JP2013053327A - Ni-BASED SUPERALLOY - Google Patents

Ni-BASED SUPERALLOY Download PDF

Info

Publication number
JP2013053327A
JP2013053327A JP2011191137A JP2011191137A JP2013053327A JP 2013053327 A JP2013053327 A JP 2013053327A JP 2011191137 A JP2011191137 A JP 2011191137A JP 2011191137 A JP2011191137 A JP 2011191137A JP 2013053327 A JP2013053327 A JP 2013053327A
Authority
JP
Japan
Prior art keywords
less
weight
alloy
base superalloy
superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011191137A
Other languages
Japanese (ja)
Other versions
JP5891463B2 (en
Inventor
Kyoko Kawagishi
京子 川岸
Tadaharu Yokogawa
忠晴 横川
Koji Harada
広史 原田
Toshiharu Kobayashi
敏治 小林
Yutaka Koizumi
裕 小泉
Rong Zhu
ロン ズー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011191137A priority Critical patent/JP5891463B2/en
Priority to PCT/JP2012/072056 priority patent/WO2013031916A1/en
Publication of JP2013053327A publication Critical patent/JP2013053327A/en
Application granted granted Critical
Publication of JP5891463B2 publication Critical patent/JP5891463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-based superalloy having both heat-resistant high strength and oxidation resistance equivalent to or higher than a conventional alloy at high temperature even if the content of an expensive Re is substantially cut off.SOLUTION: The Ni-based superalloy contains as essential elements, by weight, 7.0-11.0% Cr, 6.0-10.0% W, 4.5-6.5% Al, 0.2-5.0% Nb, 6.0-11.0% (Nb+Ta), 0.1 to <2.5% Re, 0.03-1.0% Si, the balance Ni with inevitable impurities, but does not contain Co, Mo and Hf. Besides, an effective oxidation resistance is obtained by contriving an alloy composition so that an OP (oxidation parameter) value becomes ≥130, provided that the OP value is 5.5×[Cr(wt.%)]+15.0×(1+2.0[Si(wt.%)])×[Al(wt.%)].

Description

本発明は、ジェットエンジン、産業用ガスタービンなど高温機器に用いる耐熱合金であるNi基超合金に関するものであり、さらに詳しくは、高温における優れた耐熱性とともに、高温下における優れた耐酸化性ならびに耐食性を兼ね備えたNi(ニッケル)基超合金に関するものである。   The present invention relates to a Ni-base superalloy, which is a heat-resistant alloy used in high-temperature equipment such as jet engines and industrial gas turbines. More specifically, the present invention relates to excellent heat resistance at high temperatures as well as excellent oxidation resistance at high temperatures and The present invention relates to a Ni (nickel) -based superalloy having corrosion resistance.

Ni基超合金は、高温での組織安定性やクリープ特性が優れていることから高温機器の材料として幅広く利用されており、多くの特許出願もなされている。特にNi基単結晶超合金は、特許文献1から10に示すように、顕著な耐熱性を有していることから、近年、ジェットエンジン、産業用ガスタービンなど高温機器に適したNi基超合金として提案されており、それらの特許文献記載の一部のNi基超合金は幅広く使用されている。
さらに具体的には、Ni基単結晶超合金は、NiにAl(アルミニウム)とNi3Al型析出物を析出させて高温特性を強化し、Cr(クロム)、W(タングステン)、Ta(タンタル)などの高融点金属を混合して合金化・単結晶化させた超合金である。これら一連のNi基単結晶超合金には、Re(レニウム)を含有しない第1世代合金があり、例えば、既存合金としてPWA1480(キャノン・マスケゴン社製)、CMSX−3(キャノン・マスケゴン社製)が知られている。より高温において優れた耐熱性を有する合金として、3重量%前後のReを含む第2世代合金、5−6重量%のReを含む第3世代合金が開発されている。例えば、第2世代のNi基単結晶超合金にはCMSX−4(キャノン・マスケゴン社製)、第3世代のNi基単結晶超合金にはCMSX−10(キャノン・マスケゴン社製)などが知られている(特許文献1−10)。第2世代合金、第3世代合金とReの含有量を増加させることによって耐熱性は向上するが、Reのみをこれ以上増加させても母相(γ相)への固溶限界を超えて、いわゆるTCP相を析出してしまい、耐熱性のさらなる改善はできない。そこでReと共にRu(ルテニウム)も添加した第4世代合金および第5世代合金と称される新しい耐熱性超合金系が提案されている。
最近では、燃料の高騰あるいは二酸化炭素の排出量の抑制などの観点から、ジェットエンジン、産業用ガスタービンなどの機器において、エネルギー効率の向上を目的として耐熱性、高温における耐食性・耐酸化性に優れたNi基単結晶超合金の使用が注目され、Re等の高価な金属を含有する第2世代合金および第3世代Ni基単結晶超合金の実用化が進んでいる。また、更なる高温下において優れた耐熱性を有するRe+Ruを含有する第4世代合金および第5世代合金のNi基単結晶超合金も、一段高いレベルのエネルギー効率の改善のための好適な材料として実用化に向けた開発が推進されている。
Ni-base superalloys are widely used as materials for high-temperature equipment because of their excellent structure stability and creep properties at high temperatures, and many patent applications have been filed. In particular, since Ni-based single crystal superalloys have remarkable heat resistance as shown in Patent Documents 1 to 10, in recent years, Ni-based superalloys suitable for high-temperature equipment such as jet engines and industrial gas turbines are used. Some Ni-base superalloys described in these patent documents are widely used.
More specifically, the Ni-based single crystal superalloy reinforces high temperature characteristics by depositing Al (aluminum) and Ni3Al type precipitates on Ni, such as Cr (chromium), W (tungsten), Ta (tantalum), etc. It is a superalloy that is alloyed and single-crystallized by mixing refractory metals. Among these series of Ni-based single crystal superalloys, there are first generation alloys that do not contain Re (rhenium). It has been known. As alloys having excellent heat resistance at higher temperatures, second-generation alloys containing about 3 wt% Re and third-generation alloys containing 5-6 wt% Re have been developed. For example, CMSX-4 (manufactured by Canon Muskegon) is known for the second generation Ni-based single crystal superalloy, and CMSX-10 (manufactured by Canon Muskegon) is known for the third-generation Ni-based single crystal superalloy. (Patent Documents 1-10). The heat resistance is improved by increasing the content of Re, the second generation alloy, the third generation alloy, and Re, but even if only Re is increased further, the solid solution limit (γ phase) is exceeded, A so-called TCP phase is precipitated, and the heat resistance cannot be further improved. Therefore, new heat-resistant superalloy systems called fourth-generation alloys and fifth-generation alloys to which Ru (ruthenium) is added together with Re have been proposed.
Recently, from the viewpoint of soaring fuel or reducing carbon dioxide emissions, it is excellent in heat resistance, corrosion resistance and oxidation resistance at high temperatures in equipment such as jet engines and industrial gas turbines for the purpose of improving energy efficiency. The use of Ni-based single crystal superalloys has attracted attention, and the practical use of second-generation alloys and third-generation Ni-based single crystal superalloys containing expensive metals such as Re has been advanced. In addition, Ni + single crystal superalloys of 4th generation alloys and 5th generation alloys containing Re + Ru, which have excellent heat resistance at higher temperatures, are also suitable materials for improving energy efficiency at a higher level. Development for practical use is being promoted.

しかしながら、その一方で、Re、Ruなどのレアメタルは、近年の急激な使用量の増加に伴って原料価格は高騰する傾向にあり、場合によっては、これらのレアメタル原料の入手も困難な事態も生ずるようになってきている。したがって、Reを含有するNi基単結晶超合金において、高温における機械的特性を損なうことなくRe使用量を大幅に削減しても現在使用しているNi基単結晶超合金と比較して遜色のない耐熱性を有するNi基単結晶超合金の開発が、ジェットエンジン、産業用ガスタービンなどの産業界において強く望まれている。   On the other hand, however, rare metals such as Re and Ru tend to have higher raw material prices with the rapid increase in usage in recent years. In some cases, it is difficult to obtain these rare metal raw materials. It has become like this. Therefore, in Ni-based single crystal superalloys containing Re, even if the amount of Re used is greatly reduced without impairing mechanical properties at high temperatures, it is inferior to the currently used Ni-based single crystal superalloys. Development of a Ni-based single crystal superalloy having no heat resistance is strongly desired in industries such as jet engines and industrial gas turbines.

