JP2013042689A - Cancer cell condensation filter - Google Patents

Cancer cell condensation filter Download PDF

Info

Publication number
JP2013042689A
JP2013042689A JP2011181843A JP2011181843A JP2013042689A JP 2013042689 A JP2013042689 A JP 2013042689A JP 2011181843 A JP2011181843 A JP 2011181843A JP 2011181843 A JP2011181843 A JP 2011181843A JP 2013042689 A JP2013042689 A JP 2013042689A
Authority
JP
Japan
Prior art keywords
filter
cancer cell
rectangle
cancer
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181843A
Other languages
Japanese (ja)
Other versions
JP5854456B2 (en
Inventor
Toshishige Uehara
寿茂 上原
Tadashi Matsunaga
是 松永
Tomoko Yoshino
知子 吉野
Masato Hosokawa
正人 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46635485&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013042689(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Hitachi Chemical Co Ltd
Priority to JP2011181843A priority Critical patent/JP5854456B2/en
Priority to CN2012201271223U priority patent/CN202730123U/en
Priority to DE202012003212U priority patent/DE202012003212U1/en
Publication of JP2013042689A publication Critical patent/JP2013042689A/en
Application granted granted Critical
Publication of JP5854456B2 publication Critical patent/JP5854456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration

Abstract

PROBLEM TO BE SOLVED: To provide a filter capable of condensing circulating cancer cells in the blood at a high capture rate while reducing residual blood corpuscle components, particularly, leucocyte.SOLUTION: The cancer cell condensation filter is composed of a metallic substrate having a plurality of through-holes formed therein, the opening shape of the through-holes is one or more shapes selected from the group consisting of ellipse, circle, rectangle, square, and rectangle with rounded corners.

Description

本発明は、血中循環癌細胞(Circulating Tumor Cell、以下、場合により「CTC」という。)を効率良く捕獲できるフィルターに関する。   The present invention relates to a filter that can efficiently capture circulating tumor cells (hereinafter referred to as “CTC”).

癌細胞濃縮の研究・臨床的意義は極めて大きく、血液中の癌細胞を濃縮することができれば、癌の診断に応用することができる。例えば、癌の予後および治療の最も重要な要因は、初診時および処置時における癌細胞の転移の有無である。癌細胞の初期の拡散が末梢血中に及んだ場合、CTCを検出することは、癌の病状進行を判断する有用な手段である。しかしながら、血液中には、赤血球や白血球などの血液成分が圧倒的に多く存在するため、極めて少量のCTCの検出は困難である。   Research and clinical significance of cancer cell concentration is extremely great, and if cancer cells in blood can be concentrated, it can be applied to cancer diagnosis. For example, the most important factor in cancer prognosis and treatment is the presence or absence of cancer cell metastasis at the first visit and treatment. When the initial spread of cancer cells reaches the peripheral blood, detecting CTC is a useful means of determining the progression of the disease state of the cancer. However, since blood components such as red blood cells and white blood cells are overwhelmingly present in blood, it is difficult to detect a very small amount of CTC.

近年、パリレンを用いたフィルターを使用することで、少量のCTCを効率的に検出する方法が提案されている(例えば、特許文献1を参照)。   In recent years, a method for efficiently detecting a small amount of CTC by using a filter using parylene has been proposed (see, for example, Patent Document 1).

国際公開第2010/135603号International Publication No. 2010/135603

転移が始まった一般的な癌患者の場合、血液中100億個の血球細胞あたり、CTCはおよそ1個存在しているに過ぎない。このような極低濃度のCTCを、高効率に捕獲することは非常に困難である。   For a typical cancer patient who has started metastasis, there is only about one CTC per 10 billion blood cells in the blood. It is very difficult to capture such an extremely low concentration CTC with high efficiency.

CTCは、血液中の血球細胞、例えば赤血球や白血球、あるいは血小板などに比べてサイズが一回り大きい。したがって、理論的には、機械的濾過法を適用してこれらの血球成分を除去し、CTCを濃縮することが可能である。しかしながら、白血球の中にはCTCと同じ程度のサイズを有する細胞が存在する。このため、従来のフィルターでは、濃縮したCTCに多数の白血球が混入し、CTCを高精度に検出することが困難な場合があった。   CTC is one size larger than blood cells in blood, such as red blood cells, white blood cells, or platelets. Therefore, theoretically, it is possible to apply these mechanical filtration methods to remove these blood cell components and concentrate the CTC. However, some leukocytes have the same size as CTC. For this reason, in the conventional filter, many white blood cells are mixed in the concentrated CTC, and it may be difficult to detect CTC with high accuracy.

したがって、本発明は、血球成分、特に白血球の残存を低減し、CTCを高い捕獲率で濃縮することができるフィルターを提供することを目的とする。   Therefore, an object of the present invention is to provide a filter that can reduce the residual of blood cell components, particularly leukocytes, and concentrate CTC at a high capture rate.

本発明は、複数の貫通孔が形成された金属基板からなり、貫通孔の開口形状は、楕円、円、長方形、正方形及び角丸長方形からなる群より選択される1種以上の形状である、癌細胞濃縮フィルターを提供する。   The present invention comprises a metal substrate in which a plurality of through holes are formed, and the opening shape of the through holes is one or more shapes selected from the group consisting of an ellipse, a circle, a rectangle, a square, and a rounded rectangle. A cancer cell concentration filter is provided.

上記本発明のフィルターによれば、血球成分の残存を低減し、CTCを高い捕獲率で濃縮することができる。ここで、残存とは、細胞が、フィルターを通過せずにフィルター上に残ることをいう。金属は加工性に優れているため、フィルターの加工精度を高めることができる。これにより、血球成分の残存を低減させ、CTCの高い捕獲率を実現することができる。   According to the filter of the present invention, residual blood cell components can be reduced and CTC can be concentrated at a high capture rate. Here, remaining means that cells remain on the filter without passing through the filter. Since metal is excellent in workability, the processing accuracy of the filter can be increased. Thereby, the residual of blood cell components can be reduced and a high capture rate of CTC can be realized.

また、金属はプラスチックなどの他の材料と比べて剛直であるため、外部から力が加わってもそのサイズや形状が維持される。このため、貫通孔よりも若干大きな血液成分(特に白血球)を変形させて通過させ、高精度の分離・濃縮が可能になると考えられる。白血球の中にはCTCと同じ程度のサイズを有する細胞が存在し、サイズの違いだけではCTCのみを高濃度で区別できない場合がある。しかしながら、白血球は癌細胞よりも変形能が大きいため、吸引や加圧などによる外部の力により、自分より小さな孔を通過することができ、CTCと分離することが可能となる。   In addition, since metal is rigid compared to other materials such as plastic, its size and shape are maintained even when external force is applied. For this reason, it is considered that blood components (particularly white blood cells) that are slightly larger than the through-holes are deformed and allowed to pass therethrough and can be separated and concentrated with high accuracy. Among leukocytes, there are cells having the same size as CTC, and there are cases where only CTC cannot be distinguished at a high concentration only by the difference in size. However, since leukocytes are more deformable than cancer cells, they can pass through smaller pores and can be separated from CTCs by an external force such as suction or pressurization.

また、上記の貫通孔の開口形状が楕円、円、長方形、正方形、角丸長方形及び多角形からなる群より選択される1種以上の形状であることにより、細胞が貫通孔に目詰まりしにくく、血液中の血球細胞の透過性を高め、CTCの高い捕獲率を実現することができる。   Moreover, since the opening shape of said through-hole is 1 or more types selected from the group which consists of an ellipse, a circle | round | yen, a rectangle, a square, a rounded rectangle, and a polygon, a cell does not clog a through-hole easily. The permeability of blood cells in the blood can be increased, and a high capture rate of CTC can be realized.

上記の金属基板は、金、銀、銅、アルミニウム、タングステン、ニッケル、クロム、ステンレス及びこれらの合金からなる群より選択される少なくとも1種の金属を主成分とするものであることが好ましい。   The metal substrate is preferably composed mainly of at least one metal selected from the group consisting of gold, silver, copper, aluminum, tungsten, nickel, chromium, stainless steel, and alloys thereof.

これらの金属は加工性に優れており、フィルターの加工精度を更に高めることができる。これにより、血球成分の残存を低減させ、更に高いCTCの捕獲率を実現することができる。   These metals are excellent in workability and can further improve the processing accuracy of the filter. As a result, the remaining blood cell components can be reduced, and a higher CTC capture rate can be realized.

上記の貫通孔の開口形状は、短辺の長さが5.0〜15.0μmの長方形又は角丸長方形であることが好ましい。角丸長方形とは、2つの等しい長さの長辺と2つの半円形からなる形状である。貫通孔の開口形状が、上記のサイズの長方形又は角丸長方形であることにより、フィルターの目詰まりを更に効率よく防止することができる。   The opening shape of the through hole is preferably a rectangle having a short side length of 5.0 to 15.0 μm or a rounded rectangle. A rounded rectangle is a shape composed of two long sides of equal length and two semicircles. Since the opening shape of the through hole is a rectangle or a rounded rectangle of the above size, the clogging of the filter can be prevented more efficiently.

上記の貫通孔の平均開口率は0.1〜50%であることが好ましい。平均開口率がこの範囲にあることにより、更に高いCTCの捕獲率を実現することができる。   The average aperture ratio of the through holes is preferably 0.1 to 50%. When the average aperture ratio is within this range, a higher CTC capture rate can be realized.

上記のフィルターの厚さは、3〜100μmであることが好ましい。この範囲の膜圧のフィルターは、取り扱いが容易であり、精密加工にも適している。   The thickness of the filter is preferably 3 to 100 μm. A filter with a membrane pressure in this range is easy to handle and suitable for precision machining.

上記のフィルターは末梢血液、腹水又は胸水中の癌細胞用であることが好ましく、小細胞肺癌又は非小細胞肺癌の癌細胞用であることが好ましい。   The filter is preferably for cancer cells in peripheral blood, ascites or pleural effusion, and preferably for cancer cells of small cell lung cancer or non-small cell lung cancer.

上記のフィルターの構造は、これらの癌細胞の濃縮に特に適している。   The filter structure described above is particularly suitable for the enrichment of these cancer cells.

本発明によれば、白血球の残存を低減し、CTCを高い捕獲率で濃縮することが可能なフィルターを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the filter which can reduce the residual of leukocytes and can concentrate CTC with a high capture rate can be provided.

(A)は、フィルターの一実施形態を示す概略図である。(B)は、一実施形態のフィルターの貫通孔の上面図である。(A) is the schematic which shows one Embodiment of a filter. (B) is a top view of the through hole of the filter of one embodiment.

以下、場合により図面を参照しながら、好適な実施形態を説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。また、図面は理解を容易にするため一部を誇張して描いており、寸法比率は説明のものとは必ずしも一致しない。   Hereinafter, preferred embodiments will be described with reference to the drawings as the case may be. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the drawings are exaggerated for easy understanding, and the dimensional ratios do not necessarily match those described.

図1(A)は、フィルターの一実施形態を示す概略図である。フィルター100は、複数の貫通孔10が形成された基板20からなる。貫通孔10の開口形状は角丸長方形である。貫通孔10の配置は、図1(A)のような整列配置でもよく、列毎に配置がずれた千鳥配置でもよく、任意に配置されたランダム配置であってもよい。   FIG. 1A is a schematic view showing an embodiment of a filter. The filter 100 includes a substrate 20 in which a plurality of through holes 10 are formed. The opening shape of the through hole 10 is a rounded rectangle. The arrangement of the through holes 10 may be an arrangement as shown in FIG. 1A, a zigzag arrangement in which the arrangement is shifted for each column, or a random arrangement arbitrarily arranged.

図1(B)は、上記実施形態のフィルターの貫通孔10の上面図である。貫通孔10の開口形状は、短辺がa、長辺がbである長方形の短辺に隣接して、半径がcである2つの半円形が結合した形状である。一実施形態において、a、b、cはそれぞれ8、22及び4μmである。   FIG. 1B is a top view of the through hole 10 of the filter of the above embodiment. The opening shape of the through-hole 10 is a shape in which two semicircles having a radius of c are adjacent to a rectangular short side having a short side of a and a long side of b. In one embodiment, a, b and c are 8, 22 and 4 μm, respectively.

基板(フィルター)の材質は金属である。金属としては、金、銀等の貴金属、銅、アルミニウム、タングステン、ニッケル、クロム等の卑金属、及びこれらの金属の合金が例示できるがこれらに限定するものではない。金属は単体で用いてもよく、機能性を付与するために他の金属との合金又は金属の酸化物として用いてもよい。価格や入手の容易さの観点から、ニッケル、銅及びこれらを主成分とする金属を用いることが好ましい。ここで、主成分とは、上記基板を形成する材料のうち50重量%以上を占める成分をいう。これらの金属にフォトリソグラフィーなどの方法を使って、貫通孔を形成することができる。   The material of the substrate (filter) is metal. Examples of the metal include, but are not limited to, noble metals such as gold and silver, base metals such as copper, aluminum, tungsten, nickel and chromium, and alloys of these metals. The metal may be used alone, or may be used as an alloy with another metal or an oxide of a metal in order to impart functionality. From the viewpoint of price and availability, it is preferable to use nickel, copper, and metals containing these as main components. Here, the main component refers to a component occupying 50% by weight or more of the material forming the substrate. Through holes can be formed in these metals using a method such as photolithography.

