JP4911753B2 - Ni-base superalloy and gas turbine component using the same - Google Patents

Ni-base superalloy and gas turbine component using the same Download PDF

Info

Publication number
JP4911753B2
JP4911753B2 JP2005516587A JP2005516587A JP4911753B2 JP 4911753 B2 JP4911753 B2 JP 4911753B2 JP 2005516587 A JP2005516587 A JP 2005516587A JP 2005516587 A JP2005516587 A JP 2005516587A JP 4911753 B2 JP4911753 B2 JP 4911753B2
Authority
JP
Japan
Prior art keywords
mass
less
alloy
corrosion resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005516587A
Other languages
Japanese (ja)
Other versions
JPWO2005064027A1 (en
Inventor
藤 昌 宏 佐
中 剛 竹
田 誠 也 新
林 敏 治 小
泉 裕 小
田 広 史 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Kawasaki Motors Ltd
Original Assignee
National Institute for Materials Science
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34736583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4911753(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Institute for Materials Science, Kawasaki Jukogyo KK filed Critical National Institute for Materials Science
Priority to JP2005516587A priority Critical patent/JP4911753B2/en
Publication of JPWO2005064027A1 publication Critical patent/JPWO2005064027A1/en
Application granted granted Critical
Publication of JP4911753B2 publication Critical patent/JP4911753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Description

本発明は、低質燃料に対応するため、優れた耐高温腐食性、耐高温酸化性及び高温強度を有するNi(ニッケル)基超耐熱合金およびそれを用いたガスタービン部品に関する。   The present invention relates to a Ni (nickel) -based superalloy having excellent high temperature corrosion resistance, high temperature oxidation resistance and high temperature strength and a gas turbine component using the same in order to cope with low quality fuels.

Ni基超耐熱合金は、産業用ガスタービンの部品、例えば動翼材として広く使用されており、耐食性に優れたRene80やIN792、耐酸化性に優れ、強度も高いMar−M247等が知られている。
又、Cr(クロム)含有量が高い合金を単結晶化することにより、耐食性と強度を並立させたCMSX−11等も知られている。
Ni-based super heat-resistant alloys are widely used as industrial gas turbine parts, for example, blade materials. Ren 80 and IN 792, which have excellent corrosion resistance, Mar-M247, which has excellent oxidation resistance, and high strength, are known. Yes.
Further, CMSX-11 and the like in which corrosion resistance and strength are aligned by single crystallization of an alloy having a high Cr (chromium) content are also known.

これら既存のNi基超耐熱合金は高耐食性(Rene80等)と高耐酸化性・高強度(Mar−M247等)の特性が並立できていないため、A重油等の低質燃料に対応したガスタービンの高効率化には適用できない不具合がある。
また、Cr含有量が高い合金を単結晶化することによって耐食性と強度を並立させているもの(CMSX−11等)では、耐酸化性が十分ではなく、かつ、単結晶材であるため、複雑形状部品の鋳造収率が低くなる不具合がある。
Since these existing Ni-based superalloys do not have the characteristics of high corrosion resistance (Rene80, etc.) and high oxidation resistance, high strength (Mar-M247, etc.) There is a defect that cannot be applied to high efficiency.
In addition, in a case where the corrosion resistance and the strength are aligned by single crystallization of an alloy having a high Cr content (such as CMSX-11), the oxidation resistance is not sufficient and the single crystal material is complicated. There is a problem that the casting yield of the shaped parts is lowered.

既存のNi基超耐熱合金の不具合を解消するため、質量%(mass%)で、Cr6〜12%、Al(アルミニウム)4.5〜6.5%、W(タングステン)2〜12%、Ta(タンタル)2.5〜10%、Mo(モリブデン)5.8%以下、Co(コバルト)0.1〜3%、Nb(ニオブ)0.2〜3%以下、Re(レニウム)0.1〜4%、Hf(ハフニウム)0.3%以下を含有し、かつ下記(1)式により質量%で計算されるP値が2350〜3280であり、残部不可避の不純物とNiからなる高耐食高強度合金が知られている。
P=200Cr+80Mo−20Mo−250Ti−50(Ti×Ta)+15Nb+200W−14W+30Ta−1.5Ta+2.5Co+1200Al−100Al+100Re+1000Hf−2000Hf+700Hf−2000V−500C−15000B−500Zr……(1)
しかし、この高耐食高強度合金は、Ti(チタン)を含まないため、酸化−硫化が重畳する高温腐食環境での耐食性が不十分である。
In order to eliminate the problems of existing Ni-based superalloys, mass% , Cr 6-12%, Al (aluminum) 4.5-6.5%, W (tungsten) 2-12%, Ta (Tantalum) 2.5 to 10%, Mo (molybdenum) 5.8% or less, Co (cobalt) 0.1 to 3%, Nb (niobium) 0.2 to 3% or less, Re (rhenium) 0.1 4%, Hf (hafnium) 0.3% or less, and the P value calculated by the following formula (1) in mass% is 2350-3280, and the high corrosion resistance is made up of the inevitable impurities and Ni. Strength alloys are known.
P = 200Cr + 80Mo-20Mo 2 -250Ti 2 -50 (Ti × Ta) + 15Nb + 200W-14W 2 + 30Ta-1.5Ta 2 + 2.5Co + 1200Al-100Al 2 + 100Re + 1000Hf-2000Hf 2 + 700Hf 3 -2000V-500C-15000B-500Zr ...... (1 )
However, since this high corrosion-resistant high-strength alloy does not contain Ti (titanium), the corrosion resistance in a high-temperature corrosion environment in which oxidation-sulfurization is superimposed is insufficient.

又、質量%で、Cr12.0〜14.3%、Co8.5〜11.0%、Mol.0〜3.5%、W3.5〜6.2%、Ta3.0〜5.5%、Al3.5〜4.5%、Ti2.0〜3.2%、C(炭素)0.04〜0.12%、B(ホウ素)0.005〜0.05%、Zr(ジルコニウム)0.001〜5ppmを含有し、残部がNiと不可避不純物からなる高温耐粒界腐食性に優れた柱状晶Ni基耐熱合金大型鋳物が知られている。
しかし、この柱状晶Ni基耐熱合金大型鋳物は、Cr−Al−Tiの量比が不適切であるため、耐食性と耐酸化性が両立できない。
Further, in terms of mass% , Cr 12.0 to 14.3%, Co 8.5 to 11.0%, Mol. 0 to 3.5%, W 3.5 to 6.2%, Ta 3.0 to 5.5%, Al 3.5 to 4.5%, Ti 2.0 to 3.2%, C (carbon) 0.04 -0.12%, B (boron) 0.005-0.05%, Zr (zirconium) 0.001-5ppm, the balance is high columnar corrosion resistance consisting of Ni and inevitable impurities Crystalline Ni-base heat-resistant alloy large castings are known.
However, this large columnar Ni-base heat-resistant alloy casting has an inadequate ratio of Cr—Al—Ti, and therefore cannot achieve both corrosion resistance and oxidation resistance.

更に、質量%で、Co4.75〜5.25%、Cr15.5〜16.5%、Mo0.8〜1.2%、W3.75〜4.25%.Al3.75〜4.25%、Ti1.75〜2.25%、Ta4.75〜5.25%、C0.006〜0.04%、B0.01%以下、Zr0.01%以下、Hf1%以下、Nb1%以下、Ni及び不純物の各成分を加えて100%にする、単結晶凝固に好適なNi系超合金が知られている。
しかし、このNi系超合金は、Crが多すぎるため、耐酸化性が不十分である。
Further, in terms of mass% , Co 4.75 to 5.25%, Cr 15.5 to 16.5%, Mo 0.8 to 1.2%, W 3.75 to 4.25%. Al 3.75 to 4.25%, Ti 1.75 to 2.25%, Ta 4.75 to 5.25%, C 0.006 to 0.04%, B 0.01% or less, Zr 0.01% or less, Hf 1% Hereinafter, Ni-based superalloys suitable for single crystal solidification, in which Nb is 1% or less and each component of Ni and impurities is made 100%, are known.
However, this Ni-based superalloy has insufficient oxidation resistance due to too much Cr.

更に又、質量%で、Cr8〜14%、Co3〜7%、Al4〜8%、Ti5%以下、W6〜10%、Ta4〜8%、Mo0.5〜4%、Hf1.4%以下、Zr0.01%以下、C0.07%以下、B0.015%以下、残部Ni及び不可避不純物からなり、かつ、5%≦Al+Ti、4≦Al/Ti、W+Ta+Mo≦18%である高耐食性Ni基単結晶超合金が知られている。しかし、このNi基単結晶超合金は、4≦Al/Tiの制限からTiが不足するため、耐食性が不十分である。 Furthermore, in mass% , Cr 8-14%, Co 3-7%, Al 4-8%, Ti 5% or less, W6-10%, Ta 4-8%, Mo 0.5-4%, Hf 1.4% or less, Zr0 .01% or less, C0.07% or less, B0.015% or less, balance Ni and inevitable impurities, and 5% ≦ Al + Ti, 4 ≦ Al / Ti, W + Ta + Mo ≦ 18% Superalloys are known. However, this Ni-based single crystal superalloy has insufficient corrosion resistance because Ti is insufficient due to the restriction of 4 ≦ Al / Ti.

又、質量%で、Cr7〜12%、Co5〜15%、Mo0.5〜5%、W3〜12%、Ta2〜6%、Ti2〜5%、Al3〜5%、Nb2%以下、Hf2%以下、C0.03〜0.25%、B0.002〜0.05%を有し、残りの成分がNi及び付随的不純物であるNi基超合金が知られている。
しかし、このNi基超合金は、耐酸化性と耐食性のバランスをAl対Ti比の増加により改善したとしているが、強度向上のために添加される元素との関係が考慮されていない。
Also, by mass% , Cr 7-12%, Co 5-15%, Mo 0.5-5%, W 3-12%, Ta 2-6%, Ti 2-5%, Al 3-5%, Nb 2% or less, Hf 2% or less Ni-based superalloys having 0.03 to 0.25% C, 0.002 to 0.05% B and the remaining components being Ni and incidental impurities are known.
However, this Ni-base superalloy is said to have improved the balance between oxidation resistance and corrosion resistance by increasing the Al to Ti ratio, but does not take into account the relationship with elements added for strength improvement.

更に、質量%で、Cr2〜25%、Al1〜7%、W2〜15%、Ti0.5〜5%、Nb3%以下、Mo6%以下、Ta1〜12%、Re4%以下、Co7.5〜25%、Fe(鉄)0.5%以下、C0.2%以下、B0.002〜0.035%、Hf2.0%以下、Zr0.02%、及び40%以上のNiを含むNi基合金が知られている。
しかし、このNi基合金は、各元素量のバランスと材料特性の関係が考慮されていない。
Furthermore, by mass% , Cr 2 to 25%, Al 1 to 7%, W 2 to 15%, Ti 0.5 to 5%, Nb 3% or less, Mo 6% or less, Ta 1 to 12%, Re 4% or less, Co 7.5 to 25 %, Fe (iron) 0.5% or less, C 0.2% or less, B0.002 to 0.035%, Hf 2.0% or less, Zr 0.02%, and Ni-based alloy containing 40% or more of Ni Are known.
However, this Ni-based alloy does not take into account the relationship between the balance of each element amount and the material characteristics.

背景技術に関する文献としては、日本国特許第2843476号公報、日本国特許第3246376号公報、日本国特開2002−235135号公報、日本国特開平7−300639号公報、日本国特開平5−59473号公報、及び日本国特開平9−170402号公報があげられる。   References relating to the background art include Japanese Patent No. 2844376, Japanese Patent No. 3246376, Japanese Patent Laid-Open No. 2002-235135, Japanese Patent Laid-Open No. 7-300639, Japanese Patent Laid-Open No. 5-59473. And JP-A-9-170402.

本発明は、産業用ガスタービンの部品材料として、低質燃料に対応するための優れた耐高温腐食性と、高温化による熱効率向上に対応するための耐高温酸化性及び高温強度とを有し、精密鋳造工程において高い収率を確保できるNi基超耐熱合金及びそれを用いたガスタービン部品を提供することを課題とする。   The present invention has excellent high-temperature corrosion resistance for dealing with low-quality fuels, and high-temperature oxidation resistance and high-temperature strength for dealing with improved thermal efficiency due to higher temperatures, as part materials for industrial gas turbines, It is an object of the present invention to provide a Ni-base superalloy capable of ensuring a high yield in a precision casting process and a gas turbine component using the same.

上記課題を解決するために、本発明による第1のNi基超耐熱合金は、質量%で、Co9〜11%、Cr9〜12%、Mo0〜l%、W6〜9%、Al4〜5%、Ti4〜5%、Nb0〜1%、Ta0〜3%、Hf0.5〜2.5%、Re0〜3%、C0.05〜0.15%、B0.005〜0.015%、Zr0.05%以下、及び残部がNiと不可避不純物からなることを特徴とする。
また、好ましくは、Hfの質量%が0.5〜1%である。
In order to solve the above problems, the first Ni-base superalloy according to the present invention is, in mass %, Co 9 to 11%, Cr 9 to 12%, Mo 0 to 1%, W 6 to 9%, Al 4 to 5%, Ti 4-5%, Nb 0-1%, Ta 0-3%, Hf 0.5-2.5%, Re 0-3%, C 0.05-0.15%, B 0.005-0.015%, Zr 0. 05% or less , and the balance consists of Ni and inevitable impurities.
Moreover, Preferably, the mass % of Hf is 0.5 to 1%.

上記課題を解決するために、本発明による第2のNi基超耐熱合金は、質量%で、Co9〜10%、Cr9〜10%、Mo0.5〜1%、W6〜8%、Al4〜5%、Ti4〜5%、Ta2〜3%、Hf0.5〜2.5%、Re1〜3%、C0.05〜0.1%、B0.005〜0.01%、Zr0.02%以下、及び残部がNiと不可避不純物からなることを特徴とする。
また、好ましくは、Hfの質量%が0.5〜1%である。
In order to solve the above problems, the second Ni-base superalloy according to the present invention is, in mass %, Co 9 to 10%, Cr 9 to 10%, Mo 0.5 to 1%, W 6 to 8%, Al 4 to 5 %, Ti 4-5%, Ta 2-3%, Hf 0.5-2.5%, Re 1-3%, C 0.05-0.1%, B 0.005-0.01%, Zr 0.02% or less And the balance consists of Ni and inevitable impurities.
Moreover, Preferably, the mass % of Hf is 0.5 to 1%.

上記課題を解決するために、本発明による第3のNi基超耐熱合金は、質量%で、Co10〜11%、Cr10〜12%、W8〜9%、Al4〜5%、Ti4〜5%、Nb0〜1%、Hf0.5〜2.5%、C0.05〜0.15%、B0.005〜0.015%、Zr0.01〜0.05%、残部がNiと不可避不純物からなることを特徴とする。
また、好ましくは、Hfの質量%が0.5〜1%である。
In order to solve the above problems, the third Ni-based superalloy according to the present invention is, in mass %, Co 10-11%, Cr 10-12%, W8-9%, Al 4-5%, Ti 4-5%, Nb 0 to 1%, Hf 0.5 to 2.5%, C 0.05 to 0.15%, B 0.005 to 0.015%, Zr 0.01 to 0.05%, the balance being made of Ni and inevitable impurities It is characterized by.
Moreover, Preferably, the mass % of Hf is 0.5 to 1%.

上記課題を解決するために、本発明によるガスタービン部品は、上記第1〜第3のいずれかのNi基超耐熱合金を用いて製造したこと、好ましくは一方向凝固鋳造法により製造したことを特徴とする。   In order to solve the above problems, the gas turbine component according to the present invention is manufactured using any one of the first to third Ni-base superalloys, preferably manufactured by a unidirectional solidification casting method. Features.

本発明は、耐高温腐食性と耐高温酸化性及び高温強度とを並立させるために、多数の合金を試作評価し、その結果Cr−Al−Ti量を適切な範囲に収めること、及びその組成範囲において、強度向上に寄与し、かつ、耐食性への悪影響が少ない元素としてWが有効であことを見出し、更に、γ(ガンマ)相及びγ′(ガンマプライム)相に対する固容量から判断した組織安定性を考慮してなされたものである。   In the present invention, in order to make high temperature corrosion resistance, high temperature oxidation resistance, and high temperature strength side by side, a large number of alloys are experimentally evaluated, and as a result, the amount of Cr-Al-Ti falls within an appropriate range, and the composition thereof. In the range, it was found that W is effective as an element that contributes to strength improvement and has little adverse effect on corrosion resistance, and further, a structure judged from a solid capacity with respect to a γ (gamma) phase and a γ ′ (gamma prime) phase. It was made in consideration of stability.

本発明の各Ni基超耐熱合金によれば、硫化−酸化が複合する環境での耐食性に寄与するCrと、γ′相を生成し高温強度と耐酸化性に寄与するAlと、耐食性に寄与するTiとの量比が適切な範囲になり、そこに強度向上への寄与と耐食性への影響を考慮して添加量を定めた、Wを中心とした強化元素を加えることにより、耐高温腐食性、耐高温酸化性及び高温強度に優れたものとすることができる。
又、柱状結晶材の状態で実用上十分に高い強度が得られるので、単結晶化を前提にする必要がない。
特に、第2のNi基超耐熱合金は、一方向凝固鋳造による柱状結晶翼又は単結晶翼に適し、耐食性−耐酸化性−強度の特性を高いレベルで発揮でき、又、第3のNi基超耐熱合金は、普通鋳造による多結晶翼又は一方向凝固鋳造による柱状結晶翼に適し、耐食性−耐酸化性−強度の特性を維持しながら材料コストを抑制できる。
したがって低質燃料に対応した産業用ガスタービンの動翼等に適用することにより、ガスタービンの熱効率向上及び信頼性向上に効果がある。
According to each Ni-based superalloy according to the present invention, Cr contributes to corrosion resistance in an environment where sulfidation-oxidation is combined, Al generates γ 'phase and contributes to high temperature strength and oxidation resistance, and contributes to corrosion resistance. High-temperature corrosion resistance by adding a strengthening element centered on W, the amount of which is determined in consideration of the contribution to strength improvement and the effect on corrosion resistance. , High temperature oxidation resistance and high temperature strength.
Further, since a sufficiently high strength can be obtained in the state of a columnar crystal material, it is not necessary to assume single crystallization.
In particular, the second Ni-based super heat-resistant alloy is suitable for columnar crystal blades or single crystal blades by unidirectional solidification casting, and can exhibit the characteristics of corrosion resistance-oxidation resistance-strength at a high level. The super heat-resistant alloy is suitable for a polycrystalline wing by normal casting or a columnar crystal wing by unidirectional solidification casting, and can suppress the material cost while maintaining the characteristics of corrosion resistance-oxidation resistance-strength.
Therefore, it is effective for improving the thermal efficiency and reliability of the gas turbine by applying it to the moving blades of an industrial gas turbine for low quality fuel.

また、本発明のガスタービン部品によれば、単結晶専用材と比較して低角粒界や高角粒界等の鋳造欠陥による強度低下に対し、許容できる制限範囲が広いため、複雑形状のガスタービン部品の鋳造工程において高い収率を確保できる。   In addition, according to the gas turbine part of the present invention, since the allowable limit range is wide for the strength reduction due to casting defects such as low-angle grain boundaries and high-angle grain boundaries as compared with the single crystal dedicated material, A high yield can be secured in the turbine component casting process.

本発明のNi基超耐熱合金及び既存のNi基超耐熱合金の高温腐食試験の結果を示す説明図である。It is explanatory drawing which shows the result of the high temperature corrosion test of the Ni base superalloy and the existing Ni base superalloy according to the present invention. 本発明のNi基超耐熱合金及び既存のNi基超耐熱合金の高温酸化試験の結果を示す説明図である。It is explanatory drawing which shows the result of the high temperature oxidation test of the Ni-base superalloy and the existing Ni-base superalloy according to the present invention. 本発明のNi基超耐熱合金及び既存のNi基超耐熱合金のクリープ試験の結果を示す説明図である。It is explanatory drawing which shows the result of the creep test of the Ni-base superalloy and the existing Ni-base superalloy according to the present invention.

Coは、溶体化熱処理温度幅を拡大させるが、含有量が9mass%(第3の合金では10mass%)未満であると、その効果が得られず、11mass%(第2の合金では10mass%)を超えると、γ′相の析出が減り高温強度が低下する。 Co increases the solution heat treatment temperature range, but if the content is less than 9 mass% (10 mass% in the third alloy), the effect cannot be obtained, and 11 mass% (in the second alloy). If it exceeds 10 mass% ), precipitation of the γ 'phase decreases and the high-temperature strength decreases.

Crは、特に硫化−酸化が複合する環境での耐食性を向上させるが、含有量が9mass%(第3の合金では10mass%)未満であると、その効果が得られず、12mass%(第2の合金では10mass%)を超えると、TCP(Topologically Close Packed)相を生成し高温強度が低下する。 Cr improves the corrosion resistance particularly in an environment where sulfidation and oxidation are combined, but if the content is less than 9 mass% (10 mass% in the third alloy), the effect cannot be obtained, and 12 mass%. If it exceeds (10 mass% in the second alloy), a TCP (Topologically Close Packed) phase is generated and the high temperature strength is lowered.

Moは、固溶強化及び析出硬化により高温強度を向上させるが、含有量が1mass%を超えると、耐食性が低下する。
なお、第2の合金では、Moの含有量が0.5mass%未満であると、上記効果が得られない。
Mo improves the high-temperature strength by solid solution strengthening and precipitation hardening, but if the content exceeds 1 mass% , the corrosion resistance decreases.
In the second alloy, the above effect cannot be obtained when the Mo content is less than 0.5 mass% .

Wは、固溶強化及び析出硬化により高温強度を向上させるが、含有量が6mass%(第3の合金では8mass%)未満であると、その効果が得られず、9mass%(第2の合金では8mass%)を超えると、TCP相を生成し高温強度が低下する。
又、Wは、一般に耐食性を低下させると考えられているが、本発明の組成域では耐食性への悪影響は少ないという知見が得られた。
W improves the high-temperature strength by solid solution strengthening and precipitation hardening, but if the content is less than 6 mass% (8 mass% in the third alloy), the effect cannot be obtained, and 9 mass% (first If it exceeds 8 mass% ), the TCP phase is generated and the high-temperature strength is lowered.
In addition, W is generally considered to lower the corrosion resistance, but it has been found that there is little adverse effect on the corrosion resistance in the composition range of the present invention.

Alは、γ′相を生成し高温強度を向上させると共に、耐酸化性を向上させるが、含有量が4mass%未満であると、その効果が得られず、5mass%を超えると、共晶γ′相が多量となり、溶体化熱処理が困難になり、かつ、耐食性が低下する。 Al produces a γ 'phase to improve high temperature strength and oxidation resistance. However, if the content is less than 4 mass% , the effect cannot be obtained, and if it exceeds 5 mass% , The amount of crystal γ ′ phase becomes large, so that solution heat treatment becomes difficult, and the corrosion resistance decreases.

Tiは、耐食性を向上させるが、含有量が4mass%未満であると、その効果が得られず、5mass%を超えると、耐酸化性が低下し、かつ、熱処理性が低下する。 Ti improves the corrosion resistance, but if the content is less than 4 mass% , the effect cannot be obtained, and if it exceeds 5 mass% , the oxidation resistance decreases and the heat treatment performance decreases.

Nbは、γ′相に固溶し高温強度を向上させるが、含有量が1mass%を超えると、結晶粒界に偏析し高温強度が低下する。 Nb dissolves in the γ 'phase and improves the high-temperature strength. However, if the content exceeds 1 mass% , it segregates at the grain boundaries and the high-temperature strength decreases.

Taは、固溶強化及び析出硬化により高温強度を向上させるが、含有量が3mass%を超えると共晶γ′相が多量となり、溶体化熱処理が困難になる。
なお、第2の合金では、Taの含有量が2mass%未満であると、上記効果が得られない。
Ta improves the high temperature strength by solid solution strengthening and precipitation hardening. However, if the content exceeds 3 mass% , the amount of eutectic γ 'phase becomes large and solution heat treatment becomes difficult.
In the second alloy, the above effect cannot be obtained when the Ta content is less than 2 mass% .

Hfは、粒界を強化し高温強度と延性を向上させ、かつ、DS鋳造時の結晶粒界割れに有効であるが、含有量が0.5mass%未満であると、その効果が得られず、2.5mass%を超えると、結晶粒界に偏析し高温強度が低下する。 Hf strengthens the grain boundaries and improves the high-temperature strength and ductility, and is effective for grain boundary cracking during DS casting, but if the content is less than 0.5 mass% , the effect is obtained. If it exceeds 2.5 mass% , it segregates at the grain boundaries and the high-temperature strength decreases.

Reは、固溶強化により高温強度を上昇させると共に、特に900℃以上の温度での耐食性を向上させるが、含有量が3mass%を超えると、TCP相の析出により延性を阻害し、かつ、比重が大きく、高価である。
なお、第2の合金では、Reの含有量が1mass%未満であると、上記効果が得られない。
Re increases the high temperature strength by solid solution strengthening and improves the corrosion resistance particularly at a temperature of 900 ° C. or more. However, when the content exceeds 3 mass% , the ductility is inhibited by precipitation of the TCP phase, and Specific gravity is large and expensive.
In the second alloy, the above effect cannot be obtained when the Re content is less than 1 mass% .

Cは、炭化物を形成し結晶粒界を強化するが、含有量が0.05mass%未満であると、その効果が得られず、0.15mass%(第2の合金では0.1mass%)を超えると、過剰な炭化物が生成し高温強度が低下する。 C forms carbides and strengthens the grain boundaries, but if the content is less than 0.05 mass% , the effect cannot be obtained, and 0.15 mass% (0.1 mass in the second alloy) % )), Excessive carbides are formed and the high-temperature strength is lowered.

Bは、硼化物を形成し結晶粒界を強化するが、含有量が0.005mass%未満であると、その効果が得られず、0.015mass%(第2の合金では0.01mass%)を超えると、延性や靱性が低下し粒界の融点を下げて高温強度が低下する。 B forms a boride and strengthens the grain boundary. However, if the content is less than 0.005 mass% , the effect cannot be obtained, and 0.015 mass% (0.01 % in the second alloy). If it exceeds mass% ), the ductility and toughness are lowered, the melting point of the grain boundary is lowered, and the high temperature strength is lowered.

Zrは、結晶粒界を強化するが、含有量が0.05mass%(第2の合金では0.02mass%)を超えると、延性や靭性が低下し粒界の融点を下げて高温強度が低下する。
なお、第3の合金では、Zrの含有量が0.01mass%未満であると、上記効果が得られない。
Zr reinforces the grain boundaries, but if the content exceeds 0.05 mass% (0.02 mass% in the second alloy), ductility and toughness decrease, lowering the melting point of the grain boundaries, and increasing the high-temperature strength Decreases.
In the third alloy, if the Zr content is less than 0.01 mass% , the above effect cannot be obtained.

表1(既存合金1(Rene80H)、既存合金2(Mar−M247)の成分組成を併記)に示す成分組成のNi基超耐熱合金(本発明合金1〜3、比較合金1〜3)を用意し、これらのNi基超耐熱合金をそれぞれ一方向凝固鋳造炉を用いて、鋳型引抜き速度200mm/hの条件で凝固させ、丸棒状の柱状結晶鋳物を製造した。
次いで、下記の熱処理を施してそれぞれのNi基超耐熱合金を得た。
熱処理条件
溶体化処理:1200〜1260℃、2時間保持後空冷
時効処理:第1段1080℃、4時間保持後空冷
第2段870℃、20時間保持後空冷
Prepared Ni-base superalloys (inventive alloys 1 to 3 and comparative alloys 1 to 3) having the component compositions shown in Table 1 (along with the component compositions of existing alloy 1 (Rene 80H) and existing alloy 2 (Mar-M247)) These Ni-base superalloys were each solidified using a unidirectional solidification casting furnace at a mold drawing speed of 200 mm / h to produce a round bar-like columnar crystal casting.
Next, the following heat treatment was performed to obtain respective Ni-base superalloys.
Heat treatment conditions Solution treatment: 1200 to 1260 ° C, air cooling after holding for 2 hours Aging treatment: 1st stage 1080 ° C, air cooling after holding for 4 hours
Second stage Air cooling after holding at 870 ° C for 20 hours

Figure 0004911753
Figure 0004911753

得られた本発明合金1〜3及び既存合金1、2の試験片に、下記の条件で高温腐食試験を施したところ、最大浸食深さは、図1に示すようになった。
試験片形状:直径10mm、長さ100mm
試験条件:灯油燃料に腐食成分(硫化オイル、人工海水)を添加した燃焼ガス中、燃焼ガス温度1050℃、100時間暴露後空冷、5回繰り返し(計500時間)
When the high temperature corrosion test was performed on the obtained test pieces of the present invention alloys 1 to 3 and the existing alloys 1 and 2 under the following conditions, the maximum erosion depth was as shown in FIG.
Test piece shape: Diameter 10 mm, length 100 mm
Test conditions: In a combustion gas in which corrosive components (sulfurized oil, artificial seawater) are added to kerosene fuel, combustion gas temperature is 1050 ° C, air cooling after exposure for 100 hours, repeated 5 times (total 500 hours)

又、得られた本発明合金1〜3及び既存合金1、2の試験片に、下記の条件で酸化試験を施したところ、質量増加は、図2に示すようになった。
試験片形状:直径10mm、長さ25mm
試験条件:大気中、950℃、500時間暴露後空冷
Moreover, when the oxidation test was performed on the obtained test pieces of the present invention alloys 1 to 3 and the existing alloys 1 and 2 under the following conditions, the increase in mass was as shown in FIG.
Specimen shape: Diameter 10mm, length 25mm
Test conditions: air-cooled after exposure to 950 ° C for 500 hours in air

更に、得られた本発明合金1〜3及び既存合金1、2の試験片に、下記の条件でクリープ試験を施したところ、破断寿命は、図3に示すようになった。
試験片形状:平行部直径4mm、ゲージ間隔24mm
試験条件:大気中、900℃、392MPa
Furthermore, when the creep test was performed on the obtained test pieces of the present invention alloys 1 to 3 and the existing alloys 1 and 2 under the following conditions, the fracture life was as shown in FIG.
Specimen shape: parallel part diameter 4mm, gauge interval 24mm
Test conditions: in air, 900 ° C., 392 MPa

一方、既存合金1を基準とし、本発明合金1〜3、比較合金1〜3及び既存合金2の高温腐食試験による最大浸食深さ比、酸化試験による質量増加比、及びクリープ試験による破断寿命比を調べたところ、表2に示すようになった。   On the other hand, based on the existing alloy 1, the present invention alloys 1 to 3, the comparative alloys 1 to 3 and the existing alloy 2 have a maximum erosion depth ratio by a high temperature corrosion test, a mass increase ratio by an oxidation test, and a rupture life ratio by a creep test. As a result, it was as shown in Table 2.

Figure 0004911753
Figure 0004911753

図1〜3及び表2から分かるように、本発明合金1は、耐食性、耐酸化性、強度ともに優れており、特に強度を重視した一方向凝固材としての使用に適している。
本発明合金2は、耐酸化性と強度を重視した条件での使用に適しており、耐食性もA重油燃料対応の許容範囲である。
又、本発明合金3は、耐食性を重視した条件での使用に適している。
As can be seen from FIGS. 1 to 3 and Table 2, the alloy 1 of the present invention is excellent in corrosion resistance, oxidation resistance, and strength, and is particularly suitable for use as a unidirectionally solidified material with an emphasis on strength.
The alloy 2 of the present invention is suitable for use under conditions that place importance on oxidation resistance and strength, and the corrosion resistance is also an allowable range for A heavy oil fuel.
In addition, the alloy 3 of the present invention is suitable for use under conditions that place importance on corrosion resistance.

一方、既存合金1は、ガスタービン動翼材料として広く使用されており、耐食性に優れているが、本発明合金1〜3の組成範囲と比較してCrが多くAlが少ないため、耐酸化性が低く、熱効率向上を目的とした燃料ガスの高温化には対応できない。
又、既存合金2は、耐酸化性と強度に優れているが、本発明合金1〜3の組成範囲と比較してCrとTiが少なくAlが多いため、耐食性が低く、A重油燃料には対応できない。
On the other hand, the existing alloy 1 is widely used as a gas turbine blade material and has excellent corrosion resistance. However, since it has more Cr and less Al than the composition range of the alloys 1 to 3 of the present invention, it has oxidation resistance. Therefore, it cannot cope with the high temperature of the fuel gas for the purpose of improving the thermal efficiency.
In addition, the existing alloy 2 is excellent in oxidation resistance and strength. However, compared with the composition range of the alloys 1 to 3 of the present invention, since Cr and Ti are less and Al is more, the corrosion resistance is low. I can not cope.

他方、比較合金1(日本国特開平5−59473号公報及び日本国特開平9−170402号公報記載の組成範囲にほぼ該当)は、本発明合金1〜3の組成範囲と比較してTiが少ないため、耐食性が不十分である。
比較合金2(日本国特開平9−170402号公報に記載されている組成範囲にほぼ該当)は、本発明合金1〜3の組成範囲と比較してCrが多くAlとWが少ないため、強度が不十分である。
又、比較合金3(日本国特開平5−59473号公報記載の組成範囲にほぼ該当)は、本発明合金1〜3の組成範囲と比較してMoが多いため、耐食性が不十分である。
On the other hand, Comparative Alloy 1 (substantially corresponds to the composition range described in Japanese Patent Laid-Open No. 5-59473 and Japanese Laid-Open Patent Publication No. 9-170402) has Ti as compared with the composition range of Alloys 1 to 3 of the present invention. Due to the small amount, the corrosion resistance is insufficient.
Comparative alloy 2 (corresponding almost to the composition range described in JP-A-9-170402) has more Cr and less Al and W than the composition ranges of the alloys 1 to 3 of the present invention. Is insufficient.
Further, Comparative Alloy 3 (substantially corresponding to the composition range described in Japanese Patent Laid-Open No. 5-59473) has insufficient Mo in comparison with the composition range of Alloys 1 to 3 of the present invention, and therefore has insufficient corrosion resistance.

以上、本発明の好ましい例についてある程度特定的に説明したが、それらについて種々の変更をなし得ることはあきらかである。従って、本発明の範囲及び精神から逸脱することなく、本明細書中で特定的に記載された態様とは異なる態様で本発明を実施できることが理解されるべきである。   Although the preferred examples of the present invention have been described above in a specific manner, it is obvious that various modifications can be made. Accordingly, it is to be understood that the invention can be practiced otherwise than as specifically described herein without departing from the scope and spirit of the invention.

Claims (6)

質量%で、Co9〜11%、Cr9〜12%、Mo0〜l%、W6〜9%、Al4〜5%、Ti4〜5%、Nb0〜1%、Ta0〜3%、Hf0.5〜2.5%、Re0〜3%、C0.05〜0.15%、B0.005〜0.015%、Zr0.05%以下、及び残部がNiと不可避不純物からなることを特徴とするNi基超耐熱合金。 By mass %, Co 9-11%, Cr 9-12%, Mo 0-1%, W 6-9%, Al 4-5%, Ti 4-5%, Nb 0-1%, Ta 0-3%, Hf 0.5-2. 5%, Re 0 to 3%, C 0.05 to 0.15%, B 0.005 to 0.015%, Zr 0.05% or less , and the balance consisting of Ni and inevitable impurities Heat resistant alloy. 質量%で、Co9〜10%、Cr9〜10%、Mo0.5〜1%、W6〜8%、Al4〜5%、Ti4〜5%、Ta2〜3%、Hf0.5〜2.5%、Re1〜3%、C0.05〜0.1%、B0.005〜0.01%、Zr0.02%以下、及び残部がNiと不可避不純物からなることを特徴とするNi基超耐熱合金。 By mass %, Co 9-10%, Cr 9-10%, Mo 0.5-1%, W 6-8%, Al 4-5%, Ti 4-5%, Ta 2-3%, Hf 0.5-2.5%, A Ni-base superalloy characterized by comprising Re 1 to 3%, C 0.05 to 0.1%, B 0.005 to 0.01%, Zr 0.02% or less , and the balance comprising Ni and inevitable impurities. 質量%で、Co10〜11%、Cr10〜12%、W8〜9%、Al4〜5%、Ti4〜5%、Nb0〜1%、Hf0.5〜2.5%、C0.05〜0.15%、B0.005〜0.015%、Zr0.01〜0.05%、残部がNiと不可避不純物からなることを特徴とするNi基超耐熱合金。 By mass %, Co 10-11%, Cr 10-12%, W 8-9%, Al 4-5%, Ti 4-5%, Nb 0-1%, Hf 0.5-2.5%, C 0.05-0.15 %, B 0.005 to 0.015%, Zr 0.01 to 0.05%, the balance being Ni and inevitable impurities. Hfの質量%が0.5〜1%であることを特徴とする請求項1〜3のいずれか一項に記載のNi基超耐熱合金。The Ni-based superalloy according to any one of claims 1 to 3, wherein the mass % of Hf is 0.5 to 1%. 請求項1〜4のいずれか一項に記載のNi基超耐熱合金からなるガスタービン部品。  A gas turbine component comprising the Ni-base superalloy according to any one of claims 1 to 4. 一方向凝固鋳造法により製造されたことを特徴とする請求項5記載のガスタービン部品。  The gas turbine component according to claim 5, wherein the gas turbine component is manufactured by a unidirectional solidification casting method.
JP2005516587A 2003-12-26 2004-12-21 Ni-base superalloy and gas turbine component using the same Active JP4911753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516587A JP4911753B2 (en) 2003-12-26 2004-12-21 Ni-base superalloy and gas turbine component using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003435037 2003-12-26
JP2003435037 2003-12-26
JP2005516587A JP4911753B2 (en) 2003-12-26 2004-12-21 Ni-base superalloy and gas turbine component using the same
PCT/JP2004/019094 WO2005064027A1 (en) 2003-12-26 2004-12-21 Nickel-based super-heat-resistant alloy and gas turbine component using same

Publications (2)

Publication Number Publication Date
JPWO2005064027A1 JPWO2005064027A1 (en) 2007-12-20
JP4911753B2 true JP4911753B2 (en) 2012-04-04

Family

ID=34736583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516587A Active JP4911753B2 (en) 2003-12-26 2004-12-21 Ni-base superalloy and gas turbine component using the same

Country Status (4)

Country Link
US (2) US20080008618A1 (en)
EP (1) EP1715068B1 (en)
JP (1) JP4911753B2 (en)
WO (1) WO2005064027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633679C1 (en) * 2016-12-20 2017-10-16 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Cast heat-resistant nickel-based alloy and product made thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615294B2 (en) * 2008-08-13 2013-12-24 Bio Control Medical (B.C.M.) Ltd. Electrode devices for nerve stimulation and cardiac sensing
US20090041615A1 (en) * 2007-08-10 2009-02-12 Siemens Power Generation, Inc. Corrosion Resistant Alloy Compositions with Enhanced Castability and Mechanical Properties
US20100034692A1 (en) * 2008-08-06 2010-02-11 General Electric Company Nickel-base superalloy, unidirectional-solidification process therefor, and castings formed therefrom
WO2013132508A1 (en) 2012-03-09 2013-09-12 Indian Institute Of Science Nickel- aluminium- zirconium alloys
ITUA20161551A1 (en) * 2016-03-10 2017-09-10 Nuovo Pignone Tecnologie Srl LEAGUE HAVING HIGH RESISTANCE TO OXIDATION AND APPLICATIONS OF GAS TURBINES THAT USE IT
GB2554898B (en) * 2016-10-12 2018-10-03 Univ Oxford Innovation Ltd A Nickel-based alloy
CN115572861B (en) * 2022-09-23 2024-02-23 北京北冶功能材料有限公司 Nickel-based superalloy easy to machine and form and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129381A (en) * 1998-10-30 2000-05-09 Ishikawajima Harima Heavy Ind Co Ltd Nickel-base single crystal superalloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333775C3 (en) * 1973-06-27 1978-12-14 Avco Corp., Cincinnati, Ohio (V.St.A.) Process for the heat treatment of a nickel alloy
JP3402603B2 (en) 1986-03-27 2003-05-06 ゼネラル・エレクトリック・カンパニイ Nickel-base-superalloy with improved low angle grain boundary resistance for producing single crystal products
US5240518A (en) * 1990-09-05 1993-08-31 General Electric Company Single crystal, environmentally-resistant gas turbine shroud
JP2843476B2 (en) 1992-03-09 1999-01-06 日立金属株式会社 High corrosion resistant high strength superalloy, high corrosion resistant high strength single crystal casting, gas turbine and combined cycle power generation system
DE69423061T2 (en) * 1993-08-06 2000-10-12 Hitachi Ltd Gas turbine blade, method for producing the same and gas turbine with this blade
US5451142A (en) * 1994-03-29 1995-09-19 United Technologies Corporation Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
JPH07300639A (en) 1994-04-28 1995-11-14 Toshiba Corp Highly corrosion resistant nickel-base single crystal superalloy and its production
JPH09170402A (en) 1995-12-20 1997-06-30 Hitachi Ltd Nozzle for gas turbine and manufacture thereof, and gas turbine using same
JP3246376B2 (en) 1997-01-23 2002-01-15 三菱マテリアル株式会社 Columnar crystal Ni-base heat-resistant alloy large casting with excellent high-temperature intergranular corrosion resistance
EP1204776B1 (en) * 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
KR100862346B1 (en) * 2000-02-29 2008-10-13 제너럴 일렉트릭 캄파니 Nickel base superalloys and turbine components fabricated therefrom
EP1211335B1 (en) 2000-11-30 2007-05-09 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Nickel based superalloy having a very high resistance to hot corrosion for single crystal turbine blades of industrial turbines
RU2215804C2 (en) * 2001-10-08 2003-11-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Nickel-base heat-resistant alloy and article made of thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129381A (en) * 1998-10-30 2000-05-09 Ishikawajima Harima Heavy Ind Co Ltd Nickel-base single crystal superalloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633679C1 (en) * 2016-12-20 2017-10-16 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Cast heat-resistant nickel-based alloy and product made thereof

Also Published As

Publication number Publication date
EP1715068B1 (en) 2012-08-01
US20100047110A1 (en) 2010-02-25
EP1715068A1 (en) 2006-10-25
EP1715068A4 (en) 2009-11-11
US20080008618A1 (en) 2008-01-10
WO2005064027A1 (en) 2005-07-14
JPWO2005064027A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5696995B2 (en) Heat resistant superalloy
JP6248117B2 (en) Nickel-based superalloys and articles
JP5299899B2 (en) Ni-base superalloy and manufacturing method thereof
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
US20070235110A1 (en) Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance
JPWO2006059805A1 (en) Heat resistant superalloy
JP5186215B2 (en) Nickel-based superalloy
KR20140126677A (en) Cast nickel-based superalloy including iron
RU2295585C2 (en) High-strength nickel-based superalloy resistant to high-temperature corrosion and oxidation, and directionally solidified product of this superalloy
WO2003080882A1 (en) Ni-BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY AND Ni-BASE SINGLE CRYSTAL SUPERALLOY
WO2010119709A1 (en) Nickel-base single-crystal superalloy and turbine wing using same
JP5024797B2 (en) Cobalt-free Ni-base superalloy
US20100047110A1 (en) Ni-base superalloy and gas turbine component using the same
JP2020097778A (en) Nickel-based superalloy and articles
JP4579573B2 (en) Nickel base alloy
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JP5595495B2 (en) Nickel-base superalloy
JP6982172B2 (en) Ni-based superalloy castings and Ni-based superalloy products using them
JP4028122B2 (en) Ni-base superalloy, manufacturing method thereof, and gas turbine component
JP5891463B2 (en) Method for evaluating oxidation resistance of Ni-base superalloy
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JP5636639B2 (en) Ni-base superalloy
JP2018138690A (en) Ni-BASED SUPERALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4911753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250