JP2013040380A - High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone - Google Patents

High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone Download PDF

Info

Publication number
JP2013040380A
JP2013040380A JP2011178475A JP2011178475A JP2013040380A JP 2013040380 A JP2013040380 A JP 2013040380A JP 2011178475 A JP2011178475 A JP 2011178475A JP 2011178475 A JP2011178475 A JP 2011178475A JP 2013040380 A JP2013040380 A JP 2013040380A
Authority
JP
Japan
Prior art keywords
ferrite
steel sheet
bainite
strength
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011178475A
Other languages
Japanese (ja)
Other versions
JP5679452B2 (en
Inventor
Toshio Murakami
俊夫 村上
Masao Kinebuchi
雅男 杵渕
Hideo Hatake
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011178475A priority Critical patent/JP5679452B2/en
Priority to US14/237,286 priority patent/US9689060B2/en
Priority to PCT/JP2012/070727 priority patent/WO2013024860A1/en
Priority to EP12824032.2A priority patent/EP2746417B1/en
Priority to CN201280039607.XA priority patent/CN103732779B/en
Publication of JP2013040380A publication Critical patent/JP2013040380A/en
Application granted granted Critical
Publication of JP5679452B2 publication Critical patent/JP5679452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength hot-rolled steel sheet having excellent formability and improved fatigue characteristics not only in the base material but also in an HAZ (heat affected zone).SOLUTION: The high-strength hot-rolled steel sheet includes a component composition comprising, in mass%, C: 0.05 to 0.20%, Si: not more than 2.0%, Mn: 1.0 to 2.5%, Al: 0.001 to 0.10%, and V: 0.0005 to 0.10%, and further comprising Ti: 0.02 to 0.20% and/or Nb: 0.02 to 0.20% in a manner of satisfying the equation: C-12×(V/51+Ti/48+Nb/93)>0.03, with the balance being iron and inevitable impurities; and has a structure comprising, in an area ratio relative to the entire structure, ferrite: 50 to 90%, bainite: 10 to 50%, and the sum of martensite and retained austenite: less than 10%, wherein the mean particle diameter of a precipitated carbide present in the ferrite is smaller than 6 nm and the total content of V, Ti and Nb constituting the precipitated carbide is 0.02% or more.

Description

本発明は、自動車の足回り、フレーム部品等の強度と加工性および疲労特性が必要な部品に用いられる高強度熱延鋼板に関する。   The present invention relates to a high-strength hot-rolled steel sheet used for parts that require strength, workability, and fatigue characteristics, such as automobile undercarriages and frame parts.

近年、自動車部品に供される薄鋼板は衝突安全性と燃費改善を実現するため、高強度化が進められている。自動車の足回り部品やフレーム部品等でも高強度化が進められているが、部品の軽量化のためには、静的強度とともに疲労強度の改善が必要とされている。また、複雑な形状に加工されるため、加工性(延性、伸びフランジ性)との両立が求められている。   In recent years, thin steel plates used for automobile parts have been increased in strength in order to realize collision safety and fuel efficiency improvement. The strength of automobile undercarriage parts and frame parts has been increased, but in order to reduce the weight of parts, it is necessary to improve the fatigue strength as well as the static strength. Moreover, since it is processed into a complicated shape, compatibility with workability (ductility, stretch flangeability) is required.

加工性の改善には、強度比の大きい2種類の組織からなるDP鋼とすることが有効であり、さらにDP鋼の疲労特性の改善方法として、強度が低く応力集中の起こりやすいフェライト部を強化することが有効であることが知られている。例えば特許文献1には、TiまたはNbの炭化物で析出強化した主相フェライトと硬質な第2相からなるDP鋼において、20μmまでの表層部の平均フェライト粒径を5μm以下にすることが記載され、特許文献2には、第2相をマルテンサイト・針状フェライト・残留オーステナイトとしたDP鋼において、初析フェライトを析出強化することで、強度−加工性−疲労特性を改善することが記載されている。   In order to improve workability, it is effective to use DP steel consisting of two types of structures with a large strength ratio. Furthermore, as a method for improving the fatigue properties of DP steel, the ferrite part, which has low strength and is likely to cause stress concentration, is strengthened. It is known to be effective. For example, Patent Document 1 describes that in a DP steel composed of a main phase ferrite precipitated and strengthened with a carbide of Ti or Nb and a hard second phase, the average ferrite grain size of the surface layer portion up to 20 μm is set to 5 μm or less. Patent Document 2 describes that, in DP steel in which the second phase is martensite, acicular ferrite, and retained austenite, precipitation-strengthening of pro-eutectoid ferrite improves strength-workability-fatigue properties. ing.

上記特許文献1,2に記載された熱延鋼板は、700〜800℃付近の保持・滞留時間を短時間とし、フェライト中にTi、Nbの炭化物を分散析出させ、主相フェライトを析出強化している。この熱延鋼板では、上記温度範囲での短時間の保持・滞留で微細に分散析出した析出物が、転位の繰り返し運動に対して障害物になり、疲労特性を改善するものと考えられている。しかし、上記従来技術では、これにより十分な疲労特性改善効果が得られたとはいえなかった。   The hot-rolled steel sheets described in Patent Documents 1 and 2 have a retention and residence time of around 700 to 800 ° C., a dispersion of Ti and Nb carbides in the ferrite, and precipitation strengthening of the main phase ferrite. ing. In this hot-rolled steel sheet, it is considered that precipitates that are finely dispersed and precipitated by holding and staying in the above-mentioned temperature range for a short period of time become obstacles to repeated movement of dislocations and improve fatigue properties. . However, in the prior art, it cannot be said that a sufficient fatigue property improving effect is obtained.

そこで、本発明者らは、DP鋼の疲労特性をさらに改善することを目的に、DP鋼におけるフェライトの析出強化について鋭意研究開発を行った。その結果、DP鋼においてフェライトをTi、Nb、Vなどの析出物により強化する場合に、上記温度範囲での保持・滞留時間を長くし、その析出物を適度に粗大化することにより、高い疲労特性改善効果が得られることが分かった。この知見に基づき、以下の高強度熱延鋼板を完成するに至り、既に特許出願を行った(特許文献3参照)。   Accordingly, the present inventors have conducted extensive research and development on precipitation strengthening of ferrite in DP steel for the purpose of further improving the fatigue characteristics of DP steel. As a result, when ferrite is strengthened with precipitates such as Ti, Nb, and V in DP steel, the retention and residence time in the above temperature range is lengthened, and the precipitate is moderately coarsened, resulting in high fatigue. It was found that a characteristic improvement effect can be obtained. Based on this knowledge, the following high-strength hot-rolled steel sheet was completed, and a patent application was already filed (see Patent Document 3).