貫通孔の開口形状として、楕円、円、長方形、正方形、角丸長方形、多角形等が例示できる。効率良く癌細胞を捕獲できる観点からは、円、長方形又は角丸長方形が好ましい。また、フィルターの目詰まり防止の観点からは、長方形又は角丸長方形が特に好ましい。   Examples of the opening shape of the through hole include an ellipse, a circle, a rectangle, a square, a rounded rectangle, and a polygon. From the viewpoint of efficiently capturing cancer cells, a circle, rectangle, or rounded rectangle is preferable. Further, from the viewpoint of preventing clogging of the filter, a rectangle or a rounded rectangle is particularly preferable.

一般的なCTCの大きさは直径10μm以上である。ここで、細胞の直径とは、顕微鏡で観察した場合の細胞の輪郭上の任意の2点を結ぶ直線のうち最も長い直線の長さをいう。そこで、血球成分の透過性とCTCの捕捉性能の観点から、貫通孔の平均孔径は、5〜15μmであることが好ましく、6〜12μmであることがより好ましく、7〜10μmであることが特に好ましい。本明細書において、開口形状が楕円、長方形、多角形等の円以外の形状における孔径とは、それぞれの貫通孔を通過できる球の直径の最大値とする。貫通孔の孔径は、例えば開口形状が長方形又は角丸長方形の場合には、その長方形又は角丸長方形の短辺の長さとなり、開口形状が多角形の場合には、その多角形の内接円の直径となる。開口形状が長方形や角丸長方形の場合、CTCや白血球が貫通孔に補足された場合であっても、開口部において、開口形状の長辺方向に隙間ができる。この隙間を通して液体が通過可能であるため、フィルターの目詰まりを防止することが可能になる。   A typical CTC has a diameter of 10 μm or more. Here, the diameter of a cell means the length of the longest straight line connecting two arbitrary points on the outline of the cell when observed with a microscope. Therefore, from the viewpoint of blood cell component permeability and CTC capture performance, the average pore diameter of the through holes is preferably 5 to 15 μm, more preferably 6 to 12 μm, and particularly preferably 7 to 10 μm. preferable. In this specification, the hole diameter when the opening shape is other than a circle such as an ellipse, rectangle, or polygon is the maximum value of the diameter of a sphere that can pass through each through hole. For example, when the opening shape is a rectangle or a rounded rectangle, the diameter of the through hole is the length of the short side of the rectangle or the rounded rectangle. The diameter of the circle. When the opening shape is a rectangle or a rounded rectangle, a gap is formed in the long side direction of the opening shape even when CTC or white blood cells are captured by the through-hole. Since the liquid can pass through this gap, it is possible to prevent clogging of the filter.

フィルターの貫通孔の平均開口率は0.1〜50%が好ましく、0.5〜40%がより好ましく、1〜30%が特に好ましく、1〜10%が最も好ましい。ここで、開口率とは、フィルター上の所定の領域において、当該領域の面積に対する貫通孔が占める面積をいう。平均開口率とは、フィルター全体の面積に対する貫通孔が占める面積をいう。平均開口率は、目詰まり防止の観点から、大きいほど好ましいが、50%を超えると、フィルターの強度が低下したり、加工が困難になる場合がある。また0.1%より小さいと目詰まりを発生しやすくなるため、フィルターの癌細胞濃縮性能が低下する場合がある。   The average aperture ratio of the through holes of the filter is preferably 0.1 to 50%, more preferably 0.5 to 40%, particularly preferably 1 to 30%, and most preferably 1 to 10%. Here, the aperture ratio refers to the area occupied by the through hole with respect to the area of the predetermined area on the filter. The average aperture ratio refers to the area occupied by the through holes with respect to the area of the entire filter. The average aperture ratio is preferably as large as possible from the viewpoint of preventing clogging. However, if it exceeds 50%, the strength of the filter may be lowered, or processing may be difficult. Moreover, since it will become easy to generate | occur | produce clogging if it is less than 0.1%, the cancer cell concentration performance of a filter may fall.

フィルターの厚さは3〜100μmであることが好ましく、5〜50μmであることがより好ましく、10〜30μmであることが特に好ましい。基板の厚さが3μmより薄いと、フィルターの強度が低下し、取り扱いが困難になる場合がある。また、基板の厚さが100μmを超えると、必要以上の材料を消費したり、加工に長時間かかったりするため、コスト的に不利になったり、精密加工そのものが困難になる場合がある。   The thickness of the filter is preferably 3 to 100 μm, more preferably 5 to 50 μm, and particularly preferably 10 to 30 μm. If the thickness of the substrate is less than 3 μm, the strength of the filter may be reduced and handling may be difficult. On the other hand, if the thickness of the substrate exceeds 100 μm, more materials than necessary are consumed and processing takes a long time, which may be disadvantageous in cost and may make precision processing itself difficult.

続いて、本実施形態のフィルターの製造方法を説明する。フィルターの製造方法は特に制限されず、例えば、フォトリソグラフィー法を利用して、エッチングや電気めっきを施すことによる製造方法が挙げられる。フォトリソグラフィー法等を利用した製造方法を以下に説明する。まず、ステンレス等からなる支持体上に感光性のレジストフィルム(感光層)を貼り合わせる。次に、フィルターの貫通孔の開口形状のパターンを有するマスクを感光層上に固定する。続いて、マスク上から光(活性光線)を照射する。光照射後、感光層上に支持体がある場合にはこれを除去し、アルカリ性水溶液、水系現像液及び有機溶剤等の現像液によるウエット現像、又はドライ現像等で未露光部を除去することによって現像し、レジストパターンを形成する。続いて、現像されたレジストパターンをマスクとして、マスクされずに露出している基板上にめっきを行う。めっきの方法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどが挙げられる。めっき処理後、めっき層を支持体及び感光層から剥離すると、めっき層が得られる。このめっき層がフィルターである。得られたフィルターの表面を粗化処理してもよい。粗化処理の方法としては、酸性又は塩基性水溶液等による化学エッチング、サンドブラスト等の物理的処理等が挙げられる。   Then, the manufacturing method of the filter of this embodiment is demonstrated. The manufacturing method of the filter is not particularly limited, and examples thereof include a manufacturing method by performing etching or electroplating using a photolithography method. A manufacturing method using a photolithography method or the like will be described below. First, a photosensitive resist film (photosensitive layer) is bonded onto a support made of stainless steel or the like. Next, a mask having a pattern of the opening shape of the through hole of the filter is fixed on the photosensitive layer. Subsequently, light (active light) is irradiated from above the mask. After light irradiation, if there is a support on the photosensitive layer, it is removed and the unexposed part is removed by wet development with a developer such as an alkaline aqueous solution, aqueous developer and organic solvent, or dry development. Development is performed to form a resist pattern. Subsequently, plating is performed on the exposed substrate without being masked using the developed resist pattern as a mask. Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating. After the plating treatment, the plating layer is obtained by peeling the plating layer from the support and the photosensitive layer. This plating layer is a filter. You may roughen the surface of the obtained filter. Examples of the roughening treatment include chemical treatment with an acidic or basic aqueous solution, physical treatment such as sandblasting, and the like.

一実施形態において、フィルターを流路内に組み込み、流路に血液を導入することによりCTCを濃縮することができる。流路への血液の導入には、流路の入り口方向からの加圧を用いる方法、流路の出口方向からの減圧を用いる方法、ぺリスタルティックポンプを使用する方法等が例示できる。また、使用するフィルターの面積は、例えば1mLの血液からCTCを濃縮する場合、1.0〜10.0cmが適している。 In one embodiment, the CTC can be concentrated by incorporating a filter in the channel and introducing blood into the channel. Examples of the introduction of blood into the flow path include a method using pressurization from the flow path entrance direction, a method using pressure reduction from the flow path exit direction, and a method using a peristaltic pump. In addition, the area of the filter to be used is suitably 1.0 to 10.0 cm 2 when CTC is concentrated from 1 mL of blood, for example.

(実施例1)
(フィルターの作製)
レジストフィルム(フォテックH−Y920、20μm厚、日立化成工業株式会社製)を10mm角のステンレス板(SUS304、仕上げ3/4H、厚さ100μm、日新製鋼(株)製)の片面に貼り合わせた。貼り合わせの条件は、ロール温度105℃、圧力0.5MPa、ラインスピード1m/分であった。次いで、光の透過部が8×30μmの角丸長方形で、そのピッチが短軸方向60μm、長軸方向60μmになるように形成したネガフィルムを、ステンレス板のレジストフィルムを貼り合わせた面上に静置した。この角丸長方形は、図1(B)に示す形状であり、図1(B)におけるa、b及びcがそれぞれ8、22及び4μmである形状である。ここで、長軸方向とは、角丸長方形の長辺方向を指し、短軸方向とは、長軸方向に直交する方向を指す。本実施例においては、同一の方向を向いた角丸長方形が、長軸方向及び短軸方向に一定のピッチで整列したネガフィルムを用いた。
Example 1
(Preparation of filter)
A resist film (Photec H-Y920, 20 μm thickness, manufactured by Hitachi Chemical Co., Ltd.) was bonded to one side of a 10 mm square stainless steel plate (SUS304, finishing 3 / 4H, thickness 100 μm, manufactured by Nisshin Steel Co., Ltd.). . The bonding conditions were a roll temperature of 105 ° C., a pressure of 0.5 MPa, and a line speed of 1 m / min. Next, a negative film formed so that the light transmission part is a rounded rectangle of 8 × 30 μm and the pitch is 60 μm in the short axis direction and 60 μm in the long axis direction is placed on the surface where the resist film of the stainless steel plate is bonded. Left to stand. The rounded rectangle is a shape shown in FIG. 1B, and a, b, and c in FIG. 1B are 8, 22, and 4 μm, respectively. Here, the major axis direction refers to the long side direction of the rounded rectangle, and the minor axis direction refers to a direction orthogonal to the major axis direction. In this example, a negative film in which rounded rectangles facing in the same direction were aligned at a constant pitch in the major axis direction and the minor axis direction was used.

続いて、600mmHg以下の真空下において、ネガフィルムを載置したステンレス板の上部から、紫外線照射装置を用いて、紫外線を100mJ/cm照射した。続いて、1%炭酸ナトリウム水溶液で現像を行い、ステンレス板の上にレジスト層を形成した。このレジストフィルム付き基材に、pHが4.5になるように調整したニッケルめっき液中50℃で約20分間ニッケルめっきを実施した。ニッケルめっき液の組成を表1に示す。 Subsequently, under a vacuum of 600 mmHg or less, 100 mJ / cm 2 of ultraviolet rays were irradiated from above the stainless steel plate on which the negative film was placed using an ultraviolet irradiation device. Subsequently, development was performed with a 1% aqueous sodium carbonate solution to form a resist layer on the stainless steel plate. The substrate with the resist film was subjected to nickel plating at 50 ° C. for about 20 minutes in a nickel plating solution adjusted to have a pH of 4.5. Table 1 shows the composition of the nickel plating solution.

Figure 2013042689
Figure 2013042689

得られたニッケルめっき層を基材のステンレス板から剥離し、レジストフィルムをアルカリ剥離液で剥離し、厚さが20μm、平均開口率が6.7%である実施例1のフィルターを得た。   The obtained nickel plating layer was peeled off from the stainless steel plate of the base material, and the resist film was peeled off with an alkali peeling solution to obtain a filter of Example 1 having a thickness of 20 μm and an average aperture ratio of 6.7%.

(実施例2)
直径8μmの円形の光の透過部が、10000個/cmの密度で等間隔に配置するように形成したネガフィルムを使用してレジスト層を形成した以外は実施例1と同様にして、厚さが20μm、平均開口率が1.4%である実施例2のフィルターを作製した。
(Example 2)
Except that a resist layer was formed using a negative film formed so that circular light transmission portions having a diameter of 8 μm were arranged at equal intervals at a density of 10,000 / cm 2 , A filter of Example 2 having a thickness of 20 μm and an average aperture ratio of 1.4% was produced.

(小細胞肺癌細胞株の調製)
小細胞肺癌細胞株であるNCI−H69細胞を10%ウシ胎児血清(FBS)を含むRPMI−1640培地にて、37℃・5%CO条件下で静置培養した。トリプシン処理により培養皿から細胞を剥離させて回収し、リン酸緩衝液(Phosphate buffered saline、PBS)を用いて洗浄した後に、10μM CellTracker Red CMTPX(ライフテクノロジーズジャパン株式会社)にて37℃、30分間静置させる事でNCI−H69細胞を染色した。その後、PBSにて洗浄し、トリプシン処理にて37℃にて3分間静置させることで細胞塊を解離させた。その後、培地にてトリプシン処理を停止させ、PBSにて洗浄後、2mMEDTA及び0.5%ウシ血清アルブミン(BSA)を含むPBS(以下「2mM EDTA−0.5% BSA−PBS」という。)に懸濁した。
(Preparation of small cell lung cancer cell lines)
NCI-H69 cells, which are small cell lung cancer cell lines, were statically cultured in an RPMI-1640 medium containing 10% fetal bovine serum (FBS) at 37 ° C. and 5% CO 2 . Cells were detached from the culture dish by trypsin treatment and recovered, washed with phosphate buffered saline (PBS), and then washed with 10 μM CellTracker Red CMTPX (Life Technologies Japan, Inc.) at 37 ° C. for 30 minutes. NCI-H69 cells were stained by allowing to stand. Thereafter, the cells were washed with PBS and allowed to stand at 37 ° C. for 3 minutes by trypsin treatment to dissociate the cell mass. Thereafter, the trypsin treatment is stopped in the medium, washed with PBS, and then washed with PBS containing 2 mM EDTA and 0.5% bovine serum albumin (BSA) (hereinafter referred to as “2 mM EDTA-0.5% BSA-PBS”). Suspended.

(血液サンプル中のCTCの濃縮)
実施例のフィルターをセットしたCTC回収装置を組み立てた。CTC回収装置は、血液サンプルや試薬を導入するための流路を備えており、流路の入り口は、シリンジを加工して作製したリザーバーに接続した。このリザーバーに、血液サンプルや試薬を順次投入していくことで、CTCの捕捉、染色、洗浄などの操作を連続的に容易に行えるようにした。
(Concentration of CTC in blood sample)
A CTC recovery device in which the filter of the example was set was assembled. The CTC recovery device includes a flow channel for introducing a blood sample and a reagent, and the inlet of the flow channel is connected to a reservoir produced by processing a syringe. By sequentially putting blood samples and reagents into this reservoir, operations such as CTC capture, staining, and washing can be performed easily and continuously.

CTC回収装置に血液サンプルを導入して癌細胞を濃縮した。血液サンプルとして、エチレンジアミン四酢酸ジナトリウム(EDTA)含有真空採血管に採血した健常者血液に、血液1mLあたり1000個の癌細胞を混合させたサンプルを用いた。癌細胞としては、上記のヒト小細胞肺癌細胞株NCI−H69を使用した。   A blood sample was introduced into the CTC recovery device to concentrate the cancer cells. As a blood sample, a sample obtained by mixing 1000 cancer cells per mL of blood into blood of a healthy person collected in a vacuum blood collection tube containing disodium ethylenediaminetetraacetate (EDTA) was used. As a cancer cell, the above-mentioned human small cell lung cancer cell line NCI-H69 was used.

まず、リザーバーに、2mM EDTA−0.5% BSA−PBS 1mLを導入し、フィルター上を満たした。続いて、ペリスタルティックポンプを使用して流速200μL/分で送液を開始した。約5分後、リザーバーに1mLの血液サンプルを導入した。これにより、癌細胞をフィルター上に捕捉した。   First, 1 mL of 2 mM EDTA-0.5% BSA-PBS was introduced into the reservoir to fill the filter. Subsequently, liquid feeding was started at a flow rate of 200 μL / min using a peristaltic pump. After about 5 minutes, a 1 mL blood sample was introduced into the reservoir. This captured the cancer cells on the filter.

5分後、血球成分を洗浄するために、リザーバーに2mLの2mM EDTA−0.5% BSA−PBSを導入した。   After 5 minutes, 2 mL of 2 mM EDTA-0.5% BSA-PBS was introduced into the reservoir to wash blood cell components.

さらに10分後、ポンプ流速を20μL/分に変更し、リザーバーに600μLの細胞染色液(Hoechst 33342 0.5μg/mL)を導入し、フィルター上の癌細胞又は白血球を蛍光染色した。フィルター上に捕捉された細胞に対して30分間染色を行った後、リザーバーに1mLの2mM EDTA−0.5% BSA−PBSを導入して細胞の洗浄を行った。   After another 10 minutes, the pump flow rate was changed to 20 μL / min, 600 μL of cell staining solution (Hoechst 33342 0.5 μg / mL) was introduced into the reservoir, and the cancer cells or leukocytes on the filter were fluorescently stained. The cells captured on the filter were stained for 30 minutes, and then 1 mL of 2 mM EDTA-0.5% BSA-PBS was introduced into the reservoir to wash the cells.

続いて、コンピューター制御式電動ステージ及び冷却デジタルカメラ(DP70、オリンパス株式会社)を装備した蛍光顕微鏡(BX61、オリンパス株式会社)を使用してフィルターを観察し、フィルター上の癌細胞及び白血球の数をカウントした。Hoechst 33342及びCellTracker Red CMTPX由来の蛍光を観察するために、それぞれWU及びWIGフィルター(オリンパス株式会社)を用いて画像を取得した。画像取得及び解析ソフトウェアにはLumina Vision(三谷商事株式会社)を用いた。結果を表2に示す。実験は各3回行い、結果は平均値±標準偏差で表記した。癌細胞回収率(捕獲率)は、次の計算式により計算した。
癌細胞回収率(%)=フィルター上に回収された癌細胞数/血液サンプルに混合した癌細胞数×100
Subsequently, the filter was observed using a fluorescence microscope (BX61, Olympus Corporation) equipped with a computer-controlled electric stage and a cooling digital camera (DP70, Olympus Corporation), and the number of cancer cells and white blood cells on the filter was determined. I counted. In order to observe fluorescence derived from Hoechst 33342 and CellTracker Red CMTPX, images were acquired using WU and WIG filters (Olympus Corporation), respectively. Lumina Vision (Mitani Corporation) was used as image acquisition and analysis software. The results are shown in Table 2. Each experiment was performed three times, and the results were expressed as mean ± standard deviation. The cancer cell recovery rate (capture rate) was calculated by the following formula.
Cancer cell recovery rate (%) = number of cancer cells recovered on filter / number of cancer cells mixed in blood sample × 100

Figure 2013042689
Figure 2013042689

適切な開口形状を有する金属フィルターを用いることによって、癌細胞に混入して回収される白血球の数が減少した。また癌細胞の回収率も向上した。NCI−H69株以外の癌細胞を用いても同様の結果が得られた。円形よりも角丸長方形の開口形状のフィルターのほうが、残存白血球数がより少なく、癌細胞の回収率も高かった。   By using a metal filter having an appropriate opening shape, the number of leukocytes collected and collected in cancer cells was reduced. Also, the recovery rate of cancer cells was improved. Similar results were obtained using cancer cells other than the NCI-H69 strain. The rounded rectangular filter had a smaller number of residual white blood cells and a higher recovery rate of cancer cells than the round shape.

