WO2018211706A1 - Rare cell capturing method - Google Patents

Rare cell capturing method Download PDF

Info

Publication number
WO2018211706A1
WO2018211706A1 PCT/JP2017/018898 JP2017018898W WO2018211706A1 WO 2018211706 A1 WO2018211706 A1 WO 2018211706A1 JP 2017018898 W JP2017018898 W JP 2017018898W WO 2018211706 A1 WO2018211706 A1 WO 2018211706A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cells
blood
blood sample
lipidure
Prior art date
Application number
PCT/JP2017/018898
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 遠藤
明子 伊藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/018898 priority Critical patent/WO2018211706A1/en
Publication of WO2018211706A1 publication Critical patent/WO2018211706A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a method for capturing rare cells.
  • cancer cell enrichment is extremely large, and if cancer cells in blood can be enriched, that is, cancer cells can be selectively captured, it can be applied to cancer diagnosis.
  • the most important factor for the prognosis and treatment of cancer is the presence or absence of cancer cell metastasis at the first visit and treatment.
  • detecting circulating tumor cells is useful for determining the progression of cancer pathology. Means.
  • blood components such as red blood cells and white blood cells are predominantly present in blood, it is difficult to detect an extremely small amount of CTC.
  • Circulating Endothelial Cell (hereinafter also referred to as “CEC”) is also used as a biomarker for cancer prognosis and treatment, but it is present in the blood only in a very small amount and is detected in the same manner as CTC. It is difficult.
  • the filter method is a method of concentrating rare cells based on differences in cell size and deformability.
  • Patent Document 1 a method of detecting a small amount of CTC by using a resin filter using parylene has been proposed.
  • Patent Document 2 a method of improving the strength of the filter by using a metal filter and separating the leukocytes and the cancer cells depending on the deformability is proposed (Patent Document 2). ⁇ 4).
  • the present invention has been made in view of such problems, and provides a method for selectively capturing rare cells from a blood sample.
  • the present inventors have found that when a blood sample is filtered in the presence of a predetermined polymer, the leukocyte removal rate is improved as compared with the case where the blood sample is filtered in the absence of the polymer. It came to be completed.
  • the blood sample is obtained from a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. Filtering with a filter in the presence.
  • the filter may be coated with a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. If a filter coated with a polymer is used, the leukocyte removal rate is further improved.
  • the rare cells to be captured can be circulating blood cancer cells.
  • rare cells can be selectively captured from a blood sample.
  • FIG. 4 represents one embodiment of applying a blood sample to a reservoir.
  • “Rare cells” are cells to be captured, and the ratio of the number of cells is extremely small relative to the total number of all cells contained in the blood sample. Rare cells are, for example, cancer cells such as CTC or endothelial cells such as CEC.
  • Contaminated cells are cells other than rare cells contained in a blood sample. Usually, the ratio of the number of contaminating cells is extremely large relative to the number of rare cells.
  • a “contaminating cell” may refer to a cell having the same diameter as a rare cell and having deformability among such cells, and more specifically, a leukocyte. There is a case.
  • the “diameter” of the cell is the length of the longest line segment connecting two arbitrary points on the outline of the cell when observed with a microscope.
  • Capture means that the blood sample is filtered through a filter, and the cells remain on the filter. Further, “selectively capture” means that the ratio of the predetermined cells in the cell population remaining on the filter is higher than the ratio in the blood sample before filtration.
  • the blood sample is selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine (hereinafter also referred to as MPC) and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. Filtering with a filter in the presence of the selected polymer.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • MPC polymer The MPC homopolymer and MPC copolymer are hereinafter collectively referred to as MPC polymer.
  • MPC copolymer examples include a copolymer of MPC and butyl methacrylate.
  • MPC homopolymer or MPC copolymer a commercially available product can be used.
  • the filter 200 has a structure in which a large number of through holes 110 are formed in a thin film 120 such as plastic or metal.
  • the opening shape of the through hole 110 can be, for example, a circle, an ellipse, a square, a rectangle, a rounded rectangle, or a polygon. From the viewpoint of efficiently capturing rare cells, the opening shape is preferably a circle, a rectangle or a rounded rectangle, and more preferably a rectangle or a rounded rectangle.
  • a rounded rectangle is a shape having a rectangle and two semicircles that have the same radius as the short side of the rectangle and that are adjacent to each other and are adjacent to the two short sides of the rectangle. If the opening shape is a rectangle or a rounded rectangle, the through hole 110 is less likely to be clogged, and rare cells can be captured more selectively.
  • the through holes 110 may be arranged as shown in FIG. 1, may be arranged in a staggered manner in which the arrangement is shifted for each column, or may be arranged randomly.
  • the hole diameter of the through hole 110 is set according to the diameter of the rare cell to be captured.
  • the diameter of the through hole 110 is preferably 5 ⁇ m to 15 ⁇ m, more preferably 6 ⁇ m to 12 ⁇ m, and even more preferably 7 ⁇ m to 10 ⁇ m.
  • the hole diameter of the through hole 110 (also simply referred to as “filter hole diameter”) refers to the maximum value of the diameter of a sphere that can pass through the through hole 110.
  • the diameter of the through hole 110 is the length of the short side of the rectangle.
  • the hole diameter of the through hole 110 is the diameter of the inscribed circle of the polygon.
  • the opening shape is a rectangle or a rounded rectangle, a gap is formed in the long axis direction of the opening shape in the through-hole 110 even when rare cells are captured in the through-hole 110. Since contaminant cells can pass through the gap, the filter 200 can be prevented from being clogged.
  • the aperture ratio of the filter 200 is preferably 5 to 50%, more preferably 5 to 40%, from the viewpoint of maintaining a balance between the strength of the filter 200 and prevention of clogging of the filter 200. % Is more preferable.
  • the aperture ratio refers to the area occupied by the through hole 110 with respect to the entire area of the filter 200.
  • the thickness of the filter 200 is preferably 3 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 40 ⁇ m, and more preferably 5 ⁇ m to 30 ⁇ m from the viewpoint of maintaining a balance between the strength of the filter 200 and prevention of clogging of the filter 200. Is more preferable.
  • the filter 200 is preferably made of metal. Since metal is excellent in processability, the processing accuracy of the filter 200 can be increased, and the capture rate of rare cells can be further improved. In addition, since metal is rigid compared to other materials, its size and shape are maintained even when a force is applied from the outside. For this reason, even if a contaminated cell is slightly larger than the through-hole 110, the filter 200 does not deform
  • the metal examples include nickel, gold, silver, palladium, copper, iridium, ruthenium, chromium, and alloys thereof.
  • Palladium and iridium have a high redox potential, are hardly soluble and have good characteristics, but are expensive.
  • Nickel has a lower oxidation-reduction potential than hydrogen, so it is easily dissolved but is inexpensive.
  • Silver and palladium are noble metals and are less expensive than palladium and iridium.
  • the manufacturing method of the filter 200 is not particularly limited, but for example, it can be manufactured as follows. First, a photoresist is placed on the substrate at a position that will later become the through-hole 110 of the filter 200, and a metal layer (thin film 120) having the through-hole 110 is formed by plating the substrate with a metal that becomes the filter 200. Is formed on the substrate. Then, the filter 200 is obtained by removing the substrate and the photoresist from the metal layer.
  • the substrate for example, a substrate whose surface is plated with copper can be used. Copper is preferable as a substrate material because it can be easily removed by chemical dissolution with a chemical solution and has excellent adhesion to a photoresist.
  • the filter 200 may be covered with an MPC polymer.
  • the MPC polymer that coats the filter 200 is as described above.
  • the MPC polymer that coats the filter 200 may be the same type as the MPC polymer that coexists with the blood sample, or may be a different type.
  • the filter 200 can be coated by a known method. For example, the filter 200 covered with the MPC polymer is obtained by immersing the filter 200 in a solution containing the MPC polymer and drying it.
  • the method for filtering the blood sample and the apparatus used for the filtration are not particularly limited, but it is preferable to control the flow rate during liquid passage.
  • the flow rate during liquid passage is preferably 50 ⁇ L / min to 3000 ⁇ L / min, preferably 100 ⁇ L / min. Minute to 1000 ⁇ L / min is more preferable, and 200 ⁇ L / min to 800 ⁇ L / min is more preferable.
  • the method for filtering a blood sample in the presence of MPC polymer is not particularly limited.
  • the blood sample and MPC polymer may be mixed and the resulting mixture may be filtered.
  • the blood sample may be filtered and then washed with a solution containing MPC polymer.
  • the blood sample 310 is gently applied using a micropipette so that the lower layer of the buffer solution 300 held in the reservoir, and the upper layer is the buffer solution 300 and the lower layer is the blood sample 310.
  • a two-layered mixture can be prepared.
  • a metal filter having a shape shown in FIG. 1 and having 3000 holes of 8 ⁇ m ⁇ 100 ⁇ m in 6 mm ⁇ 6 mm, a thickness of 18 ⁇ m, and nickel-based and gold-plated on the surface was produced.
  • Photosensitive resin composition PHOTEC RD-1225: thickness 25 ⁇ m, manufactured by Hitachi Chemical Co., Ltd.
  • 6 mm square substrate MCL-E679F: substrate obtained by bonding peelable copper foil to the surface of MCL, manufactured by Hitachi Chemical Co., Ltd.
  • Lamination conditions were performed at a roll temperature of 90 ° C., a pressure of 0.3 MPa, and a conveyor speed of 2.0 m / min.
  • a glass mask having a light-transmitting portion with a rounded rectangular shape, a size of 8 ⁇ 100 ⁇ m and a pitch of 75 ⁇ m on the short axis and 160 ⁇ m on the long axis was left on the photoresist laminate surface of the substrate.
  • a glass mask in which rounded rectangles facing in the same direction are arranged at a constant pitch in the major axis and minor axis directions was used.
  • an ultraviolet ray irradiation device was used to irradiate ultraviolet rays with an exposure amount of 30 mJ / cm 2 from above the substrate on which the glass mask was placed.
  • the obtained nickel plating layer is peeled off together with the peelable copper foil of the substrate, and this peelable copper foil is chemically dissolved by a chemical solution in a stirring process at a temperature of 40 ° C. for about 120 minutes (MEC BRIGHT SF-5420B, MEC shares).
  • the self-supporting membrane (6 mm ⁇ 6 mm) to be a metal filter was removed by removing by the company.
  • the photoresist remaining in the free-standing film was removed by resist stripping (P3 Poleve, Henkel) by ultrasonic treatment at a temperature of 60 ° C. for about 40 minutes to produce a metal filter having fine through holes.
  • the metal filter was immersed in an acidic degreasing solution Z-200 (manufactured by World Metal: trade name) to remove organic substances on the metal filter (40 ° C. for 3 minutes).
  • Z-200 manufactured by World Metal: trade name
  • HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a non-cyan substitution type electroless Au plating, for 20 minutes at 80 ° C. to perform substitution gold plating.
  • HGS-5400 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is non-cyan reduced electroless Au plating, at 65 ° C. for 10 minutes, plated with gold, washed with water and dried.
  • a CTC capturing device 100 shown in FIG. 2 is a device that captures rare cells contained in a sample by filtering a sample (blood sample or the like) to be a test solution using a filter.
  • the captured rare cells can be stained with a staining solution to identify the rare cells and count the number of the rare cells.
  • the CTC capturing device 100 is provided with a filter unit 1 having a filter therein, a processing liquid channel 3 for supplying a processing liquid to the filter unit 1, and a sample channel 4 for supplying a sample to the filter unit 1.
  • a plurality of processing liquid storage containers 5 containing different processing liquids are provided on the upstream side of the processing liquid flow path 3.
  • Examples of the processing liquid that is put into the processing liquid storage container 5 include a staining liquid for staining rare cells, a fixative, and a cleaning liquid for cleaning rare cells captured by a filter.
  • a soft tube is inserted into each processing liquid storage container 5 to form individual processing liquid flow paths 6. These flow paths are connected to the selection valve 8, and the processing liquid connected to the processing liquid flow path 3 is selected by rotating the selection valve 8.
  • a reservoir 10 is connected to the sample flow path 4, and the sample is supplied to the reservoir 10.
  • the filter unit 1 is configured to supply either the processing liquid or the sample, and control of which liquid of the processing liquid and the sample is supplied is attached to each of the flow paths 3 and 4.
  • the pinch valves 12 and 13 are used for switching.
  • the treatment liquid and the sample are supplied by being sucked by a peristaltic pump 14 provided downstream of the filter unit 1.
  • the sample or the processing liquid flows through the processing liquid channel 3 or the sample channel 4 and is supplied to the filter unit 1, and then flows into the waste liquid tank 16.
  • Rare cells in the sample are captured by a filter provided on the flow path in the filter unit 1 and stained with a staining solution.
  • the above units are controlled by the control unit 48.
  • the selection valve 8 is controlled by the selection valve driver 49 based on an instruction from the control unit 48.
  • the pinch valves 12 and 13 are controlled by two valve drivers 50 connected to each other.
  • the driving of the peristaltic pump 14 is controlled by a pump driver 51.
  • a blood sample collected by adding 7 mL of PBS solution (hereinafter referred to as “buffer solution”) containing 0.5% BSA and 2 mM EDTA in the reservoir and collected with an anticoagulant-containing blood collection tube was added.
  • buffer solution PBS solution
  • CD45 antigen which is a surface antigen of leukocytes, and nuclei were stained.
  • PE R-Phycoerythrin
  • 2D1 manufactured by Thermo Fisher Scientific Co., Ltd.
  • Hoechst 33342 mixed into a filter at a flow rate of 400 ⁇ L / min This was introduced and reacted at room temperature for 30 minutes.
  • 3 mL of buffer solution was introduced into the filter at a flow rate of 400 ⁇ L / min, and the reaction solution in the filter was discharged. The filter was then removed from the CTC capture device.
  • the filter was placed on a fluorescence microscope. A fluorescent mirror unit was used to excite the fluorescent dyes (PE and Hoechst 33342) on the cells, respectively. The fluorescence emitted from each fluorescent dye was photographed, and the resulting images were synthesized. From the synthesized image, cells showing leukocytes were extracted visually or using image analysis software, and the number of each cell was determined. Here, the cells showing leukocytes are PE-positive and Hoechst33342-positive cells.
  • Test Example 1 Fill the filter not coated with MPC polymer with buffer in advance, set it in the CTC capture device, add 7 mL of buffer in the reservoir, and then add 3 mL of blood sample collected from a healthy person to the lower layer of the buffer
  • the mixture (Comparative Example 1) and the filter not coated with MPC polymer were previously filled with a buffer containing 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation) and set in the CTC capture device.
  • LIPIDURE registered trademark
  • -BL203 0.5% MPC polymer
  • Example 1 7 mL of a buffer solution containing 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation) is added to the reservoir, and 3 mL of a blood sample collected from a healthy person is added to the lower layer of the buffer solution.
  • the two-layered mixture (Example 1) was applied to a CTC capture device. Blood samples were filtered and blood cells were stained with a CTC capture device, and white blood cells were counted with a fluorescence microscope. The results are shown in FIG. When the residual white blood cell count of Comparative Example 1 was 100, the residual white blood cell count of Example 1 was 86. The number of cancer cells captured in Comparative Example 1 and Example 1 was the same. From the above results, it was confirmed that by filtering a blood sample containing MPC polymer, the leukocyte removal rate was improved as compared with the case where MPC polymer was not included.
  • Test Example 2 The filter coated with MPC polymer was previously filled with 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation), set in a CTC capture device, and 0.5% MPC polymer (LIPIDURE (LIPIDURE ( (Registered trademark) -BL203; manufactured by NOF Co., Ltd.) 7 mL of a mixture was added, and a blood sample collected from a healthy person was mixed in 2 layers so that a blood sample 3 mL was a lower layer of the buffer (Example 2), a filter coated with MPC polymer Is filled with 0.5% MPC polymer (LIPIDURE (registered trademark) -BL405; manufactured by NOF Corporation) and set in a CTC capture device, and 0.5% MPC polymer (LIPIDURE (registered trademark) -BL405; (Made by NOF Corporation) 7mL is added, and 3mL blood sample collected from healthy people is buffered Subjected mixture was two
  • cancer cells were captured under the same conditions as in Comparative Example 1 (Comparative Example 2). Blood samples were filtered and blood cells were stained with a CTC capture device, and white blood cells were counted with a fluorescence microscope. The results are shown in FIG. When the residual white blood cell count of Comparative Example 2 was 100, the residual white blood cell count of Example 2 was 32, and the residual white blood cell count of Example 3 was 30. The numbers of cancer cells captured in Comparative Example 2, Example 2 and Example 3 were the same. From the above results, it was confirmed that the leukocyte removal rate was further improved by filtering a blood sample containing MPC polymer using a filter coated with MPC polymer.
  • Example 2 The front and back surfaces of the filter after filtration and the bottom of the cartridge were observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention discloses a method for capturing a rare cell. This method comprises a step for filtering a blood sample with a filter in the presence of a polymer selected from the group consisting of homopolymers of 2-methacryloyloxyethyl phosphorylcholine and copolymers of 2-methacryloyloxyethyl phosphorylcholine. Said method is able to efficiently remove white blood cells.

Description

希少細胞の捕捉方法How to capture rare cells
 本発明は、希少細胞の捕捉方法に関する。 The present invention relates to a method for capturing rare cells.
 癌細胞濃縮の研究及び臨床的意義は極めて大きく、血液中の癌細胞を濃縮、すなわち癌細胞を選択的に捕捉、することができれば、癌の診断に応用することができる。例えば、癌の予後及び治療に最も重要な要素は、初診時及び処置時における癌細胞の転移の有無である。癌細胞の初期の拡散が末梢血中に及んだ場合、血中循環癌細胞(Circulating Tumor Cell、以下、「CTC」ともいう。)を検出することは、癌の病状進行を判断する有用な手段である。しかしながら、血液中には、赤血球及び白血球等の血液成分が圧倒的に多く存在するため、極めて少量のCTCの検出は困難である。血中循環内皮細胞(Circulating Endothelial Cell、以下、「CEC」ともいう。)も癌の予後及び治療のバイオマーカーとして利用されるが、血中には極めて少量しか存在せず、CTCと同様に検出は困難である。 Research and clinical significance of cancer cell enrichment is extremely large, and if cancer cells in blood can be enriched, that is, cancer cells can be selectively captured, it can be applied to cancer diagnosis. For example, the most important factor for the prognosis and treatment of cancer is the presence or absence of cancer cell metastasis at the first visit and treatment. When early diffusion of cancer cells reaches the peripheral blood, detecting circulating tumor cells (Circulating Tumor Cell, hereinafter also referred to as “CTC”) is useful for determining the progression of cancer pathology. Means. However, since blood components such as red blood cells and white blood cells are predominantly present in blood, it is difficult to detect an extremely small amount of CTC. Circulating Endothelial Cell (hereinafter also referred to as “CEC”) is also used as a biomarker for cancer prognosis and treatment, but it is present in the blood only in a very small amount and is detected in the same manner as CTC. It is difficult.
 血液からCTC及びCEC等の希少細胞を濃縮する方法として、フィルターを用いる方法(以下、「フィルター法」ともいう。)がある。フィルター法は、細胞のサイズ及び変形能の違いで希少細胞を濃縮する方法である。 As a method for concentrating rare cells such as CTC and CEC from blood, there is a method using a filter (hereinafter also referred to as “filter method”). The filter method is a method of concentrating rare cells based on differences in cell size and deformability.
 フィルター法の一例として、パリレンを用いた樹脂フィルターを使用することで、少量のCTCを検出する方法が提案されている(特許文献1)。 As an example of the filter method, a method of detecting a small amount of CTC by using a resin filter using parylene has been proposed (Patent Document 1).
 フィルター法の他の例として、金属を用いたフィルターを使用することでフィルターの強度を向上させ、白血球と癌細胞の変形能の違いにより、これらを分離する方法が提案されている(特許文献2~4)。 As another example of the filter method, a method of improving the strength of the filter by using a metal filter and separating the leukocytes and the cancer cells depending on the deformability is proposed (Patent Document 2). ~ 4).
国際公開第2010/135603号International Publication No. 2010/135603 特開2013-42689号公報JP 2013-42689 A 特開2011-163830号公報JP 2011-163830 A 国際公開第2015/012315号International Publication No. 2015/012315
 近年、少数の細胞から遺伝子解析が可能な次世代シークエンサー、デジタルPCR及び定量的逆転写PCR(qRT-PCR)の技術が向上したことにより、希少細胞の遺伝子変異及びタンパク質発現量を検出する「質的評価」に研究が移行してきている。これは、希少細胞の遺伝子解析結果を用いて、新規マーカータンパク質及び遺伝子のスクリーニングが望まれているためである。 In recent years, advanced technologies for next-generation sequencers, digital PCR, and quantitative reverse transcription PCR (qRT-PCR), which can analyze genes from a small number of cells, can detect gene mutations and protein expression levels in rare cells. The research has shifted to “Evaluation”. This is because screening of novel marker proteins and genes is desired using rare cell gene analysis results.
 白血球に代表されるような夾雑細胞が存在する状況下で遺伝子解析を行った場合、希少細胞の遺伝子情報が狭雑細胞の遺伝子情報に埋もれ、希少細胞の遺伝子情報が検出されない場合、又は偽陰性の結果を生じる場合がある。しかしながら、特許文献1~4に記載されるようなフィルター法では、分離された希少細胞の純度が、上記遺伝子解析等には充分でなかった。 When genetic analysis is performed in the presence of contaminating cells such as leukocytes, the gene information of rare cells is buried in the gene information of narrow cells, and the gene information of rare cells is not detected, or false negative May result. However, in the filter methods described in Patent Documents 1 to 4, the purity of the separated rare cells is not sufficient for the gene analysis and the like.
 本発明は、このような課題に鑑みてなされたものであり、血液試料から希少細胞を選択的に捕捉する方法を提供する。 The present invention has been made in view of such problems, and provides a method for selectively capturing rare cells from a blood sample.
 本発明者らは鋭意検討した結果、所定のポリマーの存在下で血液試料をろ過すると、ポリマーの非存在下でろ過した場合と比較して白血球の除去率が向上することを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that when a blood sample is filtered in the presence of a predetermined polymer, the leukocyte removal rate is improved as compared with the case where the blood sample is filtered in the absence of the polymer. It came to be completed.
 すなわち、本発明の血液試料中の希少細胞を捕捉する方法は、血液試料を、2-メタクリロイルオキシエチルホスホリルコリンのホモポリマー及び2-メタクリロイルオキシエチルホスホリルコリンの共重合体からなる群から選択されるポリマーの存在下で、フィルターでろ過する工程を含む。 That is, in the method for capturing rare cells in a blood sample of the present invention, the blood sample is obtained from a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. Filtering with a filter in the presence.
 上記フィルターは、2-メタクリロイルオキシエチルホスホリルコリンのホモポリマー及び2-メタクリロイルオキシエチルホスホリルコリンの共重合体からなる群から選択されるポリマーで被覆されていてもよい。ポリマーで被覆されたフィルターを用いると、さらに白血球の除去率が向上する。 The filter may be coated with a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. If a filter coated with a polymer is used, the leukocyte removal rate is further improved.
 捕捉する希少細胞は、血中循環癌細胞とすることができる。 The rare cells to be captured can be circulating blood cancer cells.
 本発明によれば、血液試料から希少細胞を選択的に捕捉することができる。 According to the present invention, rare cells can be selectively captured from a blood sample.
フィルターの模式図である。It is a schematic diagram of a filter. CTC捕捉装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a CTC acquisition apparatus. 比較例1及び実施例1の、白血球残存率を比較したグラフである。2 is a graph comparing leukocyte residual ratios of Comparative Example 1 and Example 1. FIG. 比較例2、実施例2及び実施例3の、白血球残存率を比較したグラフである。It is the graph which compared the leukocyte residual rate of the comparative example 2, Example 2, and Example 3. FIG. 血液試料をリザーバーへアプライする一実施形態を表す図である。FIG. 4 represents one embodiment of applying a blood sample to a reservoir.
 「希少細胞」とは、捕捉の対象となる細胞のことであり、その細胞数の割合が血液試料に含有される全細胞の総数に対して極めて小さいものをいう。希少細胞は、例えば、CTC等の癌細胞又はCEC等の内皮細胞である。 “Rare cells” are cells to be captured, and the ratio of the number of cells is extremely small relative to the total number of all cells contained in the blood sample. Rare cells are, for example, cancer cells such as CTC or endothelial cells such as CEC.
 「夾雑細胞」とは、血液試料に含有される、希少細胞以外の細胞である。通常、夾雑細胞の細胞数の割合は、希少細胞の細胞数に対して極めて大きい。本明細書において、「夾雑細胞」は、そのような細胞のうち、希少細胞と同程度の直径を有し、かつ、変形能を有する細胞を指す場合があり、より具体的には白血球を指す場合がある。 “Contaminated cells” are cells other than rare cells contained in a blood sample. Usually, the ratio of the number of contaminating cells is extremely large relative to the number of rare cells. In the present specification, a “contaminating cell” may refer to a cell having the same diameter as a rare cell and having deformability among such cells, and more specifically, a leukocyte. There is a case.
 ここで、細胞の「直径」とは、顕微鏡で観察した場合の細胞の輪郭上の任意の2点を結ぶ線分のうち最も長い線分の長さのことである。 Here, the “diameter” of the cell is the length of the longest line segment connecting two arbitrary points on the outline of the cell when observed with a microscope.
 「捕捉」とは、血液試料をフィルターでろ過して、細胞をフィルター上に残留させることを意味する。また、「選択的に捕捉する」とは、フィルター上に残留した細胞集団における所定の細胞の割合が、ろ過前の血液試料における割合よりも高いことを意味する。 “Capture” means that the blood sample is filtered through a filter, and the cells remain on the filter. Further, “selectively capture” means that the ratio of the predetermined cells in the cell population remaining on the filter is higher than the ratio in the blood sample before filtration.
 本発明の血液試料中の希少細胞を捕捉する方法は、血液試料を、2-メタクリロイルオキシエチルホスホリルコリン(以下、MPCとも称す)のホモポリマー及び2-メタクリロイルオキシエチルホスホリルコリンの共重合体からなる群から選択されるポリマーの存在下で、フィルターでろ過する工程を含む。 In the method for capturing rare cells in a blood sample of the present invention, the blood sample is selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine (hereinafter also referred to as MPC) and a copolymer of 2-methacryloyloxyethyl phosphorylcholine. Filtering with a filter in the presence of the selected polymer.
 MPCのホモポリマー及びMPCの共重合体を、以下、まとめてMPCポリマーとも称す。MPCの共重合体としては、MPCとブチルメタクリレートの共重合体などが挙げられる。MPCのホモポリマー又はMPCの共重合体は、市販品を用いることができる。例えば、日油株式会社から販売されている、LIPIDURE(登録商標)-CM5206、LIPIDURE(登録商標)-PC、LIPIDURE(登録商標)-NH01、LIPIDURE(登録商標)-BL103、LIPIDURE(登録商標)-BL203、LIPIDURE(登録商標)-BL206、LIPIDURE(登録商標)-BL405、LIPIDURE(登録商標)-BL502、LIPIDURE(登録商標)-BL702、LIPIDURE(登録商標)-BL802、LIPIDURE(登録商標)-BL1002、LIPIDURE(登録商標)-BL1201、LIPIDURE(登録商標)-BL1301、LIPIDURE(登録商標)-SF08及びLIPIDURE(登録商標)-SF16などを用いることができる。 The MPC homopolymer and MPC copolymer are hereinafter collectively referred to as MPC polymer. Examples of the MPC copolymer include a copolymer of MPC and butyl methacrylate. As the MPC homopolymer or MPC copolymer, a commercially available product can be used. For example, LIPIDURE (registered trademark) -CM5206, LIPIDURE (registered trademark) -PC, LIPIDURE (registered trademark) -NH01, LIPIDURE (registered trademark) -BL103, LIPIDURE (registered trademark)-sold by NOF CORPORATION BL203, LIPIDURE (registered trademark) -BL206, LIPIDURE (registered trademark) -BL405, LIPIDURE (registered trademark) -BL502, LIPIDURE (registered trademark) -BL702, LIPIDURE (registered trademark) -BL802, LIPIDURE (registered trademark) -BL1002, LIPIDURE (registered trademark) -BL1201, LIPIDURE (registered trademark) -BL1301, LIPIDURE (registered trademark) -SF08 and LIPIDURE (registered trademark) -SF16 Etc. can be used.
 次に、図1を参照しながら、この工程で使用し得るフィルターの構造について説明する。フィルター200は、プラスチック又は金属等の薄膜120に、多数の貫通孔110が形成されている構造を有する。 Next, the structure of a filter that can be used in this step will be described with reference to FIG. The filter 200 has a structure in which a large number of through holes 110 are formed in a thin film 120 such as plastic or metal.
 貫通孔110の開口形状は、例えば、円、楕円、正方形、長方形、角丸長方形又は多角形であることができる。希少細胞を効率よく捕捉する観点から、開口形状は、円、長方形又は角丸長方形が好ましく、長方形又は角丸長方形がより好ましい。角丸長方形とは、長方形と、長方形の短辺と同じ長さの半径を有し長方形の2つの短辺それぞれに隣接して結合している2つの半円形と、を有する形状である。開口形状が長方形又は角丸長方形であると、貫通孔110が目詰まりしにくく、希少細胞をより選択的に捕捉できる。貫通孔110は、図1に示すような整列配置でもよく、列毎に配置がずれた千鳥配置でもよく、任意に配置されたランダム配置であってもよい。 The opening shape of the through hole 110 can be, for example, a circle, an ellipse, a square, a rectangle, a rounded rectangle, or a polygon. From the viewpoint of efficiently capturing rare cells, the opening shape is preferably a circle, a rectangle or a rounded rectangle, and more preferably a rectangle or a rounded rectangle. A rounded rectangle is a shape having a rectangle and two semicircles that have the same radius as the short side of the rectangle and that are adjacent to each other and are adjacent to the two short sides of the rectangle. If the opening shape is a rectangle or a rounded rectangle, the through hole 110 is less likely to be clogged, and rare cells can be captured more selectively. The through holes 110 may be arranged as shown in FIG. 1, may be arranged in a staggered manner in which the arrangement is shifted for each column, or may be arranged randomly.
 貫通孔110の孔径は、捕捉対象である希少細胞の直径に応じて設定される。希少細胞がCTCのように直径10μm以上である場合は、貫通孔110の孔径は、5μm~15μmであることが好ましく、6μm~12μmであることがより好ましく、7μm~10μmであることがさらに好ましい。なお、本明細書において貫通孔110の孔径(単に「フィルターの孔径」ともいう。)とは、貫通孔110を通過できる球の直径の最大値をいう。例えば、開口形状が長方形の場合、その貫通孔110の孔径はその長方形の短辺の長さである。開口形状が多角形の場合には、貫通孔110の孔径はその多角形の内接円の直径となる。開口形状が長方形又は角丸長方形の場合、希少細胞が貫通孔110に捕捉された状態であっても、貫通孔110において開口形状の長軸方向に隙間ができる。この隙間を通して夾雑細胞が通過できるため、フィルター200の目詰まりを防止することができる。 The hole diameter of the through hole 110 is set according to the diameter of the rare cell to be captured. When the rare cell has a diameter of 10 μm or more as in CTC, the diameter of the through hole 110 is preferably 5 μm to 15 μm, more preferably 6 μm to 12 μm, and even more preferably 7 μm to 10 μm. . In this specification, the hole diameter of the through hole 110 (also simply referred to as “filter hole diameter”) refers to the maximum value of the diameter of a sphere that can pass through the through hole 110. For example, when the opening shape is a rectangle, the diameter of the through hole 110 is the length of the short side of the rectangle. When the opening shape is a polygon, the hole diameter of the through hole 110 is the diameter of the inscribed circle of the polygon. When the opening shape is a rectangle or a rounded rectangle, a gap is formed in the long axis direction of the opening shape in the through-hole 110 even when rare cells are captured in the through-hole 110. Since contaminant cells can pass through the gap, the filter 200 can be prevented from being clogged.
 フィルター200の開口率は、フィルター200の強度とフィルター200の目詰まり防止とのバランスを保つ観点から、5~50%であることが好ましく、5~40%であることがより好ましく、5~30%であることがさらに好ましい。なお、本明細書において、開口率とは、フィルター200全体の面積に対する貫通孔110が占める面積をいう。 The aperture ratio of the filter 200 is preferably 5 to 50%, more preferably 5 to 40%, from the viewpoint of maintaining a balance between the strength of the filter 200 and prevention of clogging of the filter 200. % Is more preferable. In this specification, the aperture ratio refers to the area occupied by the through hole 110 with respect to the entire area of the filter 200.
 フィルター200の厚みは、フィルター200の強度とフィルター200の目詰まり防止とのバランスを保つ観点から、3μm~50μmであることが好ましく、5μm~40μmであることがより好ましく、5μm~30μmであることがさらに好ましい。 The thickness of the filter 200 is preferably 3 μm to 50 μm, more preferably 5 μm to 40 μm, and more preferably 5 μm to 30 μm from the viewpoint of maintaining a balance between the strength of the filter 200 and prevention of clogging of the filter 200. Is more preferable.
 フィルター200は金属からなることが好ましい。金属は加工性に優れるため、フィルター200の加工精度を高めることができ、希少細胞の捕捉率をさらに向上させることができる。また、金属はその他の材料と比べて剛直であるため、外部から力が加わった場合でも、そのサイズ及び形状が維持される。このため、夾雑細胞が貫通孔110よりやや大きくても、フィルター200は変形せず、夾雑細胞が変形して貫通孔110を通過することができ、希少細胞をより選択的に捕捉できる。 The filter 200 is preferably made of metal. Since metal is excellent in processability, the processing accuracy of the filter 200 can be increased, and the capture rate of rare cells can be further improved. In addition, since metal is rigid compared to other materials, its size and shape are maintained even when a force is applied from the outside. For this reason, even if a contaminated cell is slightly larger than the through-hole 110, the filter 200 does not deform | transform, a contaminated cell can deform | transform and can pass through the through-hole 110, and can capture a rare cell more selectively.
 金属としては、例えば、ニッケル、金、銀、パラジウム、銅、イリジウム、ルテニウム、クロム及びこれらの合金が挙げられる。パラジウム及びイリジウムは酸化還元電位が高く、難溶性で特性が良好だが、高価である。ニッケルは水素よりも酸化還元電位が低いため、溶解しやすいが、安価である。銀及びパラジウムは貴金属であり、パラジウム及びイリジウムに比べると安価である。 Examples of the metal include nickel, gold, silver, palladium, copper, iridium, ruthenium, chromium, and alloys thereof. Palladium and iridium have a high redox potential, are hardly soluble and have good characteristics, but are expensive. Nickel has a lower oxidation-reduction potential than hydrogen, so it is easily dissolved but is inexpensive. Silver and palladium are noble metals and are less expensive than palladium and iridium.
 フィルター200の作製方法は、特に限定されないが、例えば、次のように作製することができる。まず、基板上の、後にフィルター200の貫通孔110となる位置にフォトレジストを配置し、この基板に、フィルター200となる金属のめっきを施すことで、貫通孔110を有する金属層(薄膜120)を基板上に形成する。その後、金属層から基板及びフォトレジストを除去することで、フィルター200が得られる。基板としては、例えば、表面に銅めっきが施されたものを用いることができる。銅は、薬液による化学的溶解で容易に除去可能であり、フォトレジストとの密着力も優れているため、基板の材料として好ましい。 The manufacturing method of the filter 200 is not particularly limited, but for example, it can be manufactured as follows. First, a photoresist is placed on the substrate at a position that will later become the through-hole 110 of the filter 200, and a metal layer (thin film 120) having the through-hole 110 is formed by plating the substrate with a metal that becomes the filter 200. Is formed on the substrate. Then, the filter 200 is obtained by removing the substrate and the photoresist from the metal layer. As the substrate, for example, a substrate whose surface is plated with copper can be used. Copper is preferable as a substrate material because it can be easily removed by chemical dissolution with a chemical solution and has excellent adhesion to a photoresist.
 フィルター200は、MPCポリマーで被覆されていてもよい。MPCポリマーで被覆されたフィルター200で血液試料をろ過すると、白血球の除去率をより向上させることができる。フィルター200を被覆するMPCポリマーは、上述した通りである。フィルター200を被覆するMPCポリマーは、血液試料と共存させるMPCポリマーと同じ種類であってもよく、異なる種類であってもよい。フィルター200の被覆は既知の方法で行うことができる。例えば、MPCポリマーを含む溶液にフィルター200を浸し、乾燥させることで、MPCポリマーで被覆されたフィルター200が得られる。 The filter 200 may be covered with an MPC polymer. When the blood sample is filtered with the filter 200 covered with the MPC polymer, the leukocyte removal rate can be further improved. The MPC polymer that coats the filter 200 is as described above. The MPC polymer that coats the filter 200 may be the same type as the MPC polymer that coexists with the blood sample, or may be a different type. The filter 200 can be coated by a known method. For example, the filter 200 covered with the MPC polymer is obtained by immersing the filter 200 in a solution containing the MPC polymer and drying it.
 血液試料をろ過する方法及びろ過に用いる装置は特に限定されないが、液体の通液時の流速は制御されることが好ましい。希少細胞へのダメージを最小限に抑える観点、夾雑細胞を押し出す観点及びフィルター200の目詰まりを防止する観点から、液体の通液時の流速は、50μL/分~3000μL/分が好ましく、100μL/分~1000μL/分がより好ましく、200μL/分~800μL/分がさらに好ましい。 The method for filtering the blood sample and the apparatus used for the filtration are not particularly limited, but it is preferable to control the flow rate during liquid passage. From the viewpoint of minimizing the damage to rare cells, the viewpoint of pushing out contaminated cells, and the prevention of clogging of the filter 200, the flow rate during liquid passage is preferably 50 μL / min to 3000 μL / min, preferably 100 μL / min. Minute to 1000 μL / min is more preferable, and 200 μL / min to 800 μL / min is more preferable.
 血液試料をMPCポリマーの存在下でろ過する方法は特に限定されない。一の実施態様としては、血液試料とMPCポリマーを混ぜ、得られた混合物をろ過してもよい。別の実施態様としては、血液試料をろ過し、その後MPCポリマーを含む溶液で洗浄してもよい。例えば、図5に示すように、リザーバーに保持された緩衝液300の下層になるように、マイクロピペットを用いて血液試料310を静かにアプライし、上層が緩衝液300、下層が血液試料310となるよう2層にした混合物を調製することができる。 The method for filtering a blood sample in the presence of MPC polymer is not particularly limited. In one embodiment, the blood sample and MPC polymer may be mixed and the resulting mixture may be filtered. In another embodiment, the blood sample may be filtered and then washed with a solution containing MPC polymer. For example, as shown in FIG. 5, the blood sample 310 is gently applied using a micropipette so that the lower layer of the buffer solution 300 held in the reservoir, and the upper layer is the buffer solution 300 and the lower layer is the blood sample 310. A two-layered mixture can be prepared.
 以下、実施例に基づき発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
(フィルターの作製)
 図1に示す形状のフィルターであり、6mm×6mm中に8μm×100μmの孔を3000個有し、厚さが18μmの、ニッケルをベースとし表面を金メッキした、金属フィルターを作製した。
(Preparation of filter)
A metal filter having a shape shown in FIG. 1 and having 3000 holes of 8 μm × 100 μm in 6 mm × 6 mm, a thickness of 18 μm, and nickel-based and gold-plated on the surface was produced.
 感光性樹脂組成物(PHOTEC RD-1225:厚さ25μm、日立化成株式会社製)を6mm角の基板(MCL-E679F:MCLの表面にピーラブル銅箔を貼り合わせた基板、日立化成株式会社製)の片面にラミネートした。ラミネート条件はロール温度90℃、圧力0.3MPa、コンベア速度2.0m/分で行った。 Photosensitive resin composition (PHOTEC RD-1225: thickness 25 μm, manufactured by Hitachi Chemical Co., Ltd.) 6 mm square substrate (MCL-E679F: substrate obtained by bonding peelable copper foil to the surface of MCL, manufactured by Hitachi Chemical Co., Ltd.) Laminated on one side. Lamination conditions were performed at a roll temperature of 90 ° C., a pressure of 0.3 MPa, and a conveyor speed of 2.0 m / min.
 次に、光の透過部の形状が角丸長方形、サイズが8×100μmでそのピッチが短軸75μm及び長軸160μmとしたガラスマスクを基板のフォトレジストラミネート面に静置した。本実施例においては同一の方向を向いた角丸長方形が長軸及び短軸方向に一定のピッチで整列したガラスマスクを使用した。 Next, a glass mask having a light-transmitting portion with a rounded rectangular shape, a size of 8 × 100 μm and a pitch of 75 μm on the short axis and 160 μm on the long axis was left on the photoresist laminate surface of the substrate. In this embodiment, a glass mask in which rounded rectangles facing in the same direction are arranged at a constant pitch in the major axis and minor axis directions was used.
 続いて、600mmHg以下の真空下において、ガラスマスクを載置した基板上部から紫外線照射装置によって露光量30mJ/cm紫外線を照射した。 Subsequently, under a vacuum of 600 mmHg or less, an ultraviolet ray irradiation device was used to irradiate ultraviolet rays with an exposure amount of 30 mJ / cm 2 from above the substrate on which the glass mask was placed.
 次に、1.0%炭酸ナトリウム水溶液で現像を行い、基板上に長方形のフォトレジストが垂直に立ったレジスト層を形成した。このレジスト付き基板の銅露出部分にpHが4.5になるように調整したニッケルめっき液中温度55℃、約20分間約18μmめっきを行った。ニッケルめっき液の組成を表1に示す。 Next, development was performed with a 1.0% aqueous sodium carbonate solution to form a resist layer with a rectangular photoresist standing vertically on the substrate. The exposed copper portion of the resist-coated substrate was plated at about 18 μm for about 20 minutes at a temperature of 55 ° C. in a nickel plating solution adjusted to a pH of 4.5. Table 1 shows the composition of the nickel plating solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、得られたニッケルめっき層を基板のピーラブル銅箔とともに剥離し、このピーラブル銅箔を温度40℃で約120分間、攪拌処理での薬液による化学的溶解(メックブライトSF-5420B、メック株式会社)によって除去することにより金属フィルターとなる自立膜(6mm×6mm)を取り出した。 Next, the obtained nickel plating layer is peeled off together with the peelable copper foil of the substrate, and this peelable copper foil is chemically dissolved by a chemical solution in a stirring process at a temperature of 40 ° C. for about 120 minutes (MEC BRIGHT SF-5420B, MEC shares). The self-supporting membrane (6 mm × 6 mm) to be a metal filter was removed by removing by the company.
 最後に、自立膜内に残ったフォトレジストを温度60℃で約40分間、超音波処理でのレジスト剥離(P3 Poleve、Henkel)によって除去し、微細貫通孔を有する金属フィルターを作製した。 Finally, the photoresist remaining in the free-standing film was removed by resist stripping (P3 Poleve, Henkel) by ultrasonic treatment at a temperature of 60 ° C. for about 40 minutes to produce a metal filter having fine through holes.
 これによって、シワ・折れ・キズ・カール等のダメージはなく、十分な精度の貫通孔を有する金属フィルターを作製した。 This produced a metal filter having through holes with sufficient accuracy without damage such as wrinkles, creases, scratches, and curls.
 次に、酸性脱脂液Z-200(ワールドメタル製:商品名)に金属フィルターを浸漬し、金属フィルター上の有機物の除去を行った(40℃3分)。 Next, the metal filter was immersed in an acidic degreasing solution Z-200 (manufactured by World Metal: trade name) to remove organic substances on the metal filter (40 ° C. for 3 minutes).
 水洗後、非シアン系の無電解AuめっきであるHGS―100(日立化成株式会社製商品名)から金供給源である亜硫酸金を抜いた液により80℃10分の条件で置換金めっき前処理を行った。 After washing with water, pretreatment of replacement gold plating under conditions of 80 ° C for 10 minutes with a solution obtained by removing gold sulfite as a gold supply source from HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.), a non-cyan electroless Au plating Went.
 次に非シアン系の置換型無電解AuめっきであるHGS―100(日立化成株式会社製商品名)に80℃20分浸漬し、置換金めっきを行った。 Next, it was immersed in HGS-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a non-cyan substitution type electroless Au plating, for 20 minutes at 80 ° C. to perform substitution gold plating.
 水洗後、非シアン系還元型無電解AuめっきであるHGS―5400(日立化成製商品名)に65℃10分浸漬し、金めっきを行い、水洗後乾燥を行った。 After washing with water, it was immersed in HGS-5400 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is non-cyan reduced electroless Au plating, at 65 ° C. for 10 minutes, plated with gold, washed with water and dried.
(CTC捕捉装置)
 以下、本実施例で使用するCTC捕捉装置について、図2を参照しながら説明する。図2に示すCTC捕捉装置100は、被検液となるサンプル(血液サンプル等)をフィルターによってろ過することで、サンプル中に含まれる希少細胞を捕捉する装置である。また、捕捉された希少細胞を染色液で染色し、希少細胞の特定及び希少細胞の個体数のカウント等も行うことができる。
(CTC capture device)
Hereinafter, the CTC acquisition apparatus used in the present embodiment will be described with reference to FIG. A CTC capturing device 100 shown in FIG. 2 is a device that captures rare cells contained in a sample by filtering a sample (blood sample or the like) to be a test solution using a filter. In addition, the captured rare cells can be stained with a staining solution to identify the rare cells and count the number of the rare cells.
 CTC捕捉装置100には、フィルターを内部に備えるフィルターユニット1、フィルターユニット1に処理液を供給する処理液流路3、フィルターユニット1にサンプルを供給するサンプル流路4が設けられている。 The CTC capturing device 100 is provided with a filter unit 1 having a filter therein, a processing liquid channel 3 for supplying a processing liquid to the filter unit 1, and a sample channel 4 for supplying a sample to the filter unit 1.
 処理液流路3の上流側には、それぞれ異なる処理液が入った複数の処理液収納容器5が設けられている。処理液収納容器5に投入される処理液としては、例えば、希少細胞を染色するための染色液、固定剤、及びフィルターに捕捉された希少細胞等を洗浄するための洗浄液が挙げられる。各処理液収納容器5にはそれぞれ軟質チューブが挿入されて個別の処理液流路6を形成している。これらの流路は選択バルブ8に接続されており、選択バルブ8を回転させることにより処理液流路3に接続する処理液が選択される。 A plurality of processing liquid storage containers 5 containing different processing liquids are provided on the upstream side of the processing liquid flow path 3. Examples of the processing liquid that is put into the processing liquid storage container 5 include a staining liquid for staining rare cells, a fixative, and a cleaning liquid for cleaning rare cells captured by a filter. A soft tube is inserted into each processing liquid storage container 5 to form individual processing liquid flow paths 6. These flow paths are connected to the selection valve 8, and the processing liquid connected to the processing liquid flow path 3 is selected by rotating the selection valve 8.
 サンプル流路4には、リザーバー10が接続されており、サンプルはこのリザーバー10に供給される。フィルターユニット1には、処理液及びサンプルのいずれか一方を供給する構成となっており、処理液及びサンプルのうちいずれの液体を供給するかの制御は流路3,4のそれぞれに取り付けられたピンチバルブ12,13よって切り替える。 A reservoir 10 is connected to the sample flow path 4, and the sample is supplied to the reservoir 10. The filter unit 1 is configured to supply either the processing liquid or the sample, and control of which liquid of the processing liquid and the sample is supplied is attached to each of the flow paths 3 and 4. The pinch valves 12 and 13 are used for switching.
 処理液及びサンプルの供給は、フィルターユニット1の下流に設けられたペリスタルティックポンプ14によって吸引することで行われる。サンプル又は処理液は、処理液流路3又はサンプル流路4の内部を流れてフィルターユニット1に供給され、その後廃液タンク16に流れ込む。サンプル中の希少細胞は、フィルターユニット1内の流路上に設けられたフィルターによって捕捉され、染色液によって染色される。 The treatment liquid and the sample are supplied by being sucked by a peristaltic pump 14 provided downstream of the filter unit 1. The sample or the processing liquid flows through the processing liquid channel 3 or the sample channel 4 and is supplied to the filter unit 1, and then flows into the waste liquid tank 16. Rare cells in the sample are captured by a filter provided on the flow path in the filter unit 1 and stained with a staining solution.
 上記の各部は制御部48により制御される。具体的には、選択バルブ8の制御は、制御部48からの指示に基づいて選択バルブドライバ49により行われる。ピンチバルブ12,13は、それぞれに接続された2つのバルブドライバ50により制御される。ペリスタルティックポンプ14の駆動は、ポンプドライバ51により制御される。 The above units are controlled by the control unit 48. Specifically, the selection valve 8 is controlled by the selection valve driver 49 based on an instruction from the control unit 48. The pinch valves 12 and 13 are controlled by two valve drivers 50 connected to each other. The driving of the peristaltic pump 14 is controlled by a pump driver 51.
(MPCポリマーによるフィルターの被覆)
 フィルターを0.5%MPCポリマー(LIPIDURE(登録商標)-CM5206;日油株式会社製)のエタノール溶液に浸漬させた。溶液から引き上げたフィルターを自然乾燥させることで、MPCポリマーで被覆したフィルターを得た。
(Filter coating with MPC polymer)
The filter was immersed in an ethanol solution of 0.5% MPC polymer (LIPIDURE (registered trademark) -CM5206; manufactured by NOF Corporation). The filter pulled up from the solution was naturally dried to obtain a filter coated with MPC polymer.
(血液試料のろ過)
 図5に示すようにリザーバー中に0.5%BSA及び2mM EDTAを含有したPBS溶液(以下、「緩衝液」という。)7mLを付加し抗凝固剤入採血管にて採取した血液試料3mLをマイクロピペットにて緩衝液の下層になるよう静かにアプライし、上層が緩衝液、下層が血液になるよう2層にした混合液を流速600μL/分でリザーバー中の血液及び緩衝液をフィルターに導入し、血液中の細胞をフィルター上に捕捉した。さらにフィルターに緩衝液を導入し、フィルターに残留した血液成分を洗い流した。
(Filtration of blood sample)
As shown in FIG. 5, 3 mL of a blood sample collected by adding 7 mL of PBS solution (hereinafter referred to as “buffer solution”) containing 0.5% BSA and 2 mM EDTA in the reservoir and collected with an anticoagulant-containing blood collection tube was added. Gently apply to the lower layer of the buffer solution with a micropipette, and introduce the blood and buffer solution in the reservoir into the filter at a flow rate of 600 μL / min. Then, cells in the blood were captured on the filter. Further, a buffer solution was introduced into the filter to wash away blood components remaining on the filter.
(血液の染色)
 フィルター上に捕捉された細胞が白血球であることを検出するため、白血球の表面抗原あるCD45抗原と核を染色した。1.25mLのR-Phycoerythrin(以下PE)が修飾された抗ヒトCD45 マウスモノクロナール抗体 クローン:2D1(サーモフィッシャーサイエンティフィック株式会社製)及びHoechst33342が混合された溶液を流速400μL/分でフィルターに導入し、室温にて30分反応させた。3mLの緩衝液を流速400μL/分でフィルターに導入し、フィルター内の上記反応液を排出した。次いで、フィルターをCTC捕捉装置から外した。
(Blood staining)
In order to detect that the cells captured on the filter are leukocytes, CD45 antigen, which is a surface antigen of leukocytes, and nuclei were stained. 1.25 mL of R-Phycoerythrin (hereinafter referred to as PE) modified anti-human CD45 mouse monoclonal antibody clone: 2D1 (manufactured by Thermo Fisher Scientific Co., Ltd.) and Hoechst 33342 mixed into a filter at a flow rate of 400 μL / min This was introduced and reacted at room temperature for 30 minutes. 3 mL of buffer solution was introduced into the filter at a flow rate of 400 μL / min, and the reaction solution in the filter was discharged. The filter was then removed from the CTC capture device.
(白血球の計数)
 フィルターを蛍光顕微鏡に設置した。蛍光ミラーユニットを使用して、細胞上の蛍光色素(PE及びHoechst33342)をそれぞれ励起させた。それぞれの蛍光色素から発せられた蛍光を撮影し、得られた画像を合成した。合成した画像から、白血球を示す細胞を、目視又は画像解析ソフトウェアを用いて抽出し、それぞれの細胞数を求めた。ここで、白血球を示す細胞とは、PE陽性かつHoechst33342陽性の細胞のことである。
(White blood cell count)
The filter was placed on a fluorescence microscope. A fluorescent mirror unit was used to excite the fluorescent dyes (PE and Hoechst 33342) on the cells, respectively. The fluorescence emitted from each fluorescent dye was photographed, and the resulting images were synthesized. From the synthesized image, cells showing leukocytes were extracted visually or using image analysis software, and the number of each cell was determined. Here, the cells showing leukocytes are PE-positive and Hoechst33342-positive cells.
(試験例1)
 MPCポリマーで被覆していないフィルターを予め緩衝液で満たしCTC捕捉装置にセットし、リザーバー中に緩衝液7mLを付加し、更に健常人から採取した血液試料3mLが緩衝液の下層になるよう2層した混合物(比較例1)、MPCポリマーで被覆していないフィルターを予め0.5%MPCポリマー(LIPIDURE(登録商標)-BL203;日油株式会社製)を含む緩衝液で満たしCTC捕捉装置にセットし、リザーバー中に0.5%MPCポリマー(LIPIDURE(登録商標)-BL203;日油株式会社製)を含む緩衝液7mLを付加し、更に健常人から採取した血液試料3mLが緩衝液の下層になるよう2層した混合物(実施例1)をCTC捕捉装置に供した。CTC捕捉装置にて血液試料のろ過及び血液細胞を染色し、蛍光顕微鏡にて白血球を計数した。
結果を図3に示す。比較例1の残存白血球数を100とした場合、実施例1の残存白血球数は86であった。比較例1及び実施例1で捕捉された癌細胞数は同等であった。以上の結果から、MPCポリマーを含む血液試料をろ過することで、MPCポリマーを含まない場合よりも白血球の除去率が向上することが確認された。
(Test Example 1)
Fill the filter not coated with MPC polymer with buffer in advance, set it in the CTC capture device, add 7 mL of buffer in the reservoir, and then add 3 mL of blood sample collected from a healthy person to the lower layer of the buffer The mixture (Comparative Example 1) and the filter not coated with MPC polymer were previously filled with a buffer containing 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation) and set in the CTC capture device. Then, 7 mL of a buffer solution containing 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation) is added to the reservoir, and 3 mL of a blood sample collected from a healthy person is added to the lower layer of the buffer solution. The two-layered mixture (Example 1) was applied to a CTC capture device. Blood samples were filtered and blood cells were stained with a CTC capture device, and white blood cells were counted with a fluorescence microscope.
The results are shown in FIG. When the residual white blood cell count of Comparative Example 1 was 100, the residual white blood cell count of Example 1 was 86. The number of cancer cells captured in Comparative Example 1 and Example 1 was the same. From the above results, it was confirmed that by filtering a blood sample containing MPC polymer, the leukocyte removal rate was improved as compared with the case where MPC polymer was not included.
(試験例2)
 MPCポリマーで被覆したフィルターを予め0.5%MPCポリマー(LIPIDURE(登録商標)-BL203;日油株式会社製)で満たしCTC捕捉装置にセットし、リザーバー中に0.5%MPCポリマー(LIPIDURE(登録商標)-BL203;日油株式会社製)7mLを付加し、更に健常人から採取した血液試料3mLが緩衝液の下層になるよう2層した混合物(実施例2)、MPCポリマーで被覆したフィルターを予め0.5%MPCポリマー(LIPIDURE(登録商標)-BL405;日油株式会社製)で満たしCTC捕捉装置にセットし、リザーバー中に0.5%MPCポリマー(LIPIDURE(登録商標)-BL405;日油株式会社製)7mLを付加し、更に健常人から採取した血液試料3mLが緩衝液の下層になるよう2層した混合物(実施例3)をCTC捕捉装置に供し、癌細胞の捕捉を行った。また、比較例1と同様の条件で癌細胞の捕捉を行った(比較例2)。CTC捕捉装置にて血液試料のろ過及び血液細胞を染色し、蛍光顕微鏡にて白血球を計数した。結果を図4に示す。比較例2の残存白血球数を100とした場合、実施例2の残存白血球数は32であり、実施例3の残存白血球数は30であった。比較例2、実施例2及び実施例3で捕捉された癌細胞数は同等であった。以上の結果から、MPCポリマーを含む血液試料をMPCポリマーで被覆したフィルターを用いてろ過することで、白血球の除去率がさらに向上することが確認された。
(Test Example 2)
The filter coated with MPC polymer was previously filled with 0.5% MPC polymer (LIPIDURE (registered trademark) -BL203; manufactured by NOF Corporation), set in a CTC capture device, and 0.5% MPC polymer (LIPIDURE (LIPIDURE ( (Registered trademark) -BL203; manufactured by NOF Co., Ltd.) 7 mL of a mixture was added, and a blood sample collected from a healthy person was mixed in 2 layers so that a blood sample 3 mL was a lower layer of the buffer (Example 2), a filter coated with MPC polymer Is filled with 0.5% MPC polymer (LIPIDURE (registered trademark) -BL405; manufactured by NOF Corporation) and set in a CTC capture device, and 0.5% MPC polymer (LIPIDURE (registered trademark) -BL405; (Made by NOF Corporation) 7mL is added, and 3mL blood sample collected from healthy people is buffered Subjected mixture was two layers so that the the lower layer (Example 3) to CTC capture device were captured cancer cells. In addition, cancer cells were captured under the same conditions as in Comparative Example 1 (Comparative Example 2). Blood samples were filtered and blood cells were stained with a CTC capture device, and white blood cells were counted with a fluorescence microscope. The results are shown in FIG. When the residual white blood cell count of Comparative Example 2 was 100, the residual white blood cell count of Example 2 was 32, and the residual white blood cell count of Example 3 was 30. The numbers of cancer cells captured in Comparative Example 2, Example 2 and Example 3 were the same. From the above results, it was confirmed that the leukocyte removal rate was further improved by filtering a blood sample containing MPC polymer using a filter coated with MPC polymer.
 ろ過後のフィルターの表面、裏面及びカートリッジ底部を走査型電子顕微鏡(SEM)で観察した。実施例2及び実施例3は、比較例2と比べて、フィルターの表面、裏面及びカートリッジ底部に付着した夾雑細胞の数が少なかった。 The front and back surfaces of the filter after filtration and the bottom of the cartridge were observed with a scanning electron microscope (SEM). In Example 2 and Example 3, the number of contaminating cells attached to the front and back surfaces of the filter and the bottom of the cartridge was smaller than that of Comparative Example 2.
1…フィルターユニット、3、6…処理液流路、4…サンプル流路、5…処理液収納容器、8…選択バルブ、10…リザーバー、12,13…ピンチバルブ、14…ペリスタルティックポンプ、16…廃液タンク、48…制御部、49…選択バルブドライバ、50…バルブドライバ、51…ポンプドライバ、100…CTC捕捉装置、110…貫通孔、120…薄膜、200…フィルター、300…緩衝液、310…血液試料。 DESCRIPTION OF SYMBOLS 1 ... Filter unit, 3, 6 ... Processing liquid flow path, 4 ... Sample flow path, 5 ... Processing liquid storage container, 8 ... Selection valve, 10 ... Reservoir, 12, 13 ... Pinch valve, 14 ... Peristaltic pump, 16 DESCRIPTION OF SYMBOLS ... Waste liquid tank, 48 ... Control part, 49 ... Selection valve driver, 50 ... Valve driver, 51 ... Pump driver, 100 ... CTC capture device, 110 ... Through-hole, 120 ... Thin film, 200 ... Filter, 300 ... Buffer solution, 310 ... blood samples.

Claims (3)

  1.  血液試料中の希少細胞を捕捉する方法であって、
     血液試料を、2-メタクリロイルオキシエチルホスホリルコリンのホモポリマー及び2-メタクリロイルオキシエチルホスホリルコリンの共重合体からなる群から選択されるポリマーの存在下で、フィルターでろ過する工程、
    を含む方法。
    A method for capturing rare cells in a blood sample, comprising:
    Filtering the blood sample with a filter in the presence of a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine;
    Including methods.
  2.  前記フィルターが、2-メタクリロイルオキシエチルホスホリルコリンのホモポリマー及び2-メタクリロイルオキシエチルホスホリルコリンの共重合体からなる群から選択されるポリマーで被覆されているフィルターである、請求項1記載の方法。 The method according to claim 1, wherein the filter is a filter coated with a polymer selected from the group consisting of a homopolymer of 2-methacryloyloxyethyl phosphorylcholine and a copolymer of 2-methacryloyloxyethyl phosphorylcholine.
  3.  前記希少細胞が血中循環癌細胞である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the rare cells are circulating cancer cells in the blood.
PCT/JP2017/018898 2017-05-19 2017-05-19 Rare cell capturing method WO2018211706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018898 WO2018211706A1 (en) 2017-05-19 2017-05-19 Rare cell capturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018898 WO2018211706A1 (en) 2017-05-19 2017-05-19 Rare cell capturing method

Publications (1)

Publication Number Publication Date
WO2018211706A1 true WO2018211706A1 (en) 2018-11-22

Family

ID=64274469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018898 WO2018211706A1 (en) 2017-05-19 2017-05-19 Rare cell capturing method

Country Status (1)

Country Link
WO (1) WO2018211706A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163830A (en) * 2010-02-05 2011-08-25 Tokyo Univ Of Agriculture & Technology Detection of circulation tumor cells using size-selective micro cavity array
JP2013042689A (en) * 2011-08-23 2013-03-04 Hitachi Chemical Co Ltd Cancer cell condensation filter
JP2016032469A (en) * 2014-07-30 2016-03-10 日立化成株式会社 In-blood rare cell capturing method
WO2016035772A1 (en) * 2014-09-03 2016-03-10 日立化成株式会社 Filter for capturing biological substance, and system for capturing biological substance
JP2016052300A (en) * 2014-09-03 2016-04-14 日立化成株式会社 Biological material capture system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163830A (en) * 2010-02-05 2011-08-25 Tokyo Univ Of Agriculture & Technology Detection of circulation tumor cells using size-selective micro cavity array
JP2013042689A (en) * 2011-08-23 2013-03-04 Hitachi Chemical Co Ltd Cancer cell condensation filter
JP2016032469A (en) * 2014-07-30 2016-03-10 日立化成株式会社 In-blood rare cell capturing method
WO2016035772A1 (en) * 2014-09-03 2016-03-10 日立化成株式会社 Filter for capturing biological substance, and system for capturing biological substance
JP2016052300A (en) * 2014-09-03 2016-04-14 日立化成株式会社 Biological material capture system

Similar Documents

Publication Publication Date Title
JP5854456B2 (en) Cancer cell concentration filter
JP7074148B2 (en) Filtration filter for nucleated cells and filtration method using it
US10022659B2 (en) Device for isolating periphery circulating tumor cells or rare cells, and method of isolating periphery circulating tumor cells or rare cells
JP5704590B2 (en) Detection of circulating tumor cells using size-selective microcavity array
CN108795723B (en) Filter for filtering nucleated cells and filtering method using the same
WO2015145793A1 (en) Cell capturing apparatus, cell capturing device provided with pre-processing part, and pre-processing part
JP2013537469A5 (en)
WO2016031971A1 (en) Cell trapping method, method for producing specific cell-trapping device, and method for producing specific cell-containing solution
JPWO2016017755A1 (en) Blood circulating cancer cell capture method
EP3072578A1 (en) Method for isolating or detecting rare cell
JP2016086736A (en) Production method of liquid containing rare cells in blood
JP6619271B2 (en) Method for isolating or detecting rare cells
Zhu et al. Microfluidic Impedance Cytometry Enabled One‐Step Sample Preparation for Efficient Single‐Cell Mass Spectrometry
WO2018211706A1 (en) Rare cell capturing method
JP2017181096A (en) Method for capturing rare cell
WO2017130563A1 (en) Method for capturing rare cells
US11525829B2 (en) Method for capturing target cells or molecules in solution
JP6815307B2 (en) Filtration filter for nucleated cells and filtration method using it
JP6754345B2 (en) Magnetic labeling method and labeling device for particles
WO2019240236A1 (en) Cell lysis device, cell lysis method, and production method of cell component-containing liquid
JP2018061447A (en) Method of recovering rare cells
JP2019146545A (en) Method of collecting data for diagnosing presence or absence of cancer metastasis from liver to organ other than liver
WO2016017756A1 (en) Method for capturing rare cells in blood
JP2017163905A (en) Method of separating rare cells and gene analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP