JP2013051601A - Drive circuit and current control circuit - Google Patents

Drive circuit and current control circuit Download PDF

Info

Publication number
JP2013051601A
JP2013051601A JP2011189343A JP2011189343A JP2013051601A JP 2013051601 A JP2013051601 A JP 2013051601A JP 2011189343 A JP2011189343 A JP 2011189343A JP 2011189343 A JP2011189343 A JP 2011189343A JP 2013051601 A JP2013051601 A JP 2013051601A
Authority
JP
Japan
Prior art keywords
switching element
drive circuit
electrically connected
control signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011189343A
Other languages
Japanese (ja)
Inventor
Fumiaki Nakao
文昭 中尾
Yuki Fujishima
幸 藤島
Yuka Sato
由香 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EVTD CO Ltd
Original Assignee
EVTD CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EVTD CO Ltd filed Critical EVTD CO Ltd
Priority to JP2011189343A priority Critical patent/JP2013051601A/en
Publication of JP2013051601A publication Critical patent/JP2013051601A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a Peltier element while switching between heating and cooling.SOLUTION: A drive circuit has: a first switching element having one end connected with a load and the other end connected with a driving power supply for driving the load, and at least switching between an on state and an off state depending on a first control signal inputted to an input terminal; a second switching element having one end connected with the load and the one end of the first switching element and the other end connected with a reference potential, and switching between an on state and an off state depending on a second control signal; a voltage supply part supplying voltage to the input terminal of the first switching element when the second switching element is in the off state; and a controller supplying the first and second control signals to the first and second switching elements respectively to on/off operate the first and second switching elements alternately.

Description

本発明は、駆動回路および電流制御回路に関する。   The present invention relates to a drive circuit and a current control circuit.

近年、複数の蓄電モジュールを直列に接続した蓄電システムが、電気自動車の電源などに利用されている(例えば、特許文献1〜3参照)。蓄電システムにおいては、ペルチェ素子を用いて蓄電モジュールの温度を調整する場合がある。
[特許文献]
特許文献1 特開2008−161029号公報
特許文献2 特開2004−088878号公報
特許文献3 特開2009−232660号公報
In recent years, a power storage system in which a plurality of power storage modules are connected in series has been used as a power source for electric vehicles (see, for example, Patent Documents 1 to 3). In a power storage system, the temperature of a power storage module may be adjusted using a Peltier element.
[Patent Literature]
Patent Literature 1 JP 2008-161029 A Patent Literature 2 JP 2004-088878 A Patent Literature 3 JP 2009-232660 A

ペルチェ素子は、通常、加熱または冷却の一方の用途で使用される。しかし、蓄電モジュールの温度を調整する場合には、加熱および冷却を切替えながら使用する必要がある。   Peltier elements are usually used for either heating or cooling applications. However, when adjusting the temperature of the power storage module, it is necessary to switch between heating and cooling.

本発明の第1の態様においては、一端が、負荷と電気的に接続され、他端が、負荷を駆動する駆動用電源と電気的に接続され、少なくとも、入力端子に入力される第1の制御信号に応じてオン状態およびオフ状態を切り替える第1のスイッチング素子と、一端が、負荷および第1のスイッチング素子の一端と電気的に接続され、他端が、基準電位と電気的に接続され、第2の制御信号に応じてオン状態およびオフ状態を切り替える第2のスイッチング素子と、第2のスイッチング素子がオフ状態である場合に、第1のスイッチング素子の入力端子に電圧を供給する電圧供給部と、第1の制御信号および第2の制御信号のそれぞれを、第1のスイッチング素子および第2のスイッチング素子のそれぞれに供給し、第1のスイッチング素子と第2のスイッチング素子とを交互にオン・オフ動作させる制御部とを備える駆動回路が提供される。   In the first aspect of the present invention, one end is electrically connected to the load, the other end is electrically connected to a driving power source that drives the load, and at least the first input to the input terminal is performed. A first switching element that switches between an on state and an off state according to a control signal, one end is electrically connected to the load and one end of the first switching element, and the other end is electrically connected to a reference potential. A second switching element that switches between an on state and an off state in response to the second control signal, and a voltage that supplies a voltage to the input terminal of the first switching element when the second switching element is in the off state The supply unit supplies each of the first control signal and the second control signal to each of the first switching element and the second switching element. Driving circuit and a control unit for the switching element on and off alternately operating is provided.

上記の駆動回路において、制御部は、負荷の駆動を開始する場合に、第1のスイッチング素子がオフ状態であり、第2のスイッチング素子がオン状態となるように第1のスイッチング素子および第2のスイッチング素子を制御した後、第1のスイッチング素子と第2のスイッチング素子とを交互にオン・オフ動作させてよい。   In the drive circuit described above, the control unit includes the first switching element and the second switching element so that the first switching element is in the off state and the second switching element is in the on state when driving the load. After the first switching element is controlled, the first switching element and the second switching element may be alternately turned on / off.

上記の駆動回路において、電圧供給部は、一端が、第1のスイッチング素子の入力端子と電気的に接続され、他端が、第1のスイッチング素子の一端および第2のスイッチング素子の一端と電気的に接続されるキャパシタを有してよい。上記の駆動回路において、キャパシタは、第2のスイッチング素子がオン状態の場合に充電され、第2のスイッチング素子がオフ状態になった場合に、第1のスイッチング素子の入力端子に対して充電された電荷に応じた電圧を供給してよい。上記の駆動回路において、電圧供給部は、制御部およびキャパシタの一端の間に電気的に接続され、制御部からキャパシタの一端の方向に電流を流すダイオードを有してよい。   In the driving circuit, the voltage supply unit has one end electrically connected to the input terminal of the first switching element, and the other end electrically connected to one end of the first switching element and one end of the second switching element. There may be a capacitor connected electrically. In the above drive circuit, the capacitor is charged when the second switching element is in the on state, and charged to the input terminal of the first switching element when the second switching element is in the off state. A voltage corresponding to the charged charge may be supplied. In the above drive circuit, the voltage supply unit may include a diode that is electrically connected between the control unit and one end of the capacitor and flows current from the control unit toward one end of the capacitor.

上記の駆動回路は、一端が、第1のスイッチング素子の入力端子およびキャパシタの一端と電気的に接続され、他端が、基準電位と電気的に接続され、第3の制御信号に応じてオン状態およびオフ状態を切り替える第3のスイッチング素子をさらに備えてよい。上記の駆動回路において、第2のスイッチング素子の閾値電圧は、第3のスイッチング素子の閾値電圧よりも大きくてよい。上記の駆動回路において、制御部は、第3の制御信号の電圧が第3のスイッチング素子の閾値電圧以上の大きさになるまで、第2のスイッチング素子がオフ状態を維持するように第2のスイッチング素子を制御してよい。   The drive circuit has one end electrically connected to the input terminal of the first switching element and one end of the capacitor, the other end electrically connected to the reference potential, and turned on in response to the third control signal. You may further provide the 3rd switching element which switches a state and an OFF state. In the above drive circuit, the threshold voltage of the second switching element may be larger than the threshold voltage of the third switching element. In the above driving circuit, the control unit causes the second switching element to maintain the OFF state until the voltage of the third control signal becomes equal to or larger than the threshold voltage of the third switching element. The switching element may be controlled.

上記の駆動回路において、制御部は、第2の制御信号の電圧が第2のスイッチング素子の閾値電圧以上の大きさになる前に、第3のスイッチング素子がオン状態となるように第3のスイッチング素子を制御してよい。上記の駆動回路において、制御部は、第3の制御信号の電圧が第3のスイッチング素子の閾値電圧以下の大きさになる前に、第2のスイッチング素子がオフ状態となるように第2のスイッチング素子を制御してよい。   In the above drive circuit, the control unit causes the third switching element to be turned on before the voltage of the second control signal becomes equal to or larger than the threshold voltage of the second switching element. The switching element may be controlled. In the above driving circuit, the control unit sets the second switching element so that the second switching element is turned off before the voltage of the third control signal becomes equal to or lower than the threshold voltage of the third switching element. The switching element may be controlled.

本発明の第2の態様においては、第1の上記駆動回路と、第2の上記駆動回路とを備え、第1の駆動回路の第1のスイッチング素子の一端、および、第1の駆動回路の第2のスイッチング素子の一端が、負荷の一端と電気的に接続され、第2の駆動回路の第1のスイッチング素子の一端、および、第2の駆動回路の第2のスイッチング素子の一端が、負荷の他端と電気的に接続され、第1の駆動回路の第1のスイッチング素子の他端、および、第2の駆動回路の第1のスイッチング素子の他端が、駆動用電源の一端と電気的に接続され、第1の駆動回路の第2のスイッチング素子の他端、および、第2の駆動回路の第2のスイッチング素子の他端が、駆動用電源の他端と電気的に接続され電流制御回路が提供される。   According to a second aspect of the present invention, the first drive circuit and the second drive circuit are provided, one end of the first switching element of the first drive circuit, and the first drive circuit One end of the second switching element is electrically connected to one end of the load, and one end of the first switching element of the second drive circuit and one end of the second switching element of the second drive circuit are The other end of the first switching element of the first drive circuit and the other end of the first switching element of the second drive circuit are electrically connected to the other end of the load and one end of the drive power supply The other end of the second switching element of the first drive circuit and the other end of the second switching element of the second drive circuit are electrically connected to the other end of the drive power supply. And a current control circuit is provided.

上記の電流制御回路において、制御部は、第2の駆動回路の第1のスイッチング素子がオフ状態であり、第2の駆動回路の第2のスイッチング素子がオン状態である場合に、第1の駆動回路の第1のスイッチング素子および第1の駆動回路の第2のスイッチング素子を交互にオン・オフ動作させ、第1の駆動回路の第1のスイッチング素子がオフ状態であり、第1の駆動回路の第2のスイッチング素子がオン状態である場合に、第2の駆動回路の第1のスイッチング素子および第2の駆動回路の第2のスイッチング素子を交互にオン・オフ動作させてよい。   In the above-described current control circuit, the control unit includes the first switching element when the first switching element of the second drive circuit is in the off state and the second switching element of the second drive circuit is in the on state. The first switching element of the drive circuit and the second switching element of the first drive circuit are alternately turned on and off, and the first switching element of the first drive circuit is in the off state, and the first drive When the second switching element of the circuit is in the on state, the first switching element of the second drive circuit and the second switching element of the second drive circuit may be alternately turned on / off.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

蓄電システム100の一例を概略的に示す。An example of the electrical storage system 100 is shown schematically. 蓄電部110および電力供給部150の一例を概略的に示す。An example of the electrical storage part 110 and the electric power supply part 150 is shown schematically. 電力供給部350の一例を概略的に示す。An example of electric power supply part 350 is shown roughly. 温度制御部190の一例を概略的に示す。An example of temperature control part 190 is shown roughly.

ペルチェ素子を加熱および冷却を切替えながら使用する場合、ペルチェ素子に供給する電流の向きを制御する必要がある。複数の蓄電モジュールを直列に接続した蓄電システムをペルチェ素子の電源として使用する場合、電流の向きを制御する回路として、Hブリッジを利用することが考えられる。この場合、ハイサイドのスイッチング素子を動作させることを目的として、ペルチェ素子の電源よりも電圧の高い電源を用意することが考えられる。しかし、この場合、回路が複雑になり、回路のコストも増加する。   When the Peltier element is used while switching between heating and cooling, it is necessary to control the direction of the current supplied to the Peltier element. When a power storage system in which a plurality of power storage modules are connected in series is used as a power source for a Peltier element, it is conceivable to use an H bridge as a circuit for controlling the direction of current. In this case, for the purpose of operating the high-side switching element, it is conceivable to prepare a power source having a higher voltage than the power source of the Peltier element. However, in this case, the circuit becomes complicated and the cost of the circuit also increases.

