JP2013043124A - Reduced-pressure boiling type seawater desalination apparatus and method - Google Patents

Reduced-pressure boiling type seawater desalination apparatus and method Download PDF

Info

Publication number
JP2013043124A
JP2013043124A JP2011182565A JP2011182565A JP2013043124A JP 2013043124 A JP2013043124 A JP 2013043124A JP 2011182565 A JP2011182565 A JP 2011182565A JP 2011182565 A JP2011182565 A JP 2011182565A JP 2013043124 A JP2013043124 A JP 2013043124A
Authority
JP
Japan
Prior art keywords
seawater
tower
fresh water
water
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011182565A
Other languages
Japanese (ja)
Other versions
JP5398046B2 (en
Inventor
Toshihiko Shakouchi
敏彦 社河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011182565A priority Critical patent/JP5398046B2/en
Publication of JP2013043124A publication Critical patent/JP2013043124A/en
Application granted granted Critical
Publication of JP5398046B2 publication Critical patent/JP5398046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reduced-pressure distillation method using liquid columns as means for pressure reduction instead of a vacuum pump to further save energy, in a situation where a distillation method is applied to approximately 60% of seawater desalination apparatuses and many of the apparatuses adopt a reduced-pressure distillation method to save energy.SOLUTION: This reduced-pressure boiling type seawater desalination apparatus includes: a seawater tower 11 (liquid column) erected in seawater; a fresh water tower 12 (liquid column) erected in fresh water; a communication pipe 13 communicating the towers 11, 12 with each other; a seawater heating means 19; and a cooling means 14. An upper space of the seawater tower 11 and an upper space of the fresh water tower 12 are maintained in the Torricellian vacuum state. Thus, during operation of the desalination apparatus, a vacuum pump is unnecessary, so as to further reduce running cost compared to a conventional reduced-pressure distillation apparatus.

Description

本発明は蒸留原理に基づく海水の淡水化装置及び、海水の淡水化方法であって、更に詳しくは、真空を利用し、省エネルギーで海水を淡水化する減圧蒸留法による海水淡水化装置及び、海水の淡水化方法に係る。 The present invention relates to a seawater desalination apparatus and a seawater desalination method based on the distillation principle, and more particularly, a seawater desalination apparatus using a vacuum and a seawater desalination apparatus using seawater with reduced energy by using vacuum and saving energy. Related to the desalination method.

近年、水(清水)の欠乏が世界的に言われ、その解決策の一つに海水の淡水化がある。
海水の淡水化には、蒸留法、逆浸透法、電気透析法、凍結法など種々の方法が提案されているが、現在、その約60%が蒸発法で、約30%が逆浸透法で実現されている。
しかし、実際には、それぞれ装置の建設コストが高い、運転コストが高いなど種々の問題があり、これら課題を解決できる省エネルギーで、運転コストが安く、しかも構造が簡単で、新規な海水淡水化装置の実用化が望まれている。
In recent years, there has been a worldwide shortage of water (fresh water), and one solution is seawater desalination.
Various methods such as distillation, reverse osmosis, electrodialysis, and freezing methods have been proposed for desalination of seawater. Currently, about 60% are evaporation methods and about 30% are reverse osmosis methods. It has been realized.
However, in reality, there are various problems such as high construction cost and high operation cost of each device, a new seawater desalination device that can save these problems with energy saving, low operating cost and simple structure. The practical application of this is desired.

減圧蒸留原理に基づく先行特許文献には、例えば図4に示す発明が開示されている。
図4の淡水化装置70は、上下2段の蒸発缶71,72で構成され、各蒸発缶内部は真空ポンプ88により、減圧状態に保持され、また、海水供給管80,81により海水78,79が供給されている。
下段蒸発缶72には加熱手段73が設けられ、海水79は加熱されて水分を蒸発させる。
下段蒸発缶72の天井板と上段蒸発缶71の底面板は共通の伝熱板75で構成されており、下段蒸発缶内72で蒸発する水蒸気は、上段蒸発缶71の底面であり且つ、下段蒸発缶72の天井でもある伝熱板75で冷却、凝縮される。
凝縮水はトラップ76,77の上面で受けられ、トラップ76,77の傾斜によって蒸発缶71,72の内壁面に沿う部分に淡水82,83として溜められる。
For example, the prior art document based on the vacuum distillation principle discloses the invention shown in FIG.
The desalination apparatus 70 of FIG. 4 is composed of upper and lower two-stage evaporators 71 and 72, and the inside of each evaporator is maintained in a reduced pressure state by a vacuum pump 88, and seawater 78, 79 is supplied.
The lower evaporator 72 is provided with heating means 73, and the seawater 79 is heated to evaporate water.
The ceiling plate of the lower evaporator 72 and the bottom plate of the upper evaporator 71 are composed of a common heat transfer plate 75, and the water vapor evaporated in the lower evaporator 72 is the bottom surface of the upper evaporator 71 and the lower It is cooled and condensed by the heat transfer plate 75 which is also the ceiling of the evaporator 72.
Condensed water is received by the upper surfaces of the traps 76 and 77, and is stored as fresh water 82 and 83 in portions along the inner wall surfaces of the evaporators 71 and 72 due to the inclination of the traps 76 and 77.

上段蒸発缶内の海水78は、下段蒸発缶内の水蒸気の潜熱で底面より温められる。この時、真空ホンプ88を作動させて、温められた海水温度に対応する水蒸気圧以下まで蒸発缶71内部を減圧し、減圧状態を維持することで、海水を沸騰させ水分の蒸発を促す。海水78から発生する水蒸気は、上部に配置された冷却手段74により冷却・凝縮され淡水82になる。上下段それぞれの淡水82,83は、分岐管路84,85を経由して凝縮水溜め容器86,87に吸引されて溜められる。
図4の減圧蒸発缶による方法は、3段以上とすることで、熱効率を更に向上させることは可能であるが、凝縮水溜め容器86,87に溜められた淡水を連続的に回収することは困難である。
一方図5に示す、製塩工場で採用されている多重効用真空式蒸発缶は、製塩を目的とする塩分濃度の高い鹹水の製造装置であるが、鹹水製造過程でも淡水を作ることができる。
Seawater 78 in the upper evaporator is warmed from the bottom by the latent heat of water vapor in the lower evaporator. At this time, the vacuum pump 88 is operated to reduce the inside of the evaporator 71 to a water vapor pressure or lower corresponding to the warmed seawater temperature, and maintain the reduced pressure state to boil the seawater and promote the evaporation of moisture. The water vapor generated from the sea water 78 is cooled and condensed by the cooling means 74 disposed at the upper portion to become fresh water 82. The fresh water 82 and 83 in the upper and lower stages is sucked and stored in the condensed water reservoirs 86 and 87 via the branch pipes 84 and 85, respectively.
The method using the vacuum evaporator shown in FIG. 4 can further improve the thermal efficiency by using three or more stages, but it is possible to continuously recover the fresh water stored in the condensate reservoirs 86 and 87. Have difficulty.
On the other hand, the multi-effect vacuum evaporator used in the salt production factory shown in FIG. 5 is a production device of brine having a high salt concentration for the purpose of salt production, but can also produce fresh water even in the brine production process.

図5は非特許文献の多重効用真空式蒸発缶90で、ボイラー91で発生した蒸気は、発電用タービン92を経由した後、1号缶93の熱源となり、また1号缶93で発生した熱が次の2合缶94の熱源に、同様にして3号缶95の熱源、4号缶96の熱源になる。この1号缶〜4号缶への蒸気輸送は、各缶内を一旦真空にした後に実施されるので、各缶内は何れも沸騰状態にある。これらの内、4号缶96の温度は最も低く、蒸気圧も最も低い。従って、4号缶96内の真空度は最大であって、海水は最も低い温度で沸騰している。
この4号缶96の水蒸気を冷却部98において、海水で冷却することで淡水を得ることができる。真空ポンプ97はメンテナンスなどで運転を停止した後、再開する時だけ使用する。多重効用真空式蒸発缶90は製塩を目的とする装置であるので、淡水を得ることを目的とする減圧蒸留装置としては、装置が大型で複雑である。
FIG. 5 shows a multi-effect vacuum evaporator 90 of non-patent literature. The steam generated in the boiler 91 becomes a heat source of the first can 93 after passing through the power generation turbine 92, and the heat generated in the first can 93. Becomes the heat source of the No. 3 can 95 and the heat source of the No. 4 can 96 in the same manner. Since the vapor transport to No. 1 to No. 4 cans is carried out after the inside of each can is once evacuated, the inside of each can is in a boiling state. Of these, No. 4 can 96 has the lowest temperature and the lowest vapor pressure. Therefore, the degree of vacuum in the No. 4 can 96 is the maximum, and the seawater is boiling at the lowest temperature.
Fresh water can be obtained by cooling the water vapor of the No. 4 can 96 with seawater in the cooling section 98. The vacuum pump 97 is used only when the operation is resumed after being stopped for maintenance. Since the multi-effect vacuum evaporator 90 is an apparatus for producing salt, the apparatus is large and complicated as a vacuum distillation apparatus for obtaining fresh water.

特開2011−5428JP2011-5428

「鳴門市史・現代編1」(1999年・徳島県鳴門市発行)917頁〜1017頁収録「第十章 塩業」(小橋 靖著)"Naruto City History, Modern Edition 1" (1999, published by Naruto City, Tokushima Prefecture), pages 917 to 1017, "Chapter 10 Salt Industry" (by Jun Kobashi)

海水淡水化装置の主流である蒸留法では、蒸留に多くのエネルギーが必要なため、コスト高になる問題がある。
海水の淡水化では、エネルギーコストの低減に有効な原理として、一般には次の2つの物理原理が利用されている。
The distillation method, which is the mainstream of seawater desalination equipment, has a problem of high costs because it requires a lot of energy for distillation.
In seawater desalination, the following two physical principles are generally used as effective principles for reducing energy costs.

a)海水を加熱して、気化させた水蒸気を熱交換器で冷却・凝縮させて淡水を得る。この熱交換器に使用される冷却媒体は、海水であるが、この熱交換作用により温度上昇した海水を、水蒸気を発生させるための原料海水として使用する。この原料海水は、熱交換過程で既に、凝縮潜熱を吸収して加温されているので、蒸発に必要とされる加温エネルギーを大幅に減らすことができる。即ち、水蒸気の冷却と、海水の加温の一石二鳥が達成され、エネルギーの消費は大幅に節減できる。 a) Seawater is heated, and vaporized water vapor is cooled and condensed by a heat exchanger to obtain fresh water. Although the cooling medium used for this heat exchanger is seawater, the seawater whose temperature has been increased by this heat exchange action is used as raw seawater for generating water vapor. Since the raw seawater has already been heated by absorbing the latent heat of condensation during the heat exchange process, the heating energy required for evaporation can be greatly reduced. That is, the cooling of water vapor and the warming of seawater are achieved with two birds with one stone, and energy consumption can be greatly reduced.

b)海水を沸騰させて水蒸気を得る場合、沸騰点は圧力に比例して上昇する。
一方、蒸留に必要とされるエネルギーは、室温に近い程少いので、減圧させて沸騰温度を室温近くまで低下させる方法が採られている。具体的には海水を沸騰させる容器内を、真空ポンプを用いて減圧させる減圧蒸留法が採用されている。
b) When boiling water to obtain water vapor, the boiling point rises in proportion to the pressure.
On the other hand, since the energy required for distillation is smaller as it approaches room temperature, a method of reducing the boiling temperature to near room temperature by reducing the pressure is employed. Specifically, a vacuum distillation method is employed in which the inside of a vessel in which seawater is boiled is depressurized using a vacuum pump.

上記2つの物理原理は、海水から淡水を製造する場合のエネルギーコスト低減に大きく寄与するが、これだけでは、必ずしも十分とは言えない。エネルギーコスト低減には更なる物理原理の適用が求められる。 The above two physical principles greatly contribute to energy cost reduction when producing fresh water from seawater, but this alone is not necessarily sufficient. Further physical principles are required to reduce energy costs.

本願発明の減圧沸騰形海水淡水化装置では、従来技術の減圧沸騰形海水淡水化装置が備えていない第3の物理原理として、トリチェリ真空(水銀でなく海水を用いるので厳密にはトリチェリ真空とは言えないが、便宜的にこう呼ぶ)の技術を装置に取り入れる発明を行った。また、本発明では、可能な限り海水や淡水の輸送に重力差を利用する。 In the reduced-pressure boiling seawater desalination apparatus of the present invention, as a third physical principle that the prior-art reduced-pressure boiling seawater desalination apparatus does not have, the Trichelli vacuum (strictly, the Trichelli vacuum is because seawater is used instead of mercury). I couldn't say it, but I called it for convenience. Moreover, in this invention, a gravity difference is utilized for transport of seawater and fresh water as much as possible.

請求項1に記載の本願発明は、海水中に立設される海水塔と、淡水中に立設される淡水塔と、これら二つの密閉容器の上部を連通させて設けられる連通管と、海水を減圧沸騰させる加熱手段と、海水塔の上部空間に配置され、水蒸気を冷却・凝縮させて淡水にし、連通管を通して淡水塔内に流下させる冷却手段とで構成される。
このうち、海水塔は、海水の満たされた海水槽中に大気と遮断されて立設される長尺の気密容器であって、上方端が封止され、下方端が海水中に解放された気密容器である。
The present invention according to claim 1 includes a seawater tower standing in seawater, a freshwater tower standing in freshwater, a communication pipe provided by communicating the upper portions of these two sealed containers, And a cooling means that is disposed in the upper space of the seawater tower and cools and condenses the water vapor into fresh water and flows down into the freshwater tower through the communication pipe.
Of these, the seawater tower is a long airtight container that is installed in a seawater tank filled with seawater, shut off from the atmosphere, with its upper end sealed and its lower end released into seawater. It is an airtight container.

容器内は上部を除き海水で満たされており、海水の存在しない上部空間は、トリチェリ真空が形成されていて、空気は殆ど存在せず、海水の飽和蒸気で満たされている。海水塔内部液面の海水槽液面からの高さは、大気圧と釣合っており、約10mである。
また、淡水塔は、淡水の満たされた淡水槽中に立設される長尺の気密容器であって、上方端が封止され、下方端が淡水中に解放される。容器内は上部を除き淡水で満たされている。淡水が存在しない上部空間は、トリチェリ真空が形成されていて、空気は殆ど存在せず、淡水の飽和蒸気で満たされている。淡水塔内部液面の淡水槽水面からの高さは、大気圧と釣合っており、約10mである。
The inside of the container is filled with seawater except for the upper part, and the upper space where seawater does not exist is formed with a Trichelli vacuum, and there is almost no air, and is filled with saturated steam of seawater. The height of the liquid level inside the seawater tower from the level of the seawater tank is balanced with the atmospheric pressure and is about 10 m.
The fresh water tower is a long airtight container standing in a fresh water tank filled with fresh water. The upper end is sealed and the lower end is released into fresh water. The container is filled with fresh water except at the top. In the upper space where there is no fresh water, a Trichelli vacuum is formed, and there is almost no air, which is filled with saturated steam of fresh water. The height of the liquid level inside the fresh water tower from the surface of the fresh water tank is balanced with the atmospheric pressure and is about 10 m.

一方、前記連通管は海水塔の上部と、淡水塔の上部とを連通させるパイプであり、連通管と海水塔との接続部は気密構造を採り、連通管と淡水塔との接続部も気密に接続されている。
また、海水塔の上部空間には、一部連通管にまたがり冷却手段が設置される。冷却手段は海水を冷却媒体として、海水塔の上部空間に蒸発する水蒸気を冷却して連通管内に流下させる。
冷却手段は冷却水の海水を通水でき、効率よく冷却できるものであればよい。
また、冷却手段を流れる冷却用海水は海水塔の上部位置に排出される。
On the other hand, the communication pipe is a pipe that connects the upper part of the seawater tower and the upper part of the fresh water tower, and the connection part between the communication pipe and the sea water tower has an airtight structure, and the connection part between the communication pipe and the fresh water tower is also airtight. It is connected to the.
Further, in the upper space of the seawater tower, cooling means is installed across a part of the communication pipe. The cooling means uses seawater as a cooling medium to cool water vapor evaporated in the upper space of the seawater tower and flow down into the communication pipe.
Any cooling means may be used as long as it can pass seawater of cooling water and can cool it efficiently.
The cooling seawater flowing through the cooling means is discharged to the upper position of the seawater tower.

