JP2009275238A - High-strength steel and manufacturing method therefor - Google Patents

High-strength steel and manufacturing method therefor Download PDF

Info

Publication number
JP2009275238A
JP2009275238A JP2008124520A JP2008124520A JP2009275238A JP 2009275238 A JP2009275238 A JP 2009275238A JP 2008124520 A JP2008124520 A JP 2008124520A JP 2008124520 A JP2008124520 A JP 2008124520A JP 2009275238 A JP2009275238 A JP 2009275238A
Authority
JP
Japan
Prior art keywords
ferrite
bainite
hardness
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124520A
Other languages
Japanese (ja)
Other versions
JP5042914B2 (en
Inventor
Yukiko Yamaguchi
由起子 山口
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008124520A priority Critical patent/JP5042914B2/en
Publication of JP2009275238A publication Critical patent/JP2009275238A/en
Application granted granted Critical
Publication of JP5042914B2 publication Critical patent/JP5042914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel in which the hardness of ferrite is equal to or harder than that of bainite, and to provide a manufacturing method therefor. <P>SOLUTION: The high-strength steel contains an appropriate amount of C, Si and Mn and further one or more elements of Ti, Nb, V and Mo in such a range as to satisfy 0.1≤56ä2(Ti/48)+2(Nb/93)+(7/4)×(V/51)+(3/2)×(Mo/96)}≤1; and has a metallographic structure formed of 10 to 60% ferrite by a volume fraction and bainite, in which carbides in ferrite grains have an average size of 0.8 to 3 nm, the number density of the carbides are 1×10<SP>17</SP>to 5×10<SP>18</SP>pieces/cm<SP>3</SP>, and the difference (Hv<SB>F</SB>-Hv<SB>B</SB>) between a Vickers hardness Hv<SB>F</SB>of the ferrite and a Vickers hardness Hv<SB>B</SB>of the bainite is 0 to 40 Hv. The manufacturing method includes: hot-working the steel slab under conditions of heating temperature of ≥1,200°C and final-working temperature FT[°C] of >920°C; primarily cooling it; subsequently retaining it at 580 to 650°C for 3 to 30 seconds; and then secondarily cooling it. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フェライトを析出強化した複合組織を有する高強度鋼およびその製造方法に関するものである。   The present invention relates to a high-strength steel having a composite structure in which ferrite is strengthened by precipitation, and a method for producing the same.

鋼の強度を高めるには、Cや、Si、Mnなどの元素の添加による固溶強化、Ti、Nbなどの析出物を利用した析出強化、金属組織を軟質のフェライトと硬質のマルテンサイトやベイナイトからなる複合組織とする組織強化が有効である。特に、自動車用部材は、軽量化や、安全性及び耐久性の向上が進められており、素材である鉄鋼材料の高強度化が要求されている。   To increase the strength of steel, solid solution strengthening by adding elements such as C, Si, and Mn, precipitation strengthening using precipitates such as Ti and Nb, and the metal structure of soft ferrite and hard martensite or bainite It is effective to strengthen the organization as a composite organization consisting of In particular, automobile components are being reduced in weight and improved in safety and durability, and a high strength steel material is required.

しかし、固溶強化は、析出強化や組織強化に比べて効果が小さく、自動車用部材の素材に求められるような高強度化は困難である。そのため、ベイナイトやマルテンサイトなどの硬質相を組み合わせた複合組織鋼が開発されている。この複合組織鋼は、均一伸びにも優れるものの、フェライトと硬質相との硬度差に起因して、局部延性が低く、穴広げ性に劣る。   However, solid solution strengthening is less effective than precipitation strengthening and structure strengthening, and it is difficult to increase the strength as required for materials for automobile members. For this reason, a composite steel having a combination of hard phases such as bainite and martensite has been developed. Although this composite structure steel is excellent in uniform elongation, the local ductility is low due to the difference in hardness between the ferrite and the hard phase, and the hole expandability is inferior.

したがって、穴広げ性を高めるには、フェライトと硬質相との硬度差を減少させることが有効である。そのため、フェライトを析出強化し、伸び−穴拡げ率バランスの向上を図った高強度の鋼板が提案されている(例えば、特許文献1〜5)。
特開2004−225109号公報 特開2004−250749号公報 特開2004−339606号公報 特開2006−274318号公報 特開2007−009322号公報
Therefore, it is effective to reduce the difference in hardness between the ferrite and the hard phase in order to improve the hole expandability. Therefore, high-strength steel sheets in which ferrite is strengthened by precipitation to improve the balance of elongation-hole expansion rate have been proposed (for example, Patent Documents 1 to 5).
JP 2004-225109 A JP 2004-250749 A JP 2004-339606 A JP 2006-274318 A JP 2007-009322 A

しかし、従来の析出強化と組織強化を組み合わせた鋼は、フェライトの硬度がベイナイトなどの硬質相の硬度よりも小さい。
本発明は、フェライトのビッカース硬度(硬度ともいう。)をベイナイトと同等以上に高めた高強度鋼及びその製造方法の提供を課題とするものである。
However, the steel combining conventional precipitation strengthening and structure strengthening has a ferrite hardness smaller than that of a hard phase such as bainite.
An object of the present invention is to provide a high-strength steel in which the Vickers hardness (also referred to as hardness) of ferrite is increased to be equal to or higher than that of bainite and a method for producing the same.

本発明の要旨は、以下の通りである。
(1)質量%で、C:0.020〜0.150%、Si:0.01〜1.50%、Mn:0.2〜3.0%を含有し、さらに、Ti:0.03〜0.40%、Nb:0.01〜0.20%、V:0.01〜0.20%、Mo:0.01〜0.20%の1種または2種以上を、
0.10≦56{(2(Ti/48)+2(Nb/93)+(7/4)×(V/51)+(3/2)×(Mo/96)}≦1.00
(なお、式中のTi、Nb、V、Moは、鋼中の各成分の含有量[質量%]である。)を満たす範囲で含有し、残部がFeおよび不可避的不純物からなり、フェライトの体積分率が10〜60%であり、残部がベイナイトであり、該フェライトの結晶粒内に存在する炭化物の平均径が0.8〜3nmであり、個数密度が1×1017〜5×1018個/cmであり、前記フェライトのビッカース硬度Hvと前記ベイナイトのビッカース硬度Hvとの差(Hv−Hv)が0〜40Hvであることを特徴とする高強度鋼。
(2)上記(1)に記載の高強度鋼の製造方法であって、上記(1)に記載の成分からなる鋼片を、加熱温度≧1200℃、最終加工温度FT[℃]>920℃超の条件で熱間加工を行い、冷却速度10℃/s以上で580〜650℃の停止温度まで1次冷却し、該1次冷却の停止温度範囲内で3〜30s滞留させた後、冷却速度30℃/s以上で、400〜550℃の停止温度まで2次冷却することを特徴とする高強度鋼の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.020 to 0.150%, Si: 0.01 to 1.50%, Mn: 0.2 to 3.0%, Ti: 0.03 -0.40%, Nb: 0.01-0.20%, V: 0.01-0.20%, Mo: 0.01-0.20% of 1 type or 2 types or more,
0.10 ≦ 56 {(2 (Ti / 48) +2 (Nb / 93) + (7/4) × (V / 51) + (3/2) × (Mo / 96)}} 1.00
(Ti, Nb, V, and Mo in the formula are the contents [% by mass] of each component in the steel.) The balance is made of Fe and unavoidable impurities. The volume fraction is 10 to 60%, the balance is bainite, the average diameter of the carbides present in the crystal grains of the ferrite is 0.8 to 3 nm, and the number density is 1 × 10 17 to 5 × 10. A high-strength steel having 18 pieces / cm 3 and having a difference (Hv F −Hv B ) between Vickers hardness Hv F of the ferrite and Vickers hardness Hv B of the bainite of 0 to 40 Hv.
(2) It is a manufacturing method of the high strength steel as described in said (1), Comprising: The steel piece which consists of a component as described in said (1) WHEREIN: Heating temperature> 1200 degreeC, Final processing temperature FT [degreeC]> 920 degreeC Perform hot working under super conditions, perform primary cooling to a stop temperature of 580 to 650 ° C. at a cooling rate of 10 ° C./s or more, and hold for 3 to 30 seconds within the stop temperature range of the primary cooling, then cool A method for producing high-strength steel, characterized by secondary cooling to a stop temperature of 400 to 550 ° C. at a rate of 30 ° C./s or more.

本発明によれば、フェライトの硬度が、ベイナイトの硬度と同等以上である高強度鋼及びその製造方法を提供することができる。これにより、加工歪が導入された状態でのフェライトとベイナイトとの硬度差を低減し、加工性、特に導入される加工歪が極めて高い状態となる穴広げ性が、従来鋼以上に向上するという効果を奏する。   According to the present invention, it is possible to provide a high-strength steel having a ferrite hardness equal to or higher than that of bainite and a method for producing the same. As a result, the hardness difference between ferrite and bainite in the state in which processing strain is introduced is reduced, and the workability, particularly the hole expanding property in which the introduced processing strain is extremely high is improved over conventional steel. There is an effect.

本発明は、フェライトの硬度をベイナイトの硬度と同等以上に高めたことを最大の特徴とする高強度鋼である。   The present invention is a high-strength steel whose greatest feature is that the hardness of ferrite is increased to be equal to or higher than that of bainite.

従来の、金属組織がフェライトとベイナイトからなり、フェライトを析出強化した複合組織鋼は、硬質のベイナイトとフェライトの硬度差を小さくするものではあるが、フェライトの硬度はベイナイトの硬度よりも低い。このような従来鋼の応力−歪曲線を模式的に図1に示す。図1に示したように、ベイナイトは、析出強化されたフェライトに比べて、加工硬化し易く、降伏強度以上での応力−歪曲線の傾きが大きい。   The conventional composite structure steel in which the metal structure is composed of ferrite and bainite and precipitation-strengthens ferrite strengthens the hardness difference between hard bainite and ferrite, but the hardness of ferrite is lower than that of bainite. A stress-strain curve of such a conventional steel is schematically shown in FIG. As shown in FIG. 1, bainite is easier to work harden than precipitation-strengthened ferrite, and the slope of the stress-strain curve above the yield strength is large.

また、ビッカース硬度は、図1の応力−歪曲線で、歪が8%程度の流動応力に対応している。図1に示したように、従来鋼では、フェライトの応力はベイナイトよりも小さく、歪が8%程度では、フェライトとベイナイトの応力の差(△Hv)は小さいものの、歪が大きくなるとベイナイトがフェライトよりも硬化するため、フェライトとベイナイトの応力の差が開いてしまう。したがって、加工時、硬質のベイナイトに起因して割れが発生し易くなる。特に、応力が最大値に達した後の延性、すなわち局部延性は、ベイナイトとフェライトの硬度差に起因して低下し、穴広げ性の向上の効果が小さいと考えられる。   The Vickers hardness corresponds to a flow stress having a strain of about 8% in the stress-strain curve of FIG. As shown in FIG. 1, in the conventional steel, the stress of ferrite is smaller than that of bainite, and when the strain is about 8%, the difference in stress between ferrite and bainite (ΔHv) is small, but when the strain increases, bainite becomes ferrite. Is harder than that, the difference in stress between ferrite and bainite opens. Therefore, cracks are likely to occur during processing due to hard bainite. In particular, it is considered that the ductility after the stress reaches the maximum value, that is, the local ductility is reduced due to the hardness difference between bainite and ferrite, and the effect of improving the hole expansibility is small.

これに対して、フェライトの硬度をベイナイトの硬度と同等以上に高くした、本発明の鋼の応力−歪曲線の一例を模式的に図2に示す。図1の従来鋼と同様に、ベイナイトの加工硬化により、歪が大きくなるとベイナイトがフェライトよりも硬化する。しかし、本発明の鋼は、ビッカース硬度に対応する8%の歪ではフェライトの応力が大きい(△Hvが正)ため、図1に示した従来鋼に比べると、ベイナイトとフェライトの応力の差(△Hv)は小さい。したがって、本発明の鋼は、従来鋼に比べると、穴広げ性の向上の効果が大きいと考えられる。   In contrast, FIG. 2 schematically shows an example of the stress-strain curve of the steel of the present invention in which the hardness of ferrite is set to be equal to or higher than that of bainite. As in the conventional steel of FIG. 1, when the strain increases due to work hardening of bainite, bainite hardens more than ferrite. However, in the steel of the present invention, the stress of ferrite is large (ΔHv is positive) at a strain of 8% corresponding to Vickers hardness (ΔHv is positive), so the difference in stress between bainite and ferrite ( ΔHv) is small. Therefore, it is considered that the steel of the present invention has a greater effect of improving the hole expansibility than the conventional steel.

通常、フェライトは非常に軟質であり、ベイナイトと同等以上の硬度を得ることが難しい。そこで、本発明者らは、フェライトの硬度をベイナイトと同等以上に高めることを可能とする、析出物の形態について検討を行った。   Usually, ferrite is very soft and it is difficult to obtain a hardness equal to or higher than that of bainite. Therefore, the present inventors examined the form of precipitates that can increase the hardness of ferrite to be equal to or higher than that of bainite.

炭化物生成元素であるTiを添加した鋼から、高さ12mm、直径8mmの試験片を採取した。試験片を、誘導加熱し、高さ方向に圧縮する熱間加工を施した後、Arガスを吹き付けて制御冷却を行った。制御冷却は、熱間加工後、1次冷却し、温度と時間を変化させて保持した後、2次冷却した。
試験後、フェライトとベイナイトのビッカース硬度を測定し、フェライトに生成した析出物を調査した。金属組織の観察は、試料を鏡面研磨し、ナイタールエッチングを施して、光学顕微鏡を用いて行った。フェライトおよびベイナイトの結晶粒内の硬度は、エッチング後の試料を用いて、マイクロビッカース試験機により荷重25gfを用い測定した。フェライト粒とベイナイト粒のそれぞれについて、20箇所以上の硬度を測定し、平均したものを各相の硬度とした。
A test piece having a height of 12 mm and a diameter of 8 mm was taken from steel to which Ti, which is a carbide forming element, was added. The test piece was subjected to induction heating and hot working to compress in the height direction, and then Ar gas was blown to perform controlled cooling. In the controlled cooling, after the hot working, the primary cooling was performed, the temperature and the time were changed, and the secondary cooling was performed.
After the test, the Vickers hardness of ferrite and bainite was measured, and the precipitates formed on the ferrite were investigated. The observation of the metal structure was performed using an optical microscope after mirror-polishing the sample and performing nital etching. The hardness in the crystal grains of ferrite and bainite was measured using a sample after etching and a load of 25 gf with a micro Vickers tester. About each of a ferrite grain and a bainite grain, the hardness of 20 or more places was measured, and what was averaged was made into the hardness of each phase.

フェライトの結晶粒内に析出した炭化物のサイズ及び個数密度の測定は、電解イオン顕微鏡(FIM)および三次元アトムプローブ測定法により、以下のようにして行った。
まず、測定対象の試料から、切断および電解研磨法により、必要に応じて電解研磨法とあわせて集束イオンビーム加工法を活用し、針状の試料を作製する。FIM観察により比較的広い視野で析出炭化物の有無を観察し、任意に30個の炭化物のサイズを測定し、その平均値を求める。なお、析出した炭化物のサイズは、炭化物の最大径の平均値(平均径)とした。析出した炭化物の最大径は、炭化物が球状の場合は直径、炭化物が板状の場合は対角長とした。
また、三次元アトムプローブ測定では、積算されたデータを再構築して実空間での実際の原子の分布像として求めることができる。析出炭化物の立体分布像の体積と析出炭化物の数から析出炭化物の個数密度(析出物密度)が求まる。
The size and number density of the carbides precipitated in the ferrite crystal grains were measured by an electrolytic ion microscope (FIM) and a three-dimensional atom probe measurement method as follows.
First, a needle-like sample is prepared from a sample to be measured by cutting and electrolytic polishing using a focused ion beam processing method in combination with an electrolytic polishing method as necessary. The presence or absence of precipitated carbides is observed in a relatively wide field of view by FIM observation, the size of 30 carbides is arbitrarily measured, and the average value is obtained. In addition, the size of the precipitated carbide was the average value (average diameter) of the maximum diameter of the carbide. The maximum diameter of the precipitated carbide was the diameter when the carbide was spherical and the diagonal length when the carbide was plate-like.
In the three-dimensional atom probe measurement, the accumulated data can be reconstructed and obtained as an actual distribution image of atoms in real space. The number density of the precipitated carbide (precipitate density) is obtained from the volume of the three-dimensional distribution image of the precipitated carbide and the number of the precipitated carbide.

その結果、析出炭化物サイズ(炭化物の平均径)3nm以下の極微細な炭化物が、フェライトの硬度の上昇に有効であることがわかった。さらに、フェライトの硬度をベイナイトの硬度と同等以上に高めるには、個数密度を1×1017〜5×1018個/cmとすることが必要であることがわかった。
このような析出物を生成させると、フェライトのビッカース硬度Hvとベイナイトのビッカース硬度Hvとの差(Hv−Hv)が0〜40Hvになる。
As a result, it was found that very fine carbides having a precipitated carbide size (average diameter of carbide) of 3 nm or less are effective in increasing the hardness of ferrite. Furthermore, it was found that the number density must be 1 × 10 17 to 5 × 10 18 pieces / cm 3 in order to increase the hardness of the ferrite to be equal to or higher than that of bainite.
When such precipitates are generated, the difference (Hv F −Hv B ) between the Vickers hardness Hv F of ferrite and the Vickers hardness Hv B of bainite becomes 0 to 40 Hv.

以下、本発明について詳細に説明する。
Cは、本発明では、微細な炭化物を生じて析出強化に寄与する重要な元素であり、0.020%以上の添加が必要である。一方、C量が0.150%を超えると、セメンタイトが生じ、延性、特に、局部延性が低下する。
Siは、脱酸元素であり、0.01%以上を添加する。また、Siは固溶強化に寄与する元素であるが、含有量が1.50%を超えると加工性が劣化するため、Si量の上限を1.50%以下とする。
Hereinafter, the present invention will be described in detail.
In the present invention, C is an important element that generates fine carbides and contributes to precipitation strengthening, and needs to be added in an amount of 0.020% or more. On the other hand, when the amount of C exceeds 0.150%, cementite is generated, and ductility, particularly local ductility is lowered.
Si is a deoxidizing element, and 0.01% or more is added. Si is an element that contributes to solid solution strengthening, but if the content exceeds 1.50%, the workability deteriorates, so the upper limit of Si content is 1.50% or less.

Mnは脱酸、脱硫に有効な元素であり、固溶強化にも寄与するため、0.2%以上を添加する。一方、Mn量が3.0%を超えると、偏析が生じやすくなり延性、特に、局部延性が低下する。   Mn is an element effective for deoxidation and desulfurization, and contributes to solid solution strengthening, so 0.2% or more is added. On the other hand, when the amount of Mn exceeds 3.0%, segregation is likely to occur, and ductility, in particular, local ductility decreases.

Ti、V、Nb、Moは、フェライトの粒内に微細な炭化物を析出し、析出強化に寄与する極めて重要な元素であり、Ti、V、Nb、Moのうちの1種または2種以上を添加する。
Tiは、フェライトの硬度を上昇させるため、0.03%以上を添加することが好ましい。一方、0.40%を超えるTiを添加すると炭化物が粗大化し、硬度の上昇の効果が小さくなり、延性が低下することがある。
Ti, V, Nb, and Mo are extremely important elements that precipitate fine carbides in ferrite grains and contribute to precipitation strengthening. One or more of Ti, V, Nb, and Mo are included. Added.
Since Ti increases the hardness of ferrite, it is preferable to add 0.03% or more. On the other hand, when Ti exceeding 0.40% is added, carbides are coarsened, the effect of increasing hardness is reduced, and ductility may be reduced.

V、Nb、MoもTiと同様にフェライト結晶粒内に炭化物を析出する元素であり、それぞれ、0.01%以上の添加が好ましい。一方、V、Nb、Moのそれぞれの含有量が0.20%を超えると、炭化物が粗大化し、硬度の上昇の効果が小さくなり、延性が低下することがある。   V, Nb, and Mo are elements that precipitate carbide in the ferrite crystal grains in the same manner as Ti. Each of them is preferably added in an amount of 0.01% or more. On the other hand, if the content of each of V, Nb, and Mo exceeds 0.20%, the carbides become coarse, the effect of increasing the hardness is reduced, and the ductility may be reduced.

本発明では、上記Ti、Nb、V、Moを以下の式を満足するように含有することが必要である。
0.10≦56{(2(Ti/48)+2(Nb/93)+(7/4)×(V/51)+(3/2)×(Mo/96)}≦1.00
ここで、Ti、Nb、V、Moは鋼中の各成分の含有量[質量%]であり、意図的に添加しない場合は、0として計算する。また、
56{(2(Ti/48)+2(Nb/93)+(7/4)×(V/51)+(3/2)×(Mo/96)} ・・・ (式1)
は、Ti、Nb、V、Moが、鋼中で、それぞれ、TiC、NbC、V、MoCを形成した際の、析出物を構成する合金成分の原子数を析出硬化の指標としたものである。(式1)の値が0.10より小さいと、析出物を構成する合金成分が少ないため、熱延後の冷却時に析出処理を施しても充分な析出強化量が得られない。一方、(式1)の値が1.00よりも大きくなると、析出物を構成する合金成分が過剰になり、冷却中の析出物生成の制御が難しく、析出物は粗大化しやすくなり、延性や穴拡げ性の劣化を招くことがある。
In the present invention, it is necessary to contain Ti, Nb, V, and Mo so as to satisfy the following formula.
0.10 ≦ 56 {(2 (Ti / 48) +2 (Nb / 93) + (7/4) × (V / 51) + (3/2) × (Mo / 96)}} 1.00
Here, Ti, Nb, V, and Mo are the contents [% by mass] of each component in the steel, and are calculated as 0 when not intentionally added. Also,
56 {(2 (Ti / 48) +2 (Nb / 93) + (7/4) × (V / 51) + (3/2) × (Mo / 96)}} (Formula 1)
Indicates the number of atoms of the alloy component constituting the precipitate when Ti, Nb, V, and Mo form TiC, NbC, V 4 C 3 , and Mo 2 C, respectively, in steel. It is what. When the value of (Formula 1) is smaller than 0.10, there are few alloy components which comprise a precipitate, Therefore Even if it performs a precipitation process at the time of cooling after hot rolling, sufficient precipitation strengthening amount cannot be obtained. On the other hand, when the value of (Equation 1) is larger than 1.00, the alloy components constituting the precipitates become excessive, it is difficult to control the formation of precipitates during cooling, and the precipitates are likely to be coarsened. It may cause deterioration of hole expansibility.

残部は、Feと不可避的不純物であり、特に、N、P、Sの含有量の上限は、以下のように制限することが好ましい。
Nは、TiNを形成し、鋼の加工性を低下させるため、0.009%以下に制限することが好ましい。Pは、鋼の加工性や溶接性を低下させるため、0.1%以下に制限することが好ましい。Sは、熱間加工性を低下させる元素であり、0.005%以下に制限することが好ましい。
The balance is Fe and inevitable impurities. In particular, the upper limit of the content of N, P, and S is preferably limited as follows.
N forms TiN and lowers the workability of the steel, so it is preferable to limit it to 0.009% or less. P is preferably limited to 0.1% or less in order to reduce the workability and weldability of steel. S is an element that decreases hot workability, and is preferably limited to 0.005% or less.

Alは、炉材から混入する可能性があり、脱酸剤として含有させても良いが、過剰に添加すると窒化物を形成し、鋼の延性を低下させるため、0.5%以下に制限することが好ましい。   Al may be mixed from the furnace material and may be contained as a deoxidizer, but if added excessively, nitrides are formed and the ductility of the steel is reduced, so it is limited to 0.5% or less. It is preferable.