本発明者らが特許文献3にて提案した高強度冷延鋼板(以下、「先行発明鋼板」という。)は、
質量%で、C:0.01%超、0.30%以下、Si:0.1%以上、2.0%以下、Mn:0.1%以上、2.5%以下を含み、V:0.01%以上、0.15%以下、Nb:0.02%以上、0.30%以下、Ti:0.01%以上、0.15%以下の1種又は2種以上を下記条件式(1)を満たすように含み、残部がFe及び不可避不純物からなり、フェライト分率が50%以上、95%以下、マルテンサイト+残留オーステナイトからなる硬質第2相分率が5%以上、50%以下の組織を有し、フェライト中に形成された析出物の平均粒径rが6nm以上であり、平均粒径rと下記式(2)で表される析出物分率fが下記条件式(3)を満たす強度−伸びバランスと疲労特性に優れた高強度熱延鋼板である。
C−12×(V/51+Nb/93+Ti/48)≧0.01 ・・・・(1)
f=(2.08Ti+1.69V+1.14Nb)/100 ・・・・(2)
r/f≦13000 ・・・・(3)
ここで、上記式(1)、(2)中の元素記号は当該元素の質量%を意味する。
The high-strength cold-rolled steel sheet proposed by the present inventors in Patent Document 3 (hereinafter referred to as “prior invention steel sheet”)
In mass%, C: more than 0.01%, 0.30% or less, Si: 0.1% or more, 2.0% or less, Mn: 0.1% or more, 2.5% or less, V: 0.01% or more, 0.15% or less, Nb: 0.02% or more, 0.30% or less, Ti: 0.01% or more, 0.15% or less, or one or more of the following conditional expressions (1) is included so that the balance is Fe and inevitable impurities, the ferrite fraction is 50% or more and 95% or less, and the hard second phase fraction consisting of martensite + retained austenite is 5% or more and 50%. The average grain size r of the precipitate having the following structure and formed in ferrite is 6 nm or more, and the average grain size r and the precipitate fraction f represented by the following formula (2) are expressed by the following conditional formula ( It is a high-strength hot-rolled steel sheet excellent in strength-elongation balance and fatigue characteristics satisfying 3).
C-12 × (V / 51 + Nb / 93 + Ti / 48) ≧ 0.01 (1)
f = (2.08Ti + 1.69V + 1.14Nb) / 100 (2)
r / f ≦ 13000 (3)
Here, the element symbol in the above formulas (1) and (2) means mass% of the element.

上記先行発明鋼板は、加工性と疲労特性に優れるものであるが、加工後の自動車部品は、車体や他の部材等に溶接にて接合して使用されることも多く、このような場合、溶接熱影響部(以下、「HAZ」ともいう。)は母材よりも疲労強度が低下することが知られている。このため、自動車部品を溶接接合して用いる場合は、単に母材の疲労特性を改善するだけでは不十分で、HAZの疲労特性をも改善することが重要となる。上記先行発明鋼板は、母材の疲労特性の改善には優れた効果を発揮するものであるが、HAZの疲労特性については改善の余地があった。   The prior invention steel plate is excellent in workability and fatigue characteristics, but the processed automobile parts are often used by welding to the vehicle body or other members, etc. It is known that the weld heat affected zone (hereinafter also referred to as “HAZ”) has a lower fatigue strength than the base metal. For this reason, when using automobile parts by welding, it is not sufficient to simply improve the fatigue characteristics of the base metal, and it is important to improve the fatigue characteristics of the HAZ. The prior invention steel sheet exhibits an excellent effect in improving the fatigue characteristics of the base material, but there is room for improvement in the HAZ fatigue characteristics.

一方、熱延鋼板のHAZの疲労特性を改善する方法として、溶接の際に溶接線上を350〜500℃に予熱してから溶接を行うことで、HAZに残留オーステナイトを含ませることにより、HAZの疲労特性の向上を図る溶接方法が開示されている(特許文献4参照)。しかしながら、この方法は、溶接の前に予熱作業が必要であり、溶接施工の作業性に劣る問題がある。   On the other hand, as a method of improving the fatigue properties of HAZ of hot-rolled steel sheet, by preheating the weld line to 350 to 500 ° C. during welding, the residual austenite is included in HAZ. A welding method for improving fatigue characteristics is disclosed (see Patent Document 4). However, this method requires a preheating work before welding, and has a problem inferior in workability of welding work.

特開平9−137249号公報JP-A-9-137249 特開平11−189842号公報JP-A-11-189842 特開2007−321201号公報JP 2007-321201 A 特開平9−67643号公報Japanese Patent Laid-Open No. 9-66763

本発明は上記事情に着目してなされたものであり、その目的は、成形性(加工性)に優れるとともに、母材のみならずHAZについても疲労特性を改善しうる鋼強度熱延鋼板を提供することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is to provide a steel-strength hot-rolled steel sheet that is excellent in formability (workability) and can improve fatigue characteristics not only in the base material but also in HAZ. There is to do.

本発明鋼板では、DP鋼に替えて、強度(TS)−伸び(EL)−伸びフランジ性(λ)のバランスにより優れるフェライト+ベイナイト鋼を採用することとした。そして、上記先行発明鋼板と同様に、フェライト中にV、Ti、Nbなどの析出炭化物を所定量存在させることにより母材組織を強化して母材の疲労特性を改善しつつ、該先行発明鋼板とは逆に該析出炭化物を微細化することにより、溶接による加熱時にマトリックス中にV炭化物(VC)由来のVおよびCを固溶させることで、オーステナイト粒の微細化を抑制するとともに、マトリックスの焼入れ性を高めて、溶接後の冷却時にフェライトの形成を抑制してベイナイトの形成を促進すると同時に、該ベイナイトの固溶C量を増加させて該ベイナイト自体の強度も向上させることができ、HAZの疲労強度をも改善することを可能としたものである。   In this invention steel plate, it replaced with DP steel and decided to employ | adopt ferrite + bainite steel which is excellent with the balance of intensity | strength (TS) -elongation (EL) -stretch flangeability ((lambda)). And like the said prior invention steel plate, this prior invention steel plate improves the fatigue characteristics of the base material by strengthening the base material structure by making a predetermined amount of precipitated carbides such as V, Ti and Nb present in the ferrite. Contrary to this, by refining the precipitated carbides, V and C derived from V carbides (VC) are dissolved in the matrix at the time of heating by welding, thereby suppressing the austenite grains from being refined, It enhances hardenability, suppresses the formation of ferrite during cooling after welding and promotes the formation of bainite, and at the same time increases the amount of solute C of the bainite, thereby improving the strength of the bainite itself. It is also possible to improve the fatigue strength.

質量%で(以下、化学成分について同じ。)、
C :0.05〜0.20%、
Si:2.0%以下、
Mn:1.0〜2.5%、
Al:0.001〜0.10%、
V :0.0005〜0.10%
を含み、さらに、
Ti:0.02〜0.20%、および/または、
Nb:0.02〜0.20%
を下記式1を満たすように含み、
残部が鉄および不可避的不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
フェライト:50〜90%、
ベイナイト:10〜50%、
マルテンサイト+残留オーステナイト:10%未満
である組織を有し、
前記フェライト中に存在する析出炭化物の平均粒径が6nm未満であるとともに、
その析出炭化物を構成するV、TiおよびNbの合計含有量が0.02%以上である
ことを特徴とする、成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板である。
式1 C−12×(V/51+Ti/48+Nb/93)>0.03
ただし、式中の元素記号は当該元素の質量%を意味する。
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.20%,
Si: 2.0% or less,
Mn: 1.0 to 2.5%
Al: 0.001 to 0.10%,
V: 0.0005 to 0.10%
Including,
Ti: 0.02 to 0.20%, and / or
Nb: 0.02 to 0.20%
To satisfy the following formula 1,
The balance has a component composition consisting of iron and inevitable impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Ferrite: 50-90%
Bainite: 10-50%
Martensite + retained austenite: having a structure of less than 10%,
The average particle size of precipitated carbides present in the ferrite is less than 6 nm,
High-strength hot rolling that combines formability and fatigue properties of the base metal and weld heat affected zone, characterized in that the total content of V, Ti and Nb constituting the precipitated carbide is 0.02% or more. It is a steel plate.
Formula 1 C-12 × (V / 51 + Ti / 48 + Nb / 93)> 0.03
However, the element symbol in a formula means the mass% of the said element.

請求項2に記載の発明は、
前記ベイナイトの平均粒径が5μm超であることを特徴とする請求項1に記載の成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板である。
The invention described in claim 2
The high-strength hot-rolled steel sheet having both formability and fatigue characteristics of the base metal and the weld heat-affected zone according to claim 1, wherein the average grain size of the bainite is more than 5 µm.

請求項3に記載の発明は、
成分組成が、さらに、
Cu:0.01〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板である。
The invention according to claim 3
Ingredient composition further
Cu: 0.01 to 1.0%,
Ni: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: A high-strength hot-rolled steel sheet having both formability and fatigue characteristics of the base metal and the weld heat-affected zone according to claim 1 or 2, comprising one or more of 0.01 to 1.0%. It is.

本発明によれば、成形性を確保しつつ、母材およびHAZの疲労特性がともに優れた高強度熱延鋼板を提供できるようになった。   According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet that is excellent in fatigue characteristics of both the base material and the HAZ while ensuring formability.

実施例のプロセスを説明する図である。It is a figure explaining the process of an Example.

上述したように、本発明者らは、析出炭化物によりフェライトを強化した、フェライト+ベイナイト鋼をベースにして、母材の成形性と疲労特性を確保しつつ、HAZの疲労特性をも改善する方策について検討を重ねてきた。   As described above, the present inventors, based on ferrite + bainite steel strengthened with ferrite by precipitated carbide, are measures for improving HAZ fatigue properties while ensuring the formability and fatigue properties of the base material. Has been studied.

ここで、HAZは、溶接金属の近傍に形成されるが、その組織の形態は、溶接金属に近い側から順に、粗粒域、細粒域、2相域もしくは焼戻し域の3領域に分類される。そして、従来鋼においては、上記HAZの各領域の特性は、一般的に以下のような挙動を示すことが知られている。すなわち、粗粒域では、溶接による加熱時にオーステナイト粒が粗大化するため、溶接後の冷却の際にマルテンサイト化またはベイナイト化して一般に高強度となる。これに対して、細粒域では、溶接による加熱時にオーステナイト粒が微細化するため、溶接後の冷却の際にフェライトや上部ベイナイトが形成されやすくなり、強度が低下して疲労破壊の起点になる。また、2相域もしくは焼戻し域では、焼戻しにより強度が低下し、疲労強度も低下する。   Here, HAZ is formed in the vicinity of the weld metal, but the form of the structure is classified into three regions of a coarse grain region, a fine grain region, a two-phase region, or a tempering region in order from the side close to the weld metal. The And in conventional steel, it is known that the characteristics of each region of the HAZ generally exhibit the following behavior. That is, in the coarse grain region, austenite grains become coarse during heating by welding, so that they become martensite or bainite and generally have high strength during cooling after welding. On the other hand, in the fine-grained region, austenite grains become finer when heated by welding, so ferrite and upper bainite are likely to be formed during cooling after welding, and the strength decreases and becomes the starting point of fatigue failure . In the two-phase region or tempering region, the strength is reduced by tempering and the fatigue strength is also reduced.

そこで、本発明者らは、先ず、HAZの疲労特性を改善するための第1の方策として、フェライト中に微細な析出炭化物を分散させることを考えた。これにより、2相域もしくは焼戻し域ではフェライトは強化され、疲労特性を向上させる方向に働く。しかしながら、粗粒域および細粒域では析出炭化物のピンニング作用によりオーステナイト粒が微細化して、フェライトや上部ベイナイトの形成が促進され、マルテンサイトの形成量が不足するうえ、該析出炭化物が炭素を固定してしまうため、マルテンサイト中の固溶C量が低下するため、疲労特性を却って劣化させる方向に働く。   Therefore, the present inventors first considered dispersing fine precipitated carbides in ferrite as a first measure for improving the fatigue characteristics of HAZ. Thereby, the ferrite is strengthened in the two-phase region or the tempering region, and works in the direction of improving the fatigue characteristics. However, in the coarse and fine grained regions, the austenite grains are refined by the pinning action of the precipitated carbide, the formation of ferrite and upper bainite is promoted, the amount of martensite is insufficient, and the precipitated carbide fixes carbon. Therefore, since the amount of solute C in martensite decreases, it works in the direction of deteriorating the fatigue characteristics.

上記従来技術の(Ti+Nb)添加鋼を例として、より具体的に説明する。(Ti+Nb)添加鋼では、熱延時には、オーステナイト粒が粗大で変態開始点が長時間側にあるが、熱延時の冷却速度が小さいため、フェライト変態を促進させることができ、フェライト+ベイナイト化が可能である。しかしながら、溶接による加熱時においては、HAZの粗粒域および細粒域に相当する領域では、(Ti、Nb)Cのピンニング作用によりオーステナイト粒が微細になり、かつ、TiおよびNbがCを固定するため、オーステナイト中の固溶C量が低下して、変態開始点が短時間側に移行するため、溶接後の冷却時に、その冷却速度が大きくてもフェライト変態や上部ベイナイト変態が発生しやすい。また、ベイナイトノーズを切ってマルテンサイトが形成されたとしても、固溶C量に比例するマルテンサイト強度が低くなるため疲労特性が確保できない。   The above-described prior art (Ti + Nb) -added steel will be described more specifically as an example. In (Ti + Nb) -added steel, the austenite grains are coarse during hot rolling and the transformation start point is on the long time side, but since the cooling rate during hot rolling is small, ferrite transformation can be promoted, and ferrite + bainite is formed. Is possible. However, at the time of heating by welding, the austenite grains become fine due to the pinning action of (Ti, Nb) C and the Ti and Nb fix C in the regions corresponding to the coarse and fine regions of HAZ. Therefore, the amount of dissolved C in the austenite decreases, and the transformation start point shifts to the short time side. Therefore, when cooling after welding, ferrite transformation and upper bainite transformation are likely to occur even if the cooling rate is large. . Further, even if martensite is formed by cutting the bainite nose, the fatigue properties cannot be ensured because the martensite strength proportional to the amount of dissolved C is lowered.

したがって、単にフェライト中に微細な析出炭化物を分散させるだけでは、HAZの疲労特性を確実かつ十分に改善することができないと判断した。   Therefore, it was determined that the fatigue properties of HAZ cannot be reliably and sufficiently improved by simply dispersing fine precipitated carbides in ferrite.

そこで、本発明者らは、HAZの疲労特性を確実かつ十分に改善するための第2の方策として、析出炭化物のうち、融点の低いV炭化物(VC)を溶接による加熱時に部分的に固溶させることにより、母材の析出強化と、HAZの粗粒域および細粒域の焼入れ性とを両立させることを考えた。   Therefore, as a second measure for reliably and sufficiently improving the fatigue characteristics of HAZ, the present inventors partially dissolved V carbide (VC) having a low melting point during precipitation heating. Thus, it has been considered that both the precipitation strengthening of the base material and the hardenability of the coarse and fine grain regions of the HAZ can be achieved.

より具体的には、上記(Ti+Nb)添加鋼に対して、(Ti+Nb)の一部をVに置き換えることで、熱延での組織形成挙動を踏襲して母材組織をそのまま維持しつつ、HAZの疲労特性を以下のメカニズムを利用して改善できると考えた。   More specifically, with respect to the (Ti + Nb) -added steel, by replacing a part of (Ti + Nb) with V, while maintaining the base metal structure as it is while following the structure formation behavior in hot rolling, the HAZ It was thought that the fatigue characteristics of can be improved using the following mechanism.

すなわち、HAZの粗粒域および細粒域に相当する領域では、溶接による加熱時に析出炭化物である[Ti,Nb,V]C中のVCの部分が一部固溶し、オーステナイト粒の微細化作用が小さくなる。また、オーステナイト中へのV、Cの固溶により焼入れ性が高まり、変態開始点が長時間側に移行するため、溶接後の冷却時におけるフェライトや上部ベイナイトの形成を抑制し、マルテンサイトの形成量が確保される。さらに、固溶C量の増加によりマルテンサイト自体の強度も向上する。このようにマルテンサイト自体の強度向上とその形成量の確保によりHAZの粗粒域および細粒域の疲労特性が改善されることとなる。   That is, in the regions corresponding to the coarse and fine grain regions of HAZ, a part of VC in [Ti, Nb, V] C, which is a precipitated carbide, is partially dissolved during heating by welding, and the austenite grains are refined. The action is reduced. Also, the hardenability is enhanced by the solid solution of V and C in austenite, and the transformation start point shifts to the long time side, so the formation of ferrite and upper bainite during cooling after welding is suppressed, and the formation of martensite. The amount is secured. Furthermore, the strength of martensite itself is improved by increasing the amount of dissolved C. As described above, the fatigue characteristics of the coarse and fine grain regions of the HAZ are improved by improving the strength of the martensite itself and ensuring the amount of formation.

なお、上記メカニズムによるHAZの疲労特性の確実かつ十分な改善を実現するためには、析出炭化物中のVCの固溶をより促進する必要があり、そのためには析出炭化物は所定のサイズより小さくなるように微細化する必要がある。   In order to realize reliable and sufficient improvement of HAZ fatigue characteristics by the above mechanism, it is necessary to further promote the solid solution of VC in the precipitated carbide, and for this purpose, the precipitated carbide is smaller than a predetermined size. It is necessary to make it finer.

そして、上記思考に基づいて確証実験の実施等さらに検討を進め、本発明を完成するに至った。   Based on the above thinking, further studies such as confirmation experiments were carried out, and the present invention was completed.

以下、まず本発明鋼板を特徴づける組織について説明する。   Hereinafter, the structure characterizing the steel sheet of the present invention will be described first.

〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、フェライト+ベイナイト鋼をベースとするものであるが、特に、フェライト中に存在する析出炭化物の平均粒径が、上記先行発明鋼板では6nm以上に制限されていたのに対し、本願発明鋼板では6nm未満に制限されている点で相違している。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention is based on ferrite + bainite steel. In particular, the average grain size of precipitated carbides present in ferrite was limited to 6 nm or more in the steel sheet of the prior invention. On the other hand, the present invention steel plate is different in that it is limited to less than 6 nm.

<フェライト:50〜90%、ベイナイト:10〜50%、マルテンサイト+残留オーステナイト:10%未満>
フェライトが50%未満、または、ベイナイトが50%を超えると、ベイナイト同士が連結することにより伸びELが確保できず、一方、フェライトが90%を超え、または、ベイナイトが5%に満たないと、引張強度TSと伸びフランジ性λが確保できない。好ましくは、フェライト:60〜80%、ベイナイト:20〜40%である。
主相であるフェライトおよびベイナイト以外の組織としては、マルテンサイト+残留オーステナイト(MA)を10%未満とするのが望ましい。これはより硬質の組織の存在によって、強度−伸び−伸びフランジ性のバランスが低下するためである。
<Ferrite: 50 to 90%, Bainite: 10 to 50%, Martensite + retained austenite: less than 10%>
If the ferrite is less than 50% or the bainite exceeds 50%, the elongation EL cannot be secured by connecting the bainite, while the ferrite exceeds 90% or the bainite is less than 5%. The tensile strength TS and stretch flangeability λ cannot be secured. Preferably, ferrite: 60 to 80%, bainite: 20 to 40%.
As a structure other than the main phase ferrite and bainite, martensite + residual austenite (MA) is preferably less than 10%. This is because the balance of strength-elongation-stretch flangeability decreases due to the presence of a harder structure.

<フェライト中に存在する析出炭化物の平均粒径:6nm未満>
析出炭化物を微細化することにより、析出炭化物中のVCの固溶を促進することで、上記メカニズムによるHAZの疲労特性の確実かつ十分な改善を実現するためである。好ましくは、5nm以下である。
なお、先行発明鋼板ではこの値を6nm以上に規定することで、母材の疲労特性を改善することとしていたが、本発明鋼板では、母材の疲労強度の改善の度合いは犠牲にしつつも、HAZの疲労特性を改善することで、母材とHAZの疲労強度をともにバランス良く改善することができる。
<Average particle size of precipitated carbides present in ferrite: less than 6 nm>
This is because, by making the precipitated carbides finer, the solid solution of VC in the precipitated carbides is promoted, thereby realizing a sure and sufficient improvement of the HAZ fatigue characteristics by the above mechanism. Preferably, it is 5 nm or less.
In the steel sheet of the prior invention, this value was defined to be 6 nm or more to improve the fatigue characteristics of the base material.In the steel sheet of the present invention, the degree of improvement in the fatigue strength of the base material was sacrificed, By improving the fatigue properties of HAZ, the fatigue strength of the base material and HAZ can both be improved in a well-balanced manner.

<析出炭化物を構成するTi、NbおよびVの合計含有量:0.02%以上>
析出強化に寄与している炭化物の合金元素の総量を規定したものである。析出強化の度合いは、f/r(ただし、f:析出炭化物分率、r:析出炭化物粒径)に比例するといわれているので、析出炭化物分率fに相当するこのパラメータを大きくすることで疲労強度が向上する。好ましくは、0.03%以上、さらに好ましくは0.05%以上である。
<Total content of Ti, Nb and V constituting the precipitated carbide: 0.02% or more>
It defines the total amount of carbide alloy elements that contribute to precipitation strengthening. The degree of precipitation strengthening is said to be proportional to f / r (where f is the fraction of precipitated carbide and r is the grain size of precipitated carbide), so fatigue can be increased by increasing this parameter corresponding to the fraction of precipitated carbide f. Strength is improved. Preferably, it is 0.03% or more, more preferably 0.05% or more.

<ベイナイトの平均粒径:5μm超>
ベイナイトの平均粒径を5μm超に粗大化することが望ましく、これにより、母材の強度−伸び−伸びフランジ性のバランスは少し犠牲にしつつも、HAZについては、炭化物が析出していないベイナイト領域を大きくすることで、溶接時の加熱の際にオーステナイト粒を粗大化し、焼入れ性を高めることにより、フェライトや上部ベイナイトの形成を抑制し、疲労特性を改善する。より好ましくは、8μm以上である。
<Average particle size of bainite: more than 5 μm>
It is desirable to coarsen the average grain size of bainite to more than 5 μm, so that the balance of strength-elongation-stretch flangeability of the base material is sacrificed slightly, but HAZ is a bainite region in which carbides are not precipitated. By increasing the size, the austenite grains are coarsened during heating during welding and the hardenability is enhanced, thereby suppressing the formation of ferrite and upper bainite and improving the fatigue characteristics. More preferably, it is 8 μm or more.

〔各相の面積率、フェライト中に存在する析出炭化物の平均粒径、析出炭化物を構成するTi、NbおよびVの合計含有量、ならびに、ベイナイトの平均粒径の各測定方法〕
ここで、各相の面積率、フェライト中に存在する析出炭化物の平均粒径、析出炭化物を構成するTi、NbおよびVの合計含有量、ならびに、ベイナイトの平均粒径の各測定方法について説明する。
[Measurement method of area ratio of each phase, average particle size of precipitated carbide existing in ferrite, total content of Ti, Nb and V constituting precipitated carbide, and average particle size of bainite]
Here, each measuring method of the area ratio of each phase, the average particle diameter of the precipitated carbide existing in the ferrite, the total content of Ti, Nb and V constituting the precipitated carbide, and the average particle diameter of bainite will be described. .

鋼板中組織の各相の面積率については、各供試鋼板をナイタール腐食し、走査型電子顕微鏡(SEM;倍率1000倍)により5視野撮影し、フェライト、ベイナイト、パーライト、および、マルテンサイト+残留オーステナイトの各比率を点算法で求めた。   Regarding the area ratio of each phase of the microstructure in the steel sheet, each test steel sheet was subjected to nital corrosion, photographed with five fields of view with a scanning electron microscope (SEM; magnification 1000 times), ferrite, bainite, pearlite, and martensite + residual Each ratio of austenite was determined by point calculation.

フェライト中に存在する析出炭化物の平均粒径については、抽出レプリカ法により析出物を抽出し、フェライト領域を透過形電子顕微鏡にて、倍率×150000で1μm×1μmの領域を観察及び撮影し、その中に観察された析出物(円相当直径で2nm以上)を画像解析して各粒子の面積を求め、その面積から円相当直径を求めて平均値を算出し、平均粒径とした。   For the average particle size of the precipitated carbides present in the ferrite, the precipitate was extracted by the extraction replica method, and the ferrite region was observed and photographed with a transmission electron microscope at a magnification of 150,000 × 1 μm × 1 μm. The area of each particle was obtained by image analysis of precipitates observed in the circle (diameter equivalent to 2 nm or more), the circle equivalent diameter was obtained from the area, the average value was calculated, and the average particle size was obtained.

析出炭化物を構成するTi、NbおよびVの合計含有量については、抽出残渣分析法により求めた。鋼板の表裏面を0.2mmずつ研削したのち、試料をAA(アセチルアセトン)系電解液中に浸漬して電解を行った。電解終了後、試料表面の析出物をメタノール中で超音波剥離した。電解後の電解液および超音波剥離液を吸引ろ過し、残渣(析出物)を捕集した。フィルターは材質がポリカーボネートのメンブランフィルター(孔径0.1μm)を使用した。残渣はフィルターと共に加熱して灰化し、アルカリ溶剤を入れて再度加熱し、残渣を溶融した。次に、酸と水を加えて融成物を溶解した後、水を加えて定容とし、これを分析液とした。ICP発光分析装置を用いて分析液中のV,Nb,Ti量を測定した後、測定結果と電解質量(電解前後の質量差)から、試料中の析出物を構成するTi,Nb,Vの合計含有量を算出した。   The total content of Ti, Nb and V constituting the precipitated carbide was determined by an extraction residue analysis method. After grinding the front and back surfaces of the steel sheet by 0.2 mm each, the sample was immersed in an AA (acetylacetone) -based electrolytic solution for electrolysis. After completion of electrolysis, the precipitate on the sample surface was ultrasonically peeled in methanol. The electrolytic solution and the ultrasonic peeling solution after electrolysis were suction filtered to collect the residue (precipitate). The filter used was a membrane filter (pore size: 0.1 μm) made of polycarbonate. The residue was ashed by heating with a filter, and the residue was heated again by adding an alkaline solvent to melt the residue. Next, an acid and water were added to dissolve the melt, and then water was added to make a constant volume, which was used as an analysis solution. After measuring the amounts of V, Nb, and Ti in the analysis solution using an ICP emission spectrometer, the measurement results and electrolytic mass (mass difference before and after electrolysis) are used to determine the Ti, Nb, and V constituting the precipitate in the sample. The total content was calculated.

ベイナイトの平均粒径については、上記ナイタール腐食後のSEM写真において、フェライトに囲まれたベイナイトの領域全体を1個の粒と定義し、その領域の面積を画像解析により測定し、円相当直径に換算して求めた。   The average grain size of bainite is defined as one grain in the entire area of bainite surrounded by ferrite in the SEM photograph after nital corrosion, and the area of the area is measured by image analysis to obtain the equivalent circle diameter. Obtained by conversion.

次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明鋼板の成分組成〕
C :0.05〜0.20%
Cは強化元素であり、C量が増加するとフェライトの面積率が低下する。0.05%未満では必要な強度が得られず、0.20%を超えるとベイナイトの面積率が大きくなり過ぎ、TS−EL−λバランスが確保できない。好ましくは、0.06〜0.15%である。
[Component composition of the steel sheet of the present invention]
C: 0.05 to 0.20%
C is a strengthening element, and as the amount of C increases, the area ratio of ferrite decreases. If it is less than 0.05%, the required strength cannot be obtained, and if it exceeds 0.20%, the area ratio of bainite becomes too large to secure the TS-EL-λ balance. Preferably, it is 0.06 to 0.15%.

Si:2.0%以下
Siはフェライトの固溶強化元素としてTS−EL−λバランスの改善に寄与し、疲労特性改善にも寄与する。しかし、2.0%を超えるとフェライトが強化されすぎ、ELlが低下する。好ましくは0.5〜1.7%である。
Si: 2.0% or less Si, as a solid solution strengthening element of ferrite, contributes to the improvement of TS-EL-λ balance and also contributes to the improvement of fatigue characteristics. However, if it exceeds 2.0%, ferrite is strengthened too much and ELl is lowered. Preferably it is 0.5 to 1.7%.

Mn:1.0〜2.5%
Mnは脱酸元素として添加され、また固溶強化によりTS−EL−λバランスの改善に寄与する。しかし、1.0%未満であると脱酸が不十分となりTS−EL−λバランスが劣化し、2.0%を超えると焼き入れ性が高くなり過ぎフェライトの面積率が低下する。好ましくは1.2〜2.0%である。
Mn: 1.0 to 2.5%
Mn is added as a deoxidizing element and contributes to the improvement of the TS-EL-λ balance by solid solution strengthening. However, if it is less than 1.0%, deoxidation is insufficient and the TS-EL-λ balance is deteriorated, and if it exceeds 2.0%, the hardenability becomes too high and the area ratio of ferrite is lowered. Preferably it is 1.2 to 2.0%.

Al:0.001〜0.10%、
Alは固溶強化によりTS−ELバランスを改善する効果があり、必要に応じて添加される。しかし、下限値未満ではその効果が得られず、上限値を超えると粒界偏析し粒界破壊を助長してTS−EL−λバランスを低下させる。
Al: 0.001 to 0.10%,
Al has an effect of improving the TS-EL balance by solid solution strengthening, and is added as necessary. However, if the value is less than the lower limit, the effect cannot be obtained, and if the value exceeds the upper limit, segregation at the grain boundary promotes grain boundary fracture and lowers the TS-EL-λ balance.

V :0.0005〜0.10%、
下記のTiおよびNbとともにフェライト中に微細な炭化物を形成することで母材の疲労特性を改善する。また、HAZにおいて、溶接による加熱時に固溶してオーステナイト粒の微細化を抑制し、かつ、固溶C量および固溶V量を増加させることで、HAZの焼入れ性を向上させて強度を高め、HAZの疲労特性をも改善する。そのため、Vは必須の添加元素である。好ましくは0.002〜0.08%である。
V: 0.0005 to 0.10%,
The fatigue characteristics of the base material are improved by forming fine carbides in ferrite together with the following Ti and Nb. Also, in HAZ, by solid solution during heating by welding, it suppresses the refinement of austenite grains, and by increasing the amount of solute C and solute V, the hardenability of HAZ is improved and the strength is increased. It also improves the fatigue properties of HAZ. Therefore, V is an essential additive element. Preferably it is 0.002 to 0.08%.

Ti:0.02〜0.20%、および/または、
Nb:0.02〜0.20%
TiとNbはVと同様、フェライト中に微細な炭化物を形成することで母材の疲労特性を改善する。しかし、それぞれ下限値未満であると析出強化効果が不十分であり、上限値を超えて添加しても特性改善効果が得られない。TiとNbは、上記Vと異なり選択的な添加元素であり、いずれか一方、または、双方とも添加して用いる。好ましくはそれぞれ0.03〜0.15%である。
Ti: 0.02 to 0.20%, and / or
Nb: 0.02 to 0.20%
Ti and Nb, like V, improve the fatigue properties of the base material by forming fine carbides in the ferrite. However, if it is less than the lower limit, the effect of precipitation strengthening is insufficient, and even if the content exceeds the upper limit, the effect of improving the characteristics cannot be obtained. Ti and Nb are selective additive elements unlike V, and either one or both are added and used. Preferably each is 0.03 to 0.15%.

C−12×(V/51+Ti/48+Nb/93)>0.03 ・・・式(1)
この式はV、Nb、Tiにより固定されないフリーC量を0.03%超残存させることを意味する。フリーCは必要なベイナイトの面積率の確保に寄与する。左辺の計算値(成分パラメータという。)は0.05%以上が好ましい。なお、式中の元素記号は当該元素の質量%を意味する。
C-12 × (V / 51 + Ti / 48 + Nb / 93)> 0.03 Formula (1)
This equation means that the amount of free C that is not fixed by V, Nb, and Ti is left over 0.03%. Free C contributes to securing the required area ratio of bainite. The calculated value (referred to as component parameter) on the left side is preferably 0.05% or more. In addition, the element symbol in a formula means the mass% of the said element.

本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄および不可避的不純物であり、この不可避的不純物としてはP、S、N、O等が含まれるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components, and the balance is substantially iron and unavoidable impurities. Examples of the unavoidable impurities include P, S, N, O, etc. The following acceptable components can be added within the range not impairing the above-mentioned action.

Cu:0.01〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%の1種または2種以上
これらの元素は鋼の焼き入れ性を高めることにより、マルテンサイト及び残留オーステナイト以外の組織の形成を抑制する効果があり、必要に応じて添加される。しかし、下限値未満ではその効果が得られず、上限値を超えるとフェライトが脆化し、TS−EL−λバランスを低下させる。より好ましくは、それぞれ0.1〜0.8%である。
Cu: 0.01 to 1.0%,
Ni: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: One or more of 0.01 to 1.0% These elements have the effect of suppressing the formation of structures other than martensite and retained austenite by increasing the hardenability of steel, and are necessary. Added accordingly. However, if it is less than the lower limit, the effect cannot be obtained, and if it exceeds the upper limit, the ferrite becomes brittle and the TS-EL-λ balance is lowered. More preferably, it is 0.1 to 0.8% respectively.

次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining the said steel plate of this invention is demonstrated below.

〔本発明鋼板の好ましい製造方法〕
本発明鋼板は、上記成分組成を満足する鋼材を加熱した後、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止後の緩冷、緩冷後の急冷、巻取りを行って製造する。
[Preferred production method of the steel sheet of the present invention]
The steel sheet of the present invention is manufactured by heating a steel material satisfying the above component composition, followed by hot rolling including finish rolling, rapid cooling after hot rolling, slow cooling after quenching stop, rapid cooling after slow cooling, and winding. To do.

[加熱]
熱間圧延前の加熱は、炭化物のうち最も溶体化温度の高いTiを固溶させるため、TiCの溶体化温度以上1300℃以下で行う。TiCの溶体化温度T(K)は、式:T=−9260/[log(C・Ti)−4.68](ここで式中のC、Tiはそれぞれの元素の鋼中の含有量(質量%)を示す。)で算出すればよい。この加熱によりオーステナイト単相とし、かつV、Ti、Nbをオーステナイトに固溶させる。加熱温度がTiCの溶体化温度未満では少なくともTiがオーステナイトに固溶できず、粗大な炭化物が形成されるため疲労特性改善効果が得られない。一方、1300℃を超える温度は操業上困難である。加熱温度の好ましい下限は1100℃、さらに好ましい下限は1000℃である。
[heating]
Heating before hot rolling is performed at a temperature not lower than the solution temperature of TiC and not higher than 1300 ° C. in order to solidify Ti having the highest solution temperature among the carbides. The solution temperature T (K) of TiC is expressed by the formula: T = -9260 / [log (C · Ti) -4.68] (where C and Ti in the formula are the contents of each element in the steel ( Mass%))). By this heating, an austenite single phase is obtained, and V, Ti, and Nb are dissolved in austenite. If the heating temperature is lower than the solution temperature of TiC, at least Ti cannot be dissolved in austenite, and coarse carbides are formed, so that the effect of improving fatigue characteristics cannot be obtained. On the other hand, temperatures exceeding 1300 ° C. are difficult to operate. The minimum with a preferable heating temperature is 1100 degreeC, and a more preferable minimum is 1000 degreeC.

[熱間圧延]
熱間圧延は、仕上げ圧延温度が880℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト中の析出炭化物が粗大化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してベイナイトの粒径を大きくするため、900℃以上とするのがより好ましい。なお、仕上げ圧延温度の上限は温度確保が難しいため、1000℃とする。
[Hot rolling]
Hot rolling is performed so that the finish rolling temperature is 880 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation occurs at a high temperature and the precipitated carbides in the ferrite are coarsened, so that a certain finish rolling temperature is required. The finish rolling temperature is more preferably 900 ° C. or higher in order to coarsen austenite grains and increase the grain size of bainite. The upper limit of the finish rolling temperature is set to 1000 ° C. because it is difficult to secure the temperature.

[熱延後の急冷]
上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(第1急冷速度)で急冷し、580℃以上670℃未満の温度(急冷停止温度)で急冷を停止する。フェライト変態の開始温度を低温化することによりフェライト中に形成される析出炭化物を微細化するためである。冷却速度(第1急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が580℃未満ではパーライト変態又はベイナイト変態が促進され、いずれも所定の相分率のフェライト−ベイナイト鋼を得るのが困難になり、強度−伸び−伸びフランジ性のバランスが低下する。一方、急冷停止温度が670℃以上になるとフェライト中の析出炭化物が粗大化してしまい、HAZの疲労特性が確保できない。急冷停止温度は、好ましくは600〜650℃、さらに好ましくは610〜640℃である。
[Rapid cooling after hot rolling]
After completion of the finish rolling, quenching is performed at a cooling rate (first quenching rate) of 20 ° C./s or more within 5 s, and quenching is stopped at a temperature of 580 ° C. or more and less than 670 ° C. (quenching stop temperature). This is because the precipitation carbide formed in the ferrite is refined by lowering the starting temperature of the ferrite transformation. When the cooling rate (first quenching rate) is less than 20 ° C./s, pearlite transformation is promoted, or when the quenching stop temperature is less than 580 ° C., pearlite transformation or bainite transformation is promoted, both of which are ferrites having a predetermined phase fraction. It becomes difficult to obtain bainite steel, and the balance of strength-elongation-stretch flangeability is lowered. On the other hand, when the quenching stop temperature is 670 ° C. or higher, the precipitated carbides in the ferrite are coarsened, and the HAZ fatigue characteristics cannot be ensured. The quenching stop temperature is preferably 600 to 650 ° C, more preferably 610 to 640 ° C.

[急冷停止後の緩冷]
上記急冷停止後、放冷または空冷により10℃/s以下の冷却速度(緩冷速度)で5〜20s緩冷する。これによりフェライトの形成を十分に進行させつつ、フェライト中の析出炭化物を適度に微細化させる。冷却速度が10℃/sを超え、または、緩冷時間が5s未満では、フェライトの形成量が不足する。一方、緩冷時間が20sを超えると析出炭化物が粗大化せず、HAZの疲労特性が確保できない。
[Slow cooling after rapid cooling stop]
After the rapid cooling stop, it is slowly cooled for 5 to 20 seconds at a cooling rate (slow cooling rate) of 10 ° C./s or less by cooling or air cooling. Thus, the precipitated carbide in the ferrite is appropriately refined while sufficiently progressing the formation of the ferrite. When the cooling rate exceeds 10 ° C./s or the slow cooling time is less than 5 s, the amount of ferrite formed is insufficient. On the other hand, if the slow cooling time exceeds 20 s, the precipitated carbide does not become coarse, and the HAZ fatigue characteristics cannot be ensured.

[緩冷後の急冷、巻取り]
上記緩冷後、再度20℃/s以上の冷却速度(第2急冷速度)で急冷し、300℃超450℃以下で巻き取る。残部をベイナイト主体の組織にすることで強度−伸び−伸びフランジ性のバランスを改善するためである。冷却速度(第2急冷速度)が20℃/s未満、または、巻取り温度が450℃超では、パーライトが形成され、一方300℃未満では、マルテンサイトや残留オーステナイトが多く形成され、強度−伸び−伸びフランジ性のバランスが低下する。
[Rapid cooling after slow cooling, winding]
After the slow cooling, it is rapidly cooled again at a cooling rate of 20 ° C./s or higher (second rapid cooling rate), and wound up at a temperature exceeding 300 ° C. and not exceeding 450 ° C. This is because the balance of strength-elongation-stretch flangeability is improved by making the remainder a bainite-based structure. When the cooling rate (second quenching rate) is less than 20 ° C./s or the coiling temperature exceeds 450 ° C., pearlite is formed, whereas when it is less than 300 ° C., a lot of martensite and retained austenite are formed, and the strength-elongation -The balance of stretch flangeability decreases.

本発明の効果を確証するため、成分組成および熱延条件を種々変化させて製造した高強度熱延鋼板について、母材およびHAZの機械的特性に及ぼす影響を調査した。下記表1に示す各成分組成からなる供試鋼を真空溶製し、板厚30mmの供試材とした。この供試材を図1に示すプロセスおよび下記表2に示す条件で熱間圧延し、熱延鋼板を製造した。より詳しくは、加熱温度HTに30min保持した後、仕上げ圧延温度FDTで仕上げ圧延を行い、仕上げ板厚は3mmとした。仕上げ圧延後、第1急冷速度RCR1で急冷停止温度Tmまで冷却し、放冷時間(緩冷時間)tmだけ放冷した。なお、放冷中の冷却速度(緩冷速度)MCRは10℃/s以下であった。その後、第2急冷速度RCR2で巻取り温度CTまで冷却し、30min保持した後、炉冷した。   In order to confirm the effect of the present invention, the influence on the mechanical properties of the base metal and the HAZ was investigated for high-strength hot-rolled steel sheets produced by varying the composition of components and hot-rolling conditions. Test steels having respective component compositions shown in Table 1 below were vacuum-melted to prepare test materials having a plate thickness of 30 mm. This test material was hot-rolled under the process shown in FIG. 1 and the conditions shown in Table 2 below to produce a hot-rolled steel sheet. More specifically, after holding at the heating temperature HT for 30 min, finish rolling was performed at the finish rolling temperature FDT, and the finished plate thickness was 3 mm. After the finish rolling, the steel sheet was cooled to the quenching stop temperature Tm at the first quenching rate RCR1 and allowed to cool for a cooling time (slow cooling time) tm. The cooling rate (slow cooling rate) MCR during cooling was 10 ° C./s or less. Then, it cooled to coiling temperature CT with 2nd rapid cooling speed | rate RCR2, hold | maintained for 30 minutes, and cooled in the furnace.

このようにして得られた熱延鋼板(母材相当)について、上記[発明を実施するための形態]の項で説明した測定方法により、各相の面積率、フェライト中に存在する析出炭化物の平均粒径、析出炭化物を構成するTi、NbおよびVの合計含有量、ならびに、ベイナイトの平均粒径を測定した。   With respect to the hot-rolled steel sheet (equivalent to the base material) thus obtained, the area ratio of each phase and the precipitation carbides present in the ferrite were measured by the measurement method described in the above [Mode for carrying out the invention]. The average particle size, the total content of Ti, Nb and V constituting the precipitated carbide, and the average particle size of bainite were measured.

また、上記母材相当の熱延鋼板から表裏面を研削して板厚2mmの板サンプルにしたうえで、JISZ2241に準拠して引張試験を実施し、母材の引張強度(TS)と伸び(EL)を測定した。   Further, after grinding the front and back surfaces of the hot-rolled steel plate corresponding to the base material into a plate sample having a thickness of 2 mm, a tensile test is performed in accordance with JISZ2241, and the tensile strength (TS) and elongation ( EL) was measured.

また、上記母材相当の熱延鋼板から表裏面を研削して板厚2mmの板サンプルにしたうえで、鉄連規格JFST001に準拠して穴広げ試験を実施し、穴広げ率を測定し、これを母材の伸びフランジ性(λ)とした。   In addition, after grinding the front and back surfaces of a hot-rolled steel plate corresponding to the above-mentioned base material into a plate sample having a thickness of 2 mm, a hole expansion test was performed in accordance with the iron standard JFST001, and the hole expansion rate was measured. Is the stretch flangeability (λ) of the base material.

さらに、上記母材相当の熱延鋼板の表裏面を0.2mmずつ研削し、その後、JIS Z 2275記載の平面曲げ試験によりS−N曲線を作成して疲労限度を求め、それを母材の疲労強度とした。また、母材の疲労強度(FL)と引張強度(TS)から母材の疲労限度比(FL/TS)を計算した。   Further, the front and back surfaces of the hot-rolled steel sheet corresponding to the base material are ground by 0.2 mm each, and then an SN curve is created by a plane bending test described in JIS Z 2275 to determine the fatigue limit. It was defined as fatigue strength. Further, the fatigue limit ratio (FL / TS) of the base material was calculated from the fatigue strength (FL) of the base material and the tensile strength (TS).

次いで、HAZの細粒域を模擬するため、上記母材相当の熱延鋼板を熱処理シミュレータで950℃まで30℃/sの昇温速度で加熱した後、直ちに30℃/sの冷却速度で室温まで冷却して細粒域模擬材とした。   Next, in order to simulate the HAZ fine grain region, the hot-rolled steel sheet corresponding to the base material is heated to 950 ° C. at a temperature increase rate of 30 ° C./s with a heat treatment simulator, and then immediately cooled to room temperature at a cooling rate of 30 ° C./s. The material was cooled to a fine grain region simulation material.

また、HAZの焼戻し域を模擬するため、上記母材相当の熱延鋼板を熱処理シミュレータで700℃まで30℃/sの昇温速度で加熱した後、直ちに30℃/sの冷却速度で室温まで冷却して焼戻し域模擬材とした。   In addition, in order to simulate the tempering zone of HAZ, a hot-rolled steel sheet corresponding to the above base material is heated to 700 ° C. at a heating rate of 30 ° C./s with a heat treatment simulator, and then immediately cooled to room temperature at a cooling rate of 30 ° C./s. It was cooled and used as a simulated tempering zone.

そして、これら細粒域模擬材と焼戻し域模擬材については、上記母材相当の熱延鋼板と同様にして疲労試験を行ったが、疲労限度が存在しなかったため、2×10回で未破断となる時間強度を疲労強度とした。 And, for these fine grained region simulating material and tempered zone simulated material, were subjected to fatigue test in the same manner as the hot-rolled steel sheet corresponding the base material, since the fatigue limit does not exist, non with 2 × 10 6 times The time strength at which breakage occurred was defined as fatigue strength.

これらの測定結果を表3に示す。   These measurement results are shown in Table 3.

これらの表に示すように、本発明鋼板である、鋼No.1〜6、11、15〜17、20、23〜26はいずれも、本発明の成分組成の範囲を満足する鋼種を用い、推奨の熱延条件で製造した結果、本発明の組織規定の必須要件をすべて充足しており、母材の強度−伸び−伸びフランジ性のバランスを確保しつつ、母材およびHAZの疲労特性をも兼備した高強度熱延鋼板が得られた。   As shown in these tables, steel No. which is the steel sheet of the present invention. 1 to 6, 11, 15 to 17, 20, 23 to 26 are all manufactured using the steel grades satisfying the range of the composition of the present invention under the recommended hot rolling conditions. All the requirements were satisfied, and a high-strength hot-rolled steel sheet having both the base material and HAZ fatigue characteristics was obtained while ensuring the balance of strength-elongation-stretch flangeability of the base material.

これに対し、比較鋼である、鋼No.7〜10、12〜14はいずれも、本発明で規定する成分組成の要件を満足しない鋼種を用いたため、推奨の熱延条件で製造しているものの、母材の強度−伸び−伸びフランジ性のバランス、ならびに、母材およびHAZの疲労特性の少なくともいずれかの特性が劣っている。   On the other hand, steel No. which is a comparative steel. 7 to 10 and 12 to 14 all use steel grades that do not satisfy the requirements of the component composition defined in the present invention, and are manufactured under the recommended hot rolling conditions, but the strength of the base material-stretch-stretch flangeability And at least one of the fatigue properties of the base material and the HAZ is inferior.

また、別の比較鋼である、鋼No.18、19、21、22はいずれも、本発明の成分組成の範囲を満足する鋼種を用いたものの、推奨の熱延条件を外れた条件で製造した結果、本発明の組織の要件を充足せず、やはり、母材の強度−伸び−伸びフランジ性のバランス、ならびに、母材およびHAZの疲労特性の少なくともいずれかの特性が劣っている。   Moreover, steel No. which is another comparative steel. Although 18, 19, 21, and 22 all used steel grades that satisfy the range of the component composition of the present invention, they were manufactured under conditions that deviated from the recommended hot rolling conditions, and as a result, satisfied the requirements of the structure of the present invention. Furthermore, the balance of strength-elongation-stretch flangeability of the base material and the fatigue characteristics of the base material and HAZ are also inferior.

Claims (3)

質量%で(以下、化学成分について同じ。)、
C :0.05〜0.20%、
Si:2.0%以下、
Mn:1.0〜2.5%、
Al:0.001〜0.10%、
V :0.0005〜0.10%
を含み、さらに、
Ti:0.02〜0.20%、および/または、
Nb:0.02〜0.20%
を下記式1を満たすように含み、
残部が鉄および不可避的不純物からなる成分組成を有し、
全組織に対する面積率で(以下、組織について同じ。)、
フェライト:50〜90%、
ベイナイト:10〜50%、
マルテンサイト+残留オーステナイト:10%未満
である組織を有し、
前記フェライト中に存在する析出炭化物の平均粒径が6nm未満であるとともに、
その析出炭化物を構成するV、TiおよびNbの合計含有量が0.02%以上である
ことを特徴とする、成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板。
式1 C−12×(V/51+Ti/48+Nb/93)>0.03
ただし、式中の元素記号は当該元素の質量%を意味する。
% By mass (hereinafter the same for chemical components)
C: 0.05 to 0.20%,
Si: 2.0% or less,
Mn: 1.0 to 2.5%
Al: 0.001 to 0.10%,
V: 0.0005 to 0.10%
Including,
Ti: 0.02 to 0.20%, and / or
Nb: 0.02 to 0.20%
To satisfy the following formula 1,
The balance has a component composition consisting of iron and inevitable impurities,
The area ratio for all tissues (hereinafter the same for tissues)
Ferrite: 50-90%
Bainite: 10-50%
Martensite + retained austenite: having a structure of less than 10%,
The average particle size of precipitated carbides present in the ferrite is less than 6 nm,
High-strength hot rolling that combines formability and fatigue properties of the base metal and weld heat affected zone, characterized in that the total content of V, Ti and Nb constituting the precipitated carbide is 0.02% or more. steel sheet.
Formula 1 C-12 × (V / 51 + Ti / 48 + Nb / 93)> 0.03
However, the element symbol in a formula means the mass% of the said element.
前記ベイナイトの平均粒径が5μm超であることを特徴とする請求項1に記載の成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板。   The high-strength hot-rolled steel sheet having both formability and fatigue characteristics of the base metal and the weld heat-affected zone according to claim 1, wherein the average grain size of the bainite is more than 5 µm. 成分組成が、さらに、
Cu:0.01〜1.0%、
Ni:0.01〜1.0%、
Cr:0.01〜1.0%、
Mo:0.01〜1.0%の1種または2種以上
を含むものである請求項1または2に記載の成形性と母材および溶接熱影響部の疲労特性とを兼備した高強度熱延鋼板。
Ingredient composition further
Cu: 0.01 to 1.0%,
Ni: 0.01 to 1.0%,
Cr: 0.01 to 1.0%,
Mo: A high-strength hot-rolled steel sheet having both formability and fatigue characteristics of the base metal and the weld heat-affected zone according to claim 1 or 2, comprising one or more of 0.01 to 1.0%. .
JP2011178475A 2011-08-17 2011-08-17 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone Expired - Fee Related JP5679452B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011178475A JP5679452B2 (en) 2011-08-17 2011-08-17 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
US14/237,286 US9689060B2 (en) 2011-08-17 2012-08-15 High-strength hot-rolled steel sheet
PCT/JP2012/070727 WO2013024860A1 (en) 2011-08-17 2012-08-15 High-strength hot-rolled steel plate
EP12824032.2A EP2746417B1 (en) 2011-08-17 2012-08-15 High-strength hot-rolled steel plate
CN201280039607.XA CN103732779B (en) 2011-08-17 2012-08-15 High tensile hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011178475A JP5679452B2 (en) 2011-08-17 2011-08-17 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone

Publications (2)

Publication Number Publication Date
JP2013040380A true JP2013040380A (en) 2013-02-28
JP5679452B2 JP5679452B2 (en) 2015-03-04

Family

ID=47889032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011178475A Expired - Fee Related JP5679452B2 (en) 2011-08-17 2011-08-17 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone

Country Status (1)

Country Link
JP (1) JP5679452B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505301B1 (en) * 2013-06-27 2015-03-23 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same
KR101827187B1 (en) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP2021507091A (en) * 2017-12-18 2021-02-22 アルセロールミタル Steel section with a thickness of at least 100 mm and its manufacturing method
JP2021508001A (en) * 2017-12-21 2021-02-25 ポスコPosco Hot-rolled steel sheet with excellent tube expandability and its manufacturing method
JP2021507995A (en) * 2017-12-21 2021-02-25 ポスコPosco Hot-rolled steel sheet with excellent durability and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275238A (en) * 2008-05-12 2009-11-26 Nippon Steel Corp High-strength steel and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275238A (en) * 2008-05-12 2009-11-26 Nippon Steel Corp High-strength steel and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505301B1 (en) * 2013-06-27 2015-03-23 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same
KR101827187B1 (en) * 2013-09-10 2018-02-07 가부시키가이샤 고베 세이코쇼 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP2021507091A (en) * 2017-12-18 2021-02-22 アルセロールミタル Steel section with a thickness of at least 100 mm and its manufacturing method
JP2021508001A (en) * 2017-12-21 2021-02-25 ポスコPosco Hot-rolled steel sheet with excellent tube expandability and its manufacturing method
JP2021507995A (en) * 2017-12-21 2021-02-25 ポスコPosco Hot-rolled steel sheet with excellent durability and its manufacturing method
JP7167159B2 (en) 2017-12-21 2022-11-08 ポスコ Hot-rolled steel sheet for electric resistance welded steel pipe, manufacturing method thereof, and electric resistance welded steel pipe
US11535908B2 (en) 2017-12-21 2022-12-27 Posco Holdings Inc. Hot-rolled steel sheet having excellent durability and method for manufacturing same
JP7244715B2 (en) 2017-12-21 2023-03-23 ポスコ カンパニー リミテッド Hot-rolled steel sheet with excellent durability and its manufacturing method

Also Published As

Publication number Publication date
JP5679452B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2013024860A1 (en) High-strength hot-rolled steel plate
JP5522084B2 (en) Thick steel plate manufacturing method
KR101386042B1 (en) Steel material for high heat input welding
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP4955499B2 (en) High strength hot rolled steel sheet with excellent fatigue strength and stretch flangeability
JP5369639B2 (en) High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JP4897126B2 (en) Thick steel plate manufacturing method
JP5849846B2 (en) Refractory steel and manufacturing method thereof
JP5679452B2 (en) High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
JP5796636B2 (en) Steel material for large heat input welding
JP4737761B2 (en) High strength hot-rolled steel sheet with excellent strength-elongation balance and fatigue properties
JP5821929B2 (en) High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP2010111924A (en) Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP6418418B2 (en) Steel material for large heat input welding
JP5668668B2 (en) Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP4313730B2 (en) High-tensile steel plate with low material anisotropy and excellent low-temperature toughness
JP5636346B2 (en) High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
JP4586080B2 (en) High-strength steel sheet with excellent stress-relieving annealing characteristics and low-temperature toughness
WO2013128650A1 (en) Steel material for high-heat-input welding
JP2015054974A (en) High strength hot rolled steel sheet excellent in toughness and production method thereof
JP6579135B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5679452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees