JPS63296801A - Continuous vacuum distillation method using head difference - Google Patents
Continuous vacuum distillation method using head differenceInfo
- Publication number
- JPS63296801A JPS63296801A JP13239987A JP13239987A JPS63296801A JP S63296801 A JPS63296801 A JP S63296801A JP 13239987 A JP13239987 A JP 13239987A JP 13239987 A JP13239987 A JP 13239987A JP S63296801 A JPS63296801 A JP S63296801A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- tank
- vacuum
- evaporation
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005292 vacuum distillation Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 title claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 27
- 238000001704 evaporation Methods 0.000 claims abstract description 23
- 230000008020 evaporation Effects 0.000 claims abstract description 22
- 230000005484 gravity Effects 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 1
- 238000010924 continuous production Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 239000013535 sea water Substances 0.000 abstract description 26
- 239000013505 freshwater Substances 0.000 abstract description 15
- 238000009833 condensation Methods 0.000 abstract description 5
- 230000005494 condensation Effects 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 abstract description 2
- 238000009825 accumulation Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000004821 distillation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【発明の詳細な説明】
A、技術分野
この発明は、i(Q体の水頭差を利用した連続真空蒸留
方法ンこ関する。DETAILED DESCRIPTION OF THE INVENTION A. Technical Field The present invention relates to a continuous vacuum distillation method using the difference in water head of the i(Q) form.
B、従来技術
真空蒸留の考え方は充分に確立されており蒸留技術も多
岐にわたり実用化されている。しかし大刀のこれらプロ
セスは系内の液体の取り扱いZこ多数の貯槽やポンプ、
そしてそれらの運転制御のための計器類等を必要とし、
かなり複雑な構成となっている。これらはt9備の建設
コストのみならす、設備保守コスト、運転コストを大き
くしている。B. Prior art The concept of vacuum distillation is well established, and a wide variety of distillation techniques have been put into practical use. However, these processes involve the handling of liquid within the system, the large number of storage tanks, pumps, etc.
And they require instruments etc. to control their operation.
It has a fairly complex configuration. These increase not only the construction cost of the t9 equipment, but also the equipment maintenance cost and operating cost.
C0目的
この発明は、従来法の上記欠点を解消し、構造が簡単で
しかも容易な運転性と少ない運転エネルギーを実現する
連続真空蒸留方法を提供するものである。C0 Purpose This invention solves the above-mentioned drawbacks of the conventional method, and provides a continuous vacuum distillation method that has a simple structure, is easy to operate, and requires less operating energy.
D、構成
解り易くするため海水の蒸留を想定しでの図面を添付し
ている。これを参照して原理を説明する。D. To make the configuration easier to understand, a drawing assuming seawater distillation is attached. The principle will be explained with reference to this.
このプロセスは海水を吸い上げる管、海水から真水を蒸
発させ同時に濃縮した海水を貯めるための槽、水蒸気を
送る管、水蒸気を受は入れそれを凝縮させ貯めるための
槽、系内を真空に保つための真空ポンプ、そして補助設
備としでの海水の加熱器とで構成している。海水の加熱
器を除き他は全て同一系として継がっている。This process consists of a pipe that sucks up seawater, a tank that evaporates fresh water from seawater and at the same time stores the concentrated seawater, a pipe that sends water vapor, a tank that receives water vapor, condenses it, and stores it, and maintains a vacuum inside the system. It consists of a vacuum pump and a seawater heater as auxiliary equipment. Except for the seawater heater, everything else is the same system.
大気圧下の海水の吸水管を開放、濃縮水排出管並びに真
水排出管を閉じた状態で設備系内を所定の真空状態にす
ると海水は真空にO・かれて吸水管、海水真水熱交換器
を通って水頭がバランスする高さまで上がる。蒸発槽へ
継がる給水管はこの水頭よりいくらか低くしであるため
海水は蒸発槽内の蒸発側に滴れ込むことになる。When the seawater suction pipe under atmospheric pressure is opened and the concentrated water discharge pipe and fresh water discharge pipe are closed, the equipment system is brought to a predetermined vacuum state.The seawater is evacuated to O. through which the water head rises to a balanced height. The water supply pipe leading to the evaporation tank is somewhat lower than this water head, so seawater drips into the evaporation side of the evaporation tank.