発明者らは、例えば、ハイサイドのスイッチング素子とローサイドのスイッチング素子とを同じ電源で動作させることで、回路のコストを大幅に低減できることを見出した。以下、蓄電システムの温度制御部に用いられる回路を例として、駆動回路および電流制御回路について説明する。   The inventors have found that, for example, the circuit cost can be significantly reduced by operating the high-side switching element and the low-side switching element with the same power source. Hereinafter, the drive circuit and the current control circuit will be described using a circuit used for the temperature control unit of the power storage system as an example.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、図面を参照して、実施形態について説明するが、図面の記載において、同一または類似の部分には同一の参照番号を付して重複する説明を省く場合がある。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention. In addition, embodiments will be described with reference to the drawings, but in the description of the drawings, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted.

図1は、蓄電システム100の一例を概略的に示す。蓄電システム100は、電気自動車、ハイブリッド自動車、電気二輪車、鉄道車両、昇降機などの輸送装置、または、PC、携帯電話などの電気機器の電源として用いられてよい。蓄電システム100は、太陽光発電、風力発電などの発電装置に電気的に接続される蓄電装置として用いられてもよい。   FIG. 1 schematically shows an example of a power storage system 100. The power storage system 100 may be used as a power source for a transportation device such as an electric vehicle, a hybrid vehicle, an electric motorcycle, a railway vehicle, and an elevator, or an electric device such as a PC or a mobile phone. The power storage system 100 may be used as a power storage device that is electrically connected to a power generation device such as solar power generation or wind power generation.

本実施形態において、蓄電システム100は、マスタモジュール102と、スレーブモジュール104と、外部端子106と、外部端子107と、スイッチ素子108とを備える。蓄電システム100は、1以上のスレーブモジュール104を有してよい。蓄電システム100は、動作中に、マスタモジュール102および1以上のスレーブモジュール104のそれぞれの電圧を均等化させてもよい。   In the present embodiment, the power storage system 100 includes a master module 102, a slave module 104, an external terminal 106, an external terminal 107, and a switch element 108. The power storage system 100 may include one or more slave modules 104. The power storage system 100 may equalize the voltages of the master module 102 and the one or more slave modules 104 during operation.

本実施形態において、マスタモジュール102は、蓄電部110と、端子122と、端子124と、スイッチ素子130と、モジュール制御部140と、電力供給部150と、温度制御部190とを有する。モジュール制御部140は、電源入力端子126を有してよい。電力供給部150は、電力分配部152と、端子154と、端子162と、端子164と、端子172と、端子174とを含んでよい。本実施形態において、スレーブモジュールは、蓄電部110と、端子122と、端子124と、電源入力端子126と、スイッチ素子130と、モジュール制御部140と、温度制御部190とを有する。   In the present embodiment, the master module 102 includes a power storage unit 110, a terminal 122, a terminal 124, a switch element 130, a module control unit 140, a power supply unit 150, and a temperature control unit 190. The module control unit 140 may have a power input terminal 126. The power supply unit 150 may include a power distribution unit 152, a terminal 154, a terminal 162, a terminal 164, a terminal 172, and a terminal 174. In the present embodiment, the slave module includes a power storage unit 110, a terminal 122, a terminal 124, a power input terminal 126, a switch element 130, a module control unit 140, and a temperature control unit 190.

マスタモジュール102およびスレーブモジュール104は直列に接続される。マスタモジュール102は外部端子106と電気的に接続され、スレーブモジュール104は外部端子107と電気的に接続される。   The master module 102 and the slave module 104 are connected in series. The master module 102 is electrically connected to the external terminal 106, and the slave module 104 is electrically connected to the external terminal 107.

「電気的に接続される」とは、ある要素と他の要素とが直接接続される場合に限定されない。ある要素と他の要素との間に、第三の要素が介在してもよい。また、ある要素と他の要素とが物理的に接続されている場合に限定されない。例えば、変圧器の入力巻線と出力巻線とは物理的には接続されていないが、電気的には接続されている。さらに、ある要素と他の要素とが製造段階で電気的に接続されている場合だけでなく、蓄電システムが外部の充電装置または負荷と電気的に接続されたときに、ある要素と他の要素とが電気的に接続される場合をも含む。また、「直列に接続される」とは、ある要素と他の要素とが直列に電気的に接続されていることを示す。「端子」とは、物理的な端子だけでなく、ある要素と他の要素との接続部をも含む。   “Electrically connected” is not limited to a case where an element and another element are directly connected. A third element may be interposed between one element and another element. Moreover, it is not limited to when a certain element and another element are physically connected. For example, the input winding and output winding of the transformer are not physically connected, but are electrically connected. Furthermore, not only when an element and another element are electrically connected in the manufacturing stage, but also when the power storage system is electrically connected with an external charging device or load, And the case where these are electrically connected. Further, “connected in series” indicates that an element and another element are electrically connected in series. The “terminal” includes not only a physical terminal but also a connection portion between an element and another element.

外部端子106および外部端子107は、マスタモジュール102およびスレーブモジュール104を外部と電気的に接続する。スイッチ素子108は、電力供給部150と、外部端子106または外部端子107との間を電気的に接続する。スイッチ素子108は、MOSFETなどのトランジスタであってもよく、リレーであってもよい。また、スイッチ素子108の代わりにコネクタが用いられてもよい。   The external terminal 106 and the external terminal 107 electrically connect the master module 102 and the slave module 104 to the outside. The switch element 108 electrically connects the power supply unit 150 and the external terminal 106 or the external terminal 107. The switch element 108 may be a transistor such as a MOSFET or a relay. A connector may be used instead of the switch element 108.

蓄電部110は、蓄電システム100の外部の充電装置(図示していない。)と電気的に接続され、電気エネルギーを蓄える。蓄電部110は、外部の負荷(図示していない。)と電気的に接続され、当該負荷に電力を供給する。蓄電部110は、端子122および端子124を介して他の蓄電部110と電気的に接続される。端子124は、蓄電部110の一端および外部端子107の間に電気的に接続される端子122は、蓄電部110の他端および外部端子106の間に電気的に接続される。   The power storage unit 110 is electrically connected to a charging device (not shown) outside the power storage system 100 and stores electrical energy. The power storage unit 110 is electrically connected to an external load (not shown) and supplies power to the load. Power storage unit 110 is electrically connected to another power storage unit 110 via terminal 122 and terminal 124. Terminal 124 is electrically connected between one end of power storage unit 110 and external terminal 107, and terminal 122 is electrically connected between the other end of power storage unit 110 and external terminal 106.

スイッチ素子130は、蓄電部110の一端および端子124の間を電気的に接続する。スイッチ素子130は、モジュール制御部140からの制御信号φ12に基づいて、オン状態とオフ状態とを切り替える。スイッチ素子130は、制御信号φ12を受信していない場合にオフ状態であり、制御信号φ12を受信した場合にオン状態になってよい。スイッチ素子130は、MOSFETなどのトランジスタであってもよく、リレーであってもよい。   Switch element 130 electrically connects one end of power storage unit 110 and terminal 124. The switch element 130 switches between an on state and an off state based on a control signal φ12 from the module control unit 140. The switch element 130 may be turned off when the control signal φ12 is not received, and may be turned on when the control signal φ12 is received. The switch element 130 may be a transistor such as a MOSFET or a relay.

モジュール制御部140は、スイッチ素子130のオン・オフ動作を制御する。モジュール制御部140は、スイッチ素子130のオン・オフ動作を制御する制御信号φ12を生成して、スイッチ素子130に供給してよい。モジュール制御部140は、端子122と、電源入力端子126との間の電圧を駆動電圧として動作してよい。モジュール制御部140は、パルス幅変調器などのパルス変調器であってよい。   The module control unit 140 controls the on / off operation of the switch element 130. The module control unit 140 may generate a control signal φ12 for controlling the on / off operation of the switch element 130 and supply the control signal φ12 to the switch element 130. The module control unit 140 may operate using a voltage between the terminal 122 and the power input terminal 126 as a driving voltage. The module control unit 140 may be a pulse modulator such as a pulse width modulator.

本実施形態において、モジュール制御部140は、電力供給部150から電力を供給される。そのため、電力供給部150から電力が供給されていない状態では、モジュール制御部140からスイッチ素子130に制御信号φ12が供給されない。これにより、蓄電システム100の組立中に、万が一、端子122および端子124が短絡された場合であっても、端子122および端子124の間には電流が流れない。その結果、蓄電システム100を安全に組み立てることができる。   In the present embodiment, the module control unit 140 is supplied with power from the power supply unit 150. Therefore, the control signal φ12 is not supplied from the module control unit 140 to the switch element 130 when no power is supplied from the power supply unit 150. Thereby, even if the terminal 122 and the terminal 124 are short-circuited during the assembly of the power storage system 100, no current flows between the terminal 122 and the terminal 124. As a result, the power storage system 100 can be assembled safely.

電力供給部150は、外部端子106および外部端子107が外部の充電装置と電気的に接続され、外部端子106および外部端子107に電力が供給された場合に、マスタモジュール102およびスレーブモジュール104のそれぞれが有するモジュール制御部140に電力を供給する。   When the external terminal 106 and the external terminal 107 are electrically connected to an external charging device and power is supplied to the external terminal 106 and the external terminal 107, the power supply unit 150 is connected to each of the master module 102 and the slave module 104. Power is supplied to the module control unit 140 included in the.

電力分配部152は、外部端子106および外部端子107が外部の充電装置と電気的に接続された場合に、電力を発生させる。電力分配部152は、発生した電力を、マスタモジュール102およびスレーブモジュール104のそれぞれが有するモジュール制御部140に供給する。   The power distribution unit 152 generates power when the external terminal 106 and the external terminal 107 are electrically connected to an external charging device. The power distribution unit 152 supplies the generated power to the module control unit 140 included in each of the master module 102 and the slave module 104.

本実施形態において、電力分配部152は、端子162または端子172と、スレーブモジュール104の端子122とを介して、スレーブモジュール104のモジュール制御部140の基準電圧端子と電気的に接続される。電力分配部152は、端子164または端子174を介して、スレーブモジュール104のモジュール制御部140の電源入力端子126と電気的に接続される。同様に、電力分配部152は、同様にして、マスタモジュール102とも電気的に接続される。   In the present embodiment, the power distribution unit 152 is electrically connected to the reference voltage terminal of the module control unit 140 of the slave module 104 via the terminal 162 or the terminal 172 and the terminal 122 of the slave module 104. The power distribution unit 152 is electrically connected to the power input terminal 126 of the module control unit 140 of the slave module 104 via the terminal 164 or the terminal 174. Similarly, the power distribution unit 152 is electrically connected to the master module 102 in the same manner.

電力分配部152は、一端が、スイッチ素子108を介して外部端子107と電気的に接続される。電力分配部152の他端のうちの少なくとも1つは、外部端子106と電気的に接続されてよい。本実施形態において、電力分配部152は、電力供給部150の端子154およびスイッチ素子108を介して、外部端子107と電気的に接続される。これにより、スイッチ素子108がオフ状態である場合に、外部端子106および外部端子107に電力が供給されたとしても、電力分配部152は電力を発生させない。なお、電力分配部152は、一端が、外部端子107と電気的に接続され、他端のうちの少なくとも1つがスイッチ素子108を介して外部端子106と電気的に接続されてもよい。   One end of the power distribution unit 152 is electrically connected to the external terminal 107 via the switch element 108. At least one of the other ends of the power distribution unit 152 may be electrically connected to the external terminal 106. In the present embodiment, the power distribution unit 152 is electrically connected to the external terminal 107 via the terminal 154 of the power supply unit 150 and the switch element 108. Thereby, when the switch element 108 is in the OFF state, even if power is supplied to the external terminal 106 and the external terminal 107, the power distribution unit 152 does not generate power. Note that one end of the power distribution unit 152 may be electrically connected to the external terminal 107, and at least one of the other ends may be electrically connected to the external terminal 106 via the switch element 108.

本実施形態によれば、蓄電システム100を組み立てる場合、マスタモジュール102およびスレーブモジュール104を直列に接続した後、スイッチ素子108をオン状態にしてから、外部端子106および外部端子107に電力を供給しなければ、スイッチ素子130がオン状態にならない。そのため、より安全に蓄電システム100を組み立てることができる。   According to this embodiment, when assembling the power storage system 100, the master module 102 and the slave module 104 are connected in series, and then the switch element 108 is turned on, and then power is supplied to the external terminal 106 and the external terminal 107. Otherwise, the switch element 130 is not turned on. Therefore, the power storage system 100 can be assembled more safely.