CoはAl、Ta等のガンマ母相に対する高温下での固溶限を大きくするとともに熱処理によって微細なガンマプライム相を分散析出して高温強度を向上するという優れた機能を有しているため高温で使用するNi基超合金には不可欠な成分と考えられてきた。しかしながら、Coはリチウムイオン電池材料、エレクトロニクス材料などの新しい用途において急速に世界における使用量が増加する傾向にある。CoはNiに比較して資源量の限定されているために、Niに比べて高価な金属であり、可能な限りCoを含有しないNi基超合金が望まれている。また、Coは半減期が長いためCoが含有されているNi基超合金が放射能汚染された場合にはメンテナンスが大変面倒になるので、Ni基超合金を原子力発電等の放射能汚染の可能性がある高温機器の部材として使用するに際し、半減期の長いCoを含有しなくてもCoを含有したものと同等あるいはそれ以上のクリープ強度特性を有するNi基超合金の実現が望まれている。 Since Co has an excellent function of increasing the solid solubility limit at high temperatures for gamma matrix phases such as Al and Ta, and dispersing and precipitating fine gamma prime phases by heat treatment to improve the high temperature strength. It has been considered as an indispensable component for the Ni-base superalloy used in the above. However, Co has a tendency to rapidly increase the amount used worldwide in new applications such as lithium ion battery materials and electronic materials. Since Co has a limited amount of resources compared to Ni, it is an expensive metal compared to Ni, and a Ni-base superalloy containing as little Co as possible is desired. In addition, since Co has a long half-life, the maintenance of the Ni-base superalloy containing Co becomes radioactive when it is contaminated with radioactivity. When using it as a component for high temperature equipment, it is desired to realize a Ni-base superalloy having creep strength characteristics equivalent to or higher than those containing Co, even if it does not contain Co with a long half-life. .

Mo(モリブデン)は、一般に合金素地中に固溶して高温強度を上昇させるとともに、析出硬化により高温強度に寄与する元素として知られているが、他方、あまり含有量が多くなると、高温において耐酸化特性、耐腐食特性を劣化させる傾向という欠点がある。したがって、Mo以外の高融点金属の適切な組み合わせによって同等あるいはそれ以上の高温強度を保持しうるNi基超合金の実現が望まれている。 Mo (molybdenum) is generally known as an element that dissolves in an alloy substrate to increase the high-temperature strength and contributes to the high-temperature strength by precipitation hardening. On the other hand, if the content is too high, There is a disadvantage that it has a tendency to deteriorate the oxidization characteristics and corrosion resistance characteristics. Therefore, it is desired to realize a Ni-based superalloy that can maintain the same or higher high-temperature strength by an appropriate combination of refractory metals other than Mo.

Hf(ハフニウム)は、高温における耐食性・耐酸化性を向上させる効果があり、多くの耐熱性Ni基超合金においても広く使用されている。しかしながら、Hfは高価なレアメタル元素であって、Ni基超合金の原料価格を押し上げる一要因ともなるので、高温における耐食性・耐酸化性を向上させ得るより安価な元素への代替も望まれている。   Hf (hafnium) has an effect of improving corrosion resistance and oxidation resistance at high temperatures, and is widely used in many heat-resistant Ni-based superalloys. However, Hf is an expensive rare metal element, which is one factor that pushes up the raw material price of Ni-base superalloys. Therefore, an alternative to a cheaper element that can improve corrosion resistance and oxidation resistance at high temperatures is also desired. .

本発明は、上述の実情に鑑み、高価なReの使用量をできる限り抑えながらも、高温下においても十分な耐熱強度と耐酸化性を兼備した、Co、MoおよびHfを含有しないNi基超合金の提供することを目的とする。   In view of the above-described circumstances, the present invention has a Ni-based superstructure that does not contain Co, Mo, and Hf, and has sufficient heat resistance and oxidation resistance even at high temperatures while suppressing the amount of expensive Re used as much as possible. An object is to provide an alloy.

発明1のNi基超合金は、Co、MoおよびHfを含有しないNi基超合金であって、必須元素としてCr,W,Al,Nb,Ta,ReおよびSiを含有し、必須元素の組成範囲としてCr:7.0重量%以上11.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.5重量%以上6.5重量%以下、Nb:0.2重量%以上5.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下、Re:0.1重量%以上2.5%未満、Si:0.03重量%以上1.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とする。 The Ni-base superalloy of the invention 1 is a Ni-base superalloy that does not contain Co, Mo, and Hf, contains Cr, W, Al, Nb, Ta, Re, and Si as essential elements, and the composition range of the essential elements Cr: 7.0 wt% or more and 11.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.5 wt% or more and 6.5 wt% or less, Nb: 0.00 wt% or less. 2% by weight or more and 5.0% by weight or less, Nb + Ta: 6.0% by weight or more and 11.0% by weight or less, Re: 0.1% by weight or more and less than 2.5%, Si: 0.03% by weight or more. It is characterized by containing 0% by weight or less, with the balance being composed of Ni and inevitable impurities.

発明2は、発明1のNi基超合金において、Cr:8.0重量%以上11.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb:0.5重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.5重量%以下を含有することを特徴とする。 Invention 2 is the Ni-base superalloy of Invention 1, Cr: 8.0 wt% or more and 11.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% More than 6.0% by weight, Nb: 0.5% to 4.0% by weight, Nb + Ta: 6.0% to 11.0% by weight, Re: 0.1% to 2.0% Less than, Si: 0.05 weight% or more and 0.5 weight% or less are contained, It is characterized by the above-mentioned.

発明3は、発明1のNi基超合金において、Cr:8.0重量%以上10.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb:1.0重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上10.0重量%以下、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.4重量%以下を含有することを特徴とする。 Invention 3 is the Ni-base superalloy of Invention 1, Cr: 8.0 wt% or more and 10.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% More than 6.0% by weight, Nb: 1.0% to 4.0% by weight, Nb + Ta: 6.0% to 10.0% by weight, Re: 0.1% to 2.0% Less than, Si: 0.05 weight% or more and 0.4 weight% or less are contained, It is characterized by the above-mentioned.

発明4は、発明1のNi基超合金において、Cr:8.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb+Ta:6.0重量%以上9.0重量%未満であってNb:1.0重量%以上4.0重量%以下、Ta:4.0重量%以上6.0重量%未満、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.4重量%以下を含有することを特徴とする。 Invention 4 is the Ni-base superalloy of Invention 1, wherein Cr: 8.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% or more and 6.0 wt% or less, Nb + Ta: 6.0 wt% More than 9.0% by weight, Nb: 1.0% by weight or more and 4.0% by weight or less, Ta: 4.0% by weight or more and less than 6.0% by weight, Re: 0.1% by weight or more. It is characterized by containing less than 0% and Si: 0.05 wt% or more and 0.4 wt% or less.

発明5は、発明1から4のNi基超合金において、C:0.0001重量%以上0.01重量%以下、S:0.005重量%以下を含有することを特徴とする。 Invention 5 is characterized in that the Ni-base superalloys of Inventions 1 to 4 contain C: 0.0001 wt% or more and 0.01 wt% or less, and S: 0.005 wt% or less.

発明6は、発明1から3のNi基超合金において、C:0.0005重量%以上0.005重量%以下、S:0.002重量%以下を含有することを特徴とする。 Invention 6 is characterized in that the Ni-base superalloys of Inventions 1 to 3 contain C: 0.0005 wt% or more and 0.005 wt% or less, and S: 0.002 wt% or less.

発明7は、発明1から6のいずれかのNi基超合金において、Y:0.2重量%以下、La:0.2重量%以下、Ce:0.2重量%以下の1種以上をさらに含有することを特徴とする。 Invention 7 is the Ni-base superalloy according to any one of Inventions 1 to 6, further comprising at least one of Y: 0.2% by weight or less, La: 0.2% by weight or less, and Ce: 0.2% by weight or less. It is characterized by containing.

発明8は、発明1から7のNi基超合金において、OP(Oxidation Parameter)=5.5x[Cr(wt%)]+15.0x(1+2.0[Si(wt%)])x[Al(wt%)]としたとき、OP値が130以上であることを特徴とする。 Invention 8 is the Ni-base superalloy according to Inventions 1 to 7, wherein OP (Oxidation Parameter) = 5.5 × [Cr (wt%)] + 15.0 × (1 + 2.0 [Si (wt%)]) × [Al ( wt%)], the OP value is 130 or more.

発明9は、発明8のNi基超合金において、OP値が135以上であることを特徴とする。 Invention 9 is characterized in that in the Ni-base superalloy of Invention 8, the OP value is 135 or more.

発明10は、発明9のNi基超合金において、OP値が140以上であることを特徴とする。 Invention 10 is characterized in that in the Ni-base superalloy of Invention 9, the OP value is 140 or more.

発明11は、Ni基超合金により構成された部材であって、そのNi基超合金が発明1から発明10のいずれかのNi基超合金であることを特徴とする。 Invention 11 is a member composed of a Ni-base superalloy, wherein the Ni-base superalloy is any of the Ni-base superalloys of Inventions 1 to 10.

発明12は、発明11のNi基超合金部材の製造方法であって、発明1から発明10のいずれかのNi基超合金を普通鋳造法、一方向凝固法、あるいは単結晶凝固法により鋳造成形して製造したことを特徴とする。 Invention 12 is a method for producing a Ni-base superalloy member according to Invention 11, wherein the Ni-base superalloy according to any one of Inventions 1 to 10 is cast by a normal casting method, a unidirectional solidification method, or a single crystal solidification method. It is characterized by being manufactured.

本発明は、上述の実情に鑑み、高価なReの含有量を最小限としながらも、高温下における耐熱強度が十分であり、かつHfを含有していなくとも高温下における耐酸化性および耐食性も優れたNi基超合金を提供することを目的として誠意検討し、Co、MoおよびHfを実質的に含有せず、必須元素としてCr,W,Al,Nb,Ta,ReおよびSiを含有するNi基超合金を見出すことができた。本発明のNi超合金は、高価なReの使用量を極力抑えつつ、Ni基超合金を特定の元素、最適な元素組成に制御することによって、優れた耐熱性と高温下における優れた耐酸化性、耐腐食性を兼ね備えたNi基超合金を提供するものである。   In view of the above-described circumstances, the present invention has sufficient heat resistance at high temperatures while minimizing the content of expensive Re, and also has oxidation resistance and corrosion resistance at high temperatures even without Hf. In order to provide an excellent Ni-base superalloy, sincere examination was conducted, Ni containing substantially no Co, Mo and Hf and containing Cr, W, Al, Nb, Ta, Re and Si as essential elements We were able to find a base superalloy. The Ni superalloy of the present invention has excellent heat resistance and excellent oxidation resistance at high temperature by controlling the Ni-base superalloy to a specific element and an optimal elemental composition while suppressing the amount of expensive Re used as much as possible. The present invention provides a Ni-base superalloy having both properties and corrosion resistance.

本発明は、上記のとおりの特徴を持つものであるが、以下にその実施の形態について詳細に説明する。   The present invention has the features as described above, and an embodiment thereof will be described in detail below.

本発明合金であるA3合金およびA6合金、比較合金であるR1合金、R2合金およびR4合金について、空気中、1時間サイクルで1100℃の高温下に試料を最大250サイクルの繰り返し、試験前の質量に対する暴露後の試料の質量の変化を示した図である。For the A3 alloy and A6 alloy as the alloys of the present invention and the R1 alloy, R2 alloy and R4 alloy as the comparative alloys, the sample was repeated at a high temperature of 1100 ° C. for 1 hour in air at a maximum temperature of 250 cycles, and the mass before the test. It is the figure which showed the change of the mass of the sample after the exposure with respect to. 本発明合金であるA3合金およびA6合金、比較合金であるR1およびR4合金のサイクル試験終了後の試料に関する切断面ミクロ組織のSEM写真である。It is a SEM photograph of a cut surface microstructure about a sample after completion of a cycle test of A3 alloy and A6 alloy which is an alloy of the present invention, and R1 and R4 alloys which are comparative alloys. 本発明合金であるA3合金およびA6合金、比較合金であるR2合金について、800℃−735MPa、900℃−392MPa、1000℃−245MPa、1100℃−137MPaのクリープ寿命試験条件におけるクリープ寿命を比較した図である。A comparison of the creep life under the creep life test conditions of 800 ° C.-735 MPa, 900 ° C.-392 MPa, 1000 ° C.-245 MPa, 1100 ° C.-137 MPa for the A3 alloy and A6 alloy which are the alloys of the present invention and the comparative R2 alloy. It is.

CoはAl、Ta等のガンマ母相に対する高温下での固溶限を大きくするとともに熱処理によって微細なガンマプライム相を分散析出して高温強度を向上するという機能を有している。さらに、Moは合金素地中に固溶して高温強度を上昇させるとともに析出硬化により高温強度に寄与する。そのために、高温での組織安定性やクリープ特性が優れたNi基超合金にはどちらも不可欠な成分であると、従来は考えられていた。しかしながら、本願の発明では、これまで高強度Ni基超合金において不可欠であると考えられてきたCo、MoおよびHfを添加しなくても、必須元素であるCr,W,Al,Nb,Ta,ReおよびSiを特定の組成範囲で用いることにより、高いクリープ強度と高温下における優れた耐酸化性、耐腐食性を兼ね備えたNi基超合金を実現できることを見出した。Coの含有量が1.0重量%未満、Moの含有量が0.1重量%以下であれば、本発明合金の優れた耐酸化性、耐腐食性が損なわれることはない。   Co has a function of increasing the solid solubility limit at a high temperature with respect to a gamma matrix phase such as Al and Ta, and dispersing and precipitating a fine gamma prime phase by heat treatment to improve the high temperature strength. Further, Mo dissolves in the alloy base to increase the high temperature strength and contributes to the high temperature strength by precipitation hardening. Therefore, it has been conventionally considered that both are indispensable components for a Ni-base superalloy having excellent structure stability and creep characteristics at high temperatures. However, in the invention of the present application, essential elements such as Cr, W, Al, Nb, Ta, etc. can be added without adding Co, Mo and Hf, which have been considered to be essential in high strength Ni-base superalloys. It has been found that by using Re and Si in a specific composition range, a Ni-base superalloy having both high creep strength and excellent oxidation resistance and corrosion resistance at high temperatures can be realized. If the Co content is less than 1.0% by weight and the Mo content is not more than 0.1% by weight, the excellent oxidation resistance and corrosion resistance of the alloy of the present invention will not be impaired.

すなわち、Cr:7.0重量%以上11.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.5重量%以上6.5重量%以下、Nb:0.2重量%以上5.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下、Re:0.1重量%以上2.5%未満、Si:0.03重量%以上1.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成のNi基単結晶合金が優れた耐熱性と耐酸化性を有することを見出した。本発明合金は、市販合金として広く使用されるCo、MoおよびHfを含有する第1世代Ni基単結晶合金(例えば、キャノン・マスケゴン社製の既存合金として良く知られているPWA1480、CMSX−3など)に比べて非常に優れた耐熱性を有している。また、本発明合金は、第2世代Ni基単結晶合金の代表例とも言えるキャノン・マスケゴン社製の既存合金CMSX−4に比較しても、高価なRe含有量が半分以下であるにも拘わらず、遜色のない耐熱性と高温下においてより優れた耐酸化性を兼ね備えたNi基単結晶合金である。 That is, Cr: 7.0 wt% or more and 11.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.5 wt% or more and 6.5 wt% or less, Nb: 0 2% by weight or more and 5.0% by weight or less, Nb + Ta: 6.0% by weight or more and 11.0% by weight or less, Re: 0.1% by weight or more and less than 2.5%, Si: 0.03% by weight or more 1 It was found that a Ni-based single crystal alloy having a composition containing 0.0% by weight or less and the balance of Ni and inevitable impurities has excellent heat resistance and oxidation resistance. The alloy of the present invention is a first generation Ni-based single crystal alloy containing Co, Mo, and Hf widely used as a commercially available alloy (for example, PWA1480, CMSX-3, which are well known as existing alloys manufactured by Canon Maskegon) Etc.) and has excellent heat resistance. In addition, the alloy of the present invention is less than half the expensive Re content compared with the existing alloy CMSX-4 manufactured by Canon Maskegon, which can be said to be a representative example of the second generation Ni-based single crystal alloy. It is a Ni-based single crystal alloy that has excellent heat resistance and superior oxidation resistance at high temperatures.

また、本発明のNi基超合金では、微量元素であるCおよびBの量的な制御も重要な因子となることもあり、また、Y:0.2重量%以下、La:0.2重量%以下、Ce:0.2重量%以下の少なくとも1種以上の元素を添加することにより、様々な用途に応じた製品の物性をさらに向上させることが可能である。   In the Ni-base superalloy of the present invention, quantitative control of trace elements C and B may be an important factor, and Y: 0.2% by weight or less, La: 0.2% by weight It is possible to further improve the physical properties of products according to various uses by adding at least one element of not more than% and Ce: not more than 0.2% by weight.

本発明のNi基超合金は、高温での組織安定性やクリープ特性及び耐酸化・耐腐食性が優れており、特にタービンブレードまたはタービンベーン部品の製造に好適である。   The Ni-base superalloy of the present invention has excellent structure stability at high temperatures, creep characteristics, and oxidation / corrosion resistance, and is particularly suitable for the production of turbine blades or turbine vane parts.

本発明のNi基超合金の成分の最適な含有範囲について以下に説明する。   The optimum content range of the components of the Ni-base superalloy of the present invention will be described below.

Cr(クロム)は、耐酸化性に優れた元素であり、Ni基超合金の高温耐食性を向上させる。Cr含有量があまり少ないとその効果は小さく、あまり多くなると他の耐熱強化元素とのバランスが悪くなって性能が低下するので、好ましくない。Crの含有量は7.0重量%以上11.0重量%以下の範囲が好ましく、さらにCr:8.0重量%以上11.0重量%以下がより好ましく、Cr:8.0重量%以上10.0重量%以下が最も好ましい。   Cr (chromium) is an element excellent in oxidation resistance, and improves the high temperature corrosion resistance of the Ni-base superalloy. If the Cr content is too small, the effect is small. If the Cr content is too large, the balance with other heat-resistant strengthening elements deteriorates and the performance deteriorates, which is not preferable. The Cr content is preferably in the range of 7.0 wt% to 11.0 wt%, more preferably Cr: 8.0 wt% to 11.0 wt%, and Cr: 8.0 wt% to 10 wt%. 0.0% by weight or less is most preferable.

W(タングステン)は、固溶強化と析出硬化の作用があり、Ni基超合金の高温強度を向上させる。W含有量があまり少ないと高温強度の改善効果は小さく、あまり多くなると有害相を析出するので好ましくない。また、W量が多くなると合金全体の比重が大きくなり、合金コストも高くなるので、好ましくない。Wの含有量は6.0重量%以上10.0重量%以下の範囲が好ましい。   W (tungsten) has the effects of solid solution strengthening and precipitation hardening, and improves the high temperature strength of the Ni-base superalloy. If the W content is too small, the effect of improving the high-temperature strength is small, and if it is too large, a harmful phase is precipitated, which is not preferable. Further, an increase in the amount of W is not preferable because the specific gravity of the entire alloy increases and the alloy cost also increases. The W content is preferably in the range of 6.0 wt% to 10.0 wt%.

Al(アルミニウム)は、Niと化合してガンマ母相中に析出するガンマプライム相を構成するNiAlで表される金属間化合物を体積分率で50〜70%の割合で形成して高温強度を向上させる。Alの含有量が少なすぎるとガンマプライム相の析出強化の効果が充分に現れず、あまり多く添加し過ぎると合金の延性を低下させてしまうので、好ましくない。Alのもう一つの重要な役割は、高温下において耐酸化特性を保持するための強固かつ緻密な酸化被膜形成に寄与している点であり、この観点からも適切なAl含有量を決める必要がある。Alの含有量は4.5重量%以上6.5重量%以下の範囲が好ましく、さらに4.8重量%以上6.0重量%以下がより好ましい。 Al (aluminum) is formed at a high temperature by forming an intermetallic compound represented by Ni 3 Al constituting a gamma prime phase that combines with Ni and precipitates in a gamma matrix at a volume fraction of 50 to 70%. Improve strength. If the Al content is too small, the effect of precipitation strengthening of the gamma prime phase will not be sufficiently exhibited, and if it is added too much, the ductility of the alloy will be lowered, which is not preferable. Another important role of Al is that it contributes to the formation of a strong and dense oxide film for maintaining oxidation resistance at high temperatures. From this viewpoint, it is necessary to determine an appropriate Al content. is there. The content of Al is preferably in the range of 4.5% by weight to 6.5% by weight, and more preferably 4.8% by weight to 6.0% by weight.

Ta(タンタル)およびNb(ニオブ)は、いずれもガンマプライム相を強化してクリープ強度を向上させることに有効な元素である。また、Nbはクリープ強度の改善に有効であるとともに、Ta等の一部合金元素を置換することによって合金の密度を下げることに有効である。Ta+Nbの組成が少ないとガンマプライム相の析出強化の効果が充分に現れず、あまり多く添加し過ぎると合金の延性を低下させてしまうので、好ましくない。Nb+Ta元素の含有量の総和が11重量%超になると有害相の生成が助長される傾向にあるので、Nb+Ta:11.0重量%以下として用いられる。
NbとTaの組成範囲は、Nb:0.2重量%以上5.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下が好ましい。NbとTaの組成範囲として、Nb:0.5重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下がより好ましく、NbとTaの組成範囲をNb:1.0重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下にすることがさらに好ましい。また、Taは合金の密度を上げてしまうので、Ta:4.0重量%以上6.0重量%未満とし、Nb:1.0重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上10.0重量%未満の範囲で使用することが最も好ましい。
Ta (tantalum) and Nb (niobium) are both effective elements for strengthening the gamma prime phase and improving the creep strength. Nb is effective for improving the creep strength and is effective for lowering the density of the alloy by substituting some alloy elements such as Ta. When the composition of Ta + Nb is small, the effect of precipitation strengthening of the gamma prime phase does not sufficiently appear, and when too much is added, the ductility of the alloy is lowered, which is not preferable. If the total content of Nb + Ta elements exceeds 11% by weight, the formation of harmful phases tends to be promoted, so Nb + Ta is used as 11.0% by weight or less.
The composition range of Nb and Ta is preferably Nb: 0.2 wt% or more and 5.0 wt% or less, and Nb + Ta: 6.0 wt% or more and 11.0 wt% or less. As the composition range of Nb and Ta, Nb: 0.5 wt% or more and 4.0 wt% or less, Nb + Ta: 6.0 wt% or more and 11.0 wt% or less are more preferable, and the composition range of Nb and Ta is Nb: More preferably, the content is 1.0% by weight or more and 4.0% by weight or less, and Nb + Ta: 6.0% by weight or more and 11.0% by weight or less. Moreover, Ta increases the density of the alloy, so Ta: 4.0 wt% or more and less than 6.0 wt%, Nb: 1.0 wt% or more and 4.0 wt% or less, Nb + Ta: 6.0 wt% It is most preferable to use in the range of not less than% and less than 10.0% by weight.

Re(レニウム)は、ガンマ相に固溶して固溶強化により高温強度を向上させるだけでなく耐食性を向上させる効果もある。Reの含有量が極端に少ないと高温強度および耐食性の改善効果は顕著に認められず、一方、Reの含有量が多すぎると、高温時にTCP相が析出して高温強度を低下させるおそれもあり、また、高価なReを多量に使用することは合金コストを上昇させる要因ともなるので、好ましくない。したがって、Reの含有量としては、Re:0.1重量%以上2.5%未満で使用するのが好ましく、さらにRe:0.1重量%以上2.0%未満の範囲で使用するのがより好ましい。 Re (rhenium) has the effect of improving the corrosion resistance as well as improving the high temperature strength by solid solution strengthening in the gamma phase. If the content of Re is extremely small, the effect of improving the high temperature strength and corrosion resistance is not remarkably observed. On the other hand, if the content of Re is too large, the TCP phase may precipitate at high temperatures and the high temperature strength may be lowered. In addition, it is not preferable to use a large amount of expensive Re because it increases the alloy cost. Accordingly, the Re content is preferably 0.1% by weight or more and less than 2.5%, and Re: 0.1% by weight or more and less than 2.0%. More preferred.

Si(ケイ素)は、少量添加することによって、基材合金表面が高温酸化条件に曝された状態において、合金表面に安定した酸化被膜を生成させる。Si存在下において生成した酸化皮膜は緻密・均質であり、また、この酸化被膜は合金表面との接着性にも優れている。Siの添加量はAlの10分の1前後であるので、Siそのものが強固で緻密な酸化被膜を形成するというよりも、初期の酸化皮膜形成過程において、Siが触媒的な効果を示すことによって、高温下において強固で緻密な酸化被膜の形成に寄与しているものと考えられる。しかしながら、合金中に過剰量のSiが存在すると、合金中の他の元素の固溶限を低下させて、合金の高温における耐熱強度を低下させてしまうので好ましくない。したがって、高温下における耐熱特性と耐酸化特性のバランスを考慮しながらSi添加量を決定することが望ましい。Si:0.03重量%以上1.0重量%以下で使用するのが好ましく、Si:0.05重量%以上0.5重量%以下がさらに好ましく、Si:0.05重量%以上0.4重量%以下で使用するのが、最も好ましい。 By adding a small amount of Si (silicon), a stable oxide film is formed on the alloy surface in a state where the base alloy surface is exposed to high-temperature oxidation conditions. The oxide film formed in the presence of Si is dense and homogeneous, and this oxide film is excellent in adhesion to the alloy surface. Since the amount of Si added is about one-tenth that of Al, Si shows a catalytic effect in the initial oxide film formation process rather than forming a strong and dense oxide film. This is considered to contribute to the formation of a strong and dense oxide film at high temperatures. However, if an excessive amount of Si is present in the alloy, it is not preferable because the solid solubility limit of other elements in the alloy is lowered and the heat resistance strength of the alloy at high temperatures is lowered. Therefore, it is desirable to determine the amount of Si added while considering the balance between heat resistance and oxidation resistance at high temperatures. Si: 0.03% by weight or more and 1.0% by weight or less is preferable, Si: 0.05% by weight or more and 0.5% by weight or less is more preferable, Si: 0.05% by weight or more and 0.4% by weight or less Most preferably, it is used at a weight percent or less.

高温下における耐酸化特性に顕著な影響を与える主な元素としては、Cr、Al、Hfが一般に知られており、これらの元素の寄与度を考慮したOP(Oxidation Parameter)パラメータで耐酸化特性の目安としている。本発明者らは高温下の耐酸化性に対して大きな影響を及ぼすSi含有量を含めた次式で示されるOPパラメータを考慮しながら合金設計を行うことが有効であることを見出した。OP(Oxidation Parameter)=5.5x[Cr(wt%)]+15.0x(1+2.0[Si(wt%)])x[Al(wt%)]としたとき、OP値を130以上とすることが望ましく、OP値を135以上とすることがより望ましく、OP値を140以上とすることが最も望ましい。   Cr, Al, and Hf are generally known as the main elements that have a significant effect on the oxidation resistance at high temperatures, and the oxidation resistance characteristics of OP (Oxidation Parameter) parameters that take into account the contribution of these elements. As a guide. The present inventors have found that it is effective to design an alloy in consideration of the OP parameter represented by the following formula including the Si content that greatly affects the oxidation resistance at high temperatures. When OP (Oxidation Parameter) = 5.5x [Cr (wt%)] + 15.0x (1 + 2.0 [Si (wt%)]) x [Al (wt%)], the OP value is 130 or more. It is desirable that the OP value be 135 or more, and it is most desirable that the OP value be 140 or more.

C(炭素)は、粒界強化に寄与する。しかしながら、過度の含有量は合金の延性を害することもあり、合金中のC含有量については慎重に制御することが望ましい。C:0.0001重量%以上0.01重量%以下が好ましく、C:0.0005重量%以上0.005重量%以下がさらに好ましい。   C (carbon) contributes to grain boundary strengthening. However, excessive content may impair the ductility of the alloy, and it is desirable to carefully control the C content in the alloy. C: 0.0001% by weight or more and 0.01% by weight or less is preferable, and C: 0.0005% by weight or more and 0.005% by weight or less is more preferable.

S(イオウ)は、Ni基超合金中にある程度以上含まれると高温強度を低下させるのみならず、高温下における耐酸化特性を著しく低下させるので、使用する合金原料の段階から混入には十分な配慮が必要である。合金中に含まれるS含有量としては、0.005重量%以下とすることが好ましく、0.002重量%以下とすることがさらに好ましい。   S (sulfur) not only lowers the high-temperature strength when it is contained to some extent in the Ni-base superalloy, but also significantly reduces the oxidation resistance at high temperatures, so it is sufficient for mixing from the stage of the alloy raw material used. Consideration is necessary. The S content contained in the alloy is preferably 0.005% by weight or less, and more preferably 0.002% by weight or less.

B(ホウ素)は、Cと同様に粒界強化に寄与する。しかしながら、過度の含有量は延性を害するため0.2重量%以下が好ましい。   B (boron), like C, contributes to grain boundary strengthening. However, an excessive content is preferably 0.2% by weight or less because it impairs ductility.

Y(イットリウム)、La(ランタン)、Ce(セリウム)は、Ni基超合金を高温で使用中にアルミナ、クロミアなどを形成する保護酸化皮膜の密着性を向上させる。しかしながら、過度の含有量は他の元素の固溶限を低下させることになるため、Y:0.2重量%以下、La:0.2重量%%以下、Ce:0.2重量%以下の範囲で使用することが好ましい。   Y (yttrium), La (lanthanum), and Ce (cerium) improve the adhesion of a protective oxide film that forms alumina, chromia, and the like during use of a Ni-based superalloy at high temperatures. However, excessive content will lower the solid solubility limit of other elements, so that Y: 0.2% by weight or less, La: 0.2% by weight or less, Ce: 0.2% by weight or less It is preferable to use in a range.

以上のような元素組成を有する本発明のNi基超合金は、鋳造することができる。そして、この鋳造に際しては、たとえば、普通鋳造法、一方向凝固法、あるいは単結晶凝固法によって多結晶合金、一方向凝固合金、あるいは単結晶合金としてNi基超合金を製造することができる。普通鋳造法は基本的に所望の組成に調合されたインゴットを用いて鋳造するが、鋳型温度を合金の凝固温度約1500℃以上に加熱しておき、超合金を鋳込んだ後に、例えば加熱炉から徐々に遠ざけて温度勾配を与え多数の結晶を一方向に成長させる方法である。単結晶凝固法は一方向凝固法とほぼ同様であるが所望の品物が凝固する手前でジグザクあるいは螺旋型のセレクター部を設け、一方向で凝固してきた多数の結晶をセレクター部で一つの結晶にし、所望の品物を製造する。   The Ni-base superalloy of the present invention having the above elemental composition can be cast. In this casting, for example, a Ni-base superalloy can be manufactured as a polycrystalline alloy, a unidirectionally solidified alloy, or a single crystal alloy by a normal casting method, a unidirectional solidification method, or a single crystal solidification method. The ordinary casting method basically uses an ingot prepared to have a desired composition, but the mold temperature is heated to a solidification temperature of the alloy of about 1500 ° C. or higher, and after casting the superalloy, for example, a heating furnace In this method, a large number of crystals are grown in one direction by giving a temperature gradient gradually away from the substrate. The single crystal solidification method is almost the same as the unidirectional solidification method, but a zigzag or spiral type selector unit is provided before the desired product is solidified, and many crystals that have solidified in one direction are converted into one crystal in the selector unit. To produce the desired item.

本発明のNi基超合金は鋳造後に熱処理を施すことにより高クリープ強度が得られる。標準的な熱処理は、1260〜1300℃で20分〜2時間の予備熱処理を施した後に、1300〜1350℃を1050〜1150℃の温度域で2〜8時間加熱、空冷を行う。この処理は耐熱・耐酸化を目的としたコーティング処理と兼ねることが可能である。空冷した後、引き続きガンマプライム相安定化を目的とした2次時効処理を800〜900℃で10〜24時間実施した後、空冷の処理を行う。それぞれの空冷を不活性ガスに置き換えてもよい。この製造方法により作成されたNi基超合金によりガスタービンのタービンブレートあるいはタービンベーン等の高温部品が実現される。
The Ni-base superalloy of the present invention can have high creep strength by heat treatment after casting. In the standard heat treatment, after preliminary heat treatment at 1260 to 1300 ° C. for 20 minutes to 2 hours, 1300 to 1350 ° C. is heated in the temperature range of 1050 to 1150 ° C. for 2 to 8 hours and air-cooled. This treatment can be combined with a coating treatment for heat resistance and oxidation resistance. After air cooling, a secondary aging treatment for the purpose of stabilizing the gamma prime phase is subsequently performed at 800 to 900 ° C. for 10 to 24 hours, followed by air cooling. Each air cooling may be replaced with an inert gas. High temperature parts such as a turbine blade of a gas turbine or a turbine vane are realized by the Ni-base superalloy produced by this manufacturing method.

表1は本願発明合金の合金組成とOPパラメータの関係を示したものである。A1合金からA7合金は本願発明合金である。R1合金は、本発明合金においてSi元素を除いた比較合金である。また、R2合金からR4合金は、それぞれ既存合金であるPWA1480、CMSX−3およびCMSX−4を比較合金として示したものである。
Table 1 shows the relationship between the alloy composition of the present invention alloy and the OP parameter. Alloys A1 to A7 are invention alloys of the present application. The R1 alloy is a comparative alloy obtained by removing Si element from the alloy of the present invention. In addition, R2 alloy to R4 alloy show PWA1480, CMSX-3, and CMSX-4, which are existing alloys, as comparative alloys.

本発明合金A3およびA6などのNi基単結晶合金の耐酸化特性を評価するために、各サンプル試片を電気炉内で1100℃、1時間空気中で暴露し、その後、電気炉から取り出して1時間冷却する方法により、高温下における耐酸化サイクル試験を実施した。図1は、本発明合金のほか、表1の4個の合金のサイクル試験における重量変化の経緯を示したものである。本発明合金においてSiの添加を行わなかったR1合金ならびに代表的な市販合金であるPWA1480(R2合金)およびCMSX−4(R4合金)を比較例として同一の条件下で評価した。
本発明合金(A3およびA6合金)は、サイクル初期において表面酸化による若干の重量増加を伴うものの、250サイクル後も大幅な質量の減少は認められなかった。これに対して、市販合金であるR2合金およびR4合金では、すでに100サイクルに到達する前から、顕著な質量の減少傾向を示した。また、Siを添加しない比較合金R1では、20サイクル以降、急激な質量の減少が認められた。これらの試験結果から明らかなように、本発明合金は第1世代および第2世代合金の代表的な市販合金に比べて、優れた耐酸化特性を有していることが分かった。
In order to evaluate the oxidation resistance properties of Ni-based single crystal alloys such as the alloys A3 and A6 of the present invention, each sample specimen was exposed in air at 1100 ° C. for 1 hour in an electric furnace, and then removed from the electric furnace. An oxidation resistance cycle test at a high temperature was performed by a method of cooling for 1 hour. FIG. 1 shows the history of weight change in the cycle test of the four alloys shown in Table 1 in addition to the alloy of the present invention. The R1 alloy to which Si was not added in the alloy of the present invention and PWA1480 (R2 alloy) and CMSX-4 (R4 alloy), which are representative commercially available alloys, were evaluated as comparative examples under the same conditions.
The alloys of the present invention (A3 and A6 alloys) were accompanied by a slight increase in weight due to surface oxidation at the beginning of the cycle, but no significant decrease in mass was observed after 250 cycles. On the other hand, the commercially available alloys R2 alloy and R4 alloy showed a remarkable tendency to decrease the mass before reaching 100 cycles. Further, in the comparative alloy R1 to which no Si was added, a rapid decrease in mass was observed after 20 cycles. As is clear from these test results, it was found that the alloy of the present invention has superior oxidation resistance characteristics as compared with typical commercial alloys of the first generation and second generation alloys.

本発明合金の優れた特性は、高温耐熱性に寄与する合金元素の組成とともに、高温下における耐酸化特性に寄与する合金元素の組成のバランスを最適化することによって、可能となった。特に、後者においては、OP(Oxidation Parameter)パラメータに寄与度の高いCr,AlおよびSiの各元素に着目した次式で示されるOPパラメータを使用することが合金設計にきわめて有効であることを見出した。
OP(Oxidation Parameter)=5.5x[Cr(wt%)]+15.0x(1+2.0[Si(wt%)])x[Al(wt%)]
表1の最右欄は、本発明合金および比較合金について上記の式を用いて算出したOP値を示したものである。この表からも明らかなように、OP値としては130以上とすることが望ましく、135以上とすることがより望ましく、140以上とすることが最も望ましい。なお、表1の比較合金R3およびR4に関してはHf元素を含んでおり、OPパラメータの算出にOP(Oxidation Parameter)=5.5x[Cr(wt%)]+15.0x(1+2.0[Si(wt%)])x[Al(wt%)]+9.5x[Hf(wt%)]を使用した。
The excellent characteristics of the alloy of the present invention are made possible by optimizing the balance of the composition of alloy elements contributing to high temperature heat resistance and the composition of alloy elements contributing to oxidation resistance at high temperatures. In particular, in the latter case, it has been found that it is extremely effective for alloy design to use the OP parameter represented by the following formula focusing on each element of Cr, Al, and Si, which has a high contribution to the OP (Oxidation Parameter) parameter. It was.
OP (Oxidation Parameter) = 5.5x [Cr (wt%)] + 15.0x (1 + 2.0 [Si (wt%)]) x [Al (wt%)]
The rightmost column of Table 1 shows the OP values calculated using the above formulas for the alloys of the present invention and the comparative alloys. As is apparent from this table, the OP value is preferably 130 or more, more preferably 135 or more, and most preferably 140 or more. The comparative alloys R3 and R4 in Table 1 contain Hf element, and OP (Oxidation Parameter) = 5.5x [Cr (wt%)] + 15.0x (1 + 2.0 [Si ( wt%)]) x [Al (wt%)] + 9.5x [Hf (wt%)] was used.

図1で述べた条件で高温サイクル試験を行った試料について、試料表面に生成した酸化被膜の特性を調べたものである。図2は、本発明合金であるA3合金およびA6合金と比較合金であるR1合金の250サイクル後の試料、また比較合金であるR4合金については200サイクル試験終了後の試料に関する切断面ミクロ組織のSEM写真である。本発明合金であるA3合金およびA6合金のサイクル後の酸化層は少なくとも3層以上の緻密な層から構成されていること、また、それらの各層間の接着性は非常に良好であることが観測された。本発明合金は、高温サイクルの初期において、このような緻密かつ均質な酸化層を生成することによって、250サイクル後もほとんど酸化層の剥離を起こすことのない優れたサイクル特性を示すものと考えられる。一方、比較合金の表面酸化層は本発明合金に較べて生成した酸化層の均質性および接着性が良くない。R1合金では、A3およびA4合金に比較して合金基材と酸化層間に隙間が観測され、酸化層の密着性が不十分であるために、サイクル寿命が短かった。また、R4合金のSEM写真からも明らかなように、R4合金上に生成する酸化被膜層は緻密さの欠けた不均質なものであった。高温サイクル過程において酸化被膜の一部が剥離し、さらに不均質な酸化被膜層の生成が繰り返えされて凹凸の多い酸化被膜表面になったものと思われる。   The characteristics of the oxide film formed on the surface of the sample subjected to the high-temperature cycle test under the conditions described in FIG. 1 were examined. FIG. 2 shows the cross-sectional microstructure of the A3 and A6 alloys, which are the alloys of the present invention, and the R1 alloy, which is the comparative alloy, after 250 cycles, and the R4 alloy, which is the comparative alloy, after the 200-cycle test. It is a SEM photograph. It is observed that the oxide layer after cycling of the A3 alloy and A6 alloy, which is the alloy of the present invention, is composed of at least three dense layers and that the adhesion between these layers is very good. It was done. The alloy of the present invention is considered to exhibit excellent cycle characteristics that hardly cause peeling of the oxide layer after 250 cycles by forming such a dense and homogeneous oxide layer at the beginning of the high temperature cycle. . On the other hand, the surface oxide layer of the comparative alloy has poor homogeneity and adhesion of the oxide layer produced compared to the alloy of the present invention. In the R1 alloy, a gap was observed between the alloy base and the oxide layer compared to the A3 and A4 alloys, and the cycle life was short because the adhesion of the oxide layer was insufficient. Further, as apparent from the SEM photograph of the R4 alloy, the oxide film layer formed on the R4 alloy was inhomogeneous lacking in density. It is considered that a part of the oxide film peeled off during the high-temperature cycle, and the formation of a heterogeneous oxide film layer was repeated, resulting in an oxide film surface with many irregularities.

図3は、本発明合金(A3およびA6合金)と市販合金(R2)合金のクリープ破断寿命を測定した結果を示したものである。クリープ試験は800℃−735MPa、900℃−392MPa、1000℃−245MPa 、1100℃−137MPaの条件で試料がクリープ破断するまでの時間を寿命とした。いずれのクリープ試験条件においても、本発明合金は、R2合金よりも優れた耐熱強度を有していた。すなわち、本発明合金はR2合金に比較して、高温下における酸化サイクルおよびクリープ破断の両特性において、バランスの良い優れた特性を有する合金であると結論される。   FIG. 3 shows the results of measuring the creep rupture life of the alloys of the present invention (A3 and A6 alloys) and commercially available alloys (R2). In the creep test, the lifetime was defined as the time until the sample creep ruptured under the conditions of 800 ° C.-735 MPa, 900 ° C.-392 MPa, 1000 ° C.-245 MPa, 1100 ° C.-137 MPa. Under any of the creep test conditions, the alloy of the present invention had a heat resistance superior to that of the R2 alloy. In other words, it can be concluded that the alloy of the present invention is an alloy having excellent properties with a good balance in both the oxidation cycle and creep rupture properties at high temperatures as compared with the R2 alloy.

本発明合金であるA3合金と市販合金であるR4合金の耐熱強度を比較した。1100℃−137MPaの同一条件下において、1%クリープ強度およびクリープ破断寿命を測定した。A3合金では、それぞれ118時間および120時間であり、R4合金では、それぞれ118時間および155時間であった。耐熱性向上に効果のある高価なReの含有量がR4合金の半分以下であるにも拘わらず、A3合金は、R4合金とほぼ同等の耐熱特性を有するとともに、図1に示したように、R4合金よりも大幅に優れた高温サイクル特性をも兼ね備えた優れたNi基超合金であるといえる。   The heat resistance strength of the present invention alloy A3 alloy and the commercially available alloy R4 alloy were compared. Under the same conditions of 1100 ° C. and 137 MPa, 1% creep strength and creep rupture life were measured. It was 118 hours and 120 hours for the A3 alloy, and 118 hours and 155 hours for the R4 alloy, respectively. Although the content of expensive Re effective for improving heat resistance is less than half that of the R4 alloy, the A3 alloy has almost the same heat resistance as the R4 alloy, and as shown in FIG. It can be said that it is an excellent Ni-base superalloy having high temperature cycle characteristics significantly superior to those of the R4 alloy.

本発明合金A3およびA6の合金組成は表1に示したが、表1以外の微量元素を分析したところ、微量成分としてC(炭素)およびS(イオウ)が検出された。これらの微量元素の分析を複数回行ったところ、A3合金ではC:0.0016重量%以上0.0028重量%以下、S:0.0002重量%、A6合金ではC:0.0007重量%以上0.0036重量%以下、S:0.0001重量%以上0.0004重量%以下存在していることが分かった。これらの微量元素は高温における耐熱性、耐酸化性に対して影響することも多く、適切な範囲に不純物量を制御することも重要である。   The alloy compositions of the alloys A3 and A6 of the present invention are shown in Table 1. When trace elements other than Table 1 were analyzed, C (carbon) and S (sulfur) were detected as trace components. When these trace elements were analyzed a plurality of times, C: 0.0016 wt% or more and 0.0028 wt% or less for A3 alloy, S: 0.0002 wt%, C: 0.0007 wt% or more for A6 alloy It was found that 0.0036% by weight or less and S: 0.0001% by weight or more and 0.0004% by weight or less were present. These trace elements often affect the heat resistance and oxidation resistance at high temperatures, and it is important to control the amount of impurities within an appropriate range.

以上の実施例から明らかなように、本発明の合金は、Co、MoおよびHfを含有せず、必須元素としてCr,W,Al,Nb,Ta,ReおよびSiを含有するNi基超合金であって、高価なReの含有量を最小限としながらも、高温下における優れた耐熱強度とサイクル特性を兼ね備えた非常に性能バランスの良いNi基超合金であるといえる。 As is clear from the above examples, the alloy of the present invention is a Ni-based superalloy that does not contain Co, Mo, and Hf and contains Cr, W, Al, Nb, Ta, Re, and Si as essential elements. Thus, it can be said that the Ni-based superalloy has a very good balance of performance and has excellent heat resistance at high temperatures and cycle characteristics while minimizing the content of expensive Re.

本願発明によれば、耐熱性、高温における耐酸化性において、非常にバランスの取れた優れた合金を提供することが可能となる。また、高価なReなどの高価な金属の使用量を既存合金に比べて大幅に削減したより安価なNi基超合金を提供することも可能となる。したがって、本発明によれば、ジェットエンジンや発電用ガスタービンなどのタービンブレードやタービンベーンとして中温部から高温部までバランスのとれた好適な合金を提供することが可能である。   According to the present invention, it is possible to provide an excellent alloy that is very balanced in heat resistance and oxidation resistance at high temperatures. It is also possible to provide a cheaper Ni-based superalloy in which the amount of expensive metal such as expensive Re used is significantly reduced compared to existing alloys. Therefore, according to the present invention, it is possible to provide a suitable alloy that is well balanced from the middle temperature portion to the high temperature portion as a turbine blade or turbine vane such as a jet engine or a power generation gas turbine.

:米国特許第4,116,723号明細書: US Pat. No. 4,116,723 :米国特許第4,643,782号明細書: US Pat. No. 4,643,782 :米国特許第4,719,080号明細書: U.S. Pat. No. 4,719,080 :米国特許第4,908,183号明細書: US Pat. No. 4,908,183 :米国特許第5,043,138号明細書: US Pat. No. 5,043,138 :米国特許第5,068,084号明細書: US Pat. No. 5,068,084 :米国特許第5,069,873号明細書: US Pat. No. 5,069,873 :米国特許第5,151,249号明細書: US Pat. No. 5,151,249 :米国特許第6,159.314号明細書: US Pat. No. 6,159.314 :米国特許第6,905,559号明細書: US Pat. No. 6,905,559

Claims (12)

Co、MoおよびHfを含有せずに、必須元素としてCr,W,Al,Nb,Ta,ReおよびSiを含有するNi基超合金であって、必須元素の組成範囲としてCr:7.0重量%以上11.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.5重量%以上6.5重量%以下、Nb:0.2重量%以上5.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下、Re:0.1重量%以上2.5%未満、Si:0.03重量%以上1.0重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とするNi基超合金。 A Ni-based superalloy containing Cr, W, Al, Nb, Ta, Re, and Si as essential elements without containing Co, Mo, and Hf, and a composition range of the essential elements Cr: 7.0 wt. %: 11.0% by weight or less, W: 6.0% by weight or more, 10.0% by weight or less, Al: 4.5% by weight or more, 6.5% by weight or less, Nb: 0.2% by weight or more, 5.0% Nb + Ta: 6.0% by weight or more and 11.0% by weight or less, Re: 0.1% by weight or more and less than 2.5%, Si: 0.03% by weight or more and 1.0% by weight or less A Ni-base superalloy characterized in that the balance has a composition composed of Ni and inevitable impurities. 請求項1に記載のNi基超合金において、Cr:8.0重量%以上11.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb:0.5重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上11.0重量%以下、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.5重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とするNi基超合金。 2. The Ni-base superalloy according to claim 1, wherein Cr: 8.0 wt% or more and 11.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% or more 6.0% by weight or less, Nb: 0.5% by weight or more and 4.0% by weight or less, Nb + Ta: 6.0% by weight or more and 11.0% by weight or less, Re: 0.1% by weight or more and less than 2.0% Si: 0.05% by weight or more and 0.5% by weight or less, a Ni-base superalloy having a composition consisting of Ni and inevitable impurities. 請求項1に記載のNi基超合金において、Cr:8.0重量%以上10.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb:1.0重量%以上4.0重量%以下、Nb+Ta:6.0重量%以上10.0重量%以下、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.4重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とするNi基超合金。 In the Ni-base superalloy according to claim 1, Cr: 8.0 wt% or more and 10.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% or more 6.0% by weight or less, Nb: 1.0% by weight or more and 4.0% by weight or less, Nb + Ta: 6.0% by weight or more and 10.0% by weight or less, Re: 0.1% by weight or more and less than 2.0% Si: 0.05% by weight or more and 0.4% by weight or less, a Ni-base superalloy having a composition comprising Ni and inevitable impurities in the balance. 請求項1に記載のNi基超合金において、Cr:8.0重量%以上10.0重量%以下、W:6.0重量%以上10.0重量%以下、Al:4.8重量%以上6.0重量%以下、Nb+Ta:6.0重量%以上9.0重量%未満であってNb:1.0重量%以上4.0重量%以下、Ta:4.0重量%以上6.0重量%未満、Re:0.1重量%以上2.0%未満、Si:0.05重量%以上0.4重量%以下を含有し、残部がNiと不可避的不純物からなる組成を有することを特徴とするNi基超合金。 In the Ni-base superalloy according to claim 1, Cr: 8.0 wt% or more and 10.0 wt% or less, W: 6.0 wt% or more and 10.0 wt% or less, Al: 4.8 wt% or more 6.0 wt% or less, Nb + Ta: 6.0 wt% or more and less than 9.0 wt%, Nb: 1.0 wt% or more and 4.0 wt% or less, Ta: 4.0 wt% or more 6.0 Less than wt%, Re: 0.1 wt% or more and less than 2.0%, Si: 0.05 wt% or more and 0.4 wt% or less, with the balance being composed of Ni and inevitable impurities Characteristic Ni-base superalloy. 請求項1から4に記載のNi基超合金において、C:0.0001重量%以上0.01重量%以下、S:0.005重量%以下を含有することを特徴とするNi基超合金。 5. The Ni-base superalloy according to claim 1, wherein the Ni-base superalloy contains C: 0.0001 wt% or more and 0.01 wt% or less and S: 0.005 wt% or less. 請求項1から4に記載のNi基超合金において、C:0.0005重量%以上0.005重量%以下、S:0.002重量%以下を含有することを特徴とするNi基超合金。 5. The Ni-base superalloy according to claim 1, wherein the Ni-base superalloy contains C: 0.0005 wt% or more and 0.005 wt% or less, and S: 0.002 wt% or less. 請求項1から6に記載のNi基超合金において、Y:0.2重量%以下、La:0.2重量%以下、Ce:0.2重量%以下の1種以上をさらに含有することを特徴とするNi基超合金。 The Ni-base superalloy according to claim 1, further comprising at least one of Y: 0.2 wt% or less, La: 0.2 wt% or less, Ce: 0.2 wt% or less. Characteristic Ni-base superalloy. 請求項1から7に記載のNi基超合金において、OP(Oxidation Parameter)=5.5x[Cr(wt%)]+15.0x(1+2.0[Si(wt%)])x[Al(wt%)]としたとき、OP値が130以上であることを特徴とするNi基超合金。 The Ni-base superalloy according to any one of claims 1 to 7, wherein OP (Oxidation Parameter) = 5.5x [Cr (wt%)] + 15.0x (1 + 2.0 [Si (wt%)]) x [Al (wt %)], A Ni-base superalloy having an OP value of 130 or more. 請求項8に記載のNi基超合金において、OP値が135以上であることを特徴とするNi基超合金。   The Ni-base superalloy according to claim 8, wherein the OP value is 135 or more. 請求項8に記載のNi基超合金において、OP値が140以上であることを特徴とするNi基超合金。 The Ni-base superalloy according to claim 8, wherein the OP value is 140 or more. Ni基超合金により構成された部材であって、そのNi基超合金が請求項1から請求項10のいずれかに記載のNi基超合金であることを特徴とするNi基超合金部材。   A Ni-based superalloy member comprising a Ni-based superalloy, wherein the Ni-based superalloy is the Ni-based superalloy according to any one of claims 1 to 10. 請求項11に記載のNi基超合金部材の製造方法であって、請求項1から請求項6のいずれかに記載のNi基超合金を普通鋳造法、一方向凝固法、あるいは単結晶凝固法により鋳造成形して製造したことを特徴とするNi基超合金部材の製造方法。
A method for producing a Ni-base superalloy member according to claim 11, wherein the Ni-base superalloy according to any one of claims 1 to 6 is produced by a normal casting method, a unidirectional solidification method, or a single crystal solidification method. A method for producing a Ni-based superalloy member, characterized by being produced by casting using the above method.
JP2011191137A 2011-09-01 2011-09-01 Method for evaluating oxidation resistance of Ni-base superalloy Active JP5891463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011191137A JP5891463B2 (en) 2011-09-01 2011-09-01 Method for evaluating oxidation resistance of Ni-base superalloy
PCT/JP2012/072056 WO2013031916A1 (en) 2011-09-01 2012-08-30 Ni-BASED SUPERALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191137A JP5891463B2 (en) 2011-09-01 2011-09-01 Method for evaluating oxidation resistance of Ni-base superalloy

Publications (2)

Publication Number Publication Date
JP2013053327A true JP2013053327A (en) 2013-03-21
JP5891463B2 JP5891463B2 (en) 2016-03-23

Family

ID=47756394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191137A Active JP5891463B2 (en) 2011-09-01 2011-09-01 Method for evaluating oxidation resistance of Ni-base superalloy

Country Status (2)

Country Link
JP (1) JP5891463B2 (en)
WO (1) WO2013031916A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003374A (en) * 2014-06-18 2016-01-12 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY SOFTENING MATERIAL AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
JP2018188738A (en) * 2018-08-02 2018-11-29 三菱日立パワーシステムズ株式会社 PRODUCTION METHOD OF Ni-BASED ALLOY SOFTENER AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
CN113278968A (en) * 2021-06-24 2021-08-20 南昌大学 High-temperature oxidation resistant Al-Si composite addition modified nickel-based high-temperature alloy coating and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610082A (en) * 1992-03-09 1994-01-18 Hitachi Metals Ltd High-corrosion resistant and high-strength sintered hard alloy, high-corrosion resistant and high-strength single crystal casting, gas turbine and combined cycle power generating system
JP2011001590A (en) * 2009-06-18 2011-01-06 National Institute For Materials Science Ni-BASED SUPERALLOY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828297A (en) * 1994-07-28 1996-01-30 Hitachi Ltd High temperature gas turbine and combined generating plant
JP3559670B2 (en) * 1996-02-09 2004-09-02 株式会社日立製作所 High-strength Ni-base superalloy for directional solidification
JPH11310839A (en) * 1998-04-28 1999-11-09 Hitachi Ltd Grain-oriented solidification casting of high strength nickel-base superalloy
JP5146867B2 (en) * 2006-08-18 2013-02-20 独立行政法人物質・材料研究機構 Heat resistant material with excellent high temperature durability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610082A (en) * 1992-03-09 1994-01-18 Hitachi Metals Ltd High-corrosion resistant and high-strength sintered hard alloy, high-corrosion resistant and high-strength single crystal casting, gas turbine and combined cycle power generating system
JP2011001590A (en) * 2009-06-18 2011-01-06 National Institute For Materials Science Ni-BASED SUPERALLOY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003374A (en) * 2014-06-18 2016-01-12 三菱日立パワーシステムズ株式会社 Ni-BASED ALLOY SOFTENING MATERIAL AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
US10557189B2 (en) 2014-06-18 2020-02-11 Mitsubishi Hitachi Power Systems, Ltd. Ni based superalloy, member of Ni based superalloy, and method for producing same
JP2018188738A (en) * 2018-08-02 2018-11-29 三菱日立パワーシステムズ株式会社 PRODUCTION METHOD OF Ni-BASED ALLOY SOFTENER AND PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
CN113278968A (en) * 2021-06-24 2021-08-20 南昌大学 High-temperature oxidation resistant Al-Si composite addition modified nickel-based high-temperature alloy coating and preparation method thereof

Also Published As

Publication number Publication date
JP5891463B2 (en) 2016-03-23
WO2013031916A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
EP2471965B1 (en) Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
JP4449337B2 (en) High oxidation resistance Ni-base superalloy castings and gas turbine parts
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
JPWO2008032751A1 (en) Ni-based single crystal superalloy
JP5024797B2 (en) Cobalt-free Ni-base superalloy
JP5252348B2 (en) Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component
JP2011074493A (en) Nickel-based superalloy and article
JP2011074492A (en) Nickel-based superalloy and article
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP6970438B2 (en) Ni-based superalloy
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JP5891463B2 (en) Method for evaluating oxidation resistance of Ni-base superalloy
KR20170058065A (en) Ni base superalloy and Method of manufacturing thereof
JP5393829B2 (en) Single crystal nickel-base superalloy with improved creep properties
JP4911753B2 (en) Ni-base superalloy and gas turbine component using the same
JP6982172B2 (en) Ni-based superalloy castings and Ni-based superalloy products using them
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JP4028122B2 (en) Ni-base superalloy, manufacturing method thereof, and gas turbine component
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP5129303B2 (en) Single crystal nickel-based super heat-resistant alloy with excellent creep characteristics
JP5636639B2 (en) Ni-base superalloy
JPH10317080A (en) Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts
JP2011174123A (en) Nickel-base alloy and gas turbine component for land using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5891463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250