JP2013039590A - Immersion nozzle and continuous casting method of steel using the same - Google Patents

Immersion nozzle and continuous casting method of steel using the same Download PDF

Info

Publication number
JP2013039590A
JP2013039590A JP2011177407A JP2011177407A JP2013039590A JP 2013039590 A JP2013039590 A JP 2013039590A JP 2011177407 A JP2011177407 A JP 2011177407A JP 2011177407 A JP2011177407 A JP 2011177407A JP 2013039590 A JP2013039590 A JP 2013039590A
Authority
JP
Japan
Prior art keywords
nozzle
mold
immersion nozzle
argon gas
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011177407A
Other languages
Japanese (ja)
Other versions
JP5741314B2 (en
Inventor
Koichi Haren
孝一 波連
亮輔 ▲高▼田
Ryosuke Takada
Daisuke Miki
大輔 三木
Toshiaki Mizoguchi
利明 溝口
Yoshiyuki Uejima
良之 上島
Takehiko Fuji
健彦 藤
Hideaki Yamamura
英明 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011177407A priority Critical patent/JP5741314B2/en
Publication of JP2013039590A publication Critical patent/JP2013039590A/en
Application granted granted Critical
Publication of JP5741314B2 publication Critical patent/JP5741314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion nozzle that can control the generation of a sliver by an argon gas blown into the immersion nozzle, and to provide a continuous casting method of steel using the same.SOLUTION: The immersion nozzle is used which includes a supply unit 5 of the argon gas at the upper position than a meniscus, wherein the cross-sectional shape of the nozzle is a flat shape where a long side is located in a longitudinal direction of a mold, and a nozzle inner diameter width W of a long side direction is at least 100 mm. The immersion nozzle is immersed in the mold 6 of a continuous casting facility, the argon gas is supplied to the internal space 7 of the nozzle, and molten steel is supplied to be casted continuously while electromagnetic brake is made to act strongly to the vicinity of a discharge hole 10.

Description

本発明は、比較的小型の鋳片の製造に適した浸漬ノズル及びこれを用いた鋼の連続鋳造方法に関するものである。   The present invention relates to an immersion nozzle suitable for manufacturing a relatively small slab and a continuous casting method of steel using the same.

鋼の連続鋳造は、タンディッシュ内の溶鋼を浸漬ノズルを介して連続鋳造設備のモールド内に供給しながら行われる。溶鋼は浸漬ノズルの下端部に形成された吐出孔からモールド内に吐出される。特許文献1に示されるように、この浸漬ノズルの内部には従来からアルゴンガスが供給されている。なお特許文献1に示されるように、浸漬ノズルは通常は円筒形である。   Continuous casting of steel is performed while supplying molten steel in a tundish into a mold of a continuous casting facility through an immersion nozzle. Molten steel is discharged into the mold from discharge holes formed in the lower end of the immersion nozzle. As shown in Patent Document 1, argon gas is conventionally supplied into the immersion nozzle. As shown in Patent Document 1, the immersion nozzle is usually cylindrical.

浸漬ノズルへのアルゴンガスの供給は、アルミナクラスター等によるノズル閉塞の防止、モールド湯面への熱供給、モールド内介在物の浮上分離等の目的で行われる。しかしこれらの効果の増大のためにアルゴンガスの吹き込み量が多くなると、溶鋼とともにアルゴン気泡が大量にモールド内に流出して浮上する。そしてその一部が凝固シェルに巻き込まれたまま凝固すると、鋳片にスリバーと呼ばれる表面欠陥が発生することとなる。特に凝固シェルに巻き込まれたアルゴンガスの気泡径が1mmを超えると、スリバーの原因となり易い。   The argon gas is supplied to the immersion nozzle for the purpose of preventing nozzle clogging due to alumina clusters or the like, supplying heat to the mold surface, and floating separation of inclusions in the mold. However, if the amount of argon gas blown in to increase these effects, a large amount of argon bubbles flow out into the mold and float with the molten steel. When a part of the slab is solidified while being caught in the solidified shell, a surface defect called a sliver is generated in the slab. In particular, when the bubble diameter of the argon gas entrained in the solidified shell exceeds 1 mm, it tends to cause sliver.

特開2003−334638号公報JP 2003-334638 A

従って本発明の目的は上記した従来の問題点を解決し、浸漬ノズルに吹き込まれたアルゴンガスによるスリバーの発生を抑制することができる浸漬ノズル及びこれを用いた鋼の連続鋳造方法を提供することである。   Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and to provide a dipping nozzle capable of suppressing the occurrence of sliver due to argon gas blown into the dipping nozzle, and a steel continuous casting method using the dipping nozzle. It is.

上記の課題を解決するためになされた本発明の浸漬ノズルは、連続鋳造設備のモールド内に溶鋼を供給する浸漬ノズルであって、メニスカスよりも上方位置にアルゴンガスの供給部を備え、ノズルの断面形状がモールドの長手方向に長辺が位置する扁平形状であり、長辺方向のノズル内径幅が100mm以上であることを特徴とするものである。   The immersion nozzle of the present invention made to solve the above problems is an immersion nozzle that supplies molten steel into a mold of a continuous casting facility, and includes an argon gas supply unit at a position above the meniscus. The cross-sectional shape is a flat shape with long sides positioned in the longitudinal direction of the mold, and the nozzle inner diameter width in the long side direction is 100 mm or more.

なお、長辺方向のノズル内径幅が120mm以上であることが好ましく、長辺方向のノズル内径幅が300mm以下であることが好ましい。   The inner diameter of the nozzle in the long side direction is preferably 120 mm or more, and the inner diameter of the nozzle in the long side direction is preferably 300 mm or less.

また上記の課題を解決するためになされた本発明の鋼の連続鋳造方法は、メニスカスよりも上方位置にアルゴンガスの供給部を備え、ノズルの断面形状がモールドの長手方向に長辺が位置する扁平形状であり、長辺方向のノズル内径幅が100mm以上である浸漬ノズルを連続鋳造設備のモールド内に浸漬し、前記供給部からノズルの内部空間にアルゴンガスを供給するとともに、ノズルの吐出孔の近傍に電磁ブレーキを作用させながら溶鋼を供給することを特徴とするものである。   Further, the steel continuous casting method of the present invention made to solve the above problems includes an argon