系内の真空度と海水の温度に応じこの蒸発槽内で水の蒸
発が進む。太陽熱等で加熱した熱媒を用い海水を予熱し
又蒸発槽を加熱することによりより蒸発が促進されるか
、又は倣い真空度での蒸発が実現すること?こなる。Water evaporates in this evaporation tank depending on the degree of vacuum in the system and the temperature of the seawater. Is it possible to accelerate evaporation by preheating the seawater using a heating medium heated by solar heat or by heating the evaporation tank, or is it possible to realize evaporation at a similar degree of vacuum? This will happen.
蒸発槽内では上記のごとく水の蒸発が進む一方で、この
真空と温度では蒸発しきれない濃縮された海水が貯まる
。While water evaporates in the evaporation tank as described above, concentrated seawater that cannot be completely evaporated under this vacuum and temperature accumulates.
蒸発した水蒸気は真空ポンプにひかれて真水凝縮槽へ渣
れてゆくが、この槽内の海水真水熱交換器により冷却さ
れて凝縮し、槽内に貯まる。一度貯まると熱交換器との
凝縮水の直接接触が実現し冷却効果は増すとともに(反
面、蒸発槽への海水の予熱を助ける。)、蒸気が凝縮水
の中に吸い出されるので凝縮を一層助けることになる。The evaporated water vapor is drawn by a vacuum pump and collected in a fresh water condensing tank, where it is cooled by a seawater/fresh water heat exchanger, condensed, and stored in the tank. Once stored, the condensed water comes into direct contact with the heat exchanger, increasing the cooling effect (on the other hand, it helps preheat the seawater to the evaporation tank), and the steam is sucked out into the condensed water, further increasing the condensation. It will help.
このまま真空を一定に保ち続けると海水の供給と水の蒸
発は続き、濃縮された海水と凝縮した真水は貯まり続け
、各々の比重とこの真空度に応じた水頭に達する高さの
液柱ができる。If the vacuum is kept constant, the supply of seawater and water evaporation will continue, and concentrated seawater and condensed fresh water will continue to accumulate, creating a liquid column with a height that reaches a water head corresponding to the specific gravity of each and the degree of vacuum. .
この時点で各々排出管を大気に開放する。ここで系内の
真空に対し、吸い」−げられ続ける海水の水頭と、貯ま
−1た濃縮海水の水頭と、凝縮して貯まった真水の水頭
全てがバランスすること2こなる。At this point, each exhaust pipe is opened to the atmosphere. Here, against the vacuum in the system, the head of seawater that continues to be sucked in, the head of concentrated seawater that has been stored, and the head of fresh water that has been condensed and stored are all balanced.
水中の空気を引き抜(ことが主体となるであろうが真空
ポンプの運転を続は真空を保ち続けると、上記の蒸発、
濃縮、凝縮は継続し、貯まり続ける濃縮海水も凝縮した
真水も水頭のバランスを保とうとして余分な量は全て自
然に排出管から流出してゆ(ことになる。The main purpose is to pull out the air from the water, but if you continue to operate the vacuum pump and maintain the vacuum, the above evaporation,
Condensation and condensation continue, and the excess amount of concentrated seawater that continues to accumulate and condensed fresh water naturally flows out of the discharge pipe in an attempt to maintain the balance of the water head.
E、効果
以上説明したように、この発明によれば、系内て直接動
力を必要とする設備は真空ポンプのみてあり、プロセス
の制御は真空度の維持のためのものに限ることができる
。E. Effects As explained above, according to the present invention, the only equipment in the system that requires direct power is the vacuum pump, and process control can be limited to maintaining the degree of vacuum.
構造がいたって簡単なため設備の建設コスト、運転コス
ト、保守コストとも低く押さえることが可能となり、し
かも容易な制御で安定した連続運転が実現する。Because the structure is extremely simple, construction, operation, and maintenance costs can be kept low, and stable continuous operation can be achieved with easy control.
図は本発明を海水の蒸留、に適用した場合の設備の構成
並びにプロセスの概要を示す。
以下は図中の各部の説明。
1、吸水管(大気圧下の海水を暖い上げる)2、海水真
水熱交換器
3、給水管(海水を蒸発槽へ送る)
4、蒸発槽
5、蒸発側
6、蒲父送り管
7、真水凝縮槽
8、真空ポンプ
9、気水分離器
10、排気管
11、真水排出管
12、a細氷貯槽
13、a細氷排出管
14.熱媒加熱器
15、熱媒送り管
16、加熱コイル
17、熱媒戻り管
八、m水水頭
B 、真水水頭
C0濃縮水水頭
系内の矢印は流体の流れを示す。The figure shows an outline of the equipment configuration and process when the present invention is applied to seawater distillation. Below is an explanation of each part in the diagram. 1. Water suction pipe (heats seawater under atmospheric pressure) 2. Seawater fresh water heat exchanger 3. Water supply pipe (sends seawater to the evaporation tank) 4. Evaporation tank 5. Evaporation side 6. Kamata feed pipe 7. Fresh water condensing tank 8, vacuum pump 9, steam/water separator 10, exhaust pipe 11, fresh water discharge pipe 12, a fine ice storage tank 13, a fine ice discharge pipe 14. Heat medium heater 15, heat medium feed pipe 16, heating coil 17, heat medium return pipe 8, m water head B, fresh water head C0 Arrows in the concentrated water head system indicate fluid flows.