また、本発明において、上記基本成分の他に、鋼板の強度の向上する目的で 固溶強化元素として、Cr、Wの添加も有効であり、これらの一方または双方を添加してもよい。   In the present invention, in addition to the above basic components, addition of Cr and W is also effective as a solid solution strengthening element for the purpose of improving the strength of the steel sheet, and one or both of these may be added.

次に、本発明の高強度鋼の金属組織について説明する。
本発明の鋼の金属組織は、フェライトとベイナイトからなる複合組織である。フェライトの体積分率が10%以上であると、ベイナイト単相の場合に比べて延性が向上する。ベイナイトに比べて加工硬化係数が小さいフェライトの体積分率を20%にすると、特に均一伸びを増加させることができる。一方、フェライトの体積分率を60%以下にすることにより、加工硬化係数が大きいベイナイトの体積分率が増加するため、加工後の強度を高めることができる。また、フェライトの体積分率を50%超にすると、析出物の総量を増加させることになり、特に、局部延性が低下する。
Next, the metal structure of the high strength steel of the present invention will be described.
The metal structure of the steel of the present invention is a composite structure composed of ferrite and bainite. When the volume fraction of ferrite is 10% or more, ductility is improved as compared with the case of a bainite single phase. When the volume fraction of ferrite having a work hardening coefficient smaller than that of bainite is 20%, the uniform elongation can be increased. On the other hand, by setting the volume fraction of ferrite to 60% or less, the volume fraction of bainite having a large work hardening coefficient increases, so that the strength after processing can be increased. Further, if the volume fraction of ferrite exceeds 50%, the total amount of precipitates is increased, and in particular, the local ductility is lowered.

析出強化量は、析出物1個あたりの強化量(転位をピンニングする力)と、析出物の個数密度で決まると考えることができる。フェライトの結晶粒内に析出した炭化物の平均径は、0.8nm未満では、析出物1個当たりのピンニング力が弱く、析出強化への寄与が小さい。一方、炭化物の平均径が3nmを超えると、総じて析出物の個数密度が小さくなり、析出強化量が低下するので、フェライトの硬度をベイナイトの硬度と同等以上に高めることが困難になる。   The amount of precipitation strengthening can be considered to be determined by the amount of strengthening per precipitate (the force for pinning dislocations) and the number density of precipitates. If the average diameter of the carbide precipitated in the ferrite crystal grains is less than 0.8 nm, the pinning force per precipitate is weak and the contribution to precipitation strengthening is small. On the other hand, if the average diameter of the carbide exceeds 3 nm, the number density of precipitates generally decreases and the precipitation strengthening amount decreases, so that it is difficult to increase the hardness of ferrite to the same level or higher.

フェライトの結晶粒内に析出した炭化物の個数密度は、フェライトの硬度をベイナイトの硬度と同等以上に高めるために、1×1017個/cm以上にすることが必要である。一方、炭化物の個数密度が5×1018個/cmを超えると、析出物の平均径が非常に小さくなり、また析出強化量が小さくなる。
また、本発明において上記析出炭化物とは、炭化物だけでなく、炭化物中に窒素が若干混入した炭窒化物も含むものを意味する。
The number density of carbides precipitated in the crystal grains of the ferrite needs to be 1 × 10 17 pieces / cm 3 or more in order to increase the hardness of the ferrite to be equal to or higher than that of bainite. On the other hand, when the number density of carbides exceeds 5 × 10 18 pieces / cm 3 , the average diameter of the precipitates becomes very small and the precipitation strengthening amount becomes small.
Moreover, the said precipitation carbide | carbonized_material in this invention means what contains not only carbide | carbonized_material but the carbonitride which some nitrogen mixed in carbide | carbonized_material.

フェライトのビッカース硬度Hvとベイナイトのビッカース硬度Hvとの差(Hv−Hv)は0〜40Hvにする。(フェライトの硬度Hv−ベイナイトの硬度Hv)を0以上にすると、加工後のベイナイトの硬度とフェライトの硬度の差が小さくなり、延性、特に穴拡げ性が高くなる。一方、(フェライトの硬度Hv−ベイナイトの硬度Hv)を40Hv超にすると、フェライトの硬度が高すぎるため、加工硬化してもベイナイトの硬度がフェライトの硬度と同等にならず、穴拡げ性向上の効果が少ない。特に、導入される加工歪の大きい穴広げ性を向上させるためには、(フェライトの硬度Hv−ベイナイトの硬度Hv)を10Hv以上にすることが好ましい。また、フェライトを析出強化すると、ボイドの発生の起点となる析出物が増加するため、局部延性を向上させるには、(フェライトの硬度Hv−ベイナイトの硬度Hv)を30Hv以下にすることが好ましい。 The difference (Hv F −Hv B ) between the Vickers hardness Hv F of ferrite and the Vickers hardness Hv B of bainite is set to 0 to 40 Hv. When (the hardness of the ferrite Hv F -the hardness of the bainite Hv B ) is 0 or more, the difference between the hardness of the bainite after processing and the hardness of the ferrite is reduced, and the ductility, particularly the hole expandability is increased. On the other hand, if (the hardness of the ferrite Hv F -the hardness of the bainite Hv B ) is more than 40 Hv, the hardness of the ferrite is too high. There is little improvement effect. In particular, in order to improve the hole expansibility with a large processing strain introduced, it is preferable that (hardness Hv F of ferrite−hardness Hv B of bainite) be 10 Hv or more. In addition, precipitation strengthening of ferrite increases the number of precipitates from which voids are generated. Therefore, in order to improve local ductility, (hardness Hv F of ferrite−hardness Hv B of bainite) should be 30 Hv or less. preferable.

次に、本発明の高強度鋼の製造方法について説明する。
本発明の高強度鋼は、熱間加工、例えば、熱間圧延や熱間鍛造によって製造される鋼材である。熱間加工後、冷却速度の制御が重要であることから、熱間圧延が好ましい。特に、自動車や建材に使用される、板厚が比較的薄い、鋼板や鋼帯を製造する熱間圧延が好適である。
Next, the manufacturing method of the high strength steel of this invention is demonstrated.
The high-strength steel of the present invention is a steel material produced by hot working, for example, hot rolling or hot forging. Since the control of the cooling rate is important after hot working, hot rolling is preferable. In particular, hot rolling for producing steel plates and steel strips having a relatively thin plate thickness used for automobiles and building materials is suitable.

鋼は、常法によって溶製、鋳造し、鋼片を製造する。生産性の観点から、連続鋳造が好ましい。
熱間加工の加熱温度は、炭化物形成元素と炭素を十分に鋼材中に分解溶解させるため、1200℃以上とする。なお、鋳造後の鋼片を、そのまま1200℃以上の温度に保持して、熱間加工を開始しても良い。鋼片を1200℃以上に加熱する場合は、1時間以上の保持行うことが好ましい。
Steel is melted and cast by a conventional method to produce a steel slab. From the viewpoint of productivity, continuous casting is preferable.
The heating temperature for the hot working is set to 1200 ° C. or higher in order to sufficiently decompose and dissolve the carbide forming element and carbon in the steel material. In addition, you may hold | maintain the steel slab after casting at the temperature of 1200 degreeC or more as it is, and may start hot processing. When the steel slab is heated to 1200 ° C. or higher, it is preferable to hold it for 1 hour or longer.

熱間加工の終了温度(最終加工温度FT)は、920℃超とする。これは、高温での炭化物の粗大化を抑制するためであり、熱間加工後は速やかに冷却を開始することが必要である。
熱間加工後は、1次冷却後、保持(滞留)して、更に2次冷却を行う。
The hot working finish temperature (final working temperature FT) is over 920 ° C. This is to suppress coarsening of the carbide at high temperature, and it is necessary to start cooling immediately after hot working.
After the hot working, after the primary cooling, it is held (retained), and further secondary cooling is performed.

1次冷却の冷却速度は、10℃/s以上とする。これは、高温での炭化物の析出、成長や、冷却中のフェライト変態を抑制するためである。1次冷却の冷却速度の上限は規定しないが、100℃/s超にすると、1次冷却の停止温度の制御が困難になる。
1次冷却の停止温度は、650℃を超えると炭化物が粗大化し、フェライトの硬度が低下する。一方、1次冷却の停止温度が580℃未満になると、炭化物の析出が不十分になる。
The cooling rate of the primary cooling is 10 ° C./s or more. This is to suppress carbide precipitation and growth at high temperatures and ferrite transformation during cooling. The upper limit of the cooling rate of the primary cooling is not specified, but if it exceeds 100 ° C./s, it becomes difficult to control the stop temperature of the primary cooling.
When the primary cooling stop temperature exceeds 650 ° C., carbides become coarse, and the hardness of the ferrite decreases. On the other hand, if the primary cooling stop temperature is lower than 580 ° C., the precipitation of carbides becomes insufficient.

1次冷却の停止後、580〜650℃の1次冷却の停止温度範囲内で3〜30s滞留させる。これは、滞留時間が3s未満では炭化物の析出が不十分になり、30sを超えると炭化物が粗大化し、フェライトの硬度が低下するためである。なお、滞留時間は鋼の温度を580〜650℃の温度範囲内とする時間であり、緩冷却しても良く、加熱炉や誘導加熱などの加熱手段を用いてもよい。   After the primary cooling is stopped, the mixture is held for 3 to 30 seconds within the primary cooling stop temperature range of 580 to 650 ° C. This is because if the residence time is less than 3 s, the precipitation of carbide becomes insufficient, and if it exceeds 30 s, the carbide becomes coarse and the hardness of the ferrite decreases. In addition, residence time is time which makes the temperature of steel within the temperature range of 580-650 degreeC, and may cool slowly and may use heating means, such as a heating furnace and induction heating.

更に、2次冷却を行う。2次冷却の冷却速度は、フェライトの体積率の増加やパーライトの生成を抑制するため、30℃/s以上とする。2次冷却の冷却速度の上限は特に規定しないが、100℃/s超にすると、停止温度の制御が困難になる。
2次冷却の停止温度は、フェライトの体積率の増加や、パーライトの生成を抑制するため、550℃以下とする。また、硬質なマルテンサイトの生成を抑制するため、2次冷却の停止温度の下限を400℃以上とする。
Further, secondary cooling is performed. The cooling rate of the secondary cooling is set to 30 ° C./s or more in order to suppress an increase in volume fraction of ferrite and generation of pearlite. The upper limit of the cooling rate of the secondary cooling is not particularly specified, but if it exceeds 100 ° C./s, it becomes difficult to control the stop temperature.
The secondary cooling stop temperature is set to 550 ° C. or lower in order to suppress an increase in the volume fraction of ferrite and generation of pearlite. Moreover, in order to suppress the production | generation of a hard martensite, the minimum of the stop temperature of secondary cooling shall be 400 degreeC or more.

表1に示した成分組成を有する鋼を実験室で溶解し、鋼片とした。得られた鋼片から、高さ12mm、直径8mmの試験片を採取し、試験片を誘導加熱し、高さ方向に圧縮する熱間加工を施し、Arガスを吹き付けて制御冷却を行った。熱間加工(加熱温度、最終加工温度FT(終了温度))、制御冷却((1次冷却:冷却速度、停止温度)(1次冷却の停止後の滞留時間)(2次冷却:冷却速度、停止温度))の条件を表2に示す。   Steel having the component composition shown in Table 1 was melted in a laboratory to obtain a steel slab. A test piece having a height of 12 mm and a diameter of 8 mm was taken from the obtained steel piece, the test piece was subjected to induction heating, subjected to hot working for compression in the height direction, and controlled cooling was performed by blowing Ar gas. Hot working (heating temperature, final working temperature FT (end temperature)), controlled cooling ((primary cooling: cooling rate, stop temperature) (residence time after stopping primary cooling) (secondary cooling: cooling rate, Table 2 shows the conditions of the stop temperature)).

Figure 2009275238
Figure 2009275238

Figure 2009275238
Figure 2009275238

試験片を鏡面研磨し、ナイタールエッチングを施して、光学顕微鏡により、金属組織を観察し、ポイントカウント法により、フェライトの面積率を測定し、体積分率とした。フェライトおよびベイナイトの結晶粒内の硬度は、エッチング後の試料を用いて、マイクロビッカース試験機により荷重25gfを用い測定した。フェライト粒とベイナイト粒のそれぞれについて、20箇所以上の硬度を測定し、平均したものを各相の硬度とした。   The specimen was mirror-polished, subjected to nital etching, the metal structure was observed with an optical microscope, the area ratio of ferrite was measured by the point count method, and the volume fraction was obtained. The hardness in the crystal grains of ferrite and bainite was measured using a sample after etching and a load of 25 gf with a micro Vickers tester. About each of a ferrite grain and a bainite grain, the hardness of 20 or more places was measured, and what was averaged was made into the hardness of each phase.

析出炭化物サイズの測定には、測定対象の試料から、切断および電解研磨法により針状の試料を作製し、FIM観察により比較的広い視野で析出炭化物の有無を観察し、任意に30個の析出炭化物のサイズを測定し、その平均値を求めた。また三次元アトムプローブ測定で、測定体積と析出炭化物の数から析出炭化物の個数密度(析出物密度)を求めた。
結果を表3に示す。
To measure the size of precipitated carbide, a needle-like sample is prepared from the sample to be measured by cutting and electropolishing, and the presence or absence of precipitated carbide is observed with a relatively wide field of view by FIM observation. The size of the carbide was measured and the average value was obtained. In addition, the number density of precipitated carbides (precipitate density) was determined from the measurement volume and the number of precipitated carbides by three-dimensional atom probe measurement.
The results are shown in Table 3.

Figure 2009275238
Figure 2009275238

成分および製造条件が本発明の範囲内であれば、フェライトのビッカース硬度(Hv)が、ベイナイトのビッカース硬度(Hv)と同等以上になることがわかる。 It can be seen that the Vickers hardness (Hv F ) of ferrite is equal to or higher than the Vickers hardness (Hv B ) of bainite if the components and production conditions are within the scope of the present invention.

一方、鋼No.Hは、Tiの添加量が少なく、(式1)の値も小さいため、析出物の密度が低下し、フェライトの硬度(Hv)が低い。また、鋼No.Iは、Tiの添加量が多く、(式1)の値も大きいため、析出物のサイズが大きくなり、フェライトの硬度(Hv)が低い。
鋼No.JはC量が少ないためフェライトの体積分率が大きく、析出物の密度が低下しており、鋼No.KはC量が多いためパーライトが生成している。
On the other hand, Steel No. Since H has a small amount of Ti added and the value of (Equation 1) is also small, the density of precipitates is lowered, and the hardness (Hv F ) of ferrite is low. Steel No. Since I has a large amount of Ti added and the value of (Equation 1) is also large, the size of the precipitate becomes large and the hardness (Hv F ) of the ferrite is low.
Steel No. Since J has a small amount of C, the volume fraction of ferrite is large and the density of precipitates is reduced. Since K has a large amount of C, pearlite is generated.

試験No.2および6は、1次冷却後の滞留時間が長く、試験No.2はフェライト単相となり、試験No.6はフェライトの体積分率が高くなっている。試験No.5は1次冷却後の滞留時間が短く、析出物のサイズが小さいため、フェライトの硬度が低い。
試験No.8は1次冷却の停止温度が高く、析出物のサイズが大きいため、フェライトの硬度が低い。試験No.9は、1次冷却の停止温度が低くベイナイト単相となっている。
試験No.12は2次冷却の冷却速度が遅くパーライトが生成し、試験No15は2次冷却の停止温度が低くマルテンサイトが生成している。
試験No17は1次冷却の冷却速度が遅く、析出物のサイズが大きいため、フェライトの硬度が低い。
Test No. Nos. 2 and 6 have a long residence time after primary cooling. No. 2 is a ferrite single phase. No. 6 has a high volume fraction of ferrite. Test No. No. 5 has a short residence time after primary cooling and a small precipitate size, so the hardness of ferrite is low.
Test No. No. 8 has a high primary cooling stop temperature and a large precipitate size, so the ferrite hardness is low. Test No. 9 has a low primary cooling stop temperature and is a bainite single phase.
Test No. No. 12 has a slow cooling rate of secondary cooling and pearlite is generated, and test No. 15 has a low secondary cooling stop temperature and generates martensite.
In test No. 17, the cooling rate of the primary cooling is slow and the size of the precipitate is large, so the hardness of the ferrite is low.

本発明の高強度鋼は、フェライトの硬度が硬質相よりも高いことから、強度と延性、特に局部延性に優れ、バーリング加工性や伸びフランジ性が要求される、自動車などの強度部材の素材である熱延鋼板として利用することができる。   The high-strength steel of the present invention is a material for a strength member such as an automobile, which has excellent strength and ductility, particularly local ductility, and requires burring workability and stretch flangeability because the ferrite has a higher hardness than the hard phase. It can be used as a hot-rolled steel sheet.

従来の析出強化型複合組織鋼の各相の応力−歪曲線の模式図である。It is a schematic diagram of the stress-strain curve of each phase of the conventional precipitation strengthening type composite structure steel. 本発明の高強度鋼の各相の応力−歪曲線の模式図である。It is a schematic diagram of the stress-strain curve of each phase of the high strength steel of the present invention.

Claims (2)