この冷却用海水の排出部付近には海水加熱手段が設置されている。この海水加熱手段は、海水温度を計測する温度センサと、海水を加熱するヒータと、温度センサで計測される海水温度が所定温度より低いときヒータ加熱を行い、海水温が所定温度以上のときヒータ電源を切る制御を行う温度コントローラとで構成されている。
まお、加熱手段はヒータに限定されることなく、太陽熱を吸収する太陽熱吸収装置などであってよく、或いはまた、これらを組み合わせであっても良い。ただし太陽熱吸収装置の設置位置は、海水塔の断熱材が設置されない箇所に限られる。
Seawater heating means is installed in the vicinity of the cooling seawater discharge. The seawater heating means includes a temperature sensor that measures seawater temperature, a heater that heats seawater, and heater heating when the seawater temperature measured by the temperature sensor is lower than a predetermined temperature, and a heater when the seawater temperature is equal to or higher than the predetermined temperature. It consists of a temperature controller that controls to turn off the power.
The heating means is not limited to a heater, and may be a solar heat absorption device that absorbs solar heat, or a combination thereof. However, the installation position of the solar heat absorption device is limited to the place where the heat insulating material of the seawater tower is not installed.

最初、海水は冷却用として海中より採水され、本減圧沸騰形海水淡水化装置に冷却用海水として投入されるが、熱交換器を通過する過程で水蒸気の凝縮潜熱を吸収し沸点温度にまで加温され、排出部では沸騰温度に到達する。海水は冷却水として活用された後に蒸気発生用の原料として活用されるが、熱交換器排出部では沸騰温度まで加温されているので、海水加熱手段は、蒸発潜熱から上記で回収した凝縮潜熱を差し引いた分のみを供給するだけで容易に海水を蒸発させることができる。 At first, seawater is sampled from the sea for cooling, and is put into the reduced-pressure boiling seawater desalination device as seawater for cooling. It is heated and reaches the boiling temperature in the discharge section. Seawater is used as a raw material for steam generation after being used as cooling water, but since it is heated to the boiling temperature at the heat exchanger discharge section, the seawater heating means uses the condensed latent heat recovered above from the latent heat of vaporization. Seawater can be easily evaporated by supplying only the amount obtained by subtracting.

また、海水塔内部の液面高さ位置と、淡水塔内部の液面高さ位置の相対位置関係は、必ずしも一致させる必要はなく、何れが高位置にあってもよい。しかし、海水塔液面高さを淡水塔液面より高い位置とすれば、淡水を流下させて回収するのに好都合である。
これにより、水蒸気を冷却されて得られる淡水が、淡水塔中に自然に流下する。
淡水塔内の液面高さは、淡水塔内の淡水温度で決まる水蒸気圧力が一定であるので、大気圧と釣り合いながら一定高さに保たれる。従って水蒸気の凝縮により新たに作られる淡水と同量の淡水塔内の淡水が、下部の解放端部から淡水槽内に押し出される。
このとき押し出される淡水量が、本減圧沸騰形海水淡水化装置により作られる淡水量になる。
Further, the relative positional relationship between the liquid level height position inside the seawater tower and the liquid level height position inside the fresh water tower does not necessarily need to be matched, and any of them may be at a high position. However, if the seawater tower liquid level is higher than the fresh water tower liquid level, it is convenient for the fresh water to flow down and to be recovered.
Thereby, the fresh water obtained by cooling the water vapor flows down naturally into the fresh water tower.
The liquid level in the fresh water tower is maintained at a constant height while being balanced with the atmospheric pressure because the water vapor pressure determined by the fresh water temperature in the fresh water tower is constant. Therefore, the same amount of fresh water in the fresh water tower as fresh water newly produced by condensation of water vapor is pushed out into the fresh water tank from the lower open end.
The amount of fresh water pushed out at this time becomes the amount of fresh water produced by the reduced-pressure boiling seawater desalination apparatus.

請求項2に記載の減圧沸騰形海水淡水化装置は、前記冷却手段がフィンチューブ型熱交換器(凝縮器)と、凝縮水受け皿とから構成される。フィンチューブ型熱交換器は折り曲げられて形成される通水配管に多数の放熱フィンが一体に取り付けられている。通水管と放熱フィンとの一体化では、通水管から放熱フィンへの良好な熱伝達が確保できるよう、熱電導性の良い部材を用いた接合法が採用される。具体的には、ロウ付けや、溶接、或いはカシメなどの方法が適用される。
一方、放熱フィンの表面では減圧蒸留により気化した水分が凝縮潜熱を放出しながら凝縮し、放熱フィンから直下の受け皿に滴下する。滴下した凝縮水は、集合して淡水になり、受け皿から連通管に自然流下する。
In the reduced-pressure boiling seawater desalination apparatus according to claim 2, the cooling means includes a finned tube heat exchanger (condenser) and a condensed water tray. In the finned tube heat exchanger, a large number of radiating fins are integrally attached to a water flow pipe formed by bending. In the integration of the water pipe and the heat radiating fin, a joining method using a member having good thermal conductivity is adopted so that good heat transfer from the water pipe to the heat radiating fin can be secured. Specifically, methods such as brazing, welding, or caulking are applied.
On the other hand, the water vaporized by distillation under reduced pressure is condensed on the surface of the radiating fin while releasing condensation latent heat, and is dripped from the radiating fin onto the tray immediately below. The condensed water dripped gathers and becomes fresh water, and naturally flows down from the tray to the communication pipe.

また、一部受け皿の下面で凝縮する水滴もあるが、凝縮水は傾斜する受け皿下面を伝わり連通管内に自然流下する。
なお、海中より汲み上げられる海水は、凝縮潜熱を吸収しながらフィンチューブ型熱交換器の通水配管を通過し、海水塔の上部に排出される。
従って、冷却用海水はフィンチューブ型熱交換器の排出部に於いて最も高温になる。
また、冷却用海水の汲み上げポンプは海水を海水塔上部まで汲み上げるが、実際の負荷(水圧)は、フィンチューブ型熱交換器通水配管の排出口の海水塔内部に於ける液面からの水深であり、極めて僅かな負荷でしかない。
In addition, some water droplets condense on the lower surface of the tray, but the condensed water naturally flows down through the inclined lower surface of the tray into the communication pipe.
Seawater pumped from the sea passes through the water pipe of the finned tube heat exchanger while absorbing the latent heat of condensation, and is discharged to the upper part of the seawater tower.
Therefore, the seawater for cooling becomes the highest temperature in the discharge part of the fin tube type heat exchanger.
The pump for pumping seawater for cooling pumps seawater up to the top of the seawater tower, but the actual load (water pressure) is the depth of water from the liquid surface inside the seawater tower at the outlet of the fin tube heat exchanger water piping. There is very little load.

請求項3に記載の減圧沸騰形海水淡水化装置は、海水塔上部が開閉弁を介して真空排気ポンプに接続される。本減圧沸騰形海水淡水化装置を運転させる場合、稼働準備作業として、海水塔上部をトリチェリ真空にする必要がある。このトリチェリ真空を作る作業では、まず海水塔上部に設けた開閉弁を閉にし、次いで、真空排気装置を作動させる。海水塔内の空気は徐々に排気され、海水表面も排気に伴い上昇する。海水塔内の空気が十分に排気された時点で、上部空間がトリチェリ真空となって、空間内は沸騰する海水の水蒸気圧で満たされる。 In the reduced-pressure boiling seawater desalination apparatus according to claim 3, the upper part of the seawater tower is connected to an evacuation pump via an on-off valve. When operating this reduced pressure boiling type seawater desalination apparatus, it is necessary to make the upper part of the seawater tower into a Trichelli vacuum as an operation preparation work. In the operation of creating the Trichelli vacuum, first, the on-off valve provided at the top of the seawater tower is closed, and then the vacuum exhaust device is operated. The air in the sea tower is gradually exhausted, and the sea water surface rises with the exhaust. When the air in the seawater tower is exhausted sufficiently, the upper space becomes Trichelli vacuum, and the space is filled with the water vapor pressure of boiling seawater.

請求項4に記載の減圧沸騰形海水淡水化装置は、海水塔の底部と頂部、及び淡水塔の底部と頂部の4箇所にそれぞれ開閉自在な遮断弁が付設される。これにより、海水塔と淡水塔は共に、底部と頂部がそれぞれ開閉自在になる。これら遮断弁は減圧沸騰形海水淡水化装置を最初に稼働させる時や、装置のメンテや修理などで装置を再稼働させる場合などに有効に機能させることができる。例えば、本減圧沸騰形海水淡水化装置を始動させる場合、まず、海水塔の底部遮断弁と淡水塔の底部遮断弁を閉じ、海水塔の頂部遮断弁と淡水塔の頂部遮断弁を開にする。
次いで、海水塔の頂部から海水を、淡水塔の頂部から淡水を投入する。
The vacuum boiling seawater desalination apparatus according to claim 4 is provided with shut-off valves that are openable and closable at the bottom and top of the seawater tower and at the bottom and top of the freshwater tower, respectively. Thereby, both the seawater tower and the fresh water tower can be opened and closed at the bottom and the top, respectively. These shut-off valves can function effectively when the reduced-pressure boiling seawater desalination apparatus is operated for the first time or when the apparatus is restarted due to maintenance or repair of the apparatus. For example, when starting the reduced pressure boiling type seawater desalination apparatus, first, the bottom shutoff valve of the seawater tower and the bottom shutoff valve of the freshwater tower are closed, and the top shutoff valve of the seawater tower and the top shutoff valve of the freshwater tower are opened. .
Next, seawater is introduced from the top of the seawater tower, and freshwater is introduced from the top of the freshwater tower.

海水槽と淡水槽のそれぞれについて、所定高さまで海水と淡水を注入した後、海水塔の頂部遮断弁と、淡水塔の頂部遮断弁を閉じ、海水塔の底部遮断弁と、淡水塔の底部遮断弁を開くと海水塔の頂部空間、淡水塔の頂部空間及び、連通パイプ内の圧力は水頭に応じて低下し、例えば水頭を約10mとするとほぼトリチェリ真空になる。なお、真空排気ポンプは、頂部の圧力を所定の負圧力とするために使用される。この減圧動作により海水塔の頂部空間、淡水塔の頂部空間及び、連通パイプ内の空気は十分排気され、沸騰が起こる。この一連の操作により減圧沸騰形海水淡水化装置を稼働させる準備が整う。 For each of the seawater tank and freshwater tank, after injecting seawater and freshwater to the specified height, close the seawater tower top shutoff valve and freshwater tower top shutoff valve, seawater tower bottom shutoff valve, and freshwater tower bottom shutoff When the valve is opened, the pressure in the top space of the seawater tower, the top space of the fresh water tower, and the communication pipe decreases according to the water head. For example, when the water head is about 10 m, the pressure is substantially Trichelli. The vacuum exhaust pump is used to set the top pressure to a predetermined negative pressure. By this decompression operation, the top space of the seawater tower, the top space of the fresh water tower, and the air in the communication pipe are sufficiently exhausted and boiling occurs. With this series of operations, preparations for operating the reduced-pressure boiling seawater desalination apparatus are completed.

請求項5に記載の減圧沸騰形海水淡水化装置の海水塔、連通管、淡水塔は、海水槽液面や、淡水槽液面からの高さが、トリチェリ真空を形成できる高さに確保されている。
従って、これらの上部空間の真空度は海水温度で決まる蒸気圧まで下げることができる。
例えば、海水塔上部の海水温を室温並みに設定すれば、海水の蒸発に必要とされる加熱エネルギーを最小限に止めることができる。
一方、海中から汲み上げられる海水温度は、室温に比べ十分低く、また、フィンチューブ型熱交換器により凝縮されて作られる淡水の温度は、海中から汲み上げられた海水温より若干高温になる。
The seawater tower, the communication pipe, and the freshwater tower of the reduced-pressure boiling seawater desalination apparatus according to claim 5 are secured at a height from which the seawater tank liquid level and the freshwater tank liquid level can form a Torichelli vacuum. ing.
Therefore, the degree of vacuum in these upper spaces can be lowered to the vapor pressure determined by the seawater temperature.
For example, if the seawater temperature at the top of the seawater tower is set to about room temperature, the heating energy required for seawater evaporation can be minimized.
On the other hand, the temperature of seawater pumped from the sea is sufficiently lower than room temperature, and the temperature of fresh water produced by condensation by a fin tube heat exchanger is slightly higher than the temperature of seawater pumped from the sea.

一方、水蒸気の凝集速度は、水蒸気温度とフィンチューブ型熱交換器表面温度との温度差に比例する。従って、海水塔上部空間の熱を外部に逃がさず、また、連通管内と淡水塔内の淡水は、外部より熱を受けて上昇することがないように維持することが重要になる。
海水塔の上部外壁と、連通管外壁と、淡水塔の外壁を断熱材で包囲することにより、水蒸気温度とフィンチューブ型熱交換器表面温度との温度差を容易に維持することができる。
On the other hand, the water vapor aggregation rate is proportional to the temperature difference between the water vapor temperature and the fin tube heat exchanger surface temperature. Therefore, it is important not to let the heat in the upper space of the seawater tower escape to the outside, and to keep fresh water in the communication pipe and the fresh water tower from receiving heat from the outside and rising.
By enclosing the upper outer wall of the seawater tower, the outer wall of the communication pipe, and the outer wall of the fresh water tower with a heat insulating material, the temperature difference between the water vapor temperature and the surface temperature of the fin tube heat exchanger can be easily maintained.

請求項6に記載の減圧沸騰形海水淡水化装置は、連通管液面に浮遊して淡水表面を覆う複数個の小形フロートが設置されている。このフロートの淡水表面カバー効果により、淡水表面からの水蒸気の再蒸発が抑制され、淡水が再蒸発する無駄を最小限に抑制することができる。 The reduced-pressure boiling seawater desalination apparatus according to claim 6 is provided with a plurality of small floats floating on the communication pipe liquid surface and covering the fresh water surface. Due to the fresh water surface covering effect of the float, the re-evaporation of water vapor from the surface of the fresh water is suppressed, and the waste of re-evaporation of the fresh water can be minimized.

請求項7に記載の減圧沸騰形海水淡水化方法は、海中より汲み上げた海水を、海中温度以上に加温して、真空中で水分を蒸発させ、該蒸発させた水分を冷却して淡水として回収する減圧沸騰形海水淡水化方法である。
具体的には、大気と遮断されて海水槽内の海水中に立設され、底部が前記海水中に開放される海水塔と、大気と遮断されて淡水槽内の淡水中に立設され、底部が前記淡水中に開放される淡水塔と、一方が、前記海水塔の上部に気密を維持して連通し、他方が前記淡水塔に気密を維持して連通する連通管とで構成される減圧沸騰形海水淡水化装置を用いる。
本装置の海水塔の上部には、海水を蒸発させる加熱手段と、海水塔上部で作られる水蒸気を冷却して淡水に凝縮させ、連通管内に流下させる冷却手段が設置されており、加熱手段で蒸発させた蒸気を冷却手段で冷却して淡水を作成する。
The reduced-pressure boiling-type seawater desalination method according to claim 7, wherein the seawater pumped from the sea is heated to a temperature higher than the sea temperature, the water is evaporated in a vacuum, and the evaporated water is cooled to obtain fresh water. This is a vacuum boiling type seawater desalination method to be recovered.
Specifically, it is cut off from the atmosphere and erected in the seawater in the seawater tank, the bottom is opened to the seawater, the seawater tower is cut off from the air and erected in the freshwater in the freshwater tank, A fresh water tower whose bottom is open to the fresh water and one communicating with the upper part of the seawater tower while maintaining airtightness, and the other with a communication pipe communicating with the freshwater tower while maintaining airtightness. A vacuum boiling seawater desalination unit is used.
At the top of the seawater tower of this device, there are installed heating means for evaporating the seawater and cooling means for cooling the water vapor produced at the top of the seawater tower to condense it into fresh water and let it flow down into the communication pipe. The evaporated steam is cooled by a cooling means to produce fresh water.

本発明では、海中から汲み上げる海水温度と、本装置が設置される周囲温度との温度差を利用する。即ち、周囲温度に近い温度で海水を減圧沸騰させて水蒸気にした後、汲み上げた低温の海水でこの水蒸発を凝縮させて淡水にするので、極めて少ないエネルギーで淡水を作ることができる。
また、水蒸気の凝縮にフィンチューブ型の熱交換器を用い、海水塔の上部外壁と、前記連通管外壁と、前記淡水塔の外壁を断熱材で包囲する構成としているので、外部からの熱の流入と流出を遮断でき、水蒸気温度とフィンチューブ型熱交換器表面温度との温度差を大きく維持できる。これにより、効率よく水蒸気の淡水化ができ、淡水の製造能力の確保が容易である。
In the present invention, the temperature difference between the seawater temperature drawn from the sea and the ambient temperature where the present apparatus is installed is used. That is, seawater is boiled under reduced pressure at a temperature close to the ambient temperature to form water vapor, and this water evaporation is condensed into fresh water with the pumped low-temperature seawater, so that fresh water can be produced with very little energy.
In addition, a fin tube type heat exchanger is used to condense the water vapor, and the upper outer wall of the seawater tower, the outer wall of the communication pipe, and the outer wall of the fresh water tower are surrounded by a heat insulating material. Inflow and outflow can be blocked, and the temperature difference between the water vapor temperature and the fin tube heat exchanger surface temperature can be maintained large. Thereby, water vapor can be efficiently desalinated, and the production capacity of fresh water can be easily secured.