Claims (1)
と大気圧下にある液体を接すると、液体は系内の真空力
で吸いあげられ大気圧との差と液体の比重に応じた液柱
水頭が得られる。 この水頭よりいくらか下がった高さで同一系にある蒸発
槽へ接続するとこの液体はこの槽に流れ込むことになる
。この蒸発槽内で液体を加熱すると系内の真空度と温度
に応じ蒸発が進む。 ここでは同時にこの真空度と温度では蒸発しきれない液
体が残されるが、この液体は元の液体よりも大きい比重
をもつことになり、これを貯めて液柱下部を大気圧に開
放すると元の液体よりも低い水頭でバランスすることに
なる。 他方蒸気は同一系にある真空の源側となっている槽にひ
かれてゆき、同時に冷却すると凝縮する。これを槽内に
貯めると凝縮液の液柱ができる。この液体は元の液体よ
りも小さい比重をもつことになり液柱下部を大気圧に開
放すると元の液体よりも高い水頭でバランスすることに
なる。 このように同一系内に真空の保持、元の液体の供給、蒸
発槽での加熱、蒸発、濃縮、濃縮液の貯蔵そして蒸気の
冷却、凝縮、凝縮槽での凝縮液の貯蔵の組合せを連続さ
せることにより液体の分離が実現し、分離された各々の
液体は一定の真空下で各々の液柱水頭を保ちつつ水頭以
上の高さの貯蔵ができるとその高さ分だけ大気圧とのバ
ランスがくずれ液柱下から自然流出することになる。こ
れら連続プロセスを包含する水頭差を利用した連続真空
蒸留方法。[Claims] When a system in which a constant vacuum (not necessarily a complete vacuum) is kept in contact with a liquid at atmospheric pressure, the liquid is sucked up by the vacuum force within the system, causing a difference in pressure from the atmospheric pressure. The liquid column head is obtained according to the specific gravity of the liquid. If it is connected to an evaporation tank in the same system at a height slightly lower than this water head, this liquid will flow into this tank. When the liquid is heated in this evaporation tank, evaporation progresses depending on the degree of vacuum and temperature within the system. At the same time, liquid that cannot be evaporated at this degree of vacuum and temperature is left behind, but this liquid has a higher specific gravity than the original liquid, and if this is stored and the lower part of the liquid column is released to atmospheric pressure, the original liquid will be restored. It will balance at a lower head than the liquid. On the other hand, the steam is drawn to a tank in the same system that is the source of the vacuum, and is simultaneously cooled and condensed. When this is stored in a tank, a liquid column of condensate is created. This liquid has a lower specific gravity than the original liquid, so when the lower part of the liquid column is opened to atmospheric pressure, it will balance at a higher head than the original liquid. In this way, the combination of maintaining vacuum, supplying the original liquid, heating in the evaporator tank, evaporating, concentrating, storing the concentrate, and cooling the vapor, condensing, and storing the condensate in the condensing tank can be performed continuously in the same system. By doing so, separation of liquids is achieved, and each separated liquid maintains its own liquid column head under a constant vacuum, and if it can be stored at a height above the water head, the balance with atmospheric pressure will be increased by that height. The liquid will collapse and naturally flow out from the bottom of the liquid column. A continuous vacuum distillation method that utilizes a water head difference that includes these continuous processes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13239987A JPS63296801A (en) | 1987-05-28 | 1987-05-28 | Continuous vacuum distillation method using head difference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13239987A JPS63296801A (en) | 1987-05-28 | 1987-05-28 | Continuous vacuum distillation method using head difference |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63296801A true JPS63296801A (en) | 1988-12-02 |
Family
ID=15080483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13239987A Pending JPS63296801A (en) | 1987-05-28 | 1987-05-28 | Continuous vacuum distillation method using head difference |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63296801A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05253405A (en) * | 1992-03-16 | 1993-10-05 | Kanagawa Pref Gov | Distillation apparatus |
WO1998009492A3 (en) * | 1996-08-16 | 1998-11-05 | Sergei Anatolievich Popov | Method for the vacuum distillation of a liquid product and particularly petroleum products, variants and equipment for realising the same |
US6277247B1 (en) * | 1997-05-06 | 2001-08-21 | Evgueni D. Petroukhine | Operation method of a plant for distilling liquid products and plant for realizing the same |
US6346173B2 (en) | 1996-08-16 | 2002-02-12 | Evgueni D. Petroukhine | Method for the vacuum distillation of a liquid product, particularly oil stock, (variants) and system for realizing the same |
US6348134B1 (en) * | 1997-02-14 | 2002-02-19 | Evgueni D. Petroukhine | Plant for the distillation of a liquid product |
JP2013043124A (en) * | 2011-08-24 | 2013-03-04 | Toshihiko Shakouchi | Reduced-pressure boiling type seawater desalination apparatus and method |
CN109078350A (en) * | 2018-09-11 | 2018-12-25 | 山东禹王生态食业有限公司 | A kind of food vacuum flash system |
-
1987
- 1987-05-28 JP JP13239987A patent/JPS63296801A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05253405A (en) * | 1992-03-16 | 1993-10-05 | Kanagawa Pref Gov | Distillation apparatus |
WO1998009492A3 (en) * | 1996-08-16 | 1998-11-05 | Sergei Anatolievich Popov | Method for the vacuum distillation of a liquid product and particularly petroleum products, variants and equipment for realising the same |
US6346173B2 (en) | 1996-08-16 | 2002-02-12 | Evgueni D. Petroukhine | Method for the vacuum distillation of a liquid product, particularly oil stock, (variants) and system for realizing the same |
US6348134B1 (en) * | 1997-02-14 | 2002-02-19 | Evgueni D. Petroukhine | Plant for the distillation of a liquid product |
US6277247B1 (en) * | 1997-05-06 | 2001-08-21 | Evgueni D. Petroukhine | Operation method of a plant for distilling liquid products and plant for realizing the same |
JP2013043124A (en) * | 2011-08-24 | 2013-03-04 | Toshihiko Shakouchi | Reduced-pressure boiling type seawater desalination apparatus and method |
CN109078350A (en) * | 2018-09-11 | 2018-12-25 | 山东禹王生态食业有限公司 | A kind of food vacuum flash system |
CN109078350B (en) * | 2018-09-11 | 2021-04-02 | 山东禹王生态食业有限公司 | Food negative pressure flash distillation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5096543A (en) | Carrier gas apparatus for evaporation and condensation | |
US5816070A (en) | Enhanced lithium bromide absorption cycle water vapor recompression absorber | |
US7228713B2 (en) | Multi-stage vacuum distilling, cooling and freezing processes and apparatuses for solution separation and seawater desalination | |
US7431806B2 (en) | Low energy vacuum distillation method and apparatus | |
US4402793A (en) | Multiple effect thin film distillation system and process | |
US8613839B2 (en) | Water distillation method and apparatus | |
US3956061A (en) | Multi-stage processing and concentration of solutions | |
US6010599A (en) | Compact vacuum distillation device | |
US20060157335A1 (en) | Low energy vacuum distillation method and apparatus | |
WO2006138516A2 (en) | Air heated diffusion driven water purification system | |
SE424544B (en) | Water desalination process | |
US4329204A (en) | Multiple effect thin film distillation system | |
US4460383A (en) | Method and apparatus for reconcentrating liquid absorbent | |
JPS63296801A (en) | Continuous vacuum distillation method using head difference | |
US3300392A (en) | Vacuum distillation including predegasification of distilland | |
US11236931B2 (en) | Absorption refrigeration and air conditioning devices | |
US6506284B1 (en) | Reduced-pressure distillation system | |
US4694658A (en) | Method and equipment for utilization of the freezing heat of water as a source of heat of a heat pump | |
KR840006614A (en) | Spray Crystallization Method and Apparatus | |
WO1991000772A1 (en) | Air conditioning process and apparatus | |
EP0396395A2 (en) | Method and apparatus for simultaneous heat and mass transfer utilizing a plurality of gas streams | |
CN108815869A (en) | Liquid-purifying device | |
JP3712036B2 (en) | Salt water desalination equipment | |
CN100371044C (en) | Solution separation and sea water desalination method | |
JP2004209353A (en) | Antifreeze concentration device |