10…貫通孔、20…基板、30…面、100…フィルター、a…短辺、b…長辺、c…半径。   DESCRIPTION OF SYMBOLS 10 ... Through-hole, 20 ... Board | substrate, 30 ... Surface, 100 ... Filter, a ... Short side, b ... Long side, c ... Radius.

Claims (7)

複数の貫通孔が形成された金属基板からなり、前記貫通孔の開口形状は、楕円、円、長方形、正方形、角丸長方形及び多角形からなる群より選択される1種以上の形状である、癌細胞濃縮フィルター。   It consists of a metal substrate in which a plurality of through holes are formed, and the opening shape of the through holes is one or more shapes selected from the group consisting of an ellipse, a circle, a rectangle, a square, a rounded rectangle and a polygon. Cancer cell concentration filter. 前記金属基板は、金、銀、銅、アルミニウム、タングステン、ニッケル、クロム、ステンレス及びこれらの合金からなる群より選択される少なくとも1種の金属を主成分とするものである、請求項1に記載の癌細胞濃縮フィルター。   2. The metal substrate according to claim 1, wherein the metal substrate is mainly composed of at least one metal selected from the group consisting of gold, silver, copper, aluminum, tungsten, nickel, chromium, stainless steel, and alloys thereof. Cancer cell concentration filter. 前記貫通孔の開口形状は、短辺の長さが5.0〜15.0μmの長方形又は角丸長方形である、請求項1又は2に記載の癌細胞濃縮フィルター。   The cancer cell concentration filter according to claim 1 or 2, wherein the opening shape of the through-hole is a rectangle or a rounded rectangle having a short side length of 5.0 to 15.0 µm. 前記貫通孔の平均開口率は0.1〜50%である、請求項1〜3のいずれか一項に記載の癌細胞濃縮フィルター。   The cancer cell concentration filter according to any one of claims 1 to 3, wherein an average opening ratio of the through holes is 0.1 to 50%. 厚さは3〜100μmである、請求項1〜4のいずれか一項に記載の癌細胞濃縮フィルター。   The cancer cell concentration filter according to any one of claims 1 to 4, wherein the thickness is 3 to 100 µm. 末梢血液、腹水又は胸水中の癌細胞用である、請求項1〜5のいずれか一項に記載の癌細胞濃縮フィルター。   The cancer cell concentration filter according to any one of claims 1 to 5, which is used for cancer cells in peripheral blood, ascites or pleural effusion. 小細胞肺癌又は非小細胞肺癌の癌細胞用である、請求項1〜6のいずれか一項に記載の癌細胞濃縮フィルター。   The cancer cell concentration filter according to any one of claims 1 to 6, which is used for cancer cells of small cell lung cancer or non-small cell lung cancer.
JP2011181843A 2011-08-23 2011-08-23 Cancer cell concentration filter Active JP5854456B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011181843A JP5854456B2 (en) 2011-08-23 2011-08-23 Cancer cell concentration filter
CN2012201271223U CN202730123U (en) 2011-08-23 2012-03-29 Cancer cell concentration filter
DE202012003212U DE202012003212U1 (en) 2011-08-23 2012-03-29 Filter for the accumulation of cancer cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181843A JP5854456B2 (en) 2011-08-23 2011-08-23 Cancer cell concentration filter

Publications (2)

Publication Number Publication Date
JP2013042689A true JP2013042689A (en) 2013-03-04
JP5854456B2 JP5854456B2 (en) 2016-02-09

Family

ID=46635485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181843A Active JP5854456B2 (en) 2011-08-23 2011-08-23 Cancer cell concentration filter

Country Status (3)

Country Link
JP (1) JP5854456B2 (en)
CN (1) CN202730123U (en)
DE (1) DE202012003212U1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103144A1 (en) * 2012-01-05 2013-07-11 日立化成株式会社 Cell trapping device
WO2013172265A1 (en) * 2012-05-14 2013-11-21 日立化成株式会社 Cancer cell-trapping metal filter, cancer cell-trapping metal filter sheet, cancer cell-trapping device, and manufacturing methods therefor
WO2014162810A1 (en) 2013-04-04 2014-10-09 日立化成株式会社 Filter for capturing biological substance
WO2015012315A1 (en) 2013-07-24 2015-01-29 愛知県 Device for isolating peripheral circulating tumor cells or rare cells, and method for isolating peripheral circulating tumor cells or rare cells
WO2015046557A1 (en) 2013-09-30 2015-04-02 積水メディカル株式会社 Device for concentration and separation of circulating tumor cells, and method for concentration and separation of circulating tumor cells
JP2015087382A (en) * 2013-09-25 2015-05-07 アークレイ株式会社 Method for processing blood sample
USD746467S1 (en) 2014-04-04 2015-12-29 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD747487S1 (en) 2014-04-04 2016-01-12 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD748267S1 (en) 2014-04-04 2016-01-26 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD748801S1 (en) 2014-04-04 2016-02-02 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
WO2016017756A1 (en) * 2014-07-30 2016-02-04 日立化成株式会社 Method for capturing rare cells in blood
WO2016017755A1 (en) * 2014-07-30 2016-02-04 日立化成株式会社 Method for capturing rare cells in blood
USD750785S1 (en) 2014-04-04 2016-03-01 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
JP2016032469A (en) * 2014-07-30 2016-03-10 日立化成株式会社 In-blood rare cell capturing method
JP2016052300A (en) * 2014-09-03 2016-04-14 日立化成株式会社 Biological material capture system
EP3072578A1 (en) 2015-03-23 2016-09-28 ARKRAY, Inc. Method for isolating or detecting rare cell
JP2016180753A (en) * 2015-03-23 2016-10-13 アークレイ株式会社 Method of isolating or detecting rare cells
JP2016195986A (en) * 2015-04-06 2016-11-24 富士フイルム株式会社 Filter medium, filter unit and cell sheet
KR20170000258A (en) 2015-06-23 2017-01-02 국립암센터 Nanostructure for Detecting cell-free DNA using Conductive Polymer and the Use thereof
JP2017036511A (en) * 2011-10-14 2017-02-16 日立化成株式会社 Metal filter, and method for concentrating cancer cell in blood
WO2017142145A1 (en) * 2016-02-17 2017-08-24 삼성전자 주식회사 Filter and device comprising same
WO2017159367A1 (en) * 2016-03-18 2017-09-21 株式会社村田製作所 Metallic porous membrane, and classifying method and classifying device using same
KR101790258B1 (en) * 2015-08-05 2017-10-26 주식회사 싸이토젠 Cell collecting filter and cell collecting device having the same
WO2018003476A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Cell-suspension membrane separation method and cell culture device
WO2018030547A1 (en) 2016-08-12 2018-02-15 日立化成株式会社 Detection method of circulating tumor cells and pretreatment method for detecting circulating tumor cells
WO2018061674A1 (en) 2016-09-30 2018-04-05 富士フイルム株式会社 Method for acquiring base sequence information about single cells derived from vertebrate animals
JP2018113980A (en) * 2016-03-18 2018-07-26 株式会社村田製作所 Filter for filtering nucleated cells and filtering method using the same
WO2018211706A1 (en) * 2017-05-19 2018-11-22 日立化成株式会社 Rare cell capturing method
JP2020516890A (en) * 2017-04-14 2020-06-11 ヴェンタナ メディカル システムズ, インク. Separation based on size of dissociated fixed tissue
CN113546232A (en) * 2020-04-24 2021-10-26 京东方科技集团股份有限公司 Therapeutic device and method for preparing cell filter membrane
CN113841037A (en) * 2019-05-24 2021-12-24 株式会社奥极科技 Target cell capturing filter and target cell capturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031903A4 (en) 2013-08-09 2017-04-26 Hitachi Chemical Co., Ltd. Cell trapping device, cell trapping system, and production method for cell trapping device
US20170137769A1 (en) * 2014-03-28 2017-05-18 Hitachi Chemical Company, Ltd. Cell capturing apparatus, cell capturing device provided with pre-processing part, and pre-processing part
US20170199197A1 (en) 2014-05-29 2017-07-13 Aba Gmbh & Co. Kg Diagnosis of cancerous conditions
CN108025238B (en) * 2016-08-30 2020-10-30 株式会社村田制作所 Filter filter, filter device, and filtering method using filter
WO2018159554A1 (en) * 2017-03-01 2018-09-07 株式会社村田製作所 Filter
JP6249124B1 (en) * 2017-04-26 2017-12-20 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
DE102017110042B4 (en) * 2017-05-10 2023-12-07 Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel Organism cultivation device for cultivating unicellular and multicellular organisms and method
US20180356398A1 (en) * 2017-06-09 2018-12-13 Fujifilm Corporation Living tissue model device, vascular wall model, vascular wall model device and method of evaluating test substance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538509A (en) * 2005-04-21 2008-10-30 カリフォルニア インスティチュート オブ テクノロジー Use of parylene membrane filter
WO2009016842A1 (en) * 2007-08-01 2009-02-05 National University Corporation Tokyo University Of Agriculture And Technology Microfluidicdevice for trapping single cell
JP2010520446A (en) * 2007-03-02 2010-06-10 スミス アンド ネフュー ピーエルシー Filter cleaning apparatus and method with ultrasonic, backwash and filter motion during biological sample filtration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135603A2 (en) 2009-05-20 2010-11-25 California Institute Of Technology Method for cancer detection, diagnosis and prognosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538509A (en) * 2005-04-21 2008-10-30 カリフォルニア インスティチュート オブ テクノロジー Use of parylene membrane filter
JP2010520446A (en) * 2007-03-02 2010-06-10 スミス アンド ネフュー ピーエルシー Filter cleaning apparatus and method with ultrasonic, backwash and filter motion during biological sample filtration
WO2009016842A1 (en) * 2007-08-01 2009-02-05 National University Corporation Tokyo University Of Agriculture And Technology Microfluidicdevice for trapping single cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015024138; Analytical Chemistry Vol.82, No.15, 2010, p.6629-6635 *
JPN6015024141; Analytical Chemistry Vol.83, 201104, p.3648-3654 *
JPN6015024143; Analytical Chemistry Vol.81, No.13, 2009, p.5308-5313 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10258906B2 (en) 2011-10-14 2019-04-16 Hitachi Chemical Company, Ltd. Metal filter and method for concentrating cancer cells
JP2017036511A (en) * 2011-10-14 2017-02-16 日立化成株式会社 Metal filter, and method for concentrating cancer cell in blood
WO2013103144A1 (en) * 2012-01-05 2013-07-11 日立化成株式会社 Cell trapping device
WO2013172265A1 (en) * 2012-05-14 2013-11-21 日立化成株式会社 Cancer cell-trapping metal filter, cancer cell-trapping metal filter sheet, cancer cell-trapping device, and manufacturing methods therefor
US10246684B2 (en) 2012-05-14 2019-04-02 Hitachi Chemical Company, Ltd. Cancer cell-trapping metal filter, cancer cell-trapping metal filter sheet, cancer cell-trapping device, and manufacturing methods therefor
WO2014162810A1 (en) 2013-04-04 2014-10-09 日立化成株式会社 Filter for capturing biological substance
JP2018088932A (en) * 2013-04-04 2018-06-14 日立化成株式会社 Biomolecule capturing filter
WO2015012315A1 (en) 2013-07-24 2015-01-29 愛知県 Device for isolating peripheral circulating tumor cells or rare cells, and method for isolating peripheral circulating tumor cells or rare cells
US10022659B2 (en) 2013-07-24 2018-07-17 Aichi Prefecture Device for isolating periphery circulating tumor cells or rare cells, and method of isolating periphery circulating tumor cells or rare cells
JP2015087382A (en) * 2013-09-25 2015-05-07 アークレイ株式会社 Method for processing blood sample
WO2015046557A1 (en) 2013-09-30 2015-04-02 積水メディカル株式会社 Device for concentration and separation of circulating tumor cells, and method for concentration and separation of circulating tumor cells
US11221325B2 (en) 2013-09-30 2022-01-11 Sekisui Medical Co., Ltd. Device for concentration and separation of circulating tumor cells, and method for concentration and separation of circulating tumor cells
USD751189S1 (en) 2014-04-04 2016-03-08 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD748267S1 (en) 2014-04-04 2016-01-26 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD747487S1 (en) 2014-04-04 2016-01-12 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD752227S1 (en) 2014-04-04 2016-03-22 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD748801S1 (en) 2014-04-04 2016-02-02 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD750785S1 (en) 2014-04-04 2016-03-01 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
USD746467S1 (en) 2014-04-04 2015-12-29 Hitachi Chemical Company, Ltd. Filter sheet for a cell collecting cartridge
JPWO2016017755A1 (en) * 2014-07-30 2017-04-27 日立化成株式会社 Blood circulating cancer cell capture method
JP2017192394A (en) * 2014-07-30 2017-10-26 日立化成株式会社 Method for capturing rare cells in blood
WO2016017755A1 (en) * 2014-07-30 2016-02-04 日立化成株式会社 Method for capturing rare cells in blood
KR20170031150A (en) 2014-07-30 2017-03-20 히타치가세이가부시끼가이샤 Method for capturing rare cells in blood
KR20170032323A (en) 2014-07-30 2017-03-22 히타치가세이가부시끼가이샤 Method for capturing rare cells in blood
JPWO2016017756A1 (en) * 2014-07-30 2017-04-27 日立化成株式会社 Blood rare cell capture method
JP2016032469A (en) * 2014-07-30 2016-03-10 日立化成株式会社 In-blood rare cell capturing method
WO2016017756A1 (en) * 2014-07-30 2016-02-04 日立化成株式会社 Method for capturing rare cells in blood
JP2016052300A (en) * 2014-09-03 2016-04-14 日立化成株式会社 Biological material capture system
JP2016180753A (en) * 2015-03-23 2016-10-13 アークレイ株式会社 Method of isolating or detecting rare cells
EP3072578A1 (en) 2015-03-23 2016-09-28 ARKRAY, Inc. Method for isolating or detecting rare cell
US11033900B2 (en) 2015-03-23 2021-06-15 Arkray, Inc. Method for isolating or detecting rare cell
JP2016195986A (en) * 2015-04-06 2016-11-24 富士フイルム株式会社 Filter medium, filter unit and cell sheet
KR20170000258A (en) 2015-06-23 2017-01-02 국립암센터 Nanostructure for Detecting cell-free DNA using Conductive Polymer and the Use thereof
KR101790258B1 (en) * 2015-08-05 2017-10-26 주식회사 싸이토젠 Cell collecting filter and cell collecting device having the same
US11596724B2 (en) 2016-02-17 2023-03-07 Samsung Electronics Co., Ltd. Filter and device including the same
US11097043B2 (en) 2016-02-17 2021-08-24 Samsung Electronics Co., Ltd. Filter and device including the same
WO2017142145A1 (en) * 2016-02-17 2017-08-24 삼성전자 주식회사 Filter and device comprising same
JP6256669B1 (en) * 2016-03-18 2018-01-10 株式会社村田製作所 METAL POROUS MEMBRANE, CLASSIFICATION METHOD USING SAME, AND CLASSIFICATION DEVICE
JP2018113980A (en) * 2016-03-18 2018-07-26 株式会社村田製作所 Filter for filtering nucleated cells and filtering method using the same
WO2017159367A1 (en) * 2016-03-18 2017-09-21 株式会社村田製作所 Metallic porous membrane, and classifying method and classifying device using same
US10889796B2 (en) 2016-03-18 2021-01-12 Murata Manufacturing Co., Ltd. Metallic porous membrane, classifying method using the same, and classifying device
WO2018003476A1 (en) * 2016-06-30 2018-01-04 富士フイルム株式会社 Cell-suspension membrane separation method and cell culture device
US11492578B2 (en) 2016-06-30 2022-11-08 Fujifilm Corporation Membrane separation method of cell suspension, and cell culture device
WO2018030547A1 (en) 2016-08-12 2018-02-15 日立化成株式会社 Detection method of circulating tumor cells and pretreatment method for detecting circulating tumor cells
WO2018061674A1 (en) 2016-09-30 2018-04-05 富士フイルム株式会社 Method for acquiring base sequence information about single cells derived from vertebrate animals
JP6990713B2 (en) 2017-04-14 2022-01-12 ヴェンタナ メディカル システムズ, インク. Separation based on the size of the dissociated fixative
JP2020516890A (en) * 2017-04-14 2020-06-11 ヴェンタナ メディカル システムズ, インク. Separation based on size of dissociated fixed tissue
US11768137B2 (en) 2017-04-14 2023-09-26 Ventana Medical Systems, Inc. Size-based separation of dissociated fixed tissues
WO2018211706A1 (en) * 2017-05-19 2018-11-22 日立化成株式会社 Rare cell capturing method
CN113841037A (en) * 2019-05-24 2021-12-24 株式会社奥极科技 Target cell capturing filter and target cell capturing method
CN113546232A (en) * 2020-04-24 2021-10-26 京东方科技集团股份有限公司 Therapeutic device and method for preparing cell filter membrane
CN113546232B (en) * 2020-04-24 2023-10-27 京东方科技集团股份有限公司 Therapeutic equipment and preparation method of cell filter membrane

Also Published As

Publication number Publication date
CN202730123U (en) 2013-02-13
JP5854456B2 (en) 2016-02-09
DE202012003212U1 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5854456B2 (en) Cancer cell concentration filter
US10258906B2 (en) Metal filter and method for concentrating cancer cells
CN103189122B (en) Polymer micro-filter and manufacture method thereof
JP6665880B2 (en) Filter for filtering nucleated cells and filtration method using the same
US10022659B2 (en) Device for isolating periphery circulating tumor cells or rare cells, and method of isolating periphery circulating tumor cells or rare cells
CA2839313C (en) Agent for improving cancer cell adhesiveness
EP2853893B1 (en) Method for processing blood sample
JP6249124B1 (en) Filtration filter for nucleated cells and filtration method using the same
JP2013138658A (en) Cell trapping device
JP6176406B2 (en) Blood circulating cancer cell capture method
KR20120042518A (en) Metal screen filter
JP6028563B2 (en) Metal filter manufacturing method
JP2016086736A (en) Production method of liquid containing rare cells in blood
Choi et al. Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping
JP2017181096A (en) Method for capturing rare cell
US20190033186A1 (en) Method for capturing rare cells
JP6815307B2 (en) Filtration filter for nucleated cells and filtration method using it
JP2019146545A (en) Method of collecting data for diagnosing presence or absence of cancer metastasis from liver to organ other than liver
JP2017163905A (en) Method of separating rare cells and gene analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5854456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250