JP2013055001A - Reflector for vehicular lamp and vehicular lamp including the same - Google Patents

Reflector for vehicular lamp and vehicular lamp including the same Download PDF

Info

Publication number
JP2013055001A
JP2013055001A JP2011194025A JP2011194025A JP2013055001A JP 2013055001 A JP2013055001 A JP 2013055001A JP 2011194025 A JP2011194025 A JP 2011194025A JP 2011194025 A JP2011194025 A JP 2011194025A JP 2013055001 A JP2013055001 A JP 2013055001A
Authority
JP
Japan
Prior art keywords
resin
bmc
calcium carbonate
volume ratio
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011194025A
Other languages
Japanese (ja)
Other versions
JP5922358B2 (en
Inventor
Hajime Kobayashi
肇 小林
Eiji Mano
英二 間野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011194025A priority Critical patent/JP5922358B2/en
Publication of JP2013055001A publication Critical patent/JP2013055001A/en
Application granted granted Critical
Publication of JP5922358B2 publication Critical patent/JP5922358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reflector for a vehicular lamp, by a molded component using a BMC resin as a molding material, capable of obtaining lighter weight while securing excellent mechanical strength as an injection molded component used for a reflector for a vehicular lamp and moreover suppressing scratches and abrasion on an inner wall of a cavity to be caused at the time of injection molding to the cavity.SOLUTION: In the BMC resin made of a matrix resin having unsaturated polyester resin as a principal component added with at least glass fiber, calcium carbonate 62 and glass hollow beads 61 as inorganic fillers, a mass ratio of calcium carbonate 62 to the BMC resin is set to be in a range of 19.7% to 10.6 vol% and moreover the mass ratio of the glass hollow beads 61 to the BMC resin is set so that a total mass ratio of the mass ratios of calcium carbonate 62 and the glass hollow beads 61 to the BMC resin may be in a range of about 49 vol%.

Description

本発明は、車両用灯具を構成し、光源からの出射光を前方の前面レンズ方向に向けて反射する光反射面を備えたリフレクタ及びそれを備えた車両用灯具に関する。   The present invention relates to a reflector that includes a light reflecting surface that constitutes a vehicular lamp and reflects light emitted from a light source toward a front front lens, and a vehicular lamp that includes the reflector.

車両用灯具に用いられるこの種のリフレクタは、射出成形により光反射面を形成する前の成形品を成形するに際し、不飽和ポリエステル樹脂を主成分とするマトリクス樹脂に炭酸カルシウム等からなる無機充填材やガラス繊維やガラスバルーンを添加したBMC材料(バルクモールディングコンパウンド)を成形材料として用いることがある。   This type of reflector used for vehicle lamps is an inorganic filler made of calcium carbonate or the like in a matrix resin mainly composed of an unsaturated polyester resin when molding a molded product before forming a light reflecting surface by injection molding. BMC material (bulk molding compound) to which glass fiber or glass balloon is added may be used as a molding material.

BMC材料を射出成形材料とする具体的な例としては、例えば、不飽和ポリエステル樹脂及び架橋剤100質量部に対して、0.5μm以上の平均粒子径を有する無機充填材(例えば、炭酸カルシウム)40〜210質量部と2100×10N/mの耐圧強度を有する中空フィラー(例えば、ガラスバルーン)30〜160質量部とを、無機充填材と中空フィラーとの質量比率が2:8〜8:2となる範囲で添加するものである(例えば、特許文献1参照。)。 As a specific example of using a BMC material as an injection molding material, for example, an inorganic filler (for example, calcium carbonate) having an average particle diameter of 0.5 μm or more with respect to 100 parts by mass of an unsaturated polyester resin and a crosslinking agent. 40 to 210 parts by mass and 30 to 160 parts by mass of a hollow filler (for example, glass balloon) having a pressure strength of 2100 × 10 4 N / m 2 , and the mass ratio of the inorganic filler to the hollow filler is 2: 8 to It is added within a range of 8: 2 (see, for example, Patent Document 1).

特許第4673298号Japanese Patent No. 4673298

ところで、上記組成構成のBMC材料は、上述のようにリフレクタの軽量化の面から所定の耐圧強度を有する中空フィラーが不飽和ポリエステル樹脂及び架橋剤からなるマトリクス樹脂に添加されており、その耐圧強度及び添加量は、成形性、成形体の寸法安定性、剛性等の諸特性が良好に確保できるような範囲に設定されている。   By the way, in the BMC material having the above composition, the hollow filler having a predetermined pressure strength is added to the matrix resin composed of the unsaturated polyester resin and the crosslinking agent from the viewpoint of reducing the weight of the reflector as described above. The addition amount is set in a range in which various properties such as moldability, dimensional stability of the molded body, and rigidity can be secured satisfactorily.

それと同時に、マトリクス樹脂には繊維強化材として例えば、繊維長1.5〜25mm程度に切断したチョップドストランドガラスと、無機充填材として炭酸カルシウムが添加されており、射出成形時に成形金型のキャビティ内にBMC材料を射出する際に、キャビティ壁面に繊維強化材の攻撃性及び炭酸カルシウムの不定形粒子の凸部によって傷や摩耗を生じる恐れがあり、金型劣化による金型寿命の短縮及び成形体の完成度の低下を招くことになる。   At the same time, the matrix resin contains, for example, chopped strand glass cut to a fiber length of about 1.5 to 25 mm as a fiber reinforcement, and calcium carbonate as an inorganic filler. When the BMC material is injected into the cavity, the cavity wall surface may be damaged and worn due to the aggressiveness of the fiber reinforcement and the irregular shape of the calcium carbonate particles. Will lead to a decrease in the degree of completion.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、軽量化を図ると共に、射出成形時に成形金型のキャビティ内への射出によって生じるキャビティ壁面への傷や摩耗を抑制するBMC材料を成形材料として用いた成形体による車両用灯具のリフレクタを提供することにある。   Therefore, the present invention was devised in view of the above-mentioned problems, and its object is to reduce the weight and to damage and wear the cavity wall surface caused by injection into the cavity of the molding die during injection molding. An object of the present invention is to provide a reflector for a vehicle lamp using a molded body that uses a BMC material that suppresses the above as a molding material.

上記課題を解決するために、本発明の請求項1に記載された発明は、不飽和ポリエステル樹脂を主成分とするマトリクス樹脂に、無機充填材として炭酸カルシウムと、繊維強化材及びガラス中空ビーズを添加したBMC樹脂による射出成形品を用いた車両用灯具のリフレクタであって、前記炭酸カルシウムは前記BMC樹脂に対する容積比率が19.7〜10.6vol%の範囲にあり、前記ガラス中空ビーズは前記BMC樹脂に対する前記炭酸カルシウムの容積比率と前記ガラス中空ビーズの容積比率の合計容積比率が約49vol%となるような範囲にあることを特徴とするものである。   In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention includes a matrix resin containing an unsaturated polyester resin as a main component, calcium carbonate as an inorganic filler, a fiber reinforcement, and glass hollow beads. A reflector for a vehicle lamp using an injection-molded product of an added BMC resin, wherein the calcium carbonate has a volume ratio of 19.7 to 10.6 vol% with respect to the BMC resin, and the glass hollow beads are The total volume ratio of the volume ratio of the calcium carbonate to the BMC resin and the volume ratio of the glass hollow beads is in a range that is about 49 vol%.

また、本発明の請求項2に記載された発明は、請求項1において、前記射出成形品は、前記BMC樹脂が射出金型のキャビティの面方向に対して略垂直な方向からゲートを介して前記キャビティ内に射出されて成形されることを特徴とするものである。   Further, the invention described in claim 2 of the present invention is that in claim 1, the injection-molded product is such that the BMC resin is inserted through a gate from a direction substantially perpendicular to the surface direction of the cavity of the injection mold. It is characterized by being injected into the cavity and molded.

本発明は、不飽和ポリエステル樹脂を主成分とするマトリクス樹脂に無機充填材として少なくともガラス繊維、炭酸カルシウム及びガラス中空ビーズを添加したBMC樹脂において、BMC樹脂に対する炭酸カルシウムの容積比率を19.7〜10.6vol%の範囲とすると共に、BMC樹脂に対するガラス中空ビーズの容積比率を、BMC樹脂に対する炭酸カルシウムの容積比率とガラス中空ビーズの容積比率の合計容積比率が約49vol%となるような範囲とした。   In the BMC resin in which at least glass fiber, calcium carbonate, and glass hollow beads are added as inorganic fillers to a matrix resin containing an unsaturated polyester resin as a main component, the volume ratio of calcium carbonate to BMC resin is 19.7 to The volume ratio of the glass hollow beads to the BMC resin is set to a range such that the total volume ratio of the volume ratio of calcium carbonate to the BMC resin and the volume ratio of the glass hollow beads is about 49 vol%. did.

その結果、車両用灯具のリフレクタに用いる射出成形品として良好な機械的強度を確保しながら軽量化を図ることができると共に、射出成形時にキャビティ内への射出によって生じるキャビティ内壁への傷や摩耗を抑制するBMC樹脂を成形材料として用いた成形品による車両用灯具のリフレクタを実現することができた。   As a result, it is possible to reduce the weight while securing a good mechanical strength as an injection molded product used for a reflector of a vehicle lamp, and to prevent damage and wear on the inner wall of the cavity caused by injection into the cavity during injection molding. The reflector of the vehicle lamp by the molded article which used BMC resin to suppress as a molding material was able to be realized.

実施形態のリフレクタを用いた車両用灯具の一例を示す縦断面説明図である。It is longitudinal section explanatory drawing which shows an example of the vehicle lamp using the reflector of embodiment. 図1のA部拡大説明図である。It is the A section enlarged explanatory view of FIG. 金型装置の説明図である。It is explanatory drawing of a metal mold apparatus. 試作サンプルを説明する図である。It is a figure explaining a trial manufacture sample. BMC樹脂の添加材の形状を説明する図である。It is a figure explaining the shape of the additive of BMC resin. 金型装置の部分拡大説明図である。It is a partial expanded explanatory view of a metal mold apparatus. 同じく、金型装置の部分拡大説明図である。Similarly, it is the elements on larger scale of a metallic mold device. 同じく、金型装置の部分拡大説明図である。Similarly, it is the elements on larger scale of a metallic mold device.

以下、この発明の好適な実施形態を図1〜図8を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 8 (the same portions are given the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は、実施形態のリフレクタを用いた車両用灯具の一例を示す縦断面説明図である。   Drawing 1 is a longitudinal section explanatory view showing an example of a vehicular lamp using a reflector of an embodiment.

車両用灯具1は、互いに対向する側に開口とシールカバー装着孔を備えたハウジング2と、ハウジング2の開口を塞ぐように該ハウジング2の開口部に取り付けられた前面レンズ3と、シールカバー装着孔を塞ぐように該シールカバー装着孔に装着されたシールカバー4とで密閉空間からなる灯室5が形成されている。   A vehicular lamp 1 includes a housing 2 having an opening and a seal cover mounting hole on opposite sides, a front lens 3 attached to the opening of the housing 2 so as to close the opening of the housing 2, and a seal cover mounting A lamp chamber 5 comprising a sealed space is formed with the seal cover 4 mounted in the seal cover mounting hole so as to close the hole.

灯室5内には、ハウジング2に支持固定され、前面レンズ3側に向かって開く凹状湾曲形状を有するリフレクタ6が収容され、シールカバー4のバルブ挿着孔に挿着されてリフレクタ6のバルブ挿嵌孔に挿嵌されたバルブ(光源)7が側方をリフレクタ6で包囲された状態に配置されている。   A reflector 6 having a concave curved shape that is supported and fixed to the housing 2 and that opens toward the front lens 3 is accommodated in the lamp chamber 5, and is inserted into a valve insertion hole of the seal cover 4 to be a valve of the reflector 6. A bulb (light source) 7 inserted into the insertion hole is arranged in a state of being surrounded by the reflector 6 on the side.

リフレクタ6は、BMC樹脂の射出成形で得られた成形品(リフレクタ6の成形基材)の、バルブ7を側方から包囲する側の面(内面)を、形状が異なる複数の湾曲面あるいは平面と湾曲面の組み合わせで構成された複合面8としている。   The reflector 6 has a plurality of curved surfaces or flat surfaces having different shapes on the surface (inner surface) surrounding the valve 7 from the side of a molded product (molded base material of the reflector 6) obtained by injection molding of BMC resin. And a composite surface 8 composed of a combination of curved surfaces.

そして、成形基材13の複合面8上には図2(図1のA部拡大図で、複合反射面の構成を説明する図)に示すように、樹脂によるアンダーコート層9が成膜され、その上にアルミニウムなどの金属反射膜10が蒸着やスパッタにより成膜され、更にその上に透明樹脂によるトップコート層11が成膜されて、光反射効率の向上と配光パターンの形成に寄与する複合反射面12が形成されている。   An undercoat layer 9 made of resin is formed on the composite surface 8 of the molding substrate 13 as shown in FIG. 2 (a diagram illustrating the configuration of the composite reflection surface in the enlarged view of the portion A in FIG. 1). A metal reflective film 10 such as aluminum is formed thereon by vapor deposition or sputtering, and a top coat layer 11 made of a transparent resin is further formed thereon, contributing to improvement in light reflection efficiency and formation of a light distribution pattern. A composite reflecting surface 12 is formed.

つまり、複合反射面12を構成する各反射面は、光源7からの出射光を反射してその反射光が配光パターンにおける所望の領域を形成するような照射光となるように最適な形状に設定されている。   That is, each reflecting surface constituting the composite reflecting surface 12 has an optimum shape so that the reflected light becomes an irradiation light that reflects light emitted from the light source 7 and forms the desired region in the light distribution pattern. Is set.

そこで、図1に戻って、上記構成からなる車両用灯具1において、バルブ7の発光部14からリフレクタ6の、バルブ7の光軸Xを含む水平面よりも上側の複合反射面12aに向けて出射された光L1及び下側の複合反射面12b向けて出射された光L2はいずれも夫々複合反射面12a、12bで反射され、配光制御された反射光は前方に位置し配光パターンの形成には寄与しない所謂素通しの前面レンズ3をそのまま透過して前方に照射され、その照射光が所望の配光パターンを形成する。   Therefore, returning to FIG. 1, in the vehicular lamp 1 having the above-described configuration, the light is emitted from the light emitting portion 14 of the bulb 7 toward the composite reflecting surface 12a above the horizontal plane of the reflector 6 including the optical axis X of the bulb 7. The light L1 and the light L2 emitted toward the lower composite reflection surface 12b are reflected by the composite reflection surfaces 12a and 12b, respectively, and the reflected light whose light distribution has been controlled is located in front and forms a light distribution pattern. The light passes through a so-called plain front lens 3 that does not contribute to the light and is irradiated forward, and the irradiated light forms a desired light distribution pattern.

次に、このような光学機能を有するリフレクタ6において、複合反射面12を設ける基材となる成形品(成形基材)を成形する射出成形の成形材料となるBMC樹脂について説明する。   Next, in the reflector 6 having such an optical function, a BMC resin that is a molding material for injection molding that molds a molded product (molded substrate) that is a base material on which the composite reflecting surface 12 is provided will be described.

BMC樹脂は熱硬化性樹脂であり、基本組成物として、マトリクス樹脂には繊維強化材としてガラス繊維を、無機充填材として炭酸カルシウム、ガラス中空ビーズ等を添加し、更に硬化剤や離型剤等を添加したものである。   BMC resin is a thermosetting resin. As a basic composition, glass fiber is added to the matrix resin as a fiber reinforcing material, calcium carbonate, glass hollow beads, etc. are added as inorganic fillers, and further a curing agent, a release agent, etc. Is added.

そのうち、マトリクス樹脂は不飽和ポリエステル樹脂を主成分とし、不飽和ポリエステル樹脂としては、その種類は特に限定されるものではないが、例えば、多価アルコールと不飽和多塩基酸との縮重合によって得られたものである。   Among them, the matrix resin is mainly composed of an unsaturated polyester resin, and the type of the unsaturated polyester resin is not particularly limited. For example, it can be obtained by polycondensation of a polyhydric alcohol and an unsaturated polybasic acid. It is what was done.

多価アルコールとしては、その種類は特に限定されるものではないが、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等を用いることができる。   The type of polyhydric alcohol is not particularly limited. For example, ethylene glycol, propylene glycol, neopentyl glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neo Pentanediol, hydrogenated bisphenol A, bisphenol A, glycerin and the like can be used.

そして、これらの中でも、耐熱性、機械的強度及び成形性等の観点から、プロピレングリコール、ネオペンチルグリコール、及びビスフェノールA又は水素化ビスフェノールAが好ましい。   Among these, propylene glycol, neopentyl glycol, and bisphenol A or hydrogenated bisphenol A are preferable from the viewpoints of heat resistance, mechanical strength, moldability, and the like.

不飽和多塩基酸としては、その種類は特に限定されるものではないが、例えば、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等を用いることができる。   The type of unsaturated polybasic acid is not particularly limited. For example, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like can be used.

そして、これらの中でも、耐熱性、機械的強度及び成形性等の観点から、無水マレイン酸及びフマル酸が好ましい。   Among these, maleic anhydride and fumaric acid are preferable from the viewpoints of heat resistance, mechanical strength, moldability, and the like.

繊維強化材としては、繊維長が約1.5〜25mmのガラス繊維を用いることができる。その他、パルプ繊維、テトロン繊維、ビニロン繊維、カーボン繊維、アラミド繊維、ワラストナイト等の有機・無機繊維を用いることも可能である。   As the fiber reinforcement, glass fibers having a fiber length of about 1.5 to 25 mm can be used. In addition, organic and inorganic fibers such as pulp fiber, tetron fiber, vinylon fiber, carbon fiber, aramid fiber, and wollastonite can also be used.

次に、BMC樹脂の組成物の最適な組成比(容積比率:vol%)について、図3の金型装置を用いた射出成形により得られた試作成形基材の検証結果を説明する。   Next, the verification result of the prototype molded substrate obtained by injection molding using the mold apparatus of FIG. 3 will be described with respect to the optimal composition ratio (volume ratio: vol%) of the BMC resin composition.

まず、図3(金型装置の説明図)の金型装置は、固定金型(キャビティ金型)20と可動金型(コア金型)30との型締めによって図中に示す位置に突き合わせ面(以下、パーティング面と呼称する)40を有すると共に、型締めされた固定金型20と可動金型30とによって射出成形品を形成するためのキャビティ50が区画形成されている。   First, the mold apparatus shown in FIG. 3 (description of the mold apparatus) has a butt surface at the position shown in the figure by clamping the fixed mold (cavity mold) 20 and the movable mold (core mold) 30. A cavity 50 for forming an injection-molded product is defined by the fixed mold 20 and the movable mold 30 which are clamped and have 40 (hereinafter referred to as a parting surface).

また、固定金型20には、成形樹脂のBMC樹脂をキャビティ50内に注入するためのファンゲート21が、可動金型30の型開き方向Aに対して略垂直方向に延設されており、該ファンゲート21はランナ22及びスプル23を経てスプルブッシュ24のノズル接触部25に連通している。   The fixed mold 20 has a fan gate 21 for injecting a BMC resin, which is a molding resin, into the cavity 50, extending in a direction substantially perpendicular to the mold opening direction A of the movable mold 30. The fan gate 21 communicates with the nozzle contact portion 25 of the sprue bush 24 via the runner 22 and the sprue 23.

そして、スプルブッシュ24のノズル接触部25に射出成形機のノズル先端部(図示せず)が接触した状態で該ノズル先端部からスプル23内にBMC樹脂が射出されると、BMC樹脂はスプル23からランナ22及びファンゲート21を通ってキャビティ50内に射出され、キャビティ50全体がBMC樹脂で充填される。その後、キャビティ50内のBMC樹脂を加熱硬化して射出成形品が得られる。   Then, when BMC resin is injected into the sprue 23 from the nozzle tip portion in a state where the nozzle tip portion (not shown) of the injection molding machine is in contact with the nozzle contact portion 25 of the sprue bush 24, the BMC resin is sprue 23. Is injected into the cavity 50 through the runner 22 and the fan gate 21, and the entire cavity 50 is filled with BMC resin. Thereafter, the BMC resin in the cavity 50 is heated and cured to obtain an injection molded product.

そこで、上記金型装置を用いた射出成形によって、図4(試作サンプルを説明する表)に示すような、組成の異なる5種類のBMC樹脂によるリフレクタの成形基材の試作サンプルを作製した。   Therefore, a prototype sample of a reflector molding base material made of five types of BMC resins having different compositions as shown in FIG. 4 (a table for explaining the prototype sample) was produced by injection molding using the mold apparatus.

サンプル1は、BMC樹脂に対する比重1.1のマトリクス樹脂の容積比率を42.2vol%、比重2.7のガラス繊維の容積比率を8.8vol%、比重2.7の炭酸カルシウムの容積比率を49.1vol%、比重0.6のガラス中空ビーズの容積比率を0vol%とした。この時、BMC樹脂の比重は2.0であった。   Sample 1 has a volume ratio of a matrix resin having a specific gravity of 1.1 to a BMC resin of 42.2 vol%, a volume ratio of glass fibers having a specific gravity of 2.7, 8.8 vol%, and a volume ratio of calcium carbonate having a specific gravity of 2.7. The volume ratio of glass hollow beads of 49.1 vol% and specific gravity 0.6 was 0 vol%. At this time, the specific gravity of the BMC resin was 2.0.

また、ガラス中空ビーズ61としては耐圧強度100MPa以上の真球体であるグラスバブルズ(商標)S60HS(3M社製)を用い、繊維強化材としては繊維長が約2.5mmのガラス繊維を用い、炭酸カルシウム62は非真球体(粉砕品)を用いた(図5(ガラス中空ビーズと炭酸カルシウムの形状を示す図)参照)。   Further, as the glass hollow beads 61, glass bubbles (trademark) S60HS (manufactured by 3M company) which is a true sphere having a pressure strength of 100 MPa or more is used, and a glass fiber having a fiber length of about 2.5 mm is used as a fiber reinforcement. As the calcium carbonate 62, a non-spherical body (pulverized product) was used (see FIG. 5 (a diagram showing the shape of glass hollow beads and calcium carbonate)).

なお、上記グラスバブルズのS60HSよりも耐圧強度が低い(100MPa未満)のS60Jを添加したBMC樹脂を用いて射出成形を行ったところ、ガラス中空ビーズに潰れが生じて成形品の重量が増した。このことより、ガラス中空ビーズは耐圧強度が100MPa以上であることが好ましい。   When injection molding was performed using BMC resin added with S60J having a pressure strength lower than that of S60HS of Glass Bubbles (less than 100 MPa), the glass hollow beads were crushed and the weight of the molded product was increased. . For this reason, the glass hollow beads preferably have a pressure strength of 100 MPa or more.

以下、サンプル2〜サンプル5は、サンプル1の炭酸カルシウムの一部をガラス中空ビーズに置き換えて炭酸カルシウムの容積比率を徐々に減らしてその分ガラス中空ビーズの容積比率を徐々に増やしていった。   Hereinafter, in Samples 2 to 5, a part of the calcium carbonate of Sample 1 was replaced with glass hollow beads, the volume ratio of calcium carbonate was gradually decreased, and the volume ratio of the glass hollow beads was gradually increased accordingly.

具体的には、サンプル2は、BMC樹脂に対する比重1.1のマトリクス樹脂の容積比率を41.8vol%、比重2.7のガラス繊維の容積比率を9.0vol%、比重2.7の炭酸カルシウムの容積比率を19.7vol%、比重0.6のガラス中空ビーズの容積比率を29.5vol%とした。この時、BMC樹脂の比重は1.4であった。   Specifically, sample 2 has a volume ratio of a matrix resin having a specific gravity of 1.1 to a BMC resin of 41.8 vol%, a glass fiber having a specific gravity of 2.7, a volume ratio of 9.0 vol%, and a carbon dioxide having a specific gravity of 2.7. The volume ratio of the calcium hollow beads having a volume ratio of calcium of 19.7 vol% and a specific gravity of 0.6 was 29.5 vol%. At this time, the specific gravity of the BMC resin was 1.4.

因みにこの場合、炭酸カルシウムに対するガラス中空ビーズの置換容積率a(%)は、サンプル1のガラス中空ビーズを含まない比重2.0のBMC樹脂における炭酸カルシウムの容積比率をb(vol%)、炭酸カルシウムの一部がガラス中空ビーズに置き換わった後の残った炭酸カルシウムの容積比率をc(vol%)とすると、a=((b−c)/b)×100で算出される。この算出式によるとサンプル2の置換容積率は、((49.1−19.7)/49.1)≒60%となる。   Incidentally, in this case, the replacement volume ratio a (%) of the glass hollow beads to calcium carbonate is the volume ratio of calcium carbonate in the BMC resin of specific gravity 2.0 not including the glass hollow beads of Sample 1 (vol%), When the volume ratio of calcium carbonate remaining after a part of calcium is replaced with glass hollow beads is c (vol%), the calculation is performed by a = ((bc) / b) × 100. According to this calculation formula, the replacement volume ratio of sample 2 is ((49.1-19.7) /49.1) ≈60%.

そこで、サンプル3は、BMC樹脂に対する比重1.1のマトリクス樹脂の容積比率を41.8vol%、比重2.7のガラス繊維の容積比率を9.0vol%、比重2.7の炭酸カルシウムの容積比率を10.6vol%、比重0.6のガラス中空ビーズの容積比率を38.5vol%とした。この時、BMC樹脂の比重は1.2、置換容積率は約78%であった。   Therefore, in Sample 3, the volume ratio of the matrix resin having a specific gravity of 1.1 to the BMC resin is 41.8 vol%, the volume ratio of the glass fiber having a specific gravity of 2.7 is 9.0 vol%, and the volume of the calcium carbonate having a specific gravity of 2.7. The volume ratio of glass hollow beads having a ratio of 10.6 vol% and a specific gravity of 0.6 was 38.5 vol%. At this time, the specific gravity of the BMC resin was 1.2 and the replacement volume ratio was about 78%.

サンプル4は、BMC樹脂に対する比重1.1のマトリクス樹脂の容積比率を41.7vol%、比重2.7のガラス繊維の容積比率を9.0vol%、比重2.7の炭酸カルシウムの容積比率を6.1vol%、比重0.6のガラス中空ビーズの容積比率を43.2vol%とした。この時、BMC樹脂の比重は1.1、置換容積率は約88%であった。   In sample 4, the volume ratio of the matrix resin having a specific gravity of 1.1 to the BMC resin is 41.7 vol%, the volume ratio of the glass fiber having a specific gravity of 2.7 is 9.0 vol%, and the volume ratio of the calcium carbonate having a specific gravity of 2.7. The volume ratio of the glass hollow beads having 6.1 vol% and specific gravity of 0.6 was 43.2 vol%. At this time, the specific gravity of the BMC resin was 1.1 and the replacement volume ratio was about 88%.

サンプル5は、BMC樹脂に対する比重1.1のマトリクス樹脂の容積比率を41.6vol%、比重2.7のガラス繊維の容積比率を9.0vol%、比重2.7の炭酸カルシウムの容積比率を1.5vol%、比重0.6のガラス中空ビーズの容積比率を47.9vol%とした。この時、BMC樹脂の比重は1.0、置換容積率は約97%であった。   In sample 5, the volume ratio of the matrix resin having a specific gravity of 1.1 to the BMC resin is 41.6 vol%, the volume ratio of the glass fiber having a specific gravity of 2.7 is 9.0 vol%, and the volume ratio of the calcium carbonate having a specific gravity of 2.7. The volume ratio of the glass hollow beads having 1.5 vol% and specific gravity of 0.6 was 47.9 vol%. At this time, the specific gravity of the BMC resin was 1.0 and the substitution volume ratio was about 97%.

そこで、上記5種類の成形品の試作サンプルについて諸特性(機械的強度)を検証すると、サンプル1〜サンプル3の試作成形品については、126MPa以上の曲げ強さ、10GPa以上の曲げ弾性率、50MPa以上の引張り強さ、27kJ/m以上のシャルピー衝撃強度を確認した。これらの機械的強度は、車両用灯具を構成するリフレクタの基材としては十分満足でき性能となるものである。 Therefore, when various characteristics (mechanical strength) are verified for the above-mentioned five types of molded samples, the bending strength of 126 MPa or more, the bending elastic modulus of 10 GPa or more, 50 MPa for the samples 1 to 3 The above tensile strength and Charpy impact strength of 27 kJ / m 2 or more were confirmed. These mechanical strengths are sufficiently satisfactory as a base material for a reflector constituting a vehicular lamp.

但し、そのうちサンプル1の試作成形品は、上記のようにリフレクタの基材としての機械的強度は満足しているものの、比重が2.0と大きいため車両用灯具の軽量化の観点からそぐわないものとなっている。   However, the prototype product of Sample 1 satisfies the mechanical strength as the base material of the reflector as described above, but is not suitable from the viewpoint of reducing the weight of the vehicular lamp because of its large specific gravity of 2.0. It has become.

一方、サンプル4及びサンプル5の試作成形品は、比重が0.6と小さいガラス中空ビーズが該試作成形品のうちの半分近くの容積を占めるため、軽量化に対しては対応できるものとはなっている。但し、その反面、ガラス中空ビーズの含有量が多いため、機械的強度はサンプル1〜サンプル3の試作成形品よりも劣るものとなっており、この点から車両用灯具のリクレクタに用いるのは不適当であると判断される。   On the other hand, the prototype molded products of Sample 4 and Sample 5 have a specific gravity of 0.6 and small glass hollow beads occupy nearly half the volume of the prototype molded product. It has become. However, on the other hand, since the content of glass hollow beads is large, the mechanical strength is inferior to that of prototype molded products of Samples 1 to 3, and in this respect, it is not suitable for use as a reflector for vehicle lamps. Judged to be appropriate.

そこで、車両用灯具を構成するリフレクタに求められる機械的強度の観点からみると、サンプル2及びサンプル3の試作成形品が最適であることがわかる。   Therefore, from the viewpoint of the mechanical strength required for the reflector constituting the vehicular lamp, it can be seen that the prototype products of Sample 2 and Sample 3 are optimal.

ところで、BMC樹脂の補強材として用いられるガラス繊維(繊維強化材)及び増量剤として用いられる炭酸カルシウム(無機充填材)は、射出成形時にBMC樹脂がファンゲートからキャビティ内に射出するときの射出圧力によって、キャビティ壁面を傷つけたり或いは摩耗させたりする恐れがある。   By the way, glass fiber (fiber reinforcing material) used as a reinforcing material for BMC resin and calcium carbonate (inorganic filler) used as a filler are injection pressure when BMC resin is injected into a cavity from a fan gate at the time of injection molding. May damage or wear the cavity wall.

具体的には、図6(金型装置の部分拡大図で、成形樹脂(BMC樹脂)の流れを説明する図)に示すように、ファンゲート21から所定の圧力でキャビティ50内に射出されたBMC樹脂60は、最初に固定金型20のキャビティ50内壁の、ファンゲート21の正面に位置する部分(第1の成形樹脂流当部)26に直接所定の射出速度(流速)で当たり、そこで跳ね返されたBMC樹脂60は再度対向する可動金型30のキャビティ50内壁の部分(第2の成形樹脂流当部)31に当たることになる。   Specifically, as shown in FIG. 6 (a partially enlarged view of the mold apparatus and illustrating the flow of the molding resin (BMC resin)), it was injected from the fan gate 21 into the cavity 50 with a predetermined pressure. The BMC resin 60 first hits a portion (first molding resin flow portion) 26 located in front of the fan gate 21 on the inner wall of the cavity 50 of the fixed mold 20 at a predetermined injection speed (flow velocity). The bounced BMC resin 60 again hits a portion (second molding resin flow portion) 31 of the inner wall of the cavity 50 of the movable mold 30 that is opposed.

このような、キャビティ50内におけるBMC樹脂60の流れにおいて、ガラス繊維の特に繊維の先端部及び炭酸カルシウムの粉砕した不定形粒子のシャープな凸部は、キャビティ50内壁を傷つけたり或いは摩耗させたりすることになり、特に、BMC樹脂が高速でぶつかる固定金型20の第1の成形樹脂流当部26及び可動金型30の第2の成形樹脂流当部31においては顕著に進行することになる。   In such a flow of the BMC resin 60 in the cavity 50, the sharp protrusions of the glass fiber, particularly the fiber tip and the pulverized amorphous particles of calcium carbonate, damage or wear the inner wall of the cavity 50. In particular, in the first molding resin flow portion 26 of the fixed mold 20 and the second molding resin flow portion 31 of the movable mold 30 where the BMC resin collides at a high speed, it proceeds remarkably. .

そのため、射出成形のショット数が増えるにつれて図7(金型装置の部分拡大図で、成形樹脂(BMC樹脂)の流れを説明する図)に示すように、固定金型20の第1の成形樹脂流当部26及び可動金型30の第2の成形樹脂流当部31に傷や摩耗が現れ、更にショット数が増えると図8(金型装置の部分拡大図で、成形樹脂(BMC樹脂)の流れを説明する図)に示すように、固定金型20の第1の成形樹脂流当部26及び可動金型30の第2の成形樹脂流当部31の傷や摩耗の領域が拡大すると共に傷や摩耗の程度が激しくなり、成形金型の寿命を短縮することになる。   Therefore, as the number of shots of injection molding increases, as shown in FIG. 7 (a partially enlarged view of the mold apparatus and a diagram illustrating the flow of the molding resin (BMC resin)), the first molding resin of the fixed mold 20 When scratches and wear appear in the casting part 26 and the second molding resin casting part 31 of the movable mold 30, and the number of shots further increases, FIG. 8 (molded resin (BMC resin) in a partially enlarged view of the mold apparatus) As shown in FIG. 4, the scratch and wear areas of the first molded resin flow portion 26 of the fixed mold 20 and the second molded resin flow portion 31 of the movable mold 30 are enlarged. At the same time, the degree of scratches and wear becomes severe, and the life of the molding die is shortened.

それと同時に、成形品に金型の傷や摩耗が転写されて表面に凹凸状の荒れた部分が生じ、リフレクタに使用するとその荒れた部分が光学特性に悪影響を及ぼすことになる。   At the same time, scratches and wear of the mold are transferred to the molded product, and a rough surface is formed on the surface. When this is used for a reflector, the rough portion adversely affects the optical characteristics.

そこで、射出成形時にBMC樹脂を成形金型のキャビティ内へ射出するに際に、キャビティの内壁にBMC樹脂による傷や摩耗が生じるのを抑制するには、BMC樹脂の組成物の組成比を適切に設定することで成形品の機械的強度の低下を招くことなく実現することができる。   Therefore, when injecting the BMC resin into the cavity of the molding die at the time of injection molding, in order to prevent the BMC resin from being scratched or worn on the inner wall of the cavity, the composition ratio of the BMC resin is appropriately set. By setting to, it can be realized without causing a decrease in the mechanical strength of the molded product.

具体的には、一つは、BMC樹脂に対して、金型のキャビティ50内壁を傷つけたり或いは摩耗させたりする炭酸カルシウムの添加量を低減することにある。また一つは、BMC樹脂に無機充填材として添加された球状のガラス中空ビーズとガラス繊維との間、及び、球状のガラス中空ビーズと炭酸カルシウムとの間は夫々接触時の滑り性が良好なために接触抵抗が低いということに着目し、ファンゲートから射出されたBMC樹脂が、第1の成形樹脂流当部26に当たり第1の成形樹脂流当部26で跳ね返されて第2の成形樹脂流当部31に当たるときに、先に第1の成形樹脂流当部26及び第2の成形樹脂流当部31の夫々に到達したガラス中空ビーズが、後方から来るガラス繊維及び炭酸カルシウムが第1の成形樹脂流当部26及び第2の成形樹脂流当部31に到達するのを阻止すると共に、ガラス中空ビーズに接触したガラス繊維及び炭酸カルシウムが良好な滑り性によってその流れ方向を流動方向に向けられてそれによりBMC樹脂の流動性が高まるようにするものである。   Specifically, one is to reduce the amount of calcium carbonate added to the BMC resin that damages or wears the inner wall of the cavity 50 of the mold. Moreover, the slipping property at the time of contact is good between spherical glass hollow beads and glass fibers added as inorganic fillers to BMC resin, and between spherical glass hollow beads and calcium carbonate, respectively. Therefore, paying attention to the fact that the contact resistance is low, the BMC resin injected from the fan gate hits the first molding resin flow portion 26 and is bounced back by the first molding resin flow portion 26 to be the second molding resin. When the glass hitting portion 31 hits the glass molding beads 26 that have reached the first molding resin casting portion 26 and the second molding resin casting portion 31 first, the glass fiber and calcium carbonate coming from the rear are the first. The glass resin and the calcium carbonate in contact with the glass hollow beads are prevented from reaching the molding resin flowing part 26 and the second molding resin flowing part 31 of the glass resin, and the flow direction of the glass fiber and calcium carbonate is controlled by good slipperiness. Thereby directed to dynamic direction and is to fluidity of BMC resin is increased.

これにより、BMC樹脂のキャビティ内への射出時に、第1の成形樹脂流当部26及び第1の成形樹脂流当部26へのガラス繊維及び炭酸カルシウムの衝突確率が低減し、該第1の成形樹脂流当部26及び第1の成形樹脂流当部26に対する傷或いは摩耗の発生が抑制される。   Thereby, when the BMC resin is injected into the cavity, the collision probability of the glass fiber and calcium carbonate to the first molding resin flow portion 26 and the first molding resin flow portion 26 is reduced. Generation | occurrence | production of the damage | wound or abrasion with respect to the molded resin flow part 26 and the 1st molded resin flow part 26 is suppressed.

但し、ガラス中空ビーズの量が多くなる(BMC樹脂に対する容積比率が高くなる)と、成形品の機械的強度が低下すると共に表面の平滑性が失われて微細な凸凹面が形成される。   However, when the amount of glass hollow beads increases (the volume ratio with respect to the BMC resin increases), the mechanical strength of the molded product decreases and the surface smoothness is lost, and a fine uneven surface is formed.

そのため、BMC樹脂に対するガラス中空ビーズの容積比率を、成形品の機械的強度が低下することなく且つ表面の平滑性が失われないような範囲とし、そのときに、BMC樹脂に添加されたガラス中空ビーズと炭酸カルシウムからなる増量材(無機充填材)の、該BMC樹脂に対する容積比率が良好なバランスを保つようにBMC樹脂に対する炭酸カルシウムの容積比率の範囲を、図4の表の試作サンプルに対する評価結果に基づいて設定した。   Therefore, the volume ratio of the glass hollow beads to the BMC resin is set to a range in which the mechanical strength of the molded product does not decrease and the smoothness of the surface is not lost. At that time, the glass hollow beads added to the BMC resin Evaluation of the range of the volume ratio of calcium carbonate to the BMC resin with respect to the prototype sample in the table of FIG. 4 so that the volume ratio of the filler (inorganic filler) consisting of beads and calcium carbonate to the BMC resin maintains a good balance. Based on the results.

具体的には、上述したように、BMC樹脂に対するガラス中空ビーズの容積比率の最適範囲は、成形品の機械的強度及び表面の平滑性の観点から、図4に示す、サンプル2における29.5vol%〜サンプル3における38.5vol%である。   Specifically, as described above, the optimum range of the volume ratio of the glass hollow beads to the BMC resin is 29.5 vol in the sample 2 shown in FIG. 4 from the viewpoint of mechanical strength and surface smoothness of the molded product. % To 38.5 vol% in Sample 3.

これに対し、BMC樹脂に添加されたガラス中空ビーズと炭酸カルシウムからなる増量材の、該BMC樹脂に対するバランスの良好な容積比率を約49vol%とすると、炭酸カルシウムに対するガラス中空ビーズの置換容積率a(%)を変えて得られた炭酸カルシウムのBMC樹脂に対する容積比率は19.7vol%〜10.6vol%の範囲となった。   On the other hand, when the volume ratio of the filler consisting of glass hollow beads and calcium carbonate added to the BMC resin is about 49 vol% with a good balance with respect to the BMC resin, the replacement volume ratio a of the glass hollow beads to calcium carbonate is a. The volume ratio of calcium carbonate to BMC resin obtained by changing (%) was in the range of 19.7 vol% to 10.6 vol%.

サンプル2及びサンプル3は射出成形のショット数が増加しても、BMC樹脂による金型のキャビティの内壁に対する傷や摩耗等によるダメッジが抑制され、金型寿命の短縮を防止することができる。   In Sample 2 and Sample 3, even when the number of shots of injection molding increases, damage due to scratches or wear on the inner wall of the cavity of the mold due to BMC resin is suppressed, and shortening of the mold life can be prevented.

その結果、BMC樹脂に対する無機充填材の炭酸カルシウムの容積比率が19.7vol%〜10.6vol%の範囲にあり、BMC樹脂に対する無機充填材のガラス中空ビーズの容積比率が、BMC樹脂に対する炭酸カルシウムの容積比率とガラス中空ビーズの容積比率の合計容積比率が約49vol%となるような範囲にあることにより、成形品の、車両用灯具のリフレクタとしての良好な機械的強度を確保しながら軽量化を図ることができると共に、射出成形時に成形金型のキャビティ内への射出によって生じるキャビティ壁面への傷や摩耗を抑制するBMC樹脂を成形材料として用いた成形品による車両用灯具のリフレクタが実現できる。   As a result, the volume ratio of calcium carbonate of the inorganic filler to the BMC resin is in the range of 19.7 vol% to 10.6 vol%, and the volume ratio of the glass hollow beads of the inorganic filler to the BMC resin is calcium carbonate to the BMC resin. The total volume ratio of the volume ratio of glass and the volume ratio of the glass hollow beads is in a range of about 49 vol%, so that the molded product can be reduced in weight while ensuring good mechanical strength as a reflector for vehicle lamps. It is possible to realize a vehicle lamp reflector made of a molded product using BMC resin as a molding material, which suppresses scratches and wear on the cavity wall surface caused by injection into the cavity of the molding die during injection molding. .

1… 車両用灯具
2… ハウジング
3… 前面レンズ
4… シールカバー
5… 灯室
6… リフレクタ
7… バルブ(光源)
8… 複合面
9… アンダーコート層
10… 金属反射膜
11… トップコート層
12… 複合反射面
12a… 上側複合反射面
12b… 下側複合反射面
13… 成形基材(成形品)
14… 発光部
20… 固定金型(キャビティ金型)
21… ファンゲート
22… ランナ
23… スプル
24… スプルブッシュ
25… ノズル接触部
26… 第1の成形樹脂流当部
30… 可動金型(コア金型)
31… 第2の成形樹脂流当部
40… 突き合わせ面(パーティング面)
50… キャビティ
60… BMC樹脂
61… ガラス中空ビーズ
62… 炭酸カルシウム
DESCRIPTION OF SYMBOLS 1 ... Vehicle lamp 2 ... Housing 3 ... Front lens 4 ... Seal cover 5 ... Light chamber 6 ... Reflector 7 ... Bulb (light source)
DESCRIPTION OF SYMBOLS 8 ... Composite surface 9 ... Undercoat layer 10 ... Metal reflective film 11 ... Topcoat layer 12 ... Composite reflective surface 12a ... Upper composite reflective surface 12b ... Lower composite reflective surface 13 ... Molding substrate (molded product)
14 ... Light emitting part 20 ... Fixed mold (cavity mold)
DESCRIPTION OF SYMBOLS 21 ... Fan gate 22 ... Runner 23 ... Sprue 24 ... Sprue bush 25 ... Nozzle contact part 26 ... 1st molding resin flow part 30 ... Movable metal mold | die (core metal mold | die)
31 ... 2nd molding resin flow part 40 ... Butting surface (parting surface)
50 ... Cavity 60 ... BMC resin 61 ... Glass hollow bead 62 ... Calcium carbonate

Claims (2)

不飽和ポリエステル樹脂を主成分とするマトリクス樹脂に無機充填材として少なくともガラス繊維、炭酸カルシウム及びガラス中空ビーズを添加したBMC樹脂による射出成形品を用いた車両用灯具のリフレクタであって、
前記炭酸カルシウムは前記BMC樹脂に対する容積比率が19.7〜10.6vol%の範囲にあり、前記ガラス中空ビーズは前記BMC樹脂に対する前記炭酸カルシウムの容積比率と前記ガラス中空ビーズの容積比率の合計容積比率が約49vol%となるような範囲にあることを特徴とする車両用灯具のリフレクタ及びそれを備えた車両用灯具。
A vehicle lamp reflector using an injection-molded product made of BMC resin in which at least glass fiber, calcium carbonate and glass hollow beads are added as an inorganic filler to a matrix resin mainly composed of an unsaturated polyester resin,
The calcium carbonate has a volume ratio of 19.7 to 10.6 vol% with respect to the BMC resin, and the glass hollow beads have a total volume of the volume ratio of the calcium carbonate to the BMC resin and the volume ratio of the glass hollow beads. A reflector for a vehicle lamp characterized in that the ratio is in a range of about 49 vol% and a vehicle lamp including the same.
前記射出成形品は、前記BMC樹脂が射出金型のキャビティの面方向に対して略垂直な方向からゲートを介して前記キャビティ内に射出されて成形されることを特徴とする請求項1に記載の車両用灯具のリフレクタ及びそれを備えた車両用灯具。   2. The injection molded product according to claim 1, wherein the BMC resin is molded into the cavity through a gate from a direction substantially perpendicular to the surface direction of the cavity of the injection mold. Reflector for vehicle lamp and vehicle lamp provided with the same.
JP2011194025A 2011-09-06 2011-09-06 Reflector for vehicle lamp and vehicle lamp provided with the same Active JP5922358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194025A JP5922358B2 (en) 2011-09-06 2011-09-06 Reflector for vehicle lamp and vehicle lamp provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194025A JP5922358B2 (en) 2011-09-06 2011-09-06 Reflector for vehicle lamp and vehicle lamp provided with the same

Publications (2)

Publication Number Publication Date
JP2013055001A true JP2013055001A (en) 2013-03-21
JP5922358B2 JP5922358B2 (en) 2016-05-24

Family

ID=48131799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194025A Active JP5922358B2 (en) 2011-09-06 2011-09-06 Reflector for vehicle lamp and vehicle lamp provided with the same

Country Status (1)

Country Link
JP (1) JP5922358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039996A1 (en) * 2013-09-19 2015-03-26 Robert Bosch Gmbh Electromagnetic coil, method and mould for producing an electromagnetic coil and use of said electromagnetic coil
CN114133721A (en) * 2022-02-07 2022-03-04 诸城市迪瑞汽车科技有限公司 Preparation method of BMC resin and application of BMC resin in aspect of car lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230156A (en) * 2009-07-08 2009-10-08 Koito Mfg Co Ltd Lamp reflection mirror

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230156A (en) * 2009-07-08 2009-10-08 Koito Mfg Co Ltd Lamp reflection mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039996A1 (en) * 2013-09-19 2015-03-26 Robert Bosch Gmbh Electromagnetic coil, method and mould for producing an electromagnetic coil and use of said electromagnetic coil
CN114133721A (en) * 2022-02-07 2022-03-04 诸城市迪瑞汽车科技有限公司 Preparation method of BMC resin and application of BMC resin in aspect of car lamp
CN114133721B (en) * 2022-02-07 2022-05-03 诸城市迪瑞汽车科技有限公司 Preparation method of BMC resin and application of BMC resin in aspect of car lamp

Also Published As

Publication number Publication date
JP5922358B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
KR100557720B1 (en) Reflector for lamp
US5985465A (en) Lamp reflector molding composition, lamp reflector, and headlamp
US9447944B2 (en) Unsaturated polyester resin composition, molded article thereof, and lamp reflector
CN100592976C (en) Exterior molding body comprising a long fiber reinforced thermoplastic resin
JP2020116862A (en) Composite molded article
JP5922358B2 (en) Reflector for vehicle lamp and vehicle lamp provided with the same
JP4673298B2 (en) Low specific gravity unsaturated polyester resin composition for lamp reflector and molded product thereof
JP5757087B2 (en) Sliding member and manufacturing method thereof
WO2014196378A1 (en) Polyester resin, and polyester resin composition for surface-mount-type led reflective plate which comprises same
US6472458B2 (en) Lamp reflector and method of manufacturing the same
JP6738217B2 (en) Method for manufacturing outer lens for vehicle lamp and vehicle lamp
JP3242833B2 (en) Lamp reflector
JP6140484B2 (en) Unsaturated polyester resin composition for lamp reflector and molded product thereof, and lamp reflector
JP6027417B2 (en) Molding method and molding equipment for resin molded products
JP6567866B2 (en) Laser welding resin composition and welded body thereof
JP2009230156A (en) Lamp reflection mirror
KR101655475B1 (en) Bulk molding compound used for lamp reflector
JP5330094B2 (en) Multicolor molding method and multicolor molded product
US8859664B2 (en) Laser-transparent polyesters with alkali metal nitrites
JP5111560B2 (en) Automotive panel structure
CN109084288A (en) A kind of lamps and lanterns radiating piece and moulding process and lamps and lanterns
JP2013103981A (en) Glass fiber, and glass fiber reinforcement polycarbonate resin
JP4794500B2 (en) Components for fishing reels
JP5057365B2 (en) Vehicle lighting
JP2023053683A (en) Screw for optical axis adjustment and vehicle lamp including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160414

R150 Certificate of patent or registration of utility model

Ref document number: 5922358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250