温度制御部190は、マスタモジュール102またはスレーブモジュール104の蓄電部110の温度を制御する。温度制御部190は、マスタモジュール102およびスレーブモジュール104のそれぞれに配されてよい。それぞれの温度制御部190は、対応する蓄電部110の温度を独立に制御してよい。それぞれの温度制御部190は、対応する蓄電部110から電力を供給されてよい。   The temperature control unit 190 controls the temperature of the power storage unit 110 of the master module 102 or the slave module 104. The temperature control unit 190 may be disposed in each of the master module 102 and the slave module 104. Each temperature control unit 190 may independently control the temperature of the corresponding power storage unit 110. Each temperature control unit 190 may be supplied with power from the corresponding power storage unit 110.

図2は、蓄電部110および電力供給部150の一例を概略的に示す。説明を簡単にする目的で、図2には、蓄電部110および電力供給部150とともに、マスタモジュール102の他の要素も示す。図2は、マスタモジュール102の一例として、電力供給部150が、他の要素とともに筐体280の内部に配される場合を示す。しかし、マスタモジュール102はこれに限定されない。電力供給部150と他の要素とが、それぞれ異なる筐体に配されてもよい。   FIG. 2 schematically shows an example of the power storage unit 110 and the power supply unit 150. For the sake of simplicity, FIG. 2 shows other elements of the master module 102 as well as the power storage unit 110 and the power supply unit 150. FIG. 2 shows a case where the power supply unit 150 is arranged inside the housing 280 together with other elements as an example of the master module 102. However, the master module 102 is not limited to this. The power supply unit 150 and other elements may be arranged in different cases.

本実施形態において、蓄電部110は、蓄電セル210と、バランス補正部220とを有する。蓄電部110は、直列に接続された複数の蓄電セル210を有してよい。蓄電セル210は、二次電池またはキャパシタであってよい。二次電池としては、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池などが用いられてよい。蓄電セル210は、さらに、複数の二次電池またはキャパシタを含んでもよい。蓄電セル210は、複数の二次電池またはキャパシタが並列に接続された組電池であってもよい。   In the present embodiment, the power storage unit 110 includes a power storage cell 210 and a balance correction unit 220. The power storage unit 110 may include a plurality of power storage cells 210 connected in series. The storage cell 210 may be a secondary battery or a capacitor. As the secondary battery, a lithium ion battery, a nickel metal hydride battery, a nickel cadmium battery, a lead storage battery, or the like may be used. The storage cell 210 may further include a plurality of secondary batteries or capacitors. The storage cell 210 may be an assembled battery in which a plurality of secondary batteries or capacitors are connected in parallel.

バランス補正部220は、複数の蓄電セル210の電圧を均等化させる。バランス補正部220の動作原理および構成は特に限定されるものではないが、例えば、特開2004−088878号公報に記載されているように、複数の蓄電セル210のそれぞれに対応する複数の二次巻線を有するトランスと、直列に接続された複数の蓄電部110の電圧をスイッチングして、トランスの一次巻線に通電させる開閉回路を形成するスイッチング素子とを用いて、複数の蓄電セル210の電圧を均等化させてよい。スイッチング素子として、制御信号を受信していない場合にオフ状態となる素子が用いられてよい。   The balance correction unit 220 equalizes the voltages of the plurality of power storage cells 210. The operation principle and configuration of the balance correction unit 220 are not particularly limited. For example, as described in Japanese Patent Application Laid-Open No. 2004-088878, a plurality of secondary units corresponding to each of the plurality of power storage cells 210 are provided. Using a transformer having a winding and a switching element that forms a switching circuit for switching the voltage of a plurality of power storage units 110 connected in series and energizing the primary winding of the transformer, The voltage may be equalized. As the switching element, an element that is turned off when a control signal is not received may be used.

この場合、トランスの二次巻線のそれぞれは、誘導された出力電力を、対応する蓄電部110に充電供給するように構成される。これにより、スイッチング素子をオン・オフ動作させてトランスの一次巻線にパルス電流を発生させることで、直列に接続された蓄電部110の電圧が複数の蓄電セル210に再分配され、蓄電部110間の電圧が均等化される。   In this case, each of the secondary windings of the transformer is configured to charge and supply the induced output power to the corresponding power storage unit 110. As a result, the switching element is turned on / off to generate a pulse current in the primary winding of the transformer, whereby the voltage of the power storage units 110 connected in series is redistributed to the plurality of power storage cells 210, and the power storage unit 110 The voltage between them is equalized.

バランス補正部220の他の例としては、例えば、特開2009−232660号公報に記載されているように、直列に接続された2つの蓄電セル210の中間接続点に一端が接続されるインダクタと、インダクタの他端と2つの蓄電セル210の一方の直列接続端との間に介在して開閉回路を形成するスイッチング素子と、インダクタの他端と2つの蓄電セル210の他方の直列接続端との間に介在して開閉回路を形成するスイッチング素子とを用いて、複数の蓄電セル210の電圧を均等化させてよい。スイッチング素子として、制御信号を受信していない場合にオフ状態となる素子が用いられてよい。   Other examples of the balance correction unit 220 include an inductor having one end connected to an intermediate connection point of two storage cells 210 connected in series, as described in, for example, Japanese Patent Application Laid-Open No. 2009-232660. A switching element interposed between the other end of the inductor and one series connection end of the two storage cells 210 to form a switching circuit, the other end of the inductor and the other series connection end of the two storage cells 210 The voltage of the plurality of power storage cells 210 may be equalized using a switching element that is interposed between them to form a switching circuit. As the switching element, an element that is turned off when a control signal is not received may be used.

この場合、直列に接続された2つの蓄電セル210に対して1つのバランス補正回路が配される。例えば、蓄電部110が直列に接続された4つの蓄電セル210を備える場合、バランス補正部220は、3つのバランス補正回路を備える。2つのスイッチング素子を交互にオン・オフ動作させることで、直列に接続された2つの蓄電セル210の間の電圧が均等化される。   In this case, one balance correction circuit is arranged for two power storage cells 210 connected in series. For example, when the power storage unit 110 includes four power storage cells 210 connected in series, the balance correction unit 220 includes three balance correction circuits. By alternately turning on and off the two switching elements, the voltage between the two storage cells 210 connected in series is equalized.

バランス補正部220は、モジュール制御部140からの制御信号φ22に基づいて、上記の開閉回路を形成するスイッチング素子のオン・オフ動作を制御してよい。モジュール制御部140は、パルス幅変調器であってもよく、パルスの周期およびパルス幅を制御することで、当該スイッチング素子のオン・オフ動作を制御してよい。   The balance correction unit 220 may control the on / off operation of the switching elements forming the switching circuit based on the control signal φ22 from the module control unit 140. The module control unit 140 may be a pulse width modulator, and may control the on / off operation of the switching element by controlling the pulse period and the pulse width.

バランス補正部220が複数の蓄電セル210の電圧を均等化させる場合、多少の電力が消費される。しかし、本実施形態においては、モジュール制御部140が、バランス補正部220の動作を制御する。そのため、モジュール制御部140に電力が供給されていない状態では、バランス補正が実施されない。これにより、例えば、保管中の消費電力を低減させることができる。   When the balance correction unit 220 equalizes the voltages of the plurality of power storage cells 210, some power is consumed. However, in the present embodiment, the module control unit 140 controls the operation of the balance correction unit 220. Therefore, balance correction is not performed in a state where power is not supplied to the module control unit 140. Thereby, for example, power consumption during storage can be reduced.

本実施形態において、電力分配部152は、トランス230と、スイッチング素子270と、電力供給制御部272とを有する。トランス230は、一次巻線232と、二次巻線242と、ダイオード244と、キャパシタ246と、二次巻線252と、ダイオード254と、キャパシタ256、二次巻線262と、ダイオード264と、キャパシタ266とを含む。   In the present embodiment, the power distribution unit 152 includes a transformer 230, a switching element 270, and a power supply control unit 272. The transformer 230 includes a primary winding 232, a secondary winding 242, a diode 244, a capacitor 246, a secondary winding 252, a diode 254, a capacitor 256, a secondary winding 262, a diode 264, Capacitor 266.

本実施形態では、電力分配部152が、二次巻線242、二次巻線252および二次巻線262を有する場合について説明する。しかし、二次巻線の数はこれに限定されない。蓄電システム100に含まれるマスタモジュール102およびスレーブモジュール104の数に応じて、二次巻線の数も増減してもよい。   In the present embodiment, a case where the power distribution unit 152 includes a secondary winding 242, a secondary winding 252, and a secondary winding 262 will be described. However, the number of secondary windings is not limited to this. Depending on the number of master modules 102 and slave modules 104 included in the power storage system 100, the number of secondary windings may be increased or decreased.

本実施形態において、一次巻線232は、スイッチ素子108およびスイッチング素子270を介して、外部端子106および外部端子107の間に電気的に接続される。これにより、スイッチ素子108およびスイッチング素子270がオン状態である場合に、充電装置(図示していない。)から外部端子106および外部端子107の間に電力が供給されると、電力供給部150からモジュール制御部140のそれぞれに電力が供給される。   In the present embodiment, the primary winding 232 is electrically connected between the external terminal 106 and the external terminal 107 via the switch element 108 and the switching element 270. Thus, when power is supplied between the external terminal 106 and the external terminal 107 from the charging device (not shown) when the switch element 108 and the switching element 270 are in the on state, the power supply unit 150 Electric power is supplied to each of the module control units 140.

二次巻線242は、マスタモジュール102が有するモジュール制御部140(対応するモジュール制御部140と言う場合がある。)と電気的に接続される。二次巻線242の一端は、対応するモジュール制御部140の電源入力端子126と電気的に接続される。二次巻線242の他端は、対応するモジュール制御部140の基準電圧端子と電気的に接続される。   The secondary winding 242 is electrically connected to a module control unit 140 (may be referred to as a corresponding module control unit 140) included in the master module 102. One end of the secondary winding 242 is electrically connected to the power input terminal 126 of the corresponding module control unit 140. The other end of the secondary winding 242 is electrically connected to the reference voltage terminal of the corresponding module control unit 140.

ダイオード244は、一端が、二次巻線242の一端と電気的に接続され、他端が、対応するモジュール制御部140の電源入力端子126と電気的に接続される。ダイオード244は、二次巻線242の一端からモジュール制御部140の電源入力端子126に向かって電流を流す向きに配される。キャパシタ246は、一端がダイオード244の他端および対応するモジュール制御部140の電源入力端子126と電気的に接続され、他端が、対応するモジュール制御部140の基準電圧端子と電気的に接続される。ダイオード244およびキャパシタ246は、二次巻線242に誘導された出力電力を整流して、モジュール制御部140の電源入力端子126に電力を供給する。   One end of the diode 244 is electrically connected to one end of the secondary winding 242, and the other end is electrically connected to the power input terminal 126 of the corresponding module control unit 140. The diode 244 is arranged in such a direction that current flows from one end of the secondary winding 242 toward the power input terminal 126 of the module control unit 140. One end of the capacitor 246 is electrically connected to the other end of the diode 244 and the power input terminal 126 of the corresponding module controller 140, and the other end is electrically connected to the reference voltage terminal of the corresponding module controller 140. The The diode 244 and the capacitor 246 rectify the output power induced in the secondary winding 242 and supply the power to the power input terminal 126 of the module control unit 140.

同様に、二次巻線252および二次巻線262は、それぞれ、対応するスレーブモジュール104が有するモジュール制御部140(対応するモジュール制御部140と言う場合がある。)と電気的に接続される。ダイオード254およびキャパシタ256は、二次巻線252に誘導された出力電力を整流して、対応するモジュール制御部140の電源入力端子126に電力を供給する。ダイオード264およびキャパシタ266は、二次巻線262に誘導された出力電力を整流して、対応するモジュール制御部140の電源入力端子126に電力を供給する。   Similarly, the secondary winding 252 and the secondary winding 262 are each electrically connected to a module control unit 140 (sometimes referred to as a corresponding module control unit 140) included in the corresponding slave module 104. . The diode 254 and the capacitor 256 rectify the output power induced in the secondary winding 252 and supply power to the power input terminal 126 of the corresponding module control unit 140. The diode 264 and the capacitor 266 rectify the output power induced in the secondary winding 262 and supply power to the power input terminal 126 of the corresponding module control unit 140.

スイッチング素子270は、外部端子106および外部端子107の一方と、一次巻線232との間に介在して開閉回路を形成する。本実施形態において、スイッチング素子270の一端は、端子122を介して外部端子106と電気的に接続される。スイッチング素子270の他端は、一次巻線232の一端と電気的に接続される。   Switching element 270 is interposed between one of external terminal 106 and external terminal 107 and primary winding 232 to form a switching circuit. In the present embodiment, one end of the switching element 270 is electrically connected to the external terminal 106 via the terminal 122. The other end of the switching element 270 is electrically connected to one end of the primary winding 232.

スイッチング素子270がオン・オフ動作を繰り返すことで、トランス230の一次巻線232にパルス電流が発生する。これにより、二次巻線242、二次巻線252および二次巻線262のそれぞれに出力電流が誘導される。スイッチング素子270は、電力供給制御部272からの制御信号φ24に基づいて、オン状態およびオフ状態を切り替えてよい。   When the switching element 270 repeats the on / off operation, a pulse current is generated in the primary winding 232 of the transformer 230. As a result, an output current is induced in each of the secondary winding 242, the secondary winding 252 and the secondary winding 262. The switching element 270 may switch between the on state and the off state based on the control signal φ24 from the power supply control unit 272.

スイッチング素子270は、特に限定されるものではないが、制御信号φ24を受信していない場合にオフ状態であり、制御信号φ24を受信した場合にオン状態になる素子であってもよい。スイッチング素子270は、MOSFETなどのトランジスタであってもよく、リレーであってもよい。   The switching element 270 is not particularly limited, but may be an element that is turned off when the control signal φ24 is not received and turned on when the control signal φ24 is received. The switching element 270 may be a transistor such as a MOSFET or a relay.

電力供給制御部272は、スイッチング素子270のオン・オフ動作を制御する。電力供給制御部272は、パルス幅変調器などのパルス変調器であってよい。これにより、トランス230の一次巻線232にパルス電流を発生させることができる。その結果、二次巻線242、二次巻線252および二次巻線262のそれぞれに出力電流が誘導され、対応するモジュール制御部140のそれぞれに、電力が供給される。   The power supply control unit 272 controls the on / off operation of the switching element 270. The power supply control unit 272 may be a pulse modulator such as a pulse width modulator. Thereby, a pulse current can be generated in the primary winding 232 of the transformer 230. As a result, an output current is induced in each of the secondary winding 242, the secondary winding 252 and the secondary winding 262, and power is supplied to each of the corresponding module control units 140.

電力供給制御部272の電源は外部から供給されてもよい。電力供給制御部272は、誘導される出力電流を測定して、測定結果に基づいて、スイッチング素子270のオン・オフ動作を制御してよい。例えば、電力供給制御部272は、トランス230に配される二次巻線をさらに有して、当該二次巻線に誘導される出力電流を測定してよい。   The power supply of the power supply control unit 272 may be supplied from the outside. The power supply control unit 272 may measure the induced output current and control the on / off operation of the switching element 270 based on the measurement result. For example, the power supply control unit 272 may further include a secondary winding disposed in the transformer 230 and measure an output current induced in the secondary winding.

図3は、電力供給部350の一例を概略的に示す。説明を簡単にする目的で、図3には、電力供給部150とともに、マスタモジュール102のモジュール制御部140および端子122と、電源入力端子126と、外部端子106とを示す。   FIG. 3 schematically shows an example of the power supply unit 350. For the sake of simplicity, FIG. 3 shows the module controller 140 and the terminal 122 of the master module 102, the power input terminal 126, and the external terminal 106 together with the power supply unit 150.

電力供給部350は、マスタモジュール102およびスレーブモジュール104のそれぞれに対応する二次巻線が、複数の二次巻線を含む点で、電力供給部150と相違する。本実施形態において、当該複数の二次巻線は直列に接続されており、直列に接続された二次巻線の両端は、それぞれ、対応する蓄電モジュールの蓄電部110の両端と電気的に接続される。これにより、蓄電システム100は、マスタモジュール102およびスレーブモジュール104の間で電圧にバラつきがある場合に、マスタモジュール102およびスレーブモジュール104の間の電圧を均等化させることができる。   The power supply unit 350 is different from the power supply unit 150 in that the secondary winding corresponding to each of the master module 102 and the slave module 104 includes a plurality of secondary windings. In the present embodiment, the plurality of secondary windings are connected in series, and both ends of the secondary windings connected in series are electrically connected to both ends of the power storage unit 110 of the corresponding power storage module, respectively. Is done. Thereby, the power storage system 100 can equalize the voltage between the master module 102 and the slave module 104 when the voltage varies between the master module 102 and the slave module 104.

特に、本実施形態においては、マスタモジュール102およびスレーブモジュール104のそれぞれが、それぞれの蓄電部110から電力を供給される温度制御部190を有する。マスタモジュール102およびスレーブモジュール104の放熱特性は、それぞれが配された位置によって異なることから、マスタモジュール102およびスレーブモジュール104の電池残量が均一でなくなり、電圧にバラつきが生じやすい。   In particular, in the present embodiment, each of the master module 102 and the slave module 104 includes a temperature control unit 190 that is supplied with power from the respective power storage units 110. Since the heat radiation characteristics of the master module 102 and the slave module 104 differ depending on the positions where they are arranged, the remaining battery power of the master module 102 and the slave module 104 is not uniform, and the voltage tends to vary.

例えば、蓄電システム100の外部に近い側に配されたマスタモジュール102またはスレーブモジュール104は、蓄電システム100の外部から遠い側に配されたマスタモジュール102またはスレーブモジュール104と比較して、外気の影響を受けやすい。蓄電システム100の外部から遠い側に配されたマスタモジュール102またはスレーブモジュール104は、蓄電システム100の外部に近い側に配されたマスタモジュール102またはスレーブモジュール104と比較して、外部に熱を放出しにくい。電力供給部350は、このような場合に好適に用いられる。   For example, the master module 102 or the slave module 104 arranged on the side close to the outside of the power storage system 100 is more influenced by the outside air than the master module 102 or the slave module 104 arranged on the side far from the outside of the power storage system 100. It is easy to receive. The master module 102 or the slave module 104 arranged on the side far from the outside of the power storage system 100 releases heat to the outside as compared with the master module 102 or the slave module 104 arranged on the side near the outside of the power storage system 100. Hard to do. The power supply unit 350 is preferably used in such a case.

本実施形態において、電力供給部350は、電力分配部351と、端子154と、端子162と、端子164と、端子172と、端子174と、端子348と、端子358と、端子368とを含む。端子348は、マスタモジュール102の端子124と電気的に接続される。端子358および端子368は、それぞれ、対応するスレーブモジュール104の端子124と電気的に接続される。端子348、端子358および端子368のそれぞれは、対応する蓄電モジュールの端子124とスイッチ素子130との間の中間接続点と電気的に接続されてよい。   In the present embodiment, the power supply unit 350 includes a power distribution unit 351, a terminal 154, a terminal 162, a terminal 164, a terminal 172, a terminal 174, a terminal 348, a terminal 358, and a terminal 368. . The terminal 348 is electrically connected to the terminal 124 of the master module 102. Terminal 358 and terminal 368 are each electrically connected to terminal 124 of corresponding slave module 104. Each of terminal 348, terminal 358, and terminal 368 may be electrically connected to an intermediate connection point between terminal 124 and switch element 130 of the corresponding power storage module.

電力分配部351は、トランス330と、スイッチング素子270と、電力供給制御部272とを有する。以下、電力供給部150の各構成との相違点について説明し、電力供給部150の各構成と同様の構成については説明を省略する場合がある。例えば、説明を省略した部分については、電力分配部351は電力分配部152と同様の構成を有してよく、トランス330はトランス230と同様の構成を有してよい。   The power distribution unit 351 includes a transformer 330, a switching element 270, and a power supply control unit 272. Hereinafter, differences from each configuration of the power supply unit 150 will be described, and description of the same configuration as each configuration of the power supply unit 150 may be omitted. For example, for portions that are not described, the power distribution unit 351 may have the same configuration as the power distribution unit 152, and the transformer 330 may have the same configuration as the transformer 230.

トランス330は、一次巻線232を含む。トランス330は、二次巻線242および二次巻線342と、ダイオード244およびダイオード344と、キャパシタ246およびキャパシタ346とを含む。トランス330は、二次巻線252および二次巻線352と、ダイオード254およびダイオード354と、キャパシタ256およびキャパシタ356とを含む。トランス330は、二次巻線262および二次巻線362と、ダイオード264およびダイオード364と、キャパシタ266およびキャパシタ366とを含む。   The transformer 330 includes a primary winding 232. Transformer 330 includes secondary winding 242 and secondary winding 342, diode 244 and diode 344, capacitor 246 and capacitor 346. Transformer 330 includes a secondary winding 252 and a secondary winding 352, a diode 254 and a diode 354, a capacitor 256 and a capacitor 356. Transformer 330 includes a secondary winding 262 and a secondary winding 362, a diode 264 and a diode 364, and a capacitor 266 and a capacitor 366.

二次巻線342は、二次巻線242と直列に接続される。二次巻線242の一端は、マスタモジュール102の端子122と電気的に接続される。二次巻線342の一端は、マスタモジュール102の端子124と電気的に接続される。二次巻線242の他端および二次巻線342の他端は、マスタモジュール102が有するモジュール制御部140の電源入力端子126と電気的に接続される。   Secondary winding 342 is connected in series with secondary winding 242. One end of the secondary winding 242 is electrically connected to the terminal 122 of the master module 102. One end of the secondary winding 342 is electrically connected to the terminal 124 of the master module 102. The other end of the secondary winding 242 and the other end of the secondary winding 342 are electrically connected to the power input terminal 126 of the module control unit 140 included in the master module 102.

ダイオード344は、一端が、二次巻線342の一端と電気的に接続され、他端が、端子348と電気的に接続される。ダイオード344は、二次巻線342の一端から端子348に向かって電流を流す向きに配される。キャパシタ346は、一端がダイオード344の他端および端子348と電気的に接続され、他端が、二次巻線242の一端と電気的に接続される。   One end of the diode 344 is electrically connected to one end of the secondary winding 342 and the other end is electrically connected to the terminal 348. The diode 344 is arranged in a direction in which a current flows from one end of the secondary winding 342 toward the terminal 348. Capacitor 346 has one end electrically connected to the other end of diode 344 and terminal 348, and the other end electrically connected to one end of secondary winding 242.

同様に、二次巻線352は、二次巻線252と直列に接続される。二次巻線252の一端は、対応するスレーブモジュール104の端子122と電気的に接続される。二次巻線352の一端は、対応するスレーブモジュール104の端子124と電気的に接続される。二次巻線252の他端および二次巻線352の他端は、対応するスレーブモジュール104が有するモジュール制御部140の電源入力端子126と電気的に接続される。   Similarly, the secondary winding 352 is connected in series with the secondary winding 252. One end of the secondary winding 252 is electrically connected to the terminal 122 of the corresponding slave module 104. One end of the secondary winding 352 is electrically connected to the terminal 124 of the corresponding slave module 104. The other end of the secondary winding 252 and the other end of the secondary winding 352 are electrically connected to the power input terminal 126 of the module control unit 140 included in the corresponding slave module 104.

ダイオード354は、一端が、二次巻線352の一端と電気的に接続され、他端が、端子358と電気的に接続される。ダイオード354は、二次巻線352の一端から端子358に向かって電流を流す向きに配される。キャパシタ356は、一端がダイオード354の他端および端子358と電気的に接続され、他端が、二次巻線252の一端と電気的に接続される。   One end of the diode 354 is electrically connected to one end of the secondary winding 352, and the other end is electrically connected to the terminal 358. The diode 354 is arranged in a direction in which current flows from one end of the secondary winding 352 toward the terminal 358. Capacitor 356 has one end electrically connected to the other end of diode 354 and terminal 358, and the other end electrically connected to one end of secondary winding 252.

同様に、二次巻線362は、二次巻線262と直列に接続される。二次巻線262の一端は、対応するスレーブモジュール104の端子122と電気的に接続される。二次巻線362の一端は、対応するスレーブモジュール104の端子124と電気的に接続される。二次巻線262の他端および二次巻線362の他端は、対応するスレーブモジュール104が有するモジュール制御部140の電源入力端子126と電気的に接続される。   Similarly, the secondary winding 362 is connected in series with the secondary winding 262. One end of the secondary winding 262 is electrically connected to the terminal 122 of the corresponding slave module 104. One end of the secondary winding 362 is electrically connected to the terminal 124 of the corresponding slave module 104. The other end of the secondary winding 262 and the other end of the secondary winding 362 are electrically connected to the power input terminal 126 of the module control unit 140 included in the corresponding slave module 104.

ダイオード364は、一端が、二次巻線362の一端と電気的に接続され、他端が、端子368と電気的に接続される。ダイオード364は、二次巻線362の一端から端子368に向かって電流を流す向きに配される。キャパシタ366は、一端がダイオード364の他端および端子368と電気的に接続され、他端が、二次巻線262の一端と電気的に接続される。   The diode 364 has one end electrically connected to one end of the secondary winding 362 and the other end electrically connected to the terminal 368. The diode 364 is arranged in a direction in which a current flows from one end of the secondary winding 362 toward the terminal 368. Capacitor 366 has one end electrically connected to the other end of diode 364 and terminal 368, and the other end electrically connected to one end of secondary winding 262.

本実施形態によれば、直列に接続された2つの二次巻線のそれぞれは、スイッチング素子270のスイッチング動作により誘導された出力電力を、対応する蓄電部110に充電供給する。その結果、直列に接続された複数の蓄電部110の電圧を、複数の蓄電部110のそれぞれの間で再分配することができ、マスタモジュール102および1以上のスレーブモジュール104の間で電圧を均等化することができる。これにより、トランス330を、モジュール制御部140への電力の供給と、電圧の均等化とに利用することができる。なお、蓄電システム100は、その他の方法により、マスタモジュール102および1以上のスレーブモジュール104の間で電圧を均等化してもよい。   According to the present embodiment, each of the two secondary windings connected in series charges and supplies the corresponding power storage unit 110 with the output power induced by the switching operation of the switching element 270. As a result, the voltages of the plurality of power storage units 110 connected in series can be redistributed between each of the plurality of power storage units 110, and the voltages are evenly distributed between the master module 102 and one or more slave modules 104. Can be As a result, the transformer 330 can be used to supply power to the module control unit 140 and equalize the voltage. The power storage system 100 may equalize the voltage between the master module 102 and the one or more slave modules 104 by other methods.

図4は、温度制御部190の一例を概略的に示す。図4は、説明を簡単にする目的で、温度制御部190を、蓄電部110とともに示す。本実施形態において、温度制御部190は、ペルチェ素子40と、ペルチェ素子40に供給する電流の大きさおよび向きの少なくとも一方を調整する電流制御部400とを備える。電流制御部400は、駆動部402と、駆動部404と、駆動制御部406とを有する。   FIG. 4 schematically shows an example of the temperature control unit 190. FIG. 4 shows the temperature control unit 190 together with the power storage unit 110 for the purpose of simplifying the explanation. In the present embodiment, the temperature control unit 190 includes a Peltier element 40 and a current control unit 400 that adjusts at least one of the magnitude and direction of the current supplied to the Peltier element 40. The current control unit 400 includes a drive unit 402, a drive unit 404, and a drive control unit 406.

本実施形態において、温度制御部190は、ペルチェ素子40を用いて蓄電部110の温度を制御する。しかし、温度制御部190はこれに限定されない。例えば、ペルチェ素子40の代わりに抵抗を用いて蓄電部110の温度を調整してもよい。ペルチェ素子40は、駆動部402および駆動部404の負荷の一例であってよい。駆動部402は、第2の駆動回路の一例であってよい。駆動部404は、第1の駆動回路の一例であってよい。   In the present embodiment, the temperature control unit 190 controls the temperature of the power storage unit 110 using the Peltier element 40. However, the temperature control unit 190 is not limited to this. For example, the temperature of the power storage unit 110 may be adjusted using a resistor instead of the Peltier element 40. The Peltier element 40 may be an example of loads on the drive unit 402 and the drive unit 404. The drive unit 402 may be an example of a second drive circuit. The drive unit 404 may be an example of a first drive circuit.

なお、本実施形態において、駆動部402および駆動部404が、同一の駆動制御部406により制御される場合について説明する。しかし、駆動部402および駆動部404はこれに限定されない。駆動部402および駆動部404が、それぞれ、駆動制御部406を有してもよい。   In the present embodiment, the case where the drive unit 402 and the drive unit 404 are controlled by the same drive control unit 406 will be described. However, the drive unit 402 and the drive unit 404 are not limited to this. The drive unit 402 and the drive unit 404 may each include a drive control unit 406.

まず、駆動部402および駆動部404について説明する。説明を簡単にする目的で、駆動部402を例として、駆動部402および駆動部404の構成および動作について説明する。駆動部404は駆動部402と同様の構成を有してよい。駆動部404の制御信号φ44は、駆動部402の制御信号φ42に対応する。駆動部404の制御信号φ471、制御信号φ472および制御信号φ473は、それぞれ、駆動部402の制御信号φ461、制御信号φ462および制御信号φ463に対応する。   First, the drive unit 402 and the drive unit 404 will be described. For the purpose of simplifying the description, the configuration and operation of the drive unit 402 and the drive unit 404 will be described using the drive unit 402 as an example. The drive unit 404 may have the same configuration as the drive unit 402. The control signal φ44 of the drive unit 404 corresponds to the control signal φ42 of the drive unit 402. Control signal φ471, control signal φ472, and control signal φ473 of drive unit 404 correspond to control signal φ461, control signal φ462, and control signal φ463 of drive unit 402, respectively.

本実施形態において、駆動部402および駆動部404は、ペルチェ素子40を駆動するHブリッジ回路を構成する。駆動部402および駆動部404のそれぞれは、スイッチング素子410と、スイッチング素子420と、スイッチング素子430と、電圧供給部440とを有する。スイッチング素子410、スイッチング素子420およびスイッチング素子430のそれぞれは、駆動制御部406から供給される制御信号が入力される入力端子412、入力端子422および入力端子432を含んでよい。電圧供給部440は、キャパシタ442と、ダイオード443と、ダイオード444と、抵抗445と、抵抗446とを含んでよい。   In the present embodiment, the drive unit 402 and the drive unit 404 constitute an H bridge circuit that drives the Peltier element 40. Each of the drive unit 402 and the drive unit 404 includes a switching element 410, a switching element 420, a switching element 430, and a voltage supply unit 440. Each of the switching element 410, the switching element 420, and the switching element 430 may include an input terminal 412, an input terminal 422, and an input terminal 432 to which a control signal supplied from the drive control unit 406 is input. The voltage supply unit 440 may include a capacitor 442, a diode 443, a diode 444, a resistor 445, and a resistor 446.

スイッチング素子410は、一端が、ペルチェ素子40の一端と電気的に接続される。スイッチング素子410の他端は、ペルチェ素子40を駆動する蓄電部110の一端と電気的に接続される。スイッチング素子410の入力端子412には、制御信号φ461が入力される。スイッチング素子410は、入力端子412に入力される電圧の大きさに基づいて、オン状態およびオフ状態を切り替えてよい。スイッチング素子410は、MOSFETなどのトランジスタであってよい。スイッチング素子410は、第1のスイッチング素子の一例であってよい。   One end of the switching element 410 is electrically connected to one end of the Peltier element 40. The other end of the switching element 410 is electrically connected to one end of the power storage unit 110 that drives the Peltier element 40. A control signal φ461 is input to the input terminal 412 of the switching element 410. The switching element 410 may switch between an on state and an off state based on the magnitude of the voltage input to the input terminal 412. The switching element 410 may be a transistor such as a MOSFET. The switching element 410 may be an example of a first switching element.

スイッチング素子410は、少なくとも、制御信号φ463に応じてオン状態およびオフ状態を切り替えてよい。本実施形態において、スイッチング素子410は、入力端子412に入力される制御信号φ42に応じてオン状態およびオフ状態を切り替える。制御信号φ42は、制御信号φ461、制御信号φ462および制御信号φ463に応じて変化する。例えば、制御信号φ461がオン信号であっても、スイッチング素子430がオン状態である場合には、制御信号φ42はオフ信号となる。   The switching element 410 may switch between an on state and an off state in accordance with at least the control signal φ463. In the present embodiment, the switching element 410 switches between an on state and an off state in accordance with a control signal φ42 input to the input terminal 412. Control signal φ42 changes according to control signal φ461, control signal φ462, and control signal φ463. For example, even if the control signal φ461 is an on signal, the control signal φ42 is an off signal when the switching element 430 is in an on state.

また、スイッチング素子420がオフ時に410のソース電位が高まり、実質的に制御信号φ461がオフ信号となった場合であっても、スイッチング素子430がオフ状態であり、キャパシタ442に十分な電荷が充電されている場合には、制御信号φ42はオン信号となる。キャパシタ442の充電状態は、スイッチング素子410がオンする前に制御信号φ461と制御信号φ462によりスイッチング素子420を短期間オンすることで制御されてよい。   Further, when the switching element 420 is turned off, the source potential of 410 is increased, and even when the control signal φ461 is substantially turned off, the switching element 430 is in the off state, and the capacitor 442 is charged with sufficient charge. If the control signal φ42 has been set, the control signal φ42 becomes an ON signal. The charging state of the capacitor 442 may be controlled by turning on the switching element 420 for a short period of time using the control signal φ461 and the control signal φ462 before the switching element 410 is turned on.

スイッチング素子420は、一端が、ペルチェ素子40の一端およびスイッチング素子410の一端と電気的に接続される。スイッチング素子420の他端は、基準電位408と電気的に接続される。スイッチング素子420の他端は、蓄電部110の他端と電気的に接続される。スイッチング素子420の入力端子422には、制御信号φ462が入力される。スイッチング素子420は、入力端子422に入力される電圧の大きさに基づいて、オン状態およびオフ状態を切り替えてよい。スイッチング素子420は、入力端子422に入力される制御信号φ462に応じてオン状態およびオフ状態を切り替えてよい。スイッチング素子420は、MOSFETなどのトランジスタであってよい。スイッチング素子420は、第2のスイッチング素子の一例であってよい。   One end of the switching element 420 is electrically connected to one end of the Peltier element 40 and one end of the switching element 410. The other end of the switching element 420 is electrically connected to the reference potential 408. The other end of switching element 420 is electrically connected to the other end of power storage unit 110. A control signal φ 462 is input to the input terminal 422 of the switching element 420. The switching element 420 may switch between an on state and an off state based on the magnitude of the voltage input to the input terminal 422. The switching element 420 may switch between an on state and an off state in accordance with a control signal φ462 input to the input terminal 422. The switching element 420 may be a transistor such as a MOSFET. The switching element 420 may be an example of a second switching element.

スイッチング素子420の閾値電圧は、スイッチング素子430の閾値電圧よりも大きくてよい。これにより、例えば、制御信号φ462およびφ463が、同一の制御用電源により生成され、ほぼ同時に供給された場合であっても、スイッチング素子430の方が、スイッチング素子420よりも先に、スイッチング動作を実施することができる。   The threshold voltage of the switching element 420 may be larger than the threshold voltage of the switching element 430. Thereby, for example, even when the control signals φ462 and φ463 are generated by the same control power supply and are supplied almost simultaneously, the switching element 430 performs the switching operation before the switching element 420. Can be implemented.

スイッチング素子430は、一端が、スイッチング素子410の入力端子412およびキャパシタ442の一端と電気的に接続される。スイッチング素子430の他端は、基準電位408と電気的に接続される。スイッチング素子430の入力端子432には、制御信号φ463が入力される。スイッチング素子430は、入力端子432に入力される電圧の大きさに基づいて、オン状態およびオフ状態を切り替えてよい。スイッチング素子430は、入力端子432に入力される制御信号φ463に応じてオン状態およびオフ状態を切り替えてよい。スイッチング素子430は、MOSFETなどのトランジスタであってよい。スイッチング素子430は、第3のスイッチング素子の一例であってよい。   One end of switching element 430 is electrically connected to input terminal 412 of switching element 410 and one end of capacitor 442. The other end of the switching element 430 is electrically connected to the reference potential 408. A control signal φ463 is input to the input terminal 432 of the switching element 430. The switching element 430 may switch between an on state and an off state based on the magnitude of the voltage input to the input terminal 432. The switching element 430 may switch between an on state and an off state in accordance with a control signal φ463 input to the input terminal 432. The switching element 430 may be a transistor such as a MOSFET. The switching element 430 may be an example of a third switching element.

スイッチング素子430がオン状態の場合、スイッチング素子410の入力端子412が、抵抗446を介して基準電位408と電気的に接続される。これにより、スイッチング素子410はオフ状態になる。一方、スイッチング素子430がオフ状態の場合、スイッチング素子410の入力端子412には、駆動制御部406および電圧供給部440から供給される電圧が引加される。入力端子412に引加された電圧がスイッチング素子410の閾値電圧よりも大きくなると、スイッチング素子410がオン状態になる。   When the switching element 430 is on, the input terminal 412 of the switching element 410 is electrically connected to the reference potential 408 through the resistor 446. Thereby, the switching element 410 is turned off. On the other hand, when the switching element 430 is in the off state, the voltage supplied from the drive control unit 406 and the voltage supply unit 440 is applied to the input terminal 412 of the switching element 410. When the voltage applied to the input terminal 412 becomes larger than the threshold voltage of the switching element 410, the switching element 410 is turned on.

電圧供給部440は、スイッチング素子410の入力端子412に電圧を供給する。電圧供給部440は、スイッチング素子420がオフ状態である場合に、入力端子412に電圧を供給してよい。本実施形態においては、制御信号φ461が供給されている状態で、スイッチング素子420およびスイッチング素子430がオン状態からオフ状態に切り替えられ、電圧供給部440から入力端子412に電圧が供給される。   The voltage supply unit 440 supplies a voltage to the input terminal 412 of the switching element 410. The voltage supply unit 440 may supply a voltage to the input terminal 412 when the switching element 420 is in an off state. In the present embodiment, the switching element 420 and the switching element 430 are switched from the on state to the off state while the control signal φ461 is being supplied, and the voltage is supplied from the voltage supply unit 440 to the input terminal 412.

キャパシタ442は、一端が、スイッチング素子410の入力端子412と電気的に接続される。キャパシタ442の他端は、スイッチング素子410の一端およびスイッチング素子420の一端と電気的に接続される。   One end of the capacitor 442 is electrically connected to the input terminal 412 of the switching element 410. The other end of the capacitor 442 is electrically connected to one end of the switching element 410 and one end of the switching element 420.

キャパシタ442は、スイッチング素子420がオン状態の場合に充電される。スイッチング素子420がオン状態の場合、キャパシタ442の他端が基準電位408と電気的に接続される。これにより、キャパシタ442には、制御信号φ461の電圧と基準電位408との差に相当する電荷が充電される。なお、スイッチング素子420がオン状態の場合には、スイッチング素子410がオフ状態となるよう制御される。これにより、蓄電部110の一端および他端が短絡されるのを防止することができる。   Capacitor 442 is charged when switching element 420 is on. When the switching element 420 is on, the other end of the capacitor 442 is electrically connected to the reference potential 408. As a result, the capacitor 442 is charged with a charge corresponding to the difference between the voltage of the control signal φ461 and the reference potential 408. Note that when the switching element 420 is in an on state, the switching element 410 is controlled to be in an off state. Thereby, it is possible to prevent one end and the other end of power storage unit 110 from being short-circuited.

キャパシタ442は、スイッチング素子420がオフ状態である場合に、スイッチング素子410の入力端子412に、充電された電荷に応じた電圧を供給するよう制御される。本実施形態においては、制御信号φ461が供給されている状態で、スイッチング素子430がオン状態の場合に、短期間、スイッチング素子420がオン状態とされた後、スイッチング素子420、スイッチング素子430の順にオフ状態に切り替えられる。これにより、スイッチング素子410の入力端子412には、キャパシタ442から供給される電圧が引加される。   The capacitor 442 is controlled to supply a voltage corresponding to the charged electric charge to the input terminal 412 of the switching element 410 when the switching element 420 is in the OFF state. In the present embodiment, when the switching element 430 is in the on state while the control signal φ461 is being supplied, the switching element 420 is turned on for a short period of time, and then the switching element 420 and the switching element 430 in this order. Switched off. As a result, the voltage supplied from the capacitor 442 is applied to the input terminal 412 of the switching element 410.

ダイオード443は、駆動制御部406およびキャパシタ442の一端の間に電気的に接続される。ダイオード443は、駆動制御部406の制御用電源450とキャパシタ442の一端との間に電気的に接続されてもよい。ダイオード443は、駆動制御部406からキャパシタ442の一端に電流を流す向きに配される。これにより、スイッチング素子430がオフ状態になった場合に、キャパシタ442に充電された電荷に応じた電圧が、入力端子412に印加される。   The diode 443 is electrically connected between the drive control unit 406 and one end of the capacitor 442. The diode 443 may be electrically connected between the control power supply 450 of the drive control unit 406 and one end of the capacitor 442. The diode 443 is arranged in such a direction that current flows from the drive control unit 406 to one end of the capacitor 442. Thus, when the switching element 430 is turned off, a voltage corresponding to the charge charged in the capacitor 442 is applied to the input terminal 412.

例えば、スイッチング素子410がFETである場合、スイッチング素子410がオン状態になると、スイッチング素子410のソースの電圧が上昇する。そのため、ゲートとソースとの間の電圧差が小さくなり、スイッチング素子410の動作が不安定になる。しかし、本実施形態によれば、駆動制御部406とキャパシタ442との間にダイオード443が配されており、スイッチング素子410をオン状態にする場合には、スイッチング素子420およびスイッチング素子430がオフ状態となるように制御される。   For example, when the switching element 410 is an FET, when the switching element 410 is turned on, the source voltage of the switching element 410 increases. Therefore, the voltage difference between the gate and the source becomes small, and the operation of the switching element 410 becomes unstable. However, according to the present embodiment, the diode 443 is disposed between the drive control unit 406 and the capacitor 442. When the switching element 410 is turned on, the switching element 420 and the switching element 430 are turned off. It is controlled to become.

これにより、スイッチング素子410がオン状態となり、キャパシタ442の他端の電圧が上昇した場合であっても、キャパシタ442に充電された電荷に応じた電圧が、入力端子412に供給される。その結果、スイッチング素子410のオン状態を安定化させることができる。   Accordingly, even when the switching element 410 is turned on and the voltage at the other end of the capacitor 442 is increased, a voltage corresponding to the charge charged in the capacitor 442 is supplied to the input terminal 412. As a result, the ON state of the switching element 410 can be stabilized.

本実施形態において、ダイオード444は、キャパシタ442の一端および入力端子412の中間接続点と、スイッチング素子410の一端との間に電気的に接続される。ダイオード444は、スイッチング素子410の一端から、キャパシタ442の一端および入力端子412の中間接続点に電流を流す向きに配される。   In the present embodiment, the diode 444 is electrically connected between one end of the capacitor 442 and the intermediate connection point of the input terminal 412 and one end of the switching element 410. The diode 444 is arranged in such a direction that current flows from one end of the switching element 410 to one end of the capacitor 442 and an intermediate connection point of the input terminal 412.

本実施形態において、抵抗445は、キャパシタ442の一端と、ダイオード444および入力端子412の中間接続点との間に電気的に接続される。また、抵抗446は、抵抗445と、ダイオード444および入力端子412の中間接続点との間に電気的に接続される。抵抗445および抵抗446は、キャパシタ442の一端と、ダイオード444および入力端子412の中間接続点との間で、直列に接続されてよい。抵抗445および抵抗446の中間接続点は、スイッチング素子430の一端と電気的に接続されてよい。   In the present embodiment, the resistor 445 is electrically connected between one end of the capacitor 442 and an intermediate connection point between the diode 444 and the input terminal 412. The resistor 446 is electrically connected between the resistor 445 and an intermediate connection point between the diode 444 and the input terminal 412. The resistor 445 and the resistor 446 may be connected in series between one end of the capacitor 442 and an intermediate connection point between the diode 444 and the input terminal 412. An intermediate connection point between the resistor 445 and the resistor 446 may be electrically connected to one end of the switching element 430.

次に、駆動制御部406の構成について説明する。本実施形態において、駆動制御部406は、入力信号φ46に基づいて駆動部402および駆動部404の動作を制御することで、ペルチェ素子40の加熱または冷却を制御する。入力信号φ46は、蓄電部110近傍に配された温度計の指示値と、目的とする温度との差を示す信号であってよい。   Next, the configuration of the drive control unit 406 will be described. In the present embodiment, the drive control unit 406 controls the heating or cooling of the Peltier element 40 by controlling the operations of the drive unit 402 and the drive unit 404 based on the input signal φ46. Input signal φ46 may be a signal indicating a difference between an instruction value of a thermometer arranged near power storage unit 110 and a target temperature.

駆動制御部406は、制御信号φ461、制御信号φ462および制御信号φ463を生成して、駆動部402に供給する。これにより、駆動制御部406は、駆動部402の動作を制御する。駆動制御部406は、制御信号φ471、制御信号φ472および制御信号φ473を生成して、駆動部404に供給する。これにより、駆動制御部406は、駆動部404の動作を制御する。   The drive control unit 406 generates a control signal φ461, a control signal φ462, and a control signal φ463 and supplies them to the drive unit 402. Thereby, the drive control unit 406 controls the operation of the drive unit 402. The drive control unit 406 generates a control signal φ 471, a control signal φ 472, and a control signal φ 473, and supplies them to the drive unit 404. Thereby, the drive control unit 406 controls the operation of the drive unit 404.

本実施形態において、制御信号φ461および制御信号φ471として、直流電圧が供給される。制御信号φ462および制御信号φ472は、それぞれ、対応するスイッチング素子420のオン・オフ動作を制御する。制御信号φ463および制御信号φ473は、それぞれ、対応するスイッチング素子430を通して、対応するスイッチング素子410のオン・オフ動作を制御する。   In the present embodiment, a DC voltage is supplied as the control signal φ461 and the control signal φ471. Control signal φ462 and control signal φ472 respectively control the on / off operation of corresponding switching element 420. Control signal φ463 and control signal φ473 control the on / off operation of corresponding switching element 410 through corresponding switching element 430, respectively.

駆動制御部406は、パルス幅変調器などのパルス変調器であってよい。駆動制御部406は、制御信号の生成に用いる制御用電源450を含んでよい。制御用電源450は、蓄電部110から電力を供給されてもよい。駆動制御部406は、制御部の一例であってよい。   The drive control unit 406 may be a pulse modulator such as a pulse width modulator. The drive control unit 406 may include a control power source 450 used for generating a control signal. The power source for control 450 may be supplied with power from the power storage unit 110. The drive control unit 406 may be an example of a control unit.

次に、駆動制御部406の動作について説明する。第1に、本実施形態の駆動制御部406は、駆動部402および駆動部404を制御して、ペルチェ素子40を流れる電流の向きを制御する。   Next, the operation of the drive control unit 406 will be described. First, the drive control unit 406 of the present embodiment controls the drive unit 402 and the drive unit 404 to control the direction of current flowing through the Peltier element 40.

例えば、駆動部402のスイッチング素子420および駆動部404のスイッチング素子410をオン状態として、駆動部402のスイッチング素子410および駆動部404のスイッチング素子420をオフ状態とすることで、ペルチェ素子40の一端から他端の方向(図中、上から下の方向)に電流が流れる。   For example, the switching element 420 of the driving unit 402 and the switching element 410 of the driving unit 404 are turned on, and the switching element 410 of the driving unit 402 and the switching element 420 of the driving unit 404 are turned off. A current flows in the direction from to the other end (from the top to the bottom in the figure).

一方、駆動部402のスイッチング素子410および駆動部404のスイッチング素子420をオン状態として、駆動部402のスイッチング素子420および駆動部404のスイッチング素子410をオフ状態とすることで、ペルチェ素子40の他端から一端の方向(図中、下から上の方向)に電流が流れる。   On the other hand, the switching element 410 of the driving unit 402 and the switching element 420 of the driving unit 404 are turned on, and the switching element 420 of the driving unit 402 and the switching element 410 of the driving unit 404 are turned off. Current flows in the direction from one end to the other (from the bottom to the top in the figure).

第2に、本実施形態の駆動制御部406は、スイッチング素子410とスイッチング素子420とを交互にオン・オフ動作させる。例えば、駆動制御部406は、制御信号φ461を常に供給しながら、制御信号φ462および制御信号φ463を断続的に供給する。これにより、制御信号φ462が供給されている間、スイッチング素子420がオン状態となり、制御信号φ463が供給されている間、スイッチング素子410がオフ状態となる。   Secondly, the drive control unit 406 of this embodiment causes the switching element 410 and the switching element 420 to alternately turn on and off. For example, the drive control unit 406 supplies the control signal φ462 and the control signal φ463 intermittently while always supplying the control signal φ461. Accordingly, the switching element 420 is turned on while the control signal φ462 is being supplied, and the switching element 410 is turned off while the control signal φ463 is being supplied.

このとき、キャパシタ442の充電および放電が交互に繰り返される。オン・オフ動作の間隔を適切に選択することで、キャパシタ442に蓄えられている電荷量が、スイッチング素子410を安定してオン動作させるのに必要な電荷量よりも大きな状態を維持することができる。   At this time, charging and discharging of the capacitor 442 are repeated alternately. By appropriately selecting the on / off operation interval, the amount of charge stored in the capacitor 442 can be maintained larger than the amount of charge required to stably turn on the switching element 410. it can.

駆動制御部406は、駆動部402のスイッチング素子410がオフ状態であり、駆動部402のスイッチング素子420がオン状態である場合に、駆動部404のスイッチング素子410および駆動部404のスイッチング素子420を交互にオン・オフ動作させてよい。これにより、ペルチェ素子40の一端から他端の方向(図中、上から下の方向)に流れるパルス電流を発生させることができる。駆動制御部406は、パルス電流の幅および周期を制御することにより、ペルチェ素子40の加熱量または冷却量を制御することができる。   The drive control unit 406 switches the switching element 410 of the driving unit 404 and the switching element 420 of the driving unit 404 when the switching element 410 of the driving unit 402 is off and the switching element 420 of the driving unit 402 is on. Alternatively, the on / off operation may be performed alternately. As a result, a pulse current that flows in the direction from one end to the other end of the Peltier element 40 (from the top to the bottom in the figure) can be generated. The drive control unit 406 can control the amount of heating or cooling of the Peltier element 40 by controlling the width and period of the pulse current.

同様に、駆動制御部406は、駆動部404のスイッチング素子410がオフ状態であり、駆動部404のスイッチング素子420がオン状態である場合に、駆動部402のスイッチング素子410および駆動部402のスイッチング素子420を交互にオン・オフ動作させてよい。これにより、ペルチェ素子40の他端から一端の方向(図中、下から上の方向)に流れるパルス電流を発生させることができる。   Similarly, the drive control unit 406 switches the switching element 410 of the driving unit 402 and the driving unit 402 when the switching element 410 of the driving unit 404 is off and the switching element 420 of the driving unit 404 is on. The element 420 may be alternately turned on and off. Thereby, it is possible to generate a pulse current that flows in the direction from the other end of the Peltier element 40 to the one end (from the bottom to the top in the drawing).

駆動制御部406は、ペルチェ素子40の駆動を開始する場合、まず、スイッチング素子410がオフ状態であり、スイッチング素子420がオン状態となるように、スイッチング素子410およびスイッチング素子420を制御する。その後、スイッチング素子410とスイッチング素子420とを交互にオン・オフ動作させる。これにより、ペルチェ素子40の駆動を開始する場合に、まず、キャパシタ442に電荷が充電される。その結果、ペルチェ素子40の駆動を安定的に開始することができる。   When driving the Peltier element 40 is started, the drive control unit 406 first controls the switching element 410 and the switching element 420 so that the switching element 410 is in the off state and the switching element 420 is in the on state. Thereafter, the switching element 410 and the switching element 420 are alternately turned on and off. Thus, when driving of the Peltier element 40 is started, first, the capacitor 442 is charged. As a result, the driving of the Peltier element 40 can be started stably.

なお、本実施形態において、駆動制御部406が、制御信号φ461、制御信号φ462および制御信号φ463を用いて、スイッチング素子410およびスイッチング素子420を交互にオン・オフ動作させる場合について説明した。当該方法により、スイッチング素子410を安定的に動作させることができる。しかし、駆動制御部406によるスイッチング素子410およびスイッチング素子420の制御方法はこれに限定されない。キャパシタ442の特性と、スイッチング素子410の特性と、制御信号φ461および制御信号φ462のパルス幅および周期とを適切に選択することで、制御信号φ461および制御信号φ462を用いて、スイッチング素子410およびスイッチング素子420を交互にオン・オフ動作させてもよい。   In the present embodiment, the case where the drive control unit 406 causes the switching element 410 and the switching element 420 to alternately turn on and off using the control signal φ461, the control signal φ462, and the control signal φ463 has been described. By this method, the switching element 410 can be stably operated. However, the method of controlling the switching element 410 and the switching element 420 by the drive control unit 406 is not limited to this. By appropriately selecting the characteristics of the capacitor 442, the characteristics of the switching element 410, and the pulse widths and periods of the control signal φ461 and the control signal φ462, the control signal φ461 and the control signal φ462 are used to switch the switching element 410 and the switching element 410. The element 420 may be alternately turned on and off.

第3に、本実施形態の駆動制御部406は、スイッチング素子410およびスイッチング素子420の両方が同時にオン状態とならないように、スイッチング素子410とスイッチング素子420とを制御する。これにより、蓄電部110の一端と他端とが短絡することを防止する。駆動制御部406は、制御信号φ461、制御信号φ462および制御信号φ463の発停のタイミングを制御することで、より確実に短絡を防止してよい。   Thirdly, the drive control unit 406 of the present embodiment controls the switching element 410 and the switching element 420 so that both the switching element 410 and the switching element 420 are not turned on at the same time. This prevents a short circuit between one end and the other end of power storage unit 110. The drive control unit 406 may prevent a short circuit more reliably by controlling the timing of starting and stopping the control signal φ461, the control signal φ462, and the control signal φ463.

例えば、スイッチング素子430は、制御信号φ463が供給された瞬間にオン状態になるのではなく、入力端子432に引加される電圧が閾値電圧より大きくなるまでスイッチング素子430はオフ状態が維持される。そのため、制御信号φ462と制御信号φ463とを同時に供給すると、スイッチング素子420およびスイッチング素子430の特性によっては、スイッチング素子410がオフ状態になる前にスイッチング素子420がオン状態になる場合がある。   For example, the switching element 430 is not turned on at the moment when the control signal φ463 is supplied, but the switching element 430 is kept off until the voltage applied to the input terminal 432 becomes larger than the threshold voltage. . Therefore, when the control signal φ462 and the control signal φ463 are supplied simultaneously, depending on the characteristics of the switching element 420 and the switching element 430, the switching element 420 may be turned on before the switching element 410 is turned off.

そこで、駆動制御部406は、スイッチング素子420をオン動作させる場合に、制御信号φ463の電圧がスイッチング素子430の閾値電圧以上の大きさになるまで、スイッチング素子420がオフ状態を維持するようにスイッチング素子420を制御してよい。または、スイッチング素子420をオン動作させる場合に、制御信号φ462の電圧がスイッチング素子420の閾値電圧以上の大きさになる前に、スイッチング素子430がオン状態となるようにスイッチング素子430を制御してよい。   Therefore, when the switching element 420 is turned on, the drive control unit 406 performs switching so that the switching element 420 is maintained in the OFF state until the voltage of the control signal φ463 becomes equal to or larger than the threshold voltage of the switching element 430. Element 420 may be controlled. Alternatively, when the switching element 420 is turned on, the switching element 430 is controlled so that the switching element 430 is turned on before the voltage of the control signal φ462 becomes larger than the threshold voltage of the switching element 420. Good.

例えば、駆動制御部406は、制御信号φ462を供給してからスイッチング素子420がオン状態になるまでの時間と、制御信号φ463を供給してからスイッチング素子430がオン状態になるまでの時間とを考慮して、制御信号φ463を供給した後、予め定められた時間が経過した後、制御信号φ462を供給する。これにより、スイッチング素子410およびスイッチング素子420の両方がオン状態となることを防止できる。   For example, the drive control unit 406 includes a time from when the control signal φ462 is supplied until the switching element 420 is turned on, and a time after the control signal φ463 is supplied until the switching element 430 is turned on. Considering this, after supplying the control signal φ463, the control signal φ462 is supplied after a predetermined time has elapsed. Thereby, it can prevent that both the switching element 410 and the switching element 420 will be in an ON state.

また、スイッチング素子420およびスイッチング素子430をオフ動作させる場合、または、ペルチェ素子40の駆動を停止する場合に、制御信号φ462および制御信号φ463が同時に停止すると、スイッチング素子420およびスイッチング素子430の特性によっては、スイッチング素子430が、スイッチング素子420よりも先にオフ状態になる場合がある。このとき、キャパシタ442の充電状態によっては、スイッチング素子410およびスイッチング素子420の両方がオン状態となる場合がある。   Further, when the switching element 420 and the switching element 430 are turned off, or when the driving of the Peltier element 40 is stopped, if the control signal φ462 and the control signal φ463 are simultaneously stopped, the characteristics of the switching element 420 and the switching element 430 are changed. In some cases, the switching element 430 is turned off before the switching element 420. At this time, depending on the state of charge of the capacitor 442, both the switching element 410 and the switching element 420 may be turned on.

そこで、駆動制御部406は、制御信号φ463の電圧がスイッチング素子430の閾値電圧以下の大きさになる前に、スイッチング素子420がオフ状態となるようにスイッチング素子420を制御してもよい。これにより、スイッチング素子420およびスイッチング素子430をオフ状態にして、スイッチング素子410をオン状態にするときに、スイッチング素子430よりも先にスイッチング素子420をオフ状態にすることができる。その結果、スイッチング素子410およびスイッチング素子420の両方がオン状態となることを防止できる。   Therefore, the drive control unit 406 may control the switching element 420 so that the switching element 420 is turned off before the voltage of the control signal φ463 becomes equal to or smaller than the threshold voltage of the switching element 430. Accordingly, when the switching element 420 and the switching element 430 are turned off and the switching element 410 is turned on, the switching element 420 can be turned off before the switching element 430. As a result, both the switching element 410 and the switching element 420 can be prevented from being turned on.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

100 蓄電システム、102 マスタモジュール、104 スレーブモジュール、106 外部端子、107 外部端子、108 スイッチ素子、110 蓄電部、122 端子、124 端子、126 電源入力端子、130 スイッチ素子、140 モジュール制御部、150 電力供給部、152 電力分配部、154 端子、162 端子、164 端子、172 端子、174 端子、190 温度制御部、210 蓄電セル、220 バランス補正部、230 トランス、232 一次巻線、242 二次巻線、244 ダイオード、246 キャパシタ、252 二次巻線、254 ダイオード、256 キャパシタ、262 二次巻線、264 ダイオード、266 キャパシタ、270 スイッチング素子、272 電力供給制御部、280 筐体、330 トランス、342 二次巻線、344 ダイオード、346 キャパシタ、348 端子、350 電力供給部、351 電力分配部、352 二次巻線、354 ダイオード、356 キャパシタ、358 端子、362 二次巻線、364 ダイオード、366 キャパシタ、368 端子、40 ペルチェ素子、400 電流制御部、402 駆動部、404 駆動部、406 駆動制御部、408 基準電位、410 スイッチング素子、412 入力端子、420 スイッチング素子、422 入力端子、430 スイッチング素子、432 入力端子、440 電圧供給部、442 キャパシタ、443 ダイオード、444 ダイオード、445 抵抗、446 抵抗、450 制御用電源   100 power storage system, 102 master module, 104 slave module, 106 external terminal, 107 external terminal, 108 switch element, 110 power storage unit, 122 terminal, 124 terminal, 126 power input terminal, 130 switch element, 140 module control unit, 150 power Supply unit, 152 Power distribution unit, 154 terminal, 162 terminal, 164 terminal, 172 terminal, 174 terminal, 190 Temperature control unit, 210 Storage cell, 220 Balance correction unit, 230 Transformer, 232 Primary winding, 242 Secondary winding 244 diode, 246 capacitor, 252 secondary winding, 254 diode, 256 capacitor, 262 secondary winding, 264 diode, 266 capacitor, 270 switching element, 272 power supply control unit, 280 housing , 330 transformer, 342 secondary winding, 344 diode, 346 capacitor, 348 terminal, 350 power supply unit, 351 power distribution unit, 352 secondary winding, 354 diode, 356 capacitor, 358 terminal, 362 secondary winding, 364 diode, 366 capacitor, 368 terminal, 40 Peltier element, 400 current control unit, 402 drive unit, 404 drive unit, 406 drive control unit, 408 reference potential, 410 switching element, 412 input terminal, 420 switching element, 422 input terminal 430 switching element, 432 input terminal, 440 voltage supply unit, 442 capacitor, 443 diode, 444 diode, 445 resistor, 446 resistor, 450 power supply for control

Claims (11)

一端が、負荷と電気的に接続され、他端が、前記負荷を駆動する駆動用電源と電気的に接続され、少なくとも、入力端子に入力される第1の制御信号に応じてオン状態およびオフ状態を切り替える第1のスイッチング素子と、
一端が、前記負荷および前記第1のスイッチング素子の一端と電気的に接続され、他端が、基準電位と電気的に接続され、第2の制御信号に応じてオン状態およびオフ状態を切り替える第2のスイッチング素子と、
前記第2のスイッチング素子がオフ状態である場合に、前記第1のスイッチング素子の前記入力端子に電圧を供給する電圧供給部と、
前記第1の制御信号および前記第2の制御信号のそれぞれを、前記第1のスイッチング素子および前記第2のスイッチング素子のそれぞれに供給し、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオン・オフ動作させる制御部と、
を備える、
駆動回路。
One end is electrically connected to the load, and the other end is electrically connected to a driving power source that drives the load. At least the first control signal input to the input terminal is turned on and off. A first switching element for switching the state;
One end is electrically connected to the load and one end of the first switching element, and the other end is electrically connected to a reference potential, and switches between an on state and an off state in response to a second control signal. Two switching elements;
A voltage supply unit configured to supply a voltage to the input terminal of the first switching element when the second switching element is in an off state;
The first control signal and the second control signal are supplied to the first switching element and the second switching element, respectively, and the first switching element, the second switching element, A control unit that alternately turns on and off, and
Comprising
Driving circuit.
前記制御部は、前記負荷の駆動を開始する場合に、前記第1のスイッチング素子がオフ状態であり、前記第2のスイッチング素子がオン状態となるように前記第1のスイッチング素子および前記第2のスイッチング素子を制御した後、前記第1のスイッチング素子と前記第2のスイッチング素子とを交互にオン・オフ動作させる、
請求項1に記載の駆動回路。
When the control unit starts driving the load, the first switching element and the second switching element are turned off so that the first switching element is turned off and the second switching element is turned on. The first switching element and the second switching element are alternately turned on and off after controlling the switching element of
The drive circuit according to claim 1.
前記電圧供給部は、
一端が、前記第1のスイッチング素子の前記入力端子と電気的に接続され、他端が、前記第1のスイッチング素子の一端および前記第2のスイッチング素子の一端と電気的に接続されるキャパシタを有し、
前記キャパシタは、
前記第2のスイッチング素子がオン状態の場合に充電され、
前記第2のスイッチング素子がオフ状態になった場合に、前記第1のスイッチング素子の前記入力端子に対して充電された電荷に応じた電圧を供給する、
請求項1または請求項2に記載の駆動回路。
The voltage supply unit
A capacitor having one end electrically connected to the input terminal of the first switching element and the other end electrically connected to one end of the first switching element and one end of the second switching element; Have
The capacitor is
Charged when the second switching element is in an ON state;
When the second switching element is turned off, a voltage corresponding to the charged electric charge is supplied to the input terminal of the first switching element.
The drive circuit according to claim 1 or 2.
前記電圧供給部は、前記制御部および前記キャパシタの一端の間に電気的に接続され、前記制御部から前記キャパシタの一端の方向に電流を流すダイオードを有する、
請求項3に記載の駆動回路。
The voltage supply unit includes a diode that is electrically connected between the control unit and one end of the capacitor and flows current from the control unit toward one end of the capacitor.
The drive circuit according to claim 3.
一端が、前記第1のスイッチング素子の前記入力端子および前記キャパシタの一端と電気的に接続され、他端が、前記基準電位と電気的に接続され、第3の制御信号に応じてオン状態およびオフ状態を切り替える第3のスイッチング素子をさらに備える、
請求項3または請求項4に記載の駆動回路。
One end is electrically connected to the input terminal of the first switching element and one end of the capacitor, the other end is electrically connected to the reference potential, and is turned on according to a third control signal. A third switching element for switching the off state;
The drive circuit according to claim 3 or 4.
前記第2のスイッチング素子の閾値電圧は、前記第3のスイッチング素子の閾値電圧よりも大きい、
請求項5に記載の駆動回路。
The threshold voltage of the second switching element is greater than the threshold voltage of the third switching element;
The drive circuit according to claim 5.
前記制御部は、前記第3の制御信号の電圧が前記第3のスイッチング素子の閾値電圧以上の大きさになるまで、前記第2のスイッチング素子がオフ状態を維持するように前記第2のスイッチング素子を制御する、
請求項5または請求項6に記載の駆動回路。
The controller switches the second switching element so that the second switching element maintains an off state until the voltage of the third control signal becomes equal to or larger than a threshold voltage of the third switching element. Control elements,
The drive circuit according to claim 5 or 6.
前記制御部は、前記第2の制御信号の電圧が前記第2のスイッチング素子の閾値電圧以上の大きさになる前に、前記第3のスイッチング素子がオン状態となるように前記第3のスイッチング素子を制御する、
請求項5から請求項7までの何れか一項に記載の駆動回路。
The controller switches the third switching element so that the third switching element is turned on before the voltage of the second control signal becomes greater than or equal to the threshold voltage of the second switching element. Control elements,
The drive circuit according to any one of claims 5 to 7.
前記制御部は、前記第3の制御信号の電圧が前記第3のスイッチング素子の閾値電圧以下の大きさになる前に、前記第2のスイッチング素子がオフ状態となるように前記第2のスイッチング素子を制御する、
請求項5から請求項8までの何れか一項に記載の駆動回路。
The controller switches the second switching element so that the second switching element is turned off before the voltage of the third control signal becomes equal to or lower than a threshold voltage of the third switching element. Control elements,
The drive circuit according to any one of claims 5 to 8.
請求項1から請求項9までの何れか一項に記載された駆動回路である第1の駆動回路と、
請求項1から請求項9までの何れか一項に記載された駆動回路である第2の駆動回路と、
を備え、
前記第1の駆動回路の前記第1のスイッチング素子の一端、および、前記第1の駆動回路の前記第2のスイッチング素子の一端が、前記負荷の一端と電気的に接続され、
前記第2の駆動回路の前記第1のスイッチング素子の一端、および、前記第2の駆動回路の前記第2のスイッチング素子の一端が、前記負荷の他端と電気的に接続され、
前記第1の駆動回路の前記第1のスイッチング素子の他端、および、前記第2の駆動回路の前記第1のスイッチング素子の他端が、前記駆動用電源の一端と電気的に接続され、
前記第1の駆動回路の前記第2のスイッチング素子の他端、および、前記第2の駆動回路の前記第2のスイッチング素子の他端が、前記駆動用電源の他端と電気的に接続される、
電流制御回路。
A first drive circuit which is the drive circuit according to any one of claims 1 to 9,
A second drive circuit which is the drive circuit according to any one of claims 1 to 9,
With
One end of the first switching element of the first drive circuit and one end of the second switching element of the first drive circuit are electrically connected to one end of the load;
One end of the first switching element of the second drive circuit and one end of the second switching element of the second drive circuit are electrically connected to the other end of the load;
The other end of the first switching element of the first driving circuit and the other end of the first switching element of the second driving circuit are electrically connected to one end of the driving power supply;
The other end of the second switching element of the first drive circuit and the other end of the second switching element of the second drive circuit are electrically connected to the other end of the driving power supply. The
Current control circuit.
前記制御部は、
前記第2の駆動回路の前記第1のスイッチング素子がオフ状態であり、前記第2の駆動回路の前記第2のスイッチング素子がオン状態である場合に、前記第1の駆動回路の前記第1のスイッチング素子および前記第1の駆動回路の前記第2のスイッチング素子を交互にオン・オフ動作させ、
前記第1の駆動回路の前記第1のスイッチング素子がオフ状態であり、前記第1の駆動回路の前記第2のスイッチング素子がオン状態である場合に、前記第2の駆動回路の前記第1のスイッチング素子および前記第2の駆動回路の前記第2のスイッチング素子を交互にオン・オフ動作させる、
請求項10に記載の電流制御回路。
The controller is
When the first switching element of the second drive circuit is in an off state and the second switching element of the second drive circuit is in an on state, the first of the first drive circuit The switching elements and the second switching elements of the first drive circuit are alternately turned on and off,
When the first switching element of the first drive circuit is in an off state and the second switching element of the first drive circuit is in an on state, the first of the second drive circuit Alternately switching on and off the switching elements and the second switching elements of the second drive circuit,
The current control circuit according to claim 10.
JP2011189343A 2011-08-31 2011-08-31 Drive circuit and current control circuit Withdrawn JP2013051601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011189343A JP2013051601A (en) 2011-08-31 2011-08-31 Drive circuit and current control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011189343A JP2013051601A (en) 2011-08-31 2011-08-31 Drive circuit and current control circuit

Publications (1)

Publication Number Publication Date
JP2013051601A true JP2013051601A (en) 2013-03-14

Family

ID=48013324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011189343A Withdrawn JP2013051601A (en) 2011-08-31 2011-08-31 Drive circuit and current control circuit

Country Status (1)

Country Link
JP (1) JP2013051601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541229A (en) * 2013-10-28 2016-12-28 ブイ・5・システムズ・インコーポレイテッド Portable power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541229A (en) * 2013-10-28 2016-12-28 ブイ・5・システムズ・インコーポレイテッド Portable power system

Similar Documents

Publication Publication Date Title
JP6761172B2 (en) Vehicle power supply
WO2013140710A1 (en) Balance correction device and power storage system
JP4691064B2 (en) Battery leveling device for battery pack
EP2685592A1 (en) Balance correction device and electricity storage system
US11230199B2 (en) Motor-driven vehicle and control method for motor-driven vehicle
TWI804503B (en) Power storage system and electric equipment
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP2009118727A (en) Hybrid power source
JP5187406B2 (en) Auxiliary battery charger
EP2693595B1 (en) Balance correction apparatus and electrical storage system
JP2013005677A (en) Cell balancer
JP2013013268A (en) Cell balancing apparatus
JP5187407B2 (en) Auxiliary battery charger
JP5582173B2 (en) Charger
JP5758234B2 (en) Power storage system
JP2013223378A (en) Battery equalization system and method
JP2013162540A (en) Battery equalization device and method
WO2013068246A2 (en) Integrated circuit adapted to perform power path control in a mobile equipment
JP2017163713A (en) Charge-discharge device and power supply device
JP5718702B2 (en) Balance correction device and power storage system
JP2013051601A (en) Drive circuit and current control circuit
JP2016154423A (en) Voltage balance device
JP5604947B2 (en) Power supply device and voltage adjustment method
KR101975139B1 (en) Voltage balance correction circuit
WO2016157740A1 (en) Storage battery unit and electricity storage system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104