal plane, the flow rate of the refrigerant toward the first end 21e and the second end 21f does not change, and the flow rate of the refrigerant is stabilized. The coil ends 42 and 43 can be cooled stably. In particular, since the side surfaces 32 a and 32 b of the partition wall 32 are perpendicular to the cylindrical surfaces 33 and 34 of the recesses 37 and 38, the coolant passes through the partition wall 32 and the recesses 37 and 38 on the opposite side. And the ratio of the flow rate of the refrigerant toward the first end 21e and the second end 21f can be reliably stabilized at a predetermined value. Furthermore, by providing the partition wall 32, the inner area of the rotor shaft 21 increases, and cooling of the rotor shaft 21 is promoted.

以上、説明した実施形態は、貫通孔53、仕切り壁32をロータコア22の中心軸82の位置(ロータコア22の軸方向中央部)に配置して、第1端部21e、第2端部21fに向かう冷媒の流量をそれぞれ等しい流量とすることとして説明したが、第1端部21eと第2端部21fに向かう冷媒の流量の割合を均等ではなく、いずれか一方の割合を大きく或いは小さくしたい場合には、貫通孔53、仕切り壁32をロータコア22の中心軸82の位置からずらした位置に配置するようにしてもよいし、貫通孔53、仕切り壁32をロータコア22の中心軸82の位置(ロータコア22の軸方向中央部)に配置し、各円筒面33,34、各テーパ面35,36の内径を第1端部21e側と第2端部側で異ならせるように構成しても良いし、仕切り壁32をいずれかの円筒面33,34に対して斜めに配置するようにしてもよい。   In the embodiment described above, the through hole 53 and the partition wall 32 are arranged at the position of the central shaft 82 of the rotor core 22 (the axial center portion of the rotor core 22), and the first end portion 21e and the second end portion 21f are arranged. Although it has been described that the flow rate of the refrigerant toward each is equal, the proportion of the flow rate of the refrigerant toward the first end portion 21e and the second end portion 21f is not uniform, and it is desired to increase or decrease the proportion of either one In other words, the through hole 53 and the partition wall 32 may be arranged at positions shifted from the position of the central axis 82 of the rotor core 22, or the through hole 53 and the partition wall 32 may be positioned at the position of the central axis 82 of the rotor core 22 ( The cylindrical cores 33 and 34 and the tapered surfaces 35 and 36 may be configured so that the inner diameters thereof are different between the first end 21e side and the second end side. And finish It may be arranged diagonally with respect to either the cylindrical surface 33 and 34 Rikabe 32.

10 ケーシング、11,12 端板、13,14 ボールベアリング、20 ロータ、21 ロータシャフト、21a,51a 内面、21b,51b 外面、21c 中空部分、21d,54,55 隙間、21e 第1端部、21f 第2端部、22 ロータコア、23,24 エンドプレート、25,26,53 貫通孔、27,28 半径方向孔、29,30 冷媒吹き出し孔、31 冷媒分流器、32 仕切り壁、32a,32b 側面、32c 頂面、33,34 円筒面、35,36 テーパ面、37,38 凹部、40 ステータ、41 ステータコア、42,43 コイルエンド、51 動力シャフト、52 中心孔、81 回転軸、82 中心軸、100 モータジェネレータ。   10 casing, 11, 12 end plate, 13, 14 ball bearing, 20 rotor, 21 rotor shaft, 21a, 51a inner surface, 21b, 51b outer surface, 21c hollow portion, 21d, 54, 55 clearance, 21e first end portion, 21f Second end, 22 Rotor core, 23, 24 End plate, 25, 26, 53 Through hole, 27, 28 Radial hole, 29, 30 Refrigerant blowout hole, 31 Refrigerant flow divider, 32 Partition wall, 32a, 32b Side surface, 32c Top surface, 33, 34 Cylindrical surface, 35, 36 Tapered surface, 37, 38 Recessed part, 40 Stator, 41 Stator core, 42, 43 Coil end, 51 Power shaft, 52 Center hole, 81 Rotating shaft, 82 Center shaft, 100 Motor generator.

Claims (5)

同軸に配置され、動力を伝達する動力シャフトが貫通する中空形状のロータシャフトを備える回転電機であって、
前記動力シャフトは、内部に軸方向に延びる第1冷媒流路と、前記第1冷媒流路から半径方向に延びて前記動力シャフトの外面に達する第2冷媒流路とを含み、
前記動力シャフトの外面と前記ロータシャフトの内面との間の隙間は、軸方向に延びる第3冷媒流路を成形し、
前記ロータシャフトの内面の前記第2冷媒流路に対向する位置の近傍に配置され、前記第2冷媒流路から流出して前記第3冷媒流路内の軸方向の両側に向かう冷媒の各流量の割合が所定の値になるように冷媒を分流する冷媒分流器を備えること、
を特徴とする回転電機。
A rotating electrical machine including a hollow rotor shaft that is coaxially disposed and through which a power shaft that transmits power passes,
The power shaft includes a first refrigerant channel extending in an axial direction therein, and a second refrigerant channel extending in a radial direction from the first refrigerant channel and reaching an outer surface of the power shaft,
The gap between the outer surface of the power shaft and the inner surface of the rotor shaft forms a third coolant channel extending in the axial direction,
Each flow rate of the refrigerant that is disposed in the vicinity of the position facing the second refrigerant flow path on the inner surface of the rotor shaft and flows out from the second refrigerant flow path toward both sides in the axial direction in the third refrigerant flow path A refrigerant flow divider for diverting the refrigerant so that the ratio of
Rotating electric machine.
請求項1に記載の回転電機であって、
前記冷媒分流器は、前記第2冷媒流路に対向する位置の軸方向両側にそれぞれ配置され、前記ロータシャフトの内面から外面に向かって凹んだ凹部と
前記ロータシャフトの内面の前記第2冷媒流路に対向する位置に配置され、前記各凹部の間を仕切る仕切り壁と、を有すること、
を特徴とする回転電機。
The rotating electrical machine according to claim 1,
The refrigerant flow divider is disposed on both sides in the axial direction at a position facing the second refrigerant flow path, and a recess recessed from the inner surface of the rotor shaft toward the outer surface and the second refrigerant flow on the inner surface of the rotor shaft. A partition wall disposed at a position facing the road and partitioning between the recesses,
Rotating electric machine.
請求項2に記載の回転電機であって、
前記各凹部は、前記ロータシャフトの各端に向かうにつれて浅くなっていること、
を特徴とする回転電機。
The rotating electrical machine according to claim 2,
Each of the recesses becomes shallower toward each end of the rotor shaft;
Rotating electric machine.
請求項2または3に記載の回転電機であって、
前記仕切り壁は、周方向に連続又は断続した円環板状で、
前記仕切り壁近傍の前記各凹部表面は円筒面で、
前記仕切り壁の軸方向側の側面は、前記各凹部表面に対して略直角であること、
を特徴とする回転電機。
The rotating electrical machine according to claim 2 or 3,
The partition wall is an annular plate that is continuous or intermittent in the circumferential direction,
The surface of each recess near the partition wall is a cylindrical surface,
The axial side surface of the partition wall is substantially perpendicular to the surface of each recess;
Rotating electric machine.
請求項2から4のいずれか1項に記載の回転電機であって、
前記ロータシャフトの外周に固定されたロータコアと、
前記ロータコアの外周に配置されるステータコアと、
前記ステータコアの軸方向両端面に配置される各コイルエンドと、
前記ロータシャフトの内面から前記ロータシャフトの軸方向両端近傍の各外面に連通し、前記第3冷媒流路から前記各コイルエンドに向かって冷媒を噴出させる複数の第4冷媒流路と、を備え、
前記第2冷媒流路は、前記ロータコアの軸方向の中央に配置されていること、
を特徴とする回転電機。
The rotating electrical machine according to any one of claims 2 to 4,
A rotor core fixed to the outer periphery of the rotor shaft;
A stator core disposed on the outer periphery of the rotor core;
Each coil end disposed on both axial end surfaces of the stator core;
A plurality of fourth refrigerant passages communicating from the inner surface of the rotor shaft to the outer surfaces near both axial ends of the rotor shaft and for ejecting refrigerant from the third refrigerant passage toward the coil ends. ,
The second refrigerant flow path is disposed at an axial center of the rotor core;
Rotating electric machine.
JP2011192441A 2011-09-05 2011-09-05 Rotating electric machine Active JP5765149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192441A JP5765149B2 (en) 2011-09-05 2011-09-05 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192441A JP5765149B2 (en) 2011-09-05 2011-09-05 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013055799A true JP2013055799A (en) 2013-03-21
JP5765149B2 JP5765149B2 (en) 2015-08-19

Family

ID=48132317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192441A Active JP5765149B2 (en) 2011-09-05 2011-09-05 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5765149B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004065A1 (en) * 2017-06-30 2019-01-03 Ntn株式会社 Rotary electric machine and in-wheel motor drive device provided with rotary electric machine
DE102019200552A1 (en) * 2019-01-17 2020-07-23 Zf Friedrichshafen Ag Component arrangement for a motor vehicle
JP2020114135A (en) * 2019-01-15 2020-07-27 本田技研工業株式会社 Rotary electric machine rotor and rotary electric machine
CN113597731A (en) * 2018-12-12 2021-11-02 汉拿电驱动股份有限公司 Rotor device for electric motor and electric motor
WO2022112704A1 (en) 2020-11-30 2022-06-02 Nidec Psa Emotors Flange and rotor for a rotary electrical machine
US20220311296A1 (en) * 2021-03-26 2022-09-29 Mahle International Gmbh Rotor for an electrical machine
WO2023198385A1 (en) * 2022-04-13 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Cooling-fluid-guiding rotor shaft for a rotor of an electric machine with impact wall

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021211688A1 (en) * 2021-10-15 2023-04-20 Vitesco Technologies GmbH Fluid-cooled electric machine and motor vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929002B1 (en) * 1969-01-24 1974-07-31
JPS5190005U (en) * 1975-01-17 1976-07-19
JPS521404A (en) * 1975-06-24 1977-01-07 Toshiba Corp Rotary electric machine
JPS6355774U (en) * 1986-09-26 1988-04-14
JP2002186221A (en) * 2000-12-11 2002-06-28 Mitsubishi Heavy Ind Ltd Cooling structure of power generator
JP2005073351A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Cooling structure of rotating electric machine
US20050206251A1 (en) * 2004-03-22 2005-09-22 Foster Michael D Electric motor/generator and method of cooling an electromechanical transmission
JP2009296772A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Cooling device for coil end of rotary electric machine
US20100194220A1 (en) * 2007-07-19 2010-08-05 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP2013513354A (en) * 2009-12-08 2013-04-18 ジン−ジン エレクトリック テクノロジーズ ペキン カンパニー リミテッド Electric motor and oil cooling method for electric motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929002B1 (en) * 1969-01-24 1974-07-31
JPS5190005U (en) * 1975-01-17 1976-07-19
JPS521404A (en) * 1975-06-24 1977-01-07 Toshiba Corp Rotary electric machine
JPS6355774U (en) * 1986-09-26 1988-04-14
JP2002186221A (en) * 2000-12-11 2002-06-28 Mitsubishi Heavy Ind Ltd Cooling structure of power generator
JP2005073351A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Cooling structure of rotating electric machine
US20050206251A1 (en) * 2004-03-22 2005-09-22 Foster Michael D Electric motor/generator and method of cooling an electromechanical transmission
US20100194220A1 (en) * 2007-07-19 2010-08-05 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP2009296772A (en) * 2008-06-04 2009-12-17 Toyota Motor Corp Cooling device for coil end of rotary electric machine
JP2013513354A (en) * 2009-12-08 2013-04-18 ジン−ジン エレクトリック テクノロジーズ ペキン カンパニー リミテッド Electric motor and oil cooling method for electric motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004065A1 (en) * 2017-06-30 2019-01-03 Ntn株式会社 Rotary electric machine and in-wheel motor drive device provided with rotary electric machine
CN113597731A (en) * 2018-12-12 2021-11-02 汉拿电驱动股份有限公司 Rotor device for electric motor and electric motor
JP2020114135A (en) * 2019-01-15 2020-07-27 本田技研工業株式会社 Rotary electric machine rotor and rotary electric machine
DE102019200552A1 (en) * 2019-01-17 2020-07-23 Zf Friedrichshafen Ag Component arrangement for a motor vehicle
WO2022112704A1 (en) 2020-11-30 2022-06-02 Nidec Psa Emotors Flange and rotor for a rotary electrical machine
FR3116964A1 (en) 2020-11-30 2022-06-03 Nidec Psa Emotors Flange and rotor of rotating electric machine
US20220311296A1 (en) * 2021-03-26 2022-09-29 Mahle International Gmbh Rotor for an electrical machine
WO2023198385A1 (en) * 2022-04-13 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Cooling-fluid-guiding rotor shaft for a rotor of an electric machine with impact wall

Also Published As

Publication number Publication date
JP5765149B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5765149B2 (en) Rotating electric machine
JP5772544B2 (en) Cooling structure of rotating electric machine
KR102061991B1 (en) Assembled hollow rotor shaft with cooling medium distribution element
JP4560067B2 (en) Rotating electric machine
JP5448559B2 (en) Motor cooling structure
US20160372983A1 (en) Rotor of rotary electric machine
CN103620918A (en) Cooling structure of rotary electric machine
US20130221772A1 (en) Cooling structure of rotor for rotary electric machine, and rotary electric machine
CN109936232B (en) Car, motor and stator module and reposition of redundant personnel mechanism thereof
US20130076169A1 (en) Electrical machine with reduced windage loss
JP2013132151A (en) Rotary electric machine and rotary electric machine cooling system
JP2012105487A (en) Cooling device for electric motor
JP2013009597A (en) Case for rotary electric machine
JP7115912B2 (en) Rotor manufacturing method
JP2016054608A (en) Rotor for rotary electric machine
WO2013136405A1 (en) Rotating electrical machine
JP2014030284A (en) Rotary electric machine for vehicle
JP2016144362A (en) Cooling structure for rotary electric machine
JP6190910B1 (en) Rotating electric machine
JP2016082628A (en) Rotary electric machine
CN114285202A (en) Motor and rotor thereof
JP5065166B2 (en) Rotating electrical machine rotor
JP2017131078A (en) Cooling structure of motor
JP6089502B2 (en) Rotating machine
US11056952B2 (en) Electric machine with internal cooling passageways

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5765149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151