減圧蒸留法による海水淡水化では、水蒸気が放出する凝縮潜熱を如何に有効に回収し、海水の蒸発のための熱エネルギーとして再利用できるかが重要である。
本発明のフィンチューブ型の熱交換器では、フィンとチューブ間の接続部にロウ付け、溶接などの方法を用い、フィンとチューブ間の熱伝道を良好な状態に保持しているので、フィン表面で凝縮する水蒸気が放出する凝縮潜熱を冷却水まで確実に熱伝道させることができる。これにより、水蒸気が放出する凝縮潜熱を冷却水の加熱熱源として確実に回収することができる。
また、このとき、凝縮潜熱を吸収する冷却水は沸騰温度まで加熱されるので、蒸発に必要とされる加熱手段が供給する蒸発潜熱を最小限に減らすことができる。
In seawater desalination by vacuum distillation, it is important how effectively the latent heat of condensation released by water vapor can be recovered and reused as thermal energy for seawater evaporation.
In the fin tube type heat exchanger of the present invention, since the heat conduction between the fin and the tube is maintained in a good state by using a method such as brazing and welding at the connection portion between the fin and the tube, the fin surface Thus, the latent heat of condensation released by the water vapor condensed can be reliably transferred to the cooling water. Thereby, the condensation latent heat which water vapor | steam discharge | releases can be collect | recovered reliably as a heating heat source of cooling water.
At this time, since the cooling water that absorbs the latent heat of condensation is heated to the boiling temperature, the latent heat of evaporation supplied by the heating means required for evaporation can be reduced to a minimum.

海中より海水を汲み上げ、これを冷却水として活用すると同時に、加熱された海水を水蒸気発生用原料として活用する。これら一連の海水の輸送にはポンプを使用するが、ポンプの給水部と排出部の差水圧は、海水塔上部における熱交換器の排出口の液面からの深さでありのみである。従って、通常運転時のポンプ負荷は管路抵抗と、排出口の水深に起因した水圧とを合わせたものでしかなく、消費されるエネルギーは極めて僅かである。 Seawater is pumped up from the sea and used as cooling water. At the same time, heated seawater is used as a raw material for steam generation. Pumps are used to transport a series of these seawaters, but the water pressure difference between the water supply and discharge sections of the pump is only the depth from the liquid level of the heat exchanger outlet at the top of the seawater tower. Therefore, the pump load during normal operation is only a combination of the pipe resistance and the water pressure resulting from the water depth at the discharge port, and very little energy is consumed.

海水塔の液面レベルはトリチェリ真空により自律的に決まり、人為的制御が不要であり、また、フィンチューブ型の熱交換器で作成される淡水は、自然流下により回収されるので、装置の運転管理が容易である。しかも海水塔と淡水塔の高さは十分確保されており、海水塔および、淡水塔の上部スペースに海水や、淡水が侵入することは原理的にあり得ず、装置としての信頼性が高い。
また、海水塔上部に真空排気ポンプが接続され、海水塔の底部と、淡水塔の底部にそれぞれ遮断弁が付設されているので、装置の立ち上げ時や、メンテ時の復帰立ち上げ作業が容易である。
The liquid level of the seawater tower is determined autonomously by the Triceri vacuum, no human control is required, and fresh water created by the finned tube heat exchanger is recovered by natural flow, so the operation of the equipment Easy to manage. Moreover, the height of the seawater tower and the freshwater tower is sufficiently secured, and it is impossible in principle for seawater and freshwater to enter the seawater tower and the upper space of the freshwater tower, and the reliability of the apparatus is high.
In addition, an evacuation pump is connected to the top of the seawater tower, and a shut-off valve is attached to the bottom of the seawater tower and the bottom of the freshwater tower, respectively, making it easy to start up and restore the equipment during maintenance. It is.

また、海水中に空気が含まれ、海水塔上部空間に浮上するような場合であっても、真空排気ポンプを適宜作動させることにより、トリチェリ真空や、必要とされる水蒸気圧を容易に維持することができる。
以上により本発明による減圧沸騰形海水淡水化装置により、省エネルギーで、且つ、安定的に淡水を製造することができる。
Even if the seawater contains air and floats in the upper space of the seawater tower, the Trichelli vacuum and the required water vapor pressure can be easily maintained by appropriately operating the vacuum pump. be able to.
As described above, the reduced-pressure boiling seawater desalination apparatus according to the present invention can produce fresh water stably with energy saving.

本発明の減圧沸騰形海水淡水化装置の構成説明図Configuration explanatory diagram of the vacuum boiling seawater desalination apparatus of the present invention 海水の減圧蒸留における温度と蒸気圧の関係Relation between temperature and vapor pressure in vacuum distillation of seawater 海水の減圧蒸留における温度と蒸発水分量の関係Relationship between temperature and evaporative water content in vacuum distillation of seawater 従来技術による、多段・バッチ式減圧蒸留海水淡水化装置Multi-stage, batch-type vacuum distillation seawater desalination system using conventional technology 製塩用真空式蒸発缶Vacuum evaporator for salt production

本発明の減圧沸騰形海水淡水化装置の全体構成について、図1を用いて説明する。
減圧沸騰形海水淡水化装置10は、海水槽16に収容される海水34中に立設される海水塔11と、淡水槽17に収容される淡水51中に立設される淡水塔12と、これら、海水塔11と淡水塔12とを気密に連結する連通管13から構成される。海水塔11の上部には海水温度を一定に維持するための加熱手段19が設置され、また海水塔11の上部空間27には、冷却手段14が配置される。更に、海水塔11の上部外壁部と、連通管13の外壁と、淡水塔12の外壁には、これら外壁を包囲して断熱する断熱材18が取付けられている。
The overall configuration of the reduced-pressure boiling seawater desalination apparatus of the present invention will be described with reference to FIG.
The reduced-pressure boiling seawater desalination apparatus 10 includes a seawater tower 11 erected in the seawater 34 accommodated in the seawater tank 16, a freshwater tower 12 erected in the freshwater 51 accommodated in the freshwater tank 17, and These are composed of a communication pipe 13 that hermetically connects the seawater tower 11 and the freshwater tower 12. A heating means 19 for maintaining a constant seawater temperature is installed at the upper part of the seawater tower 11, and a cooling means 14 is arranged in the upper space 27 of the seawater tower 11. Furthermore, a heat insulating material 18 that surrounds and insulates the outer walls is attached to the upper outer wall of the seawater tower 11, the outer wall of the communication pipe 13, and the outer wall of the fresh water tower 12.

次に、本装置の立ち上げから定常運転に至るまでのプロセスについて図1を用い説明する。
海水塔11の上下及び側方に配置されたバルブ21、22、29、31を開にし、バルブ32を閉じ、ポンプ24を作動させ、配管33を通して海中より海水を汲み上げ、海水塔11内部に海水を投入する。海水槽16が海水で満たされた時点でポンプ24を停止させ、バルブ21を閉じる。ポンプ24を再稼働させ海水塔内に海水を注入し、液面26の高さH1が10mになった時バルブ31を閉じ、ポンプ24を停止させる。
Next, the process from the start-up of this apparatus to the steady operation will be described with reference to FIG.
The valves 21, 22, 29, 31 arranged at the top and bottom and the side of the seawater tower 11 are opened, the valve 32 is closed, the pump 24 is operated, the seawater is pumped from the sea through the pipe 33, and the seawater tower 11 is filled with seawater. . When the seawater tank 16 is filled with seawater, the pump 24 is stopped and the valve 21 is closed. The pump 24 is restarted and seawater is injected into the seawater tower. When the height H 1 of the liquid level 26 reaches 10 m, the valve 31 is closed and the pump 24 is stopped.

淡水塔12の上下に配置されたバルブ43、45、47を開にし、流量計52で流量を確認しながらポンプ46を作動させ、配管58を通して淡水の給水を行い、淡水塔12内部に淡水を投入する。淡水槽17が淡水で満たされた時点でポンプ46を停止させ、バルブ45を閉じる。ポンプ46を再稼働させ淡水塔内に淡水を注入し、液面42の高さHが10mになった時バルブ52を閉じ、ポンプ46を停止させる。
バルブ22,43を閉じバルブ21,51を開にすると海水塔11の頂部空間27、淡水塔12の頂部空間44及び連通パイプ13内の圧力は水頭H、Hに依存して低下し、真空に近いものとなる。
The valves 43, 45, 47 arranged above and below the fresh water tower 12 are opened, the pump 46 is operated while checking the flow rate with the flow meter 52, fresh water is supplied through the pipe 58, and fresh water is supplied into the fresh water tower 12. throw into. When the fresh water tank 17 is filled with fresh water, the pump 46 is stopped and the valve 45 is closed. Fresh water is injected into the fresh water tower is re-activated pump 46, closing the valve 52 when the height H 2 of the liquid surface 42 becomes 10 m, to stop the pump 46.
When the valves 22 and 43 are closed and the valves 21 and 51 are opened, the pressure in the top space 27 of the seawater tower 11, the top space 44 of the fresh water tower 12 and the communication pipe 13 decreases depending on the water heads H 1 and H 2 . Close to vacuum.

次いで、海水塔11の頂部空間27、淡水塔12の頂部空間44及び連通パイプ13内に残留する空気を排除するため、真空ポンプ15を作動させ、海水塔11、淡水塔12、連通管13内部を真空にする。この時の真空度は真空計28で確認することができる。これにより海水塔内部、淡水塔内部にトリチェリ真空が形成される。なお、海水塔内部、淡水塔内部はトリチェリ真空に達する手前から、海水及び、淡水に沸騰が起こる。
トリチェリ真空が形成されるに至った時点で、バルブ20を閉じ、真空ポンプ15を停止させる。この時、海水塔11内の液面26の高さは、海水槽16の液面35からHの高さとなり、Hは約10mになる。また淡水塔12内の液面42の高さは、淡水槽17の液面53からHの高さとなり、Hは約10mになる。
Next, in order to eliminate the air remaining in the top space 27 of the seawater tower 11, the top space 44 of the freshwater tower 12 and the communication pipe 13, the vacuum pump 15 is operated, and the seawater tower 11, the freshwater tower 12, the communication pipe 13 inside To a vacuum. The degree of vacuum at this time can be confirmed with the vacuum gauge 28. Thereby, a Trichelli vacuum is formed inside the seawater tower and inside the fresh water tower. It should be noted that the seawater and freshwater towers boil in the seawater and freshwater just before reaching the Torrichelli vacuum.
When the Trichelli vacuum is formed, the valve 20 is closed and the vacuum pump 15 is stopped. At this time, the liquid level 26 in the seawater column 11 is made from the liquid surface 35 of the sea water tank 16 and the height of the H 1, H 1 is about 10 m. Moreover, the height of the liquid level 42 in the fresh water tower 12 becomes the height of H 2 from the liquid level 53 of the fresh water tank 17, and H 2 becomes about 10 m.

次いでバルブ31を閉じたまま、バルブ29,32を開にし、流量計36で流量を計測しながら海中から汲み上げた海水をフィンチューブ型熱交換器(冷却手段)14のチューブ62内を通過させ、海水塔11上部の液面近傍に排出させる。また、この液面近傍には温度センサ20が設置されており、この温度センサ20で検出される温度が加熱手段19に設定されている制御温度より低い場合は、加熱手段19がPID制御でヒータ23を作動させ海水塔11の液面近傍の海水25を加温する。この結果、液面付近では安定した沸騰状態が維持され、海水塔11の上部空間27は常に飽和水蒸気圧で満たされる。海水塔11の上部は外壁面が断熱材で包囲されているので、水蒸気が壁面で凝縮することはなく、水蒸気はもっぱらフィンチューブ型熱交換器14のフィン61表面で凝縮する。また、フィンチューブ型熱交換器14にはポンプ24により、絶えず冷却水が供給されるので、凝縮能力が維持される。
連通管13の液面を覆うフロート部材60は、連通管13の上部より吊下げる方法で保持されており、淡水が上部空間27に再蒸発するのを抑制する。
Next, with the valve 31 closed, the valves 29 and 32 are opened, and the seawater pumped from the sea while measuring the flow rate with the flow meter 36 is passed through the tube 62 of the finned tube heat exchanger (cooling means) 14. It is discharged near the liquid surface at the top of the seawater tower 11. Further, a temperature sensor 20 is installed in the vicinity of the liquid surface, and when the temperature detected by the temperature sensor 20 is lower than the control temperature set in the heating means 19, the heating means 19 is heated by PID control. 23 is operated to heat the seawater 25 in the vicinity of the liquid level of the seawater tower 11. As a result, a stable boiling state is maintained near the liquid level, and the upper space 27 of the seawater tower 11 is always filled with saturated water vapor pressure. Since the outer wall surface of the upper part of the seawater tower 11 is surrounded by a heat insulating material, the water vapor is not condensed on the wall surface, and the water vapor is condensed exclusively on the surface of the fin 61 of the fin tube heat exchanger 14. Further, since the cooling water is constantly supplied to the fin tube type heat exchanger 14 by the pump 24, the condensing capacity is maintained.
The float member 60 that covers the liquid surface of the communication pipe 13 is held by a method of hanging from the upper part of the communication pipe 13, and suppresses fresh water from re-evaporating into the upper space 27.

これら一連の動作において、上部空間27では海水の沸騰・蒸発と、発生する蒸気の冷却・凝縮が同時に進行するため、上部空間27の容積、圧力は一定に保たれる。また、これら一連の動作は、人為的な制御が不要で全て自律的に進行する。
フィン61表面に凝結する水分は、直下の受け皿63に滴下して、淡水になり連通管内13内部に流下する。連通管内の液面高さは一定に保持されるので、流下する淡水は逐次淡水塔12内を下方に押し出され、淡水槽17に至り、淡水槽17の堰54を乗り越え、回収槽55に至る。
In these series of operations, boiling and evaporation of seawater and cooling and condensation of generated steam proceed simultaneously in the upper space 27, so that the volume and pressure of the upper space 27 are kept constant. In addition, these series of operations do not require artificial control and all proceed autonomously.
Moisture condensed on the surface of the fin 61 is dropped on the receiving tray 63 immediately below to become fresh water and flows down into the communication pipe 13. Since the liquid level in the communication pipe is kept constant, the fresh water flowing down is sequentially pushed downward in the fresh water tower 12, reaches the fresh water tank 17, gets over the weir 54 of the fresh water tank 17, and reaches the recovery tank 55. .

回収槽55内の淡水はバルブ57を開にし、流量計56で流量を計測しながら外部に取り出す。
なお、ポンプ24から供給される海水量は流量計56で確認可能であるが、海水塔11の上部空間で蒸発する海水量より多い場合、過剰分の海水は、海水塔11を逐次下方に押しやられて海水槽16に至り、堰40を乗り越えてサブ貯留槽37から外部に排出される。
Fresh water in the collection tank 55 is taken out while the valve 57 is opened and the flow rate is measured by the flow meter 56.
The amount of seawater supplied from the pump 24 can be confirmed by the flow meter 56. However, when the amount of seawater evaporated in the upper space of the seawater tower 11 is larger, the excess seawater pushes the seawater tower 11 downward sequentially. It reaches the seawater tank 16, gets over the weir 40, and is discharged from the sub-storage tank 37 to the outside.

海水の減圧蒸留装置における、海水温度と、蒸気圧と、蒸発量についての実測データとして、例えば実施文献(たばこ塩産業 塩事業版 2004.09.25 Encyclopedia[塩百科]38(財)ソルト・サイエンス研究事業団専務理事 橋本壽夫 「真空式製塩法」と「加圧式製塩法」)がある。
本実施文献は4連の真空式蒸発缶であって、各蒸発缶の直径は5m、高さは15mである。また、稼働時における各缶の温度(℃)、圧力(mmHg)、単位時間当たりの蒸発重量(t/h)について、表1の関係が測定されている。
As actual measurement data on seawater temperature, vapor pressure, and evaporation in a vacuum distillation apparatus for seawater, for example, Tobacco Salt Industry Salt Business Version 2004.09.25 Encyclopedia [Salt Encyclopedia] 38 Salt Science There is "Vacuum-type salt production method" and "Pressure-type salt production method").
This embodiment is a quadruple vacuum evaporator, and each evaporator has a diameter of 5 m and a height of 15 m. Moreover, the relationship of Table 1 is measured about the temperature (degreeC) of each can at the time of operation, a pressure (mmHg), and the evaporating weight per unit time (t / h).

図3は表1の温度(℃)と、飽和蒸気圧力(mmHg)との関係を直交座標にプロットし、回帰式を求めたものである。図中に示す回帰式から35℃における飽和蒸気圧を外挿すると約40mmHgになる。
図2は表1の温度(℃)と、単位時間当たりの蒸発重量(t/h)との関係を直行座標にプロットし、回帰式を求めたものである。図中に示す回帰式を用い35℃における単位時間当たりの蒸発量を推定すると、約37t/hになる。
FIG. 3 plots the relationship between the temperature (° C.) and the saturated vapor pressure (mmHg) in Table 1 on orthogonal coordinates, and obtains a regression equation. If the saturated vapor pressure at 35 ° C. is extrapolated from the regression equation shown in the figure, it becomes about 40 mmHg.
FIG. 2 plots the relationship between the temperature (° C.) in Table 1 and the evaporation weight (t / h) per unit time on an orthogonal coordinate, and obtains a regression equation. When the amount of evaporation per unit time at 35 ° C. is estimated using the regression equation shown in the figure, it is about 37 t / h.

図1に示す本発明の海水塔11の上部につて、内部直径Dを5mとすると、前記実施文献と同一の減圧蒸留条件になる。従って、本発明の実施例では海水塔11上部の海水温度制御値を35℃とすることで、単位時間当たり約37トンの淡水を製造できる。
なお、上記内径5mの蒸発缶での淡水の製造能力37t/hを、単位面積当たりの製造能力に換算すると、1分間当たりの製造量は31.4Kg/mminとなる。
従って、内直径Dを適宜な数値に設定することで、要求製造能力に応じた減圧蒸留装置を設計することができる。
If the internal diameter D is set to 5 m on the upper part of the seawater tower 11 of the present invention shown in FIG. Therefore, in the embodiment of the present invention, by setting the seawater temperature control value at the top of the seawater tower 11 to 35 ° C., about 37 tons of fresh water can be produced per unit time.
When the production capacity of 37 t / h of fresh water in the evaporator having an inner diameter of 5 m is converted into the production capacity per unit area, the production amount per minute is 31.4 Kg / m 2 min.
Therefore, by setting the inner diameter D to an appropriate numerical value, it is possible to design a vacuum distillation apparatus corresponding to the required production capacity.

本発明の減圧沸騰形海水淡水化装置は海水から淡水を作るのに好適に使用される装置であるが、海水以外に例えば、飲料水にできない汚れた水を本発明装置を用いることで、飲料水にすることができる。
また、本装置より排出される高塩分濃度の海水から食塩、その他ミネラル成分を取り出すこともできる。
The reduced-pressure boiling seawater desalination apparatus of the present invention is an apparatus that is preferably used to make fresh water from seawater. For example, by using the apparatus of the present invention for dirty water that cannot be made into drinking water other than seawater, Can be water.
Further, salt and other mineral components can be taken out from the seawater with high salinity discharged from the apparatus.

10 減圧沸騰形海水淡水化装置
11 海水塔
12 淡水塔
13 連通管
14 冷却手段
15 真空ポンプ
16 海水槽
17 淡水槽
18 断熱材
19 加熱手段
DESCRIPTION OF SYMBOLS 10 Vacuum boiling type seawater desalination apparatus 11 Seawater tower 12 Freshwater tower 13 Communication pipe 14 Cooling means 15 Vacuum pump 16 Seawater tank 17 Freshwater tank 18 Thermal insulation material 19 Heating means

Claims (7)

海中より汲み上げた海水を、前記海中温度以上に加温して、真空中で水分を蒸発させ、該蒸発させた水分を冷却して淡水として回収する減圧沸騰形海水淡水化装置であって、
大気と遮断されて海水槽内の海水中に立設され、底部が前記海水中に開放される海水塔と、
大気と遮断されて淡水槽内の淡水中に立設され、底部が前記淡水中に開放される淡水塔と、
一方が、前記海水塔の上部に気密を維持して連通し、他方が前記淡水塔に気密を維持して連通する連通管と、
前記海水を蒸発させる加熱手段と、
前記海水塔上部で作られる前記水蒸気を冷却して淡水に凝縮させ、前記連通管内に流下させる冷却手段と、から構成されており、
前記海水塔内の液面高さが、前記海水塔と前記連通管との連通位置より低いことを特徴とする減圧沸騰形海水淡水化装置。
A reduced-pressure boiling seawater desalination apparatus that heats seawater pumped from the sea above the sea temperature, evaporates water in a vacuum, cools the evaporated water and collects it as fresh water,
A sea water tower that is cut off from the atmosphere and is erected in seawater in a seawater tank, and whose bottom is open to the seawater;
A fresh water tower that is cut off from the atmosphere and is erected in fresh water in a fresh water tank, and whose bottom is open to the fresh water;
One communicating with the upper part of the seawater tower while maintaining airtightness, and the other communicating with the freshwater tower while maintaining airtightness;
Heating means for evaporating the seawater;
Cooling means for cooling the water vapor produced in the upper part of the seawater tower, condensing it into fresh water, and flowing down into the communication pipe,
A reduced-pressure boiling seawater desalination apparatus, wherein a liquid level in the seawater tower is lower than a communication position between the seawater tower and the communication pipe.
前記冷却手段がフィンチューブ型熱交換器(凝縮器)と、凝縮水受け皿とから構成されて、前記海水塔の上部空間に配置されており、
前記海中より汲み上げた前記海水を冷却媒体として前記フィンチューブ型熱交換器のチューブ内に流入させて熱交換させた後、前記海水塔内の上部に流出させ、
前記フィンチューブ型熱交換器のフィン表面で凝縮する凝縮水を、前記凝縮水受け皿に滴下させて淡水を作ることを特徴とする請求項1に記載の減圧沸騰形海水淡水化装置。
The cooling means is composed of a finned tube heat exchanger (condenser) and a condensate tray, and is disposed in the upper space of the seawater tower,
After allowing the seawater pumped up from the sea to flow into the tube of the finned tube heat exchanger as a cooling medium and exchanging heat, it flows out to the upper part in the seawater tower,
2. The reduced-pressure boiling seawater desalination apparatus according to claim 1, wherein condensed water condensed on the fin surface of the finned tube heat exchanger is dropped onto the condensed water receiving tray to produce freshwater.
前記海水塔上部が、真空排気ポンプに接続され、真空排気自在であることを特徴とする請求項1又は2の何れか一項に記載の減圧沸騰形海水淡水化装置。 The reduced-pressure boiling seawater desalination apparatus according to any one of claims 1 and 2, wherein the upper portion of the seawater tower is connected to a vacuum exhaust pump and is freely evacuated. 前記海水塔の底部と、前記淡水塔の底部にそれぞれ遮断弁が付設されることを特長とする請求項1乃至3の何れか一項に記載の減圧沸騰形海水淡水化装置。 The reduced-pressure boiling seawater desalination apparatus according to any one of claims 1 to 3, wherein a shut-off valve is attached to each of a bottom of the seawater tower and a bottom of the freshwater tower. 前記海水塔の上部外壁と、前記連通管の外壁と、前記淡水塔の外壁が断熱材で包囲されることを特徴とする請求項1乃至4の何れか一項に記載の減圧沸騰形海水淡水化装置。 5. The reduced-pressure boiling seawater freshwater according to claim 1, wherein an upper outer wall of the seawater tower, an outer wall of the communication pipe, and an outer wall of the freshwater tower are surrounded by a heat insulating material. Device. 前記連通管内の前記淡水表面に、複数のフロートが浮遊していることを特徴とする請求項1乃至5の何れか一項に記載の減圧沸騰形海水淡水化装置。 The reduced-pressure boiling seawater desalination apparatus according to any one of claims 1 to 5, wherein a plurality of floats are suspended on the surface of the fresh water in the communication pipe. 海中より汲み上げた海水を、前記海中温度以上に加温して、真空中で水分を蒸発させ、該蒸発させた水分を冷却して淡水として回収する減圧沸騰形海水淡水化方法であって、
大気と遮断されて海水槽内の海水中に立設され、底部が前記海水中に開放される海水塔と、
大気と遮断されて淡水槽内の淡水中に立設され、底部が前記淡水中に開放される淡水塔と、
一方が、前記海水塔の上部に気密を維持して連通し、他方が前記淡水塔に気密を維持して連通する連通管と、
前記海水を蒸発させる加熱手段と、
前記海水塔上部で作られる前記水蒸気を冷却して淡水に凝縮させ、前記連通管内に流下させる冷却手段と、から構成されており、
前記加熱手段で蒸発させた蒸気を前記冷却手段で冷却して淡水を作成する減圧沸騰形海水淡水化方法。






A reduced-pressure boiling seawater desalination method in which seawater pumped from the sea is heated to a temperature above the sea temperature, water is evaporated in a vacuum, the evaporated water is cooled and recovered as fresh water,
A sea water tower that is cut off from the atmosphere and is erected in seawater in a seawater tank, and whose bottom is open to the seawater;
A fresh water tower that is cut off from the atmosphere and is erected in fresh water in a fresh water tank, and whose bottom is open to the fresh water;
One communicating with the upper part of the seawater tower while maintaining airtightness, and the other communicating with the freshwater tower while maintaining airtightness;
Heating means for evaporating the seawater;
Cooling means for cooling the water vapor produced in the upper part of the seawater tower, condensing it into fresh water, and flowing down into the communication pipe,
A reduced-pressure boiling seawater desalination method in which the vapor evaporated by the heating means is cooled by the cooling means to produce fresh water.






JP2011182565A 2011-08-24 2011-08-24 Vacuum boiling desalination apparatus and method Expired - Fee Related JP5398046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182565A JP5398046B2 (en) 2011-08-24 2011-08-24 Vacuum boiling desalination apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182565A JP5398046B2 (en) 2011-08-24 2011-08-24 Vacuum boiling desalination apparatus and method

Publications (2)

Publication Number Publication Date
JP2013043124A true JP2013043124A (en) 2013-03-04
JP5398046B2 JP5398046B2 (en) 2014-01-29

Family

ID=48007470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182565A Expired - Fee Related JP5398046B2 (en) 2011-08-24 2011-08-24 Vacuum boiling desalination apparatus and method

Country Status (1)

Country Link
JP (1) JP5398046B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458641A (en) * 2014-04-25 2017-02-22 A·艾尔阿伊 Desalination system and method
CN106517394A (en) * 2016-12-23 2017-03-22 广西大学 Automatic supplying device for laboratory distilled water
CN107381690A (en) * 2017-09-01 2017-11-24 海南大学 A kind of hypergravity is evaporated in vacuo the method for desalting seawater of membrane distillation
WO2018062399A1 (en) * 2016-09-28 2018-04-05 株式会社大成化研 Powdered seasoning composition, food product using same, and method for producing powdered seasoning composition
CN114873673A (en) * 2022-05-11 2022-08-09 首钢京唐钢铁联合有限责任公司 Liquid drainage device and hot method seawater desalination system
CN117142552A (en) * 2023-09-19 2023-12-01 郑州大学 Self-assembled dual-function photo-thermal evaporation column and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122259A (en) * 1974-08-16 1976-02-21 Masaru Kajama OSUISHORISOCHI
JPS53138983A (en) * 1977-05-11 1978-12-04 Tadao Kaga Sea water distillation
JPS5573301A (en) * 1978-11-24 1980-06-03 Japan Atom Energy Res Inst Concentrating method and apparatus for aqueous solution
JPS56166984A (en) * 1980-05-23 1981-12-22 Tetsuo Takahashi Distillater for sea water or the like
JPS6323791A (en) * 1986-07-15 1988-02-01 Naganobu Miyoshi Apparatus for making fresh water from seawater
JPS63296801A (en) * 1987-05-28 1988-12-02 Kenji Matsumura Continuous vacuum distillation method using head difference
JP2012091108A (en) * 2010-10-26 2012-05-17 Takahisa Jitsuno Vacuum distillation apparatus using solar heat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122259A (en) * 1974-08-16 1976-02-21 Masaru Kajama OSUISHORISOCHI
JPS53138983A (en) * 1977-05-11 1978-12-04 Tadao Kaga Sea water distillation
JPS5573301A (en) * 1978-11-24 1980-06-03 Japan Atom Energy Res Inst Concentrating method and apparatus for aqueous solution
JPS56166984A (en) * 1980-05-23 1981-12-22 Tetsuo Takahashi Distillater for sea water or the like
JPS6323791A (en) * 1986-07-15 1988-02-01 Naganobu Miyoshi Apparatus for making fresh water from seawater
JPS63296801A (en) * 1987-05-28 1988-12-02 Kenji Matsumura Continuous vacuum distillation method using head difference
JP2012091108A (en) * 2010-10-26 2012-05-17 Takahisa Jitsuno Vacuum distillation apparatus using solar heat

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458641A (en) * 2014-04-25 2017-02-22 A·艾尔阿伊 Desalination system and method
JP2017513712A (en) * 2014-04-25 2017-06-01 アイ,アライン エル Desalination systems and methods
CN106458641B (en) * 2014-04-25 2019-11-15 A·艾尔阿伊 Desalination system and method
US10479700B2 (en) 2014-04-25 2019-11-19 Alain El Ayi System and method of desalination
WO2018062399A1 (en) * 2016-09-28 2018-04-05 株式会社大成化研 Powdered seasoning composition, food product using same, and method for producing powdered seasoning composition
CN106517394A (en) * 2016-12-23 2017-03-22 广西大学 Automatic supplying device for laboratory distilled water
CN107381690A (en) * 2017-09-01 2017-11-24 海南大学 A kind of hypergravity is evaporated in vacuo the method for desalting seawater of membrane distillation
CN114873673A (en) * 2022-05-11 2022-08-09 首钢京唐钢铁联合有限责任公司 Liquid drainage device and hot method seawater desalination system
CN117142552A (en) * 2023-09-19 2023-12-01 郑州大学 Self-assembled dual-function photo-thermal evaporation column and preparation method thereof
CN117142552B (en) * 2023-09-19 2024-05-31 郑州大学 Self-assembled dual-function photo-thermal evaporation column and preparation method thereof

Also Published As

Publication number Publication date
JP5398046B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5398046B2 (en) Vacuum boiling desalination apparatus and method
KR101109536B1 (en) Evaporative Desalination Apparatus of Sea Water Using Phase Changing Fluids
CN101481154B (en) Method and apparatus for seawater desalination by comprehensive utilization of solar energy
CN104495966B (en) The seawater desalination system that a kind of bubbling humidification is coupled with heat pump cycle and processing method
CN103708573B (en) A kind of strengthening convective heat exchange formula solar distilling seawater desalinating device
KR20190067207A (en) Sub-atmospheric heat and cold system
JP2015202445A (en) Reduced-pressure boiling-type seawater desalination apparatus with power generating function
CN103613155B (en) Heat pipe-type low temperature two sea water desalting equipment
JP2012091108A (en) Vacuum distillation apparatus using solar heat
CN103626249A (en) Sea water desalting device and method for solar photovoltaic semiconductor refrigeration
CN104671303A (en) Seawater desalination device
KR20110080215A (en) Water furification plant adopting vacuum evaporation method
CN102363531A (en) Heat circulating energy-saving low-cost seawater desalting method
CN106698559A (en) Heat-pump seawater desalination device
KR101384207B1 (en) Seawater Desalination System Using Solar Energy For Off-shore Facilities
WO2006075930A1 (en) Method for producing distilled water and device for carrying out said method
RU2723858C1 (en) Device for water desalination
US20160107097A1 (en) Distallation System with Heat Recovery
CN209378488U (en) A kind of half cycle energy conservation evaporated crystallization device
CN101249989A (en) Deep low-temperature seawater cooling decompression sea water desalination method and device thereof
CN104261500B (en) A kind of stirling heat pump multi-stage distilled seawater desalination device
RU2732929C1 (en) Seawater desalting method
CN105174331B (en) A kind of heat pump cycle formula sea water desalinating unit and its application method
CN104528856B (en) A kind of evaporation of seawater tank humidifying dehumidifying
CN206587428U (en) A kind of flash distillation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131020

R150 Certificate of patent or registration of utility model

Ref document number: 5398046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees