JP2013051906A - Method for producing tofu, and tofu produced by the method - Google Patents

Method for producing tofu, and tofu produced by the method Download PDF

Info

Publication number
JP2013051906A
JP2013051906A JP2011191430A JP2011191430A JP2013051906A JP 2013051906 A JP2013051906 A JP 2013051906A JP 2011191430 A JP2011191430 A JP 2011191430A JP 2011191430 A JP2011191430 A JP 2011191430A JP 2013051906 A JP2013051906 A JP 2013051906A
Authority
JP
Japan
Prior art keywords
tofu
aqueous solution
iron
metal salt
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011191430A
Other languages
Japanese (ja)
Other versions
JP5959817B2 (en
Inventor
Yasuhiro Arii
康博 有井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mukogawa Gakuin Educational Institution
Original Assignee
Mukogawa Gakuin Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mukogawa Gakuin Educational Institution filed Critical Mukogawa Gakuin Educational Institution
Priority to JP2011191430A priority Critical patent/JP5959817B2/en
Publication of JP2013051906A publication Critical patent/JP2013051906A/en
Application granted granted Critical
Publication of JP5959817B2 publication Critical patent/JP5959817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Beans For Foods Or Fodder (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing Tofu that is rich in desired minerals, and to provide Tofu produced by the same.SOLUTION: The method for producing Tofu includes a step for mixing soy milk with water solution containing only inorganic salt or organic salt of one metal selected from iron(II), iron(III), nickel(II), manganese(II), zinc(II), or copper(II). There is provided Tofu produced by the method.

Description

本発明は、従来のにがりなどの凝固剤に代えて特定の金属塩のみを含む水溶液を用いて豆腐を製造する方法、およびそれで得られた豆腐に関する。   The present invention relates to a method for producing tofu using an aqueous solution containing only a specific metal salt in place of a conventional coagulant such as bittern, and tofu obtained thereby.

近年の国民栄養調査において、ミネラルの不足が問題とされ、現在はタブレット形式で補っている。しかしながら、ミネラル不足が懸念される高齢者にとってタブレットによる摂取は抵抗が高く、食品形式からの摂取が望まれている。   In recent national nutrition surveys, the lack of minerals has been a problem, and is now supplemented in tablet form. However, for elderly people who are worried about mineral shortages, taking with a tablet is highly resistant, and intake from a food form is desired.

大豆は日本古来の食糧資源として極めて重要であり、最近では人口増加との関係から21世紀の食糧資源として国際的にも重要視されている。豆腐は、通常、大豆から豆乳を調製した後、これに凝固剤を添加して、大豆に含まれているタンパク質を凝固させ、成形して製造されている。現在、凝固剤としては、古くからの塩田にがりをはじめとして、塩化マグネシウム、石膏、グルコノデルタラクトン(GDL)などが用いられている。   Soybean is extremely important as an ancient Japanese food resource, and has recently been regarded internationally as a food resource for the 21st century in relation to population growth. Tofu is usually produced by preparing soy milk from soybeans, adding a coagulant thereto, and coagulating and molding the protein contained in the soybeans. At present, magnesium chloride, gypsum, glucono delta lactone (GDL), and the like are used as coagulants, including the traditional Shiota bittern.

近年、このミネラルを豊富に含む豆腐からミネラルを摂取する試みが幾つかなされている。たとえば特開2000−14351号公報(特許文献1)では、ミネラル原料微生物を添加した豆乳を凝固させる豆腐の製造方法が開示されている。また、たとえば特開2001−224326号公報(特許文献2)には、海面下200m以深の深海から取水した海洋深層水を、逆浸透膜法、電気透析法又は加熱蒸発法により濃縮し、この濃縮液から塩化ナトリウムを分離して苦汁を製造し、この苦汁を豆乳に混入して凝固させたことを特徴とする海洋深層水由来の苦汁を用いた豆腐の製造方法が開示されている。   In recent years, several attempts have been made to ingest minerals from tofu containing abundant minerals. For example, Japanese Patent Laid-Open No. 2000-14351 (Patent Document 1) discloses a method for producing tofu that coagulates soy milk to which a mineral raw material microorganism has been added. Further, for example, in Japanese Patent Application Laid-Open No. 2001-224326 (Patent Document 2), deep sea water taken from a deep sea 200 m or deep below the sea surface is concentrated by a reverse osmosis membrane method, an electrodialysis method, or a heating evaporation method. A method for producing tofu using deep-sea water-derived bitter juice, characterized in that sodium chloride is separated from the liquid to produce bitter juice, and the bitter juice is mixed in soy milk and solidified.

しかしながら、塩化カルシウム、塩化マグネシウム以外の金属塩を1種のみ含む水溶液を用いて、豆乳を凝固させて豆腐を製造する方法は、これまでのところ知られていない。   However, a method for producing tofu by coagulating soymilk using an aqueous solution containing only one metal salt other than calcium chloride and magnesium chloride has not been known so far.

特開2000−14351号公報JP 2000-14351 A 特開2001−224326号公報JP 2001-224326 A

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、所望のミネラルを豊富に含む豆腐を製造する方法、ならびにそれで得られた豆腐を提供することである。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing tofu rich in a desired mineral, and tofu obtained thereby. .

本発明の豆腐の製造方法は、金属塩として鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれか1種の金属の無機塩または有機塩のみを含む水溶液と豆乳とを混合する工程を含むことを特徴とする。   The method for producing tofu according to the present invention includes any one metal selected from iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II) as a metal salt. And a step of mixing an aqueous solution containing only an inorganic salt or an organic salt with soy milk.

本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of iron (II) as a metal salt, the concentration of the metal salt is preferably 6 mM or more.

本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(III)の無機塩のみを含む場合、当該金属塩の濃度は4mM以上であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an iron (III) inorganic salt as a metal salt, the concentration of the metal salt is preferably 4 mM or more.

本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(II)の無機塩のみを含む、または、鉄(III)の無機塩のみを含む場合、当該水溶液は、人体に無害な還元剤をさらに含むことが好ましい。この場合、前記還元剤はアルコルビン酸であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of iron (II) as a metal salt, or contains only an inorganic salt of iron (III), the aqueous solution is a reducing agent that is harmless to the human body. It is preferable that it is further included. In this case, the reducing agent is preferably alcorbic acid.

また本発明の豆腐の製造方法において、前記水溶液が金属塩としてニッケル(II)の無機塩のみを含む場合、当該金属塩の濃度は7mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of nickel (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 7 mM or more.

また本発明の豆腐の製造方法において、前記水溶液が金属塩としてマンガン(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of manganese (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 6 mM or more.

また本発明の豆腐の製造方法において、前記水溶液が金属塩として亜鉛(II)の無機塩のみを含む場合、当該金属塩の濃度は5mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of zinc (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 5 mM or more.

また本発明の豆腐の製造方法において、前記水溶液が金属塩として銅(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of copper (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 6 mM or more.

本発明はまた、上述した本発明の方法により製造された豆腐についても提供する。   The present invention also provides tofu produced by the above-described method of the present invention.

本発明によれば、所望のミネラルを豊富に含む豆腐を簡便に製造することができ、タブレットではなく食品形式でミネラルを摂取することができるようになる。   ADVANTAGE OF THE INVENTION According to this invention, the tofu which contains a desired mineral abundantly can be manufactured simply, and a mineral can be ingested with a food form instead of a tablet.

実験例1において、溶液A、B、C、D、E、F、G、H、I、J、K、L、M、N、Oおよび水(対照群)を豆乳に添加した結果をそれぞれ示す写真である。In Experimental Example 1, the results of adding solutions A, B, C, D, E, F, G, H, I, J, K, L, M, N, O and water (control group) to soy milk are shown. It is a photograph. 実験例1において、各金属の塩化物を含む溶液A、H、D、F、B、J、N、Lについて算出された沈殿率を示すグラフである。In Experimental example 1, it is a graph which shows the precipitation rate computed about solution A, H, D, F, B, J, N, and L containing the chloride of each metal. 実験例2における金属イオンの濃度と沈殿率との関係を示すグラフであり、図3(a)は塩化カルシウム二水和物水溶液、図3(b)は塩化銅(II)二水和物水溶液、図3(c)は塩化マグネシウム六水和物水溶液、図3(d)は塩化マンガン(II)四水和物水溶液についての結果をそれぞれ示している。It is a graph which shows the relationship between the density | concentration of a metal ion and the precipitation rate in Experimental example 2, Fig.3 (a) is a calcium chloride dihydrate aqueous solution, FIG.3 (b) is a copper chloride (II) dihydrate aqueous solution. 3 (c) shows the results for a magnesium chloride hexahydrate aqueous solution, and FIG. 3 (d) shows the results for a manganese (II) chloride tetrahydrate aqueous solution. 実験例2における金属イオンの濃度と沈殿率との関係を示すグラフであり、図4(a)は塩化ニッケル(II)六水和物水溶液、図4(b)は塩化亜鉛(II)希塩酸溶液、図4(c)は塩化鉄(II)四水和物水溶液、図4(d)は塩化鉄(III)六水和物水溶液についての結果をそれぞれ示している。It is a graph which shows the relationship between the density | concentration of a metal ion and the precipitation rate in Experimental example 2, Fig.4 (a) is nickel chloride (II) hexahydrate aqueous solution, FIG.4 (b) is zinc chloride (II) dilute hydrochloric acid solution. 4 (c) shows the results for an aqueous solution of iron (II) chloride tetrahydrate, and FIG. 4 (d) shows the results for an aqueous solution of iron (III) chloride hexahydrate. 実験例2において、塩化マグネシウム六水和物水溶液についてのフィッティング解析結果を示す図であり、図5(a)はフィッティング解析前、図5(b)はフィッティング解析後をそれぞれ示している。In Experimental example 2, it is a figure which shows the fitting analysis result about a magnesium chloride hexahydrate aqueous solution, FIG. 5 (a) has shown before fitting analysis, FIG.5 (b) has each shown after fitting analysis. 実験例2で行った、塩化鉄(II)四水和物水溶液(図4(c))、塩化鉄(III)六水和物水溶液(図4(d))についての金属イオンの濃度と沈殿率との関係を示すグラフを重ね合わせたグラフである。Concentration and precipitation of metal ions for iron (II) chloride tetrahydrate aqueous solution (FIG. 4 (c)) and iron (III) hexahydrate aqueous solution (FIG. 4 (d)) conducted in Experimental Example 2. It is the graph which piled up the graph which shows the relationship with a rate. 2%アルコルビン酸を添加したこと以外は実験例2で行ったのと同様にして塩化鉄(II)四水和物水溶液についての金属イオンの濃度と沈殿率との関係を、アスコルビン酸を添加しなかった場合と比較したグラフである。Except that 2% ascorbic acid was added, the relationship between the concentration of metal ions and the precipitation rate in the aqueous iron (II) chloride tetrahydrate solution was the same as in Example 2 except that ascorbic acid was added. It is a graph compared with the case where there was no. 実験例4において、2種の豆乳それぞれを用いた場合の金属イオンの濃度と沈殿率との関係を示すグラフである。In Experimental example 4, it is a graph which shows the relationship between the density | concentration of a metal ion at the time of using each of 2 types of soymilk, and a precipitation rate. 各金属の乳酸塩を含む溶液a、b、c、dについて算出された沈殿率を示すグラフである。It is a graph which shows the precipitation rate computed about solution a, b, c, d containing the lactate of each metal.

本発明の豆腐の製造方法は、金属塩として鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれか1種の金属の塩のみを含む水溶液と豆乳とを混合する工程を含む。後述する実験例にて立証するように、本発明者は、これまで豆腐の製造において余り用いられてこなかった上述の金属塩を単独で用いても、豆乳を凝固させ、豆腐を製造することができることを見出した。   The method for producing tofu according to the present invention includes any one metal selected from iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II) as a metal salt. And a step of mixing an aqueous solution containing only the salt and soy milk. As proved in the experimental examples described later, the present inventor can coagulate soy milk and produce tofu even when using the above-mentioned metal salt that has not been used so much in the production of tofu. I found out that I can do it.

本発明において豆腐の原料として用いられる豆乳は、特に制限されるものではなく、市販されている豆乳を好適に用いることができる。豆腐は、豆乳に含まれるタンパク質が凝固剤で凝固することによって製造されるが、本発明に用いられる豆乳は、タンパク質を4.7g/100mL以上含んでいることが好ましく、5g/100mL以上含んでいることがより好ましい。   The soy milk used as a raw material for tofu in the present invention is not particularly limited, and commercially available soy milk can be suitably used. Tofu is produced by coagulating the protein contained in soymilk with a coagulant, but the soymilk used in the present invention preferably contains 4.7 g / 100 mL or more of protein, and contains 5 g / 100 mL or more. More preferably.

また本発明に用いられる水溶液は、鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれか1種の金属の無機塩または有機塩を含む。ここで無機塩としては、塩化物、硫酸塩、ホウ化物、炭化物、フッ化物、ヨウ化物、硝酸塩などが挙げられ、中でも、塩化カルシウム、硫酸カルシウムなど、従来の製法で用いる凝固剤に含まれているのと同様の無機塩の形態であることから、塩化物または硫酸塩を用いることが好ましい。また有機塩としては、酢酸塩、グルコン酸塩、乳酸塩、アクリル酸塩、クエン酸塩、シュウ酸塩などが挙げられ、中でも、食品添加物として用いることができ、吸収率を上げると予想される点で、酢酸塩、グルコン酸塩、クエン酸塩、乳酸塩を用いることが好ましい。   The aqueous solution used in the present invention is an inorganic salt of any one metal selected from iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II). Or an organic salt is included. Examples of inorganic salts include chlorides, sulfates, borides, carbides, fluorides, iodides, nitrates, and the like. Among them, calcium chloride, calcium sulfate, and the like are included in coagulants used in conventional manufacturing methods. It is preferable to use a chloride or a sulfate because it is in the form of an inorganic salt similar to that of Organic salts include acetates, gluconates, lactates, acrylates, citrates, oxalates, etc. Among them, they can be used as food additives and are expected to increase the absorption rate. In view of the above, it is preferable to use acetate, gluconate, citrate and lactate.

本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。後述する実験例にて立証するように、水溶液中の金属塩の濃度が比較的低い範囲では製造される豆腐は絹ごし豆腐のような状態となり、水溶液中の金属塩の濃度が比較的高い範囲では製造される豆腐は木綿豆腐のような状態となる。前記水溶液が金属塩として鉄(II)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも6〜7mMの範囲内であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも10mM以上であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of iron (II) as a metal salt, the concentration of the metal salt is preferably 6 mM or more. As will be demonstrated in the experimental examples described later, the tofu produced in the range where the concentration of the metal salt in the aqueous solution is relatively low is in a state like silken tofu, and in the range where the concentration of the metal salt in the aqueous solution is relatively high. The tofu produced is in the state of cotton tofu. When the aqueous solution contains only an inorganic salt of iron (II) as a metal salt, the concentration of the metal salt is within the range of 6 to 7 mM as described above if the tofu is in a state like silken tofu. It is preferable that if the tofu is in a state like cotton tofu, the concentration of the metal salt is preferably 10 mM or more among the above.

また本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(III)の無機塩のみを含む場合、当該金属塩の濃度は4mM以上であることが好ましい。前記水溶液が金属塩として鉄(III)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも4〜5mMの範囲内であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも6mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of iron (III) as a metal salt, it is preferable that the density | concentration of the said metal salt is 4 mM or more. When the aqueous solution contains only an inorganic salt of iron (III) as a metal salt, the concentration of the metal salt is within the range of 4 to 5 mM, as described above, if a tofu in a state like silken tofu is produced. It is preferable that if the tofu is in a state like cotton tofu, the concentration of the metal salt is preferably 6 mM or more among the above.

本発明の豆腐の製造方法において、前記水溶液が金属塩として鉄(II)または鉄(III)の無機塩のみを含む場合には、前記水溶液は、人体に無害な還元剤をさらに含んでいることが好ましい。鉄は、鉄(II)の形態の方が鉄(III)の形態よりも人体に摂取されやすく、そのため本発明の方法で製造された豆腐は、鉄(III)の形態よりも鉄(II)の形態で含む方が好ましい。しかしながら、鉄(II)の形態を含んでいても、空気中で酸化してしまって自然に鉄(III)の形態となってしまうことが想定される。このため、前記水溶液に人体に無害な還元剤を含ませることで、製造された豆腐において鉄(III)の形態よりも鉄(II)の形態として鉄を存在させることができ、より人体に摂取され易い形態で鉄を豆腐に含ませることが可能となる。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of iron (II) or iron (III) as a metal salt, the aqueous solution further contains a reducing agent that is harmless to the human body. Is preferred. Iron is more easily consumed by the human body in the form of iron (II) than in the form of iron (III), so that the tofu produced by the method of the present invention is iron (II) than in the form of iron (III). It is preferable to include in the form. However, even if it contains the form of iron (II), it is assumed that it will oxidize in the air and naturally form iron (III). For this reason, by containing a reducing agent that is harmless to the human body in the aqueous solution, iron can be present in the form of iron (II) rather than iron (III) in the produced tofu, and more ingested by the human body. It becomes possible to include iron in tofu in a form that is easily processed.

用いられる還元剤としては、人体に無害なものであれば特に制限されるものではなく、たとえばアスコルビン酸、没子酸などを挙げることができる。これらの中でも、人体内での鉄(II)の吸収を上げることが知られていることから、人体に無害な還元剤としてアスコルビン酸を用いることが特に好ましい。   The reducing agent used is not particularly limited as long as it is harmless to the human body, and examples thereof include ascorbic acid and gallic acid. Among these, ascorbic acid is particularly preferably used as a reducing agent that is harmless to the human body because it is known to increase the absorption of iron (II) in the human body.

また、本発明の豆腐の製造方法において、前記水溶液が金属塩としてニッケル(II)の無機塩のみを含む場合、当該金属塩の濃度は7mM以上であることが好ましい。前記水溶液が金属塩としてニッケル(II)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも7〜8mMの範囲内であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも11mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of nickel (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 7 mM or more. If the aqueous solution contains only the inorganic salt of nickel (II) as the metal salt, the concentration of the metal salt is within the range of 7 to 8 mM, as described above, if the tofu is in a state like silken tofu. It is preferable that if the tofu is in a state like cotton tofu, the concentration of the metal salt is preferably 11 mM or more among the above.

また本発明の豆腐の製造方法において、前記水溶液が金属塩としてマンガン(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。前記水溶液が金属塩としてマンガン(II)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも6〜7mMの範囲内であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも11mM以上であることが好ましい。   Moreover, in the manufacturing method of the tofu of this invention, when the said aqueous solution contains only the inorganic salt of manganese (II) as a metal salt, it is preferable that the density | concentration of the said metal salt is 6 mM or more. When the aqueous solution contains only an inorganic salt of manganese (II) as the metal salt, the concentration of the metal salt is within the range of 6 to 7 mM as described above if the tofu is in a state like silken tofu. It is preferable that if the tofu is in a state like cotton tofu, the concentration of the metal salt is preferably 11 mM or more among the above.

本発明の豆腐の製造方法において、前記水溶液が金属塩として亜鉛(II)の無機塩のみを含む場合、当該金属塩の濃度は5mM以上であることが好ましい。前記水溶液が金属塩として亜鉛(II)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも5〜7mMの範囲内であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも9mM以上であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of zinc (II) as a metal salt, the concentration of the metal salt is preferably 5 mM or more. When the aqueous solution contains only the inorganic salt of zinc (II) as the metal salt, the concentration of the metal salt is within the range of 5 to 7 mM as described above if the tofu in a state like silken tofu is produced. It is preferable that if the tofu is in a state like cotton tofu, the concentration of the metal salt is preferably 9 mM or more among the above.

本発明の豆腐の製造方法において、前記水溶液が金属塩として銅(II)の無機塩のみを含む場合、当該金属塩の濃度は6mM以上であることが好ましい。前記水溶液が金属塩として銅(II)の無機塩のみを含む場合、絹ごし豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも6mM以上であることが好ましく、また、木綿豆腐のような状態の豆腐を製造するのであれば、前記金属塩の濃度は、上述した中でも9mM以上であることが好ましい。   In the method for producing tofu according to the present invention, when the aqueous solution contains only an inorganic salt of copper (II) as a metal salt, the concentration of the metal salt is preferably 6 mM or more. When the aqueous solution contains only an inorganic salt of copper (II) as a metal salt, the concentration of the metal salt is preferably 6 mM or more among the above-mentioned if the tofu in a state like silken tofu is produced. Moreover, if the tofu of a state like a cotton tofu is manufactured, it is preferable that the density | concentration of the said metal salt is 9 mM or more among the above-mentioned.

本発明に用いられる金属塩を含む水溶液において溶媒として用いられる水は、水道水、精製水、超精製水などであればよく、特に制限されるものではない。ただし、亜鉛(II)の塩化物は、希塩酸溶液として調製する必要がある。   The water used as the solvent in the aqueous solution containing the metal salt used in the present invention is not particularly limited as long as it is tap water, purified water, ultrapurified water, or the like. However, the zinc (II) chloride must be prepared as a dilute hydrochloric acid solution.

本発明の豆腐の製造方法では、豆乳と金属塩を含む水溶液とが混合されるのであれば、その添加形式には特に制限はなく、豆乳に、金属塩を含む水溶液を添加するようにしてもよいし、逆に、金属塩を含む水溶液に、豆乳を添加するようにしてもよい。   In the method for producing tofu according to the present invention, as long as soy milk and an aqueous solution containing a metal salt are mixed, there is no particular limitation on the addition form, and an aqueous solution containing a metal salt may be added to soy milk. Alternatively, soy milk may be added to the aqueous solution containing the metal salt.

本発明の豆腐の製造方法において、豆乳と金属塩を含む水溶液とを混合する工程以外の工程は、特に制限されず、従来公知の豆腐の製造方法と同様の工程を経ればよい。   In the method for producing tofu of the present invention, the steps other than the step of mixing soy milk and an aqueous solution containing a metal salt are not particularly limited, and may be performed through the same steps as those of a conventionally known method for producing tofu.

本発明はまた、上述した本発明の方法により製造された豆腐についても提供する。すなわち、本発明の豆腐は、上述した鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれか1種の金属を含むものである。このように摂取したいミネラルに応じて、適宜の金属を含む豆腐を食することで、食品の形式で所望のミネラルを摂取することができる。   The present invention also provides tofu produced by the above-described method of the present invention. That is, the tofu of the present invention contains any one metal selected from the above-mentioned iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II). It is a waste. Thus, according to the mineral to ingest, the desired mineral can be ingested with the form of food by eating the tofu containing an appropriate metal.

ここで、豆腐は食されるまでに、何度か水での洗浄を経る場合もあるが、勿論、洗浄するごとに金属の濃度は低下していく。本発明の豆腐は、作りたてで水での洗浄を経ていない状態で食されることが好ましい。   Here, the tofu may be washed with water several times before being eaten, but, of course, the metal concentration decreases with each washing. The tofu of the present invention is preferably eaten in a state where it is freshly made and not washed with water.

なお、健康にとってミネラル不足も問題であるが、ミネラルの過剰摂取も問題を引き起こす可能性がある。このため、栄養機能食品の場合には、摂取目安量に含まれる栄養成分量が定められているが、本発明の豆腐を食してミネラルを摂取する場合でも、これに準じた量を摂取することが好ましい。たとえば、摂取目安量に含まれる栄養成分量は、鉄の場合には2.25〜10mgの範囲内、亜鉛の場合には2.10〜15mgである。   Mineral deficiency is a problem for health, but excessive intake of minerals can also cause problems. For this reason, in the case of functional nutritional foods, the amount of nutritional components included in the intake standard amount is determined, but even when eating the tofu of the present invention and ingesting minerals, intake the amount according to this Is preferred. For example, the amount of nutrients contained in the intake standard amount is in the range of 2.25 to 10 mg for iron, and 2.10 to 15 mg for zinc.

以下、実験例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example of an experiment is given and the present invention is explained in detail, the present invention is not limited to these.

<実験例1>
市販の成分無調整の豆乳(有機豆乳(商品名)、スジャータめいらくグループ:タンパク質含有量:約5g/100mL)900μLを1.5mL容のマイクロチューブにそれぞれ入れ、80℃で15分間保温した。この際の豆乳の重量(w)を測定した。
<Experimental example 1>
900 μL of commercially available soy milk with no ingredients (organic soy milk (trade name), Sujata Meiraku Group: protein content: about 5 g / 100 mL) was put in a 1.5 mL microtube and kept at 80 ° C. for 15 minutes. At this time, the weight (w 0 ) of the soymilk was measured.

次に、以下の溶液を調整した。
・溶液A:200mM 塩化カルシウム二水和物(ナカライテスク)水溶液
・溶液B:200mM 塩化マグネシウム六水和物(和光純薬)水溶液
・溶液C:200mM 硫酸マグネシウム七水和物(和光純薬)水溶液
・溶液D:200mM 塩化鉄(II)四水和物(和光純薬)水溶液
・溶液E:200mM 硫酸鉄(II)七水和物(和光純薬)水溶液
・溶液F:200mM 塩化鉄(III)六水和物(和光純薬)水溶液
・溶液G:100mM 硫酸鉄(III)n水和物(和光純薬)水溶液
・溶液H:200mM 塩化銅(II)二水和物(和光純薬)水溶液
・溶液I:200mM 硫酸銅(ナカライテスク)水溶液
・溶液J:200mM 塩化マンガン(II)四水和物(和光純薬)水溶液
・溶液K:200mM 硫酸マンガン(II)一水和物(和光純薬)水溶液
・溶液L:200mM 塩化ニッケル(II)六水和物(和光純薬)水溶液
・溶液M:200mM 硫酸ニッケル(II)六水和物(和光純薬)水溶液
・溶液N:200mM 塩化亜鉛(II)(和光純薬)希塩酸溶液
・溶液O:200mM 硫酸亜鉛(II)(和光純薬)水溶液
なお、200mMの塩化亜鉛(II)希塩酸溶液(溶液N)には、少量(100mLの調製に濃塩酸を10μL)の塩酸を加えて調製した。また、硫酸カルシウムについては、目的の濃度の溶液が白濁し、均一な溶液を調製できなかった。
Next, the following solutions were prepared.
Solution A: 200 mM calcium chloride dihydrate (Nacalai Tesque) aqueous solution Solution B: 200 mM magnesium chloride hexahydrate (Wako Pure Chemical) aqueous solution Solution C: 200 mM magnesium sulfate heptahydrate (Wako Pure Chemical) aqueous solution Solution D: 200 mM iron (II) chloride tetrahydrate (Wako Pure Chemical) aqueous solution Solution E: 200 mM iron (II) sulfate heptahydrate (Wako Pure Chemical) aqueous solution Solution F: 200 mM iron (III) chloride Hexahydrate (Wako Pure Chemical) aqueous solution-Solution G: 100 mM iron (III) sulfate n hydrate (Wako Pure Chemical) aqueous solution-Solution H: 200 mM Copper (II) chloride dihydrate (Wako Pure Chemical) aqueous solution Solution I: 200 mM copper sulfate (Nacalai Tesque) aqueous solution Solution J: 200 mM manganese (II) chloride tetrahydrate (Wako Pure Chemicals) aqueous solution Solution K: 200 mM manganese (II) sulfate Japanese solution (Wako Pure Chemicals) aqueous solution ・ Solution L: 200 mM nickel chloride (II) hexahydrate (Wako Pure Chemicals) aqueous solution ・ Solution M: 200 mM nickel sulfate (II) hexahydrate (Wako Pure Chemicals) aqueous solution ・ Solution N: 200 mM zinc chloride (II) (Wako Pure Chemical Industries) dilute hydrochloric acid solution ・ Solution O: 200 mM zinc sulfate (II) (Wako Pure Chemical Industries) aqueous solution 200 mM zinc chloride (II) diluted hydrochloric acid solution (solution N) has a small amount. Prepared by adding hydrochloric acid (10 mL of concentrated hydrochloric acid to 100 mL of preparation). As for calcium sulfate, a solution having a target concentration became cloudy, and a uniform solution could not be prepared.

豆乳に、前記各溶液100μLを、各金属イオンが最終濃度20mMになるように加えた。なお、金属塩を含む溶液の代わりに水を添加したものを対照群とした。溶液の添加後、素早く混合した。図1は、各溶液を豆乳に添加した結果を示す写真である。図1に示すように、各金属の塩化物または硫酸塩を含む混合液全てについて、豆腐様の沈殿が観察された。   To the soymilk, 100 μL of each solution was added so that each metal ion had a final concentration of 20 mM. In addition, what added water instead of the solution containing a metal salt was made into the control group. Mix quickly after addition of the solution. FIG. 1 is a photograph showing the results of adding each solution to soy milk. As shown in FIG. 1, tofu-like precipitation was observed in all the mixed solutions containing chlorides or sulfates of each metal.

各混合液を80℃で1時間加熱した後、氷上で15分間冷却後、8,000rpm、4℃で15分間遠心分離した。上清を十分に取り除いた後に、沈殿物の重量(w)を測定した。下記式に示すように、沈殿物の重量(w)を溶液添加前の豆乳の重量(w)で割った値の百分率を沈殿率として算出した。 Each mixture was heated at 80 ° C. for 1 hour, cooled on ice for 15 minutes, and then centrifuged at 8,000 rpm at 4 ° C. for 15 minutes. After fully removing the supernatant, the weight (w 1 ) of the precipitate was measured. As shown in the following formula, the percentage of the value obtained by dividing the weight of the precipitate (w 1 ) by the weight of the soy milk (w 0 ) before adding the solution was calculated as the precipitation rate.

沈殿率(%)=(w/w)×100
上記実験を独立して5回行い、それぞれの沈殿率の平均値と標準偏差を算出した。図2は、各金属の塩化物を含む溶液A、H、D、F、B、J、N、Lについて算出された沈殿率を示すグラフである。図3から、銅(II)、鉄(II)、鉄(III)、マンガン(II)、亜鉛(II)、ニッケル(II)の塩化物が、従来のカルシウム、マグネシウムの場合と同様の沈殿率で沈殿が起こっていることが分かった。なお、硫酸塩についても同様の結果が得られた(図示を省略)。
Precipitation rate (%) = (w 1 / w 0 ) × 100
The above experiment was carried out 5 times independently, and the average value and standard deviation of the respective precipitation rates were calculated. FIG. 2 is a graph showing precipitation rates calculated for solutions A, H, D, F, B, J, N, and L containing chlorides of the respective metals. From FIG. 3, the precipitation rate of copper (II), iron (II), iron (III), manganese (II), zinc (II), and nickel (II) chloride is the same as that of conventional calcium and magnesium. It was found that precipitation occurred. Similar results were obtained for sulfate (not shown).

以上の結果から、金属塩として鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれかのみの金属塩を含む溶液と豆乳とを混合することで、豆腐様の沈殿が形成できることが確認された。   From the above results, a solution containing any one metal salt selected from iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II) as a metal salt; It was confirmed that a tofu-like precipitate can be formed by mixing with soy milk.

また、重量(w)を測定後、沈殿物を105℃で120分加熱した。その乾燥重量を測定し、乾燥前後の重量差を豆腐中の水分含量(w)とした。豆乳の重量wでwを除して、百分率を計算した。 Further, after measuring the weight (w 1 ), the precipitate was heated at 105 ° C. for 120 minutes. The dry weight was measured, and the weight difference before and after drying was taken as the water content (w 2 ) in tofu. By dividing w 2 weight w 1 of the soy milk was calculated percentage.

水含有率(%)=(w/w)×100
<実験例2>
塩化カルシウム二水和物水溶液、塩化銅(II)二水和物水溶液、塩化マグネシウム六水和物水溶液、塩化マンガン(II)四水和物水溶液、塩化ニッケル(II)六水和物水溶液、塩化亜鉛(II)希塩酸溶液、塩化鉄(II)四水和物水溶液および塩化鉄(III)六水和物水溶液について、0から20mMの範囲で1mMずつ金属イオンの濃度を変化させた溶液をそれぞれ調製した。このように調製した溶液をそれぞれ用いたこと以外は実験例1と同様にして、沈殿率を算出し、豆腐様の沈殿形成に必要な金属イオンの濃度を調べた。
Water content (%) = (w 2 / w 1 ) × 100
<Experimental example 2>
Calcium chloride dihydrate aqueous solution, copper chloride (II) dihydrate aqueous solution, magnesium chloride hexahydrate aqueous solution, manganese (II) tetrahydrate aqueous solution, nickel chloride (II) hexahydrate aqueous solution, chloride For zinc (II) dilute hydrochloric acid solution, iron chloride (II) tetrahydrate aqueous solution, and iron chloride (III) hexahydrate aqueous solution, solutions with different metal ion concentrations in the range of 0 to 20 mM were prepared. did. The precipitation rate was calculated in the same manner as in Experimental Example 1 except that the solutions prepared in this way were used, and the concentration of metal ions necessary for the formation of tofu-like precipitates was examined.

図3および図4は、金属イオンの濃度と沈殿率との関係を示すグラフであり、図3(a)は塩化カルシウム二水和物水溶液、図3(b)は塩化銅(II)二水和物水溶液、図3(c)は塩化マグネシウム六水和物水溶液、図3(d)は塩化マンガン(II)四水和物水溶液についての結果をそれぞれ示しており、図4(a)は塩化ニッケル(II)六水和物水溶液、図4(b)は塩化亜鉛(II)希塩酸溶液、図4(c)は塩化鉄(II)四水和物水溶液、図4(d)は塩化鉄(III)六水和物水溶液についての結果をそれぞれ示している。図3および図4に示す結果から、いずれの金属塩でも、添加濃度を増加させると沈殿率が一旦約60%まで上昇し、さらに濃度が増加すると約50%まで低下することが分かった。   3 and 4 are graphs showing the relationship between metal ion concentration and precipitation rate, FIG. 3 (a) is a calcium chloride dihydrate aqueous solution, and FIG. 3 (b) is copper (II) chloride dihydrate. FIG. 3 (c) shows the results for the aqueous solution of hydrate, FIG. 3 (c) shows the results for the aqueous solution of magnesium chloride hexahydrate, FIG. 3 (d) shows the results for the aqueous solution of manganese (II) chloride tetrahydrate, and FIG. Nickel (II) hexahydrate aqueous solution, FIG. 4 (b) is zinc chloride (II) dilute hydrochloric acid solution, FIG. 4 (c) is iron (II) chloride tetrahydrate aqueous solution, FIG. 4 (d) is iron chloride ( III) The results for the hexahydrate aqueous solution are shown respectively. From the results shown in FIG. 3 and FIG. 4, it was found that for any metal salt, the precipitation rate once increased to about 60% when the addition concentration was increased and decreased to about 50% when the concentration was further increased.

以下、図3および図4に示すグラフに示されるような初めの上昇を「第一段落」、続く低下を「第二段階」という。第一段階の沈殿物の様子は絹ごし豆腐のような状態であり、第二段落の沈殿物の様子は木綿豆腐のような状態であった。これは沈殿形成が二段階で行われていることを示しており、粒子の細かい沈殿の形成が第一段階で起こり、粒子の粗い沈殿の形成が第二段階で起こっていることを意味する。   Hereinafter, the first rise as shown in the graphs shown in FIGS. 3 and 4 is referred to as “first stage”, and the subsequent decline is referred to as “second stage”. The state of the precipitate in the first stage was like silken tofu, and the state of the precipitate in the second paragraph was like cotton tofu. This indicates that the precipitate formation takes place in two stages, meaning that the formation of a fine particle precipitate occurs in the first stage and the formation of a coarse precipitate in the second stage.

また、第一段階の終了時の濃度(沈殿率が落ち始める直前の濃度)で、絹ごし豆腐のような状態と木綿豆腐のような状態が混在していることが分かった。第一段階から第二段階の移行時に、沈殿率が約10%減少するのは、豆腐様沈殿物の水分含量が減っているためと考えられた。実際、第一段階と第二段階の豆腐様沈殿物中の水分含量を測定すると、第二段階の豆腐様沈殿物の水分含量が約10%少ないことが分かった。木綿豆腐のような状態の沈殿物において水分含量が低いことは一般的な豆腐においても一致することである。図3および図4から読み取った、各段階に必要な金属イオンの濃度を表1に示す。なお、凝固剤中に含まれる金属イオンの濃度の違いによって、それを用いて製造された豆腐の質感が変化することは経験的に知られていたが、その濃度を明確にした例はこれまでにない。   Moreover, it turned out that the state like silken tofu and the state like cotton tofu are mixed in at the concentration at the end of the first stage (concentration immediately before the precipitation rate starts to drop). The reason why the precipitation rate decreased by about 10% during the transition from the first stage to the second stage was thought to be due to the reduced water content of the tofu-like precipitate. In fact, when the water content in the first and second stage tofu-like precipitates was measured, the water content of the second stage tofu-like precipitates was found to be about 10% less. The low water content in precipitates like cotton tofu is consistent with general tofu. Table 1 shows the metal ion concentration required for each step, as read from FIGS. 3 and 4. In addition, it has been empirically known that the texture of tofu produced using it varies depending on the concentration of metal ions contained in the coagulant. Not.

図3および図4における第一段階のプロットをもとに、下記式を用いてカレイダグラフでフィッティング解析を行い、沈殿形成の中点における金属イオンの濃度を算出した。なお、下記式中、Pは沈殿率、κ、κ、κは定数、Mは金属イオン濃度、M1/2は沈殿率が第一段階の半分になる際の金属イオン濃度を意味している。 Based on the first stage plots in FIGS. 3 and 4, fitting analysis was performed with a Kaleida graph using the following formula, and the concentration of metal ions at the midpoint of precipitation formation was calculated. In the following formula, P is the precipitation rate, κ 1 , κ 2 , κ 3 are constants, M is the metal ion concentration, and M 1/2 is the metal ion concentration when the precipitation rate is half of the first stage. doing.

一例として、塩化マグネシウム六水和物水溶液についてのフィッティング解析を図5に示す。図5(a)はフィッティング解析前、図5(b)はフィッティング解析後をそれぞれ示している。   As an example, a fitting analysis for a magnesium chloride hexahydrate aqueous solution is shown in FIG. FIG. 5A shows before fitting analysis, and FIG. 5B shows after fitting analysis.

各金属イオンのプロットに対するフィッティングはいずれもR値が0.999以上となった。R値およびその際に求められたM1/2を表2に示す。これらの濃度の倍の濃度を添加することで、豆腐様の沈殿が確実に形成されることを示している。 The R value was 0.999 or more for all fittings to the plots of each metal ion. Table 2 shows the R value and M 1/2 determined at that time. It is shown that a tofu-like precipitate is reliably formed by adding twice the concentration of these.

<実験例3>
鉄分は、Fe(II)の形態の方がFe(III)の形態よりも人体に採りこまれやすいと考えられている。したがって、本発明の豆腐に鉄分を含有させる場合には、Fe(III)の形態としてよりもFe(II)の形態とすることが好ましい。しかしながら、Fe(II)の形態で豆腐に鉄分を含有させていたとしても、空気中で酸化してしまうなどして、これを食す際には豆腐に含まれる鉄分がFe(III)の形態となっていることも考えられる。そこで、本発明者は、Fe(II)の金属塩と人体に無害な還元剤とを豆腐に含有させることを試みた。
<Experimental example 3>
It is considered that iron is more easily taken into the human body in the form of Fe (II) than in the form of Fe (III). Therefore, when iron content is contained in the tofu of the present invention, it is preferable to use the Fe (II) form rather than the Fe (III) form. However, even if iron is contained in tofu in the form of Fe (II), it is oxidized in the air, and when this is eaten, the iron contained in the tofu is in the form of Fe (III). It is also possible that Then, this inventor tried to make tofu contain the metal salt of Fe (II) and the reducing agent harmless to a human body.

実験例2で行った、塩化鉄(II)四水和物水溶液(図4(c))、塩化鉄(III)六水和物水溶液(図4(d))についての金属イオンの濃度と沈殿率との関係を示すグラフを重ね合わせたグラフを図6に示す。図6において、Fe2+についてのプロットを黒丸、Fe3+についてのプロットを白丸で示している。図6から分かるように、Fe2+とFe3+とで豆腐様沈殿の形成について、第一段階ではFe3+の方がより少ない濃度で沈殿率の上昇率が高く、第二段階においてもFe3+が総じて沈殿率が高い、など異なる挙動を示すことが分かる。 Concentration and precipitation of metal ions for iron (II) chloride tetrahydrate aqueous solution (FIG. 4 (c)) and iron (III) hexahydrate aqueous solution (FIG. 4 (d)) conducted in Experimental Example 2. FIG. 6 shows a graph obtained by superimposing graphs showing the relationship with the rate. In FIG. 6, the plot for Fe 2+ is indicated by a black circle, and the plot for Fe 3+ is indicated by a white circle. As it can be seen from FIG. 6, the formation of tofu-like precipitate in the Fe 2+ and Fe 3+, high increase rate of sedimentation rates with less concentration towards the Fe 3+ in the first stage, even Fe 3+ in the second stage It can be seen that the behavior is generally different, such as high precipitation rate.

2%アルコルビン酸を添加したこと以外は実験例2で行ったのと同様にして塩化鉄(II)四水和物水溶液についての金属イオンの濃度と沈殿率との関係を、アスコルビン酸を添加しなかった場合と比較したグラフを図7に示す。図7において、アスコルビン酸を添加した場合(+ASA)についてのプロットを黒丸、アルコルビン酸を添加しなかった場合(−ASA)についてのプロットを白丸で示している。図7から、アルコルビン酸を添加した場合でもアスコルビン酸を添加しなかった場合とほぼ同様の挙動を示しており、アスコルビン酸の添加が豆腐様沈殿の形成に悪影響を与えないことが分かる。   Except that 2% ascorbic acid was added, the relationship between the concentration of metal ions and the precipitation rate in the aqueous iron (II) chloride tetrahydrate solution was the same as in Example 2 except that ascorbic acid was added. The graph compared with the case where there was no is shown in FIG. In FIG. 7, the plot for the case where ascorbic acid is added (+ ASA) is shown by a black circle, and the plot for the case where no ascorbic acid is added (-ASA) is shown by a white circle. FIG. 7 shows that even when ascorbic acid is added, the behavior is almost the same as when ascorbic acid is not added, and it can be seen that the addition of ascorbic acid does not adversely affect the formation of tofu-like precipitates.

<実験例4>
実験例1で用いた成分無調整の豆乳(有機豆乳(商品名)、スジャータめいらくグループ:タンパク質含有量:約5g/100mL)、ならびに、成分無調整の豆乳(有機豆乳(商品名)、マルサンアイ:タンパク質含有量:約4.7g/100mL)を豆乳として用い、実験例2と同様に、塩化マグネシウム六水和物水溶液、塩化鉄(II)四水和物水溶液について、0から20mMの範囲で1mMずつ金属イオンの濃度を変化させた溶液をそれぞれ調製した。図8は2種の豆乳それぞれを用いた場合の金属イオンの濃度と沈殿率の関係について示すグラフである。図8において、マルサンアイ製の豆乳を用いた場合の塩化マグネシウム六水和物水溶液についてのプロットを黒丸、スジャータめいらくグループ製の豆乳を用いた場合の塩化マグネシウム六水和物水溶液についてのプロットを白丸、マルサンアイ製の豆乳を用いた場合の塩化鉄(II)四水和物水溶液についてのプロットを黒三角、スジャータめいらくグループ製の豆乳を用いた場合の塩化鉄(II)四水和物水溶液についてのプロットを白丸三角で示している。図8から、豆乳の種類を変えても、ほぼ同様の挙動で豆腐様沈殿が形成されていることが分かる。
<Experimental example 4>
Ingredients-free soymilk used in Experimental Example 1 (Organic soymilk (trade name), Sujata Meiraku Group: Protein content: about 5 g / 100 mL), as well as ingredient-free soymilk (organic soymilk (trade name), Marsan Eye : Protein content: about 4.7 g / 100 mL) as soy milk, and in the same manner as in Experimental Example 2, magnesium chloride hexahydrate aqueous solution and iron (II) chloride tetrahydrate aqueous solution are in the range of 0 to 20 mM. Solutions with varying concentrations of metal ions by 1 mM were prepared. FIG. 8 is a graph showing the relationship between the concentration of metal ions and the precipitation rate when each of the two types of soymilk is used. In FIG. 8, the plot for the magnesium chloride hexahydrate aqueous solution when using Marsan-ai soy milk is black circle, and the plot for the magnesium chloride hexahydrate aqueous solution when using Sujata Meiraku Group soy milk is the white circle , Plots of ferric chloride (II) tetrahydrate aqueous solution when using Marsan-ai soy milk, black triangle, ferric chloride (II) tetrahydrate aqueous solution when using Sujata Meiraku Group soymilk Are plotted with white circle triangles. FIG. 8 shows that a tofu-like precipitate is formed with almost the same behavior even when the type of soy milk is changed.

<実験例5>
以下の有機塩溶液を用いたこと以外は実験例1と同様にして、沈殿率を算出した。
<Experimental example 5>
The precipitation rate was calculated in the same manner as in Experimental Example 1 except that the following organic salt solution was used.

・溶液a:200mM 乳酸マグネシウム水溶液
・溶液b:200mM DL−乳酸カルシウム水溶液
・溶液c:200mM 乳酸鉄(II)水溶液
・溶液d:400mM 乳酸ナトリウム水溶液
なお、溶液a、b、cは、豆乳に添加する前の状態で白濁していた。図9は、各金属の乳酸塩を含む溶液a、b、c、dについて算出された沈殿率を示すグラフである。図9から、有機塩溶液でも豆腐様沈殿物が形成されることが確認できた。
-Solution a: 200 mM magnesium lactate aqueous solution-Solution b: 200 mM DL-calcium lactate aqueous solution-Solution c: 200 mM iron lactate aqueous solution-Solution d: 400 mM sodium lactate aqueous solution Solutions a, b, and c are added to soy milk It was cloudy in the state before doing. FIG. 9 is a graph showing precipitation rates calculated for solutions a, b, c, and d containing lactate of each metal. From FIG. 9, it was confirmed that a tofu-like precipitate was formed even in the organic salt solution.

今回開示された実施の形態および実験例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   The embodiments and experimental examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (10)

金属塩として鉄(II)、鉄(III)、ニッケル(II)、マンガン(II)、亜鉛(II)および銅(II)から選ばれるいずれか1種の金属の無機塩または有機塩のみを含む水溶液と豆乳とを混合する工程を含む、豆腐の製造方法。   Contains only inorganic or organic salts of any one metal selected from iron (II), iron (III), nickel (II), manganese (II), zinc (II) and copper (II) as metal salts A method for producing tofu, comprising a step of mixing an aqueous solution and soy milk. 前記水溶液が、金属塩として6mM以上の鉄(II)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 6 mM or more of an inorganic salt of iron (II) as a metal salt. 前記水溶液が、金属塩として4mM以上の鉄(III)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 4 mM or more of an inorganic salt of iron (III) as a metal salt. 前記水溶液が人体に無害な還元剤をさらに含む、請求項2または3に記載の豆腐の製造方法。   The method for producing tofu according to claim 2 or 3, wherein the aqueous solution further contains a reducing agent that is harmless to a human body. 前記還元剤がアスコルビン酸である、請求項4に記載の豆腐の製造方法。   The method for producing tofu according to claim 4, wherein the reducing agent is ascorbic acid. 前記水溶液が、金属塩として7mM以上のニッケル(II)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 7 mM or more of an inorganic salt of nickel (II) as a metal salt. 前記水溶液が、金属塩として6mM以上のマンガン(II)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 6 mM or more inorganic salt of manganese (II) as a metal salt. 前記水溶液が、金属塩として5mM以上の亜鉛(II)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 5 mM or more of an inorganic salt of zinc (II) as a metal salt. 前記水溶液が、金属塩として6mM以上の銅(II)の無機塩のみを含む、請求項1に記載の豆腐の製造方法。   The method for producing tofu according to claim 1, wherein the aqueous solution contains only 6 mM or more of an inorganic salt of copper (II) as a metal salt. 請求項1〜9のいずれかに記載の方法で製造された豆腐。   A tofu produced by the method according to claim 1.
JP2011191430A 2011-09-02 2011-09-02 Tofu production method and tofu obtained thereby Active JP5959817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191430A JP5959817B2 (en) 2011-09-02 2011-09-02 Tofu production method and tofu obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191430A JP5959817B2 (en) 2011-09-02 2011-09-02 Tofu production method and tofu obtained thereby

Publications (2)

Publication Number Publication Date
JP2013051906A true JP2013051906A (en) 2013-03-21
JP5959817B2 JP5959817B2 (en) 2016-08-02

Family

ID=48129490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191430A Active JP5959817B2 (en) 2011-09-02 2011-09-02 Tofu production method and tofu obtained thereby

Country Status (1)

Country Link
JP (1) JP5959817B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263062A (en) * 1987-03-31 1988-10-31 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Method for sterilizing aqueous suspension of water-insoluble salts
JPH10179072A (en) * 1996-12-26 1998-07-07 Kao Corp Coagulant composition for tofu
JP2001224326A (en) * 2000-02-10 2001-08-21 Ako Kasei Co Ltd Bean curd using bittern derived from marine deep water and method for producing the same
JP2004215673A (en) * 2004-03-26 2004-08-05 Taishi Shokuhin Kogyo Kk Food product for promoting osteogenesis and for preventing bone salt decrease
JP3116332U (en) * 2005-09-02 2005-12-02 博明 野口 Potion packaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263062A (en) * 1987-03-31 1988-10-31 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Method for sterilizing aqueous suspension of water-insoluble salts
US4910026A (en) * 1987-03-31 1990-03-20 Nestec S.A. Sterilized water-insoluble mineral salt and products containing it
JPH10179072A (en) * 1996-12-26 1998-07-07 Kao Corp Coagulant composition for tofu
JP2001224326A (en) * 2000-02-10 2001-08-21 Ako Kasei Co Ltd Bean curd using bittern derived from marine deep water and method for producing the same
JP2004215673A (en) * 2004-03-26 2004-08-05 Taishi Shokuhin Kogyo Kk Food product for promoting osteogenesis and for preventing bone salt decrease
JP3116332U (en) * 2005-09-02 2005-12-02 博明 野口 Potion packaging

Also Published As

Publication number Publication date
JP5959817B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP4824628B2 (en) Salt substitute, low-salt processed food, and method for producing the same
JP2008000135A (en) Functional bean curd and method for producing the same
JP2011528893A (en) Carnalite-like food salt and their products
JP5959817B2 (en) Tofu production method and tofu obtained thereby
EP0391318B1 (en) Ion water for production of foods and beverages
WO2007074672A1 (en) Seasoned tofu and method of producing the same
JP2006217802A (en) Collagen-containing soybean curd
JP6234413B2 (en) Calcium-enriched soy sauce seasoning
KR102437895B1 (en) A method for manufacturing of ionized calcium
KR20220045280A (en) A method for manufacturing of ionized calcium using Oyster and coral reef
JP2531335B2 (en) Tofu manufacturing method
JP2006340612A (en) Composition for enriching mineral
KR100858030B1 (en) The liquid sea tangle salt manufacture method
JP2002192169A (en) Beverage using seawater as raw material and raw material water thereof
JP2007274962A (en) Method for producing bittern used for producing bean curd
JP2006345720A (en) Calcium preparation and method for producing the same
JP2008259440A (en) Solid seasoning composition, solid seasoning material, and method for producing food using them
TW201105246A (en) Deep ocean water Tofu, and recipe and manufacturing method of the same
JPS6219141B2 (en)
JP2019037251A (en) Salt for carnallite-like food and product thereof
KR101143854B1 (en) Making Method for Milk Comprising Soluble Nanopowdered Chitosan
JP2020074735A (en) Method for producing soymilk protein aggregate, and method for determining gluconic acid content and sugar content of honey by using the same
JP4382836B2 (en) Mineral agent and method for producing the same
JP2009183199A (en) Edible salt with regulated content of mineral salt and method for producing the same
JP5920710B2 (en) Production method of buckwheat tofu

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5959817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250