質量%で、
C:0.020〜0.150%、
Si:0.01〜1.50%、
Mn:0.2〜3.0%
を含有し、さらに、
Ti:0.03〜0.40%、
Nb:0.01〜0.20%、
V:0.01〜0.20%、
Mo:0.01〜0.20%
の1種または2種以上を、
0.10≦56{(2(Ti/48)+2(Nb/93)+(7/4)×(V/51)+(3/2)×(Mo/96)}≦1.00
(なお、式中のTi、Nb、V、Moは、鋼中の各成分の含有量[質量%]である。)を満たす範囲で含有し、残部がFeおよび不可避的不純物からなり、
フェライトの体積分率が10〜60%であり、残部がベイナイトであり、
該フェライトの結晶粒内に存在する炭化物の平均径が0.8〜3nmであり、個数密度が1×1017〜5×1018個/cmであり、
前記フェライトのビッカース硬度Hvと前記ベイナイトのビッカース硬度Hvとの差(Hv−Hv)が0〜40Hvであることを特徴とする高強度鋼。
% By mass
C: 0.020 to 0.150%,
Si: 0.01 to 1.50%,
Mn: 0.2 to 3.0%
In addition,
Ti: 0.03 to 0.40%,
Nb: 0.01-0.20%,
V: 0.01-0.20%,
Mo: 0.01-0.20%
1 type or 2 types or more of
0.10 ≦ 56 {(2 (Ti / 48) +2 (Nb / 93) + (7/4) × (V / 51) + (3/2) × (Mo / 96)}} 1.00
(Note that Ti, Nb, V, and Mo in the formula are the content [% by mass] of each component in the steel.) The balance is comprised of Fe and inevitable impurities,
The volume fraction of ferrite is 10-60%, the balance is bainite,
The average diameter of carbides present in the ferrite crystal grains is 0.8 to 3 nm, the number density is 1 × 10 17 to 5 × 10 18 pieces / cm 3 ,
A high-strength steel characterized in that a difference (Hv F -Hv B ) between the Vickers hardness Hv F of the ferrite and the Vickers hardness Hv B of the bainite is 0 to 40 Hv.
請求項1に記載の高強度鋼の製造方法であって、
請求項1に記載の成分からなる鋼片を、加熱温度≧1200℃、最終加工温度FT[℃]>920℃超の条件で熱間加工を行い、
冷却速度10℃/s以上で580〜650℃の停止温度まで1次冷却し、該1次冷却の停止温度範囲内で3〜30s滞留させた後、
冷却速度30℃/s以上で、400〜550℃の停止温度まで2次冷却することを特徴とする高強度鋼の製造方法。
It is a manufacturing method of the high strength steel according to claim 1,
The steel slab comprising the component according to claim 1 is hot-worked under conditions of a heating temperature ≧ 1200 ° C. and a final processing temperature FT [° C.]> 920 ° C.,
After primary cooling to a stop temperature of 580 to 650 ° C. at a cooling rate of 10 ° C./s or more and retaining for 3 to 30 seconds within the stop temperature range of the primary cooling,
A method for producing high-strength steel, characterized by secondary cooling to a stop temperature of 400 to 550 ° C. at a cooling rate of 30 ° C./s or more.
JP2008124520A 2008-05-12 2008-05-12 High strength steel and manufacturing method thereof Active JP5042914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124520A JP5042914B2 (en) 2008-05-12 2008-05-12 High strength steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124520A JP5042914B2 (en) 2008-05-12 2008-05-12 High strength steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009275238A true JP2009275238A (en) 2009-11-26
JP5042914B2 JP5042914B2 (en) 2012-10-03

Family

ID=41440937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124520A Active JP5042914B2 (en) 2008-05-12 2008-05-12 High strength steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5042914B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
JP2013040380A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
JP2013040381A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
WO2014119259A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor
JP2015187302A (en) * 2014-03-12 2015-10-29 新日鐵住金株式会社 Steel sheet and method for manufacturing steel sheet
WO2016136672A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
JP6332570B1 (en) * 2017-03-31 2018-05-30 新日鐵住金株式会社 Hot-rolled steel sheet, steel forged parts and method for producing them
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024860A1 (en) * 2011-08-17 2013-02-21 株式会社神戸製鋼所 High-strength hot-rolled steel plate
JP2013040380A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
JP2013040381A (en) * 2011-08-17 2013-02-28 Kobe Steel Ltd High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone
CN103732779A (en) * 2011-08-17 2014-04-16 株式会社神户制钢所 High-strength hot-rolled steel plate
EP2746417A4 (en) * 2011-08-17 2015-07-15 Kobe Steel Ltd High-strength hot-rolled steel plate
US9689060B2 (en) 2011-08-17 2017-06-27 Kobe Steel, Ltd. High-strength hot-rolled steel sheet
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
WO2014119259A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor
JP2014148696A (en) * 2013-01-31 2014-08-21 Jfe Steel Corp High strength hot rolled steel sheet excellent in burring workability and its manufacturing method
JP2015187302A (en) * 2014-03-12 2015-10-29 新日鐵住金株式会社 Steel sheet and method for manufacturing steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
JPWO2016136672A1 (en) * 2015-02-25 2017-11-24 新日鐵住金株式会社 Hot rolled steel sheet
EP3263731A4 (en) * 2015-02-25 2019-01-16 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet or plate
KR20170107556A (en) * 2015-02-25 2017-09-25 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
KR101988149B1 (en) 2015-02-25 2019-06-12 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
WO2016135898A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
WO2016136672A1 (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
JP6332570B1 (en) * 2017-03-31 2018-05-30 新日鐵住金株式会社 Hot-rolled steel sheet, steel forged parts and method for producing them
WO2018179389A1 (en) * 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet, forged steel part and production methods therefor

Also Published As

Publication number Publication date
JP5042914B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5042914B2 (en) High strength steel and manufacturing method thereof
JP4528275B2 (en) High-strength hot-rolled steel sheet with excellent stretch flangeability
US8876986B2 (en) Cold-rolled steel sheet
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5487682B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
EP3859040A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
JP5487683B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP2004339606A (en) High strength hot rolled steel plate and manufacturing method
JP6945628B2 (en) High-strength composite structure steel with excellent burring properties in the low temperature range and its manufacturing method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2005336526A (en) High strength steel sheet having excellent workability and its production method
JP2008038247A (en) High-strength steel sheet and process for production of the same
JP2011140695A (en) High-strength cold rolled steel sheet having excellent elongation and stretch-flanging property
JP2009084637A (en) High strength hot rolled steel sheet having excellent fatigue property and stretch flange formability
JP2011052271A (en) High-strength cold-rolled steel sheet having excellent workability, and method for producing the same
WO2019088104A1 (en) Hot-rolled steel sheet and manufacturing method therefor
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP5278226B2 (en) Alloy-saving high-strength hot-rolled steel sheet and manufacturing method thereof
JP5741426B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
JP2005314811A (en) Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2009001909A (en) Manufacturing method of high-strength cold-rolled steel sheet
JP2005314812A (en) Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R151 Written notification of patent or utility model registration

Ref document number: 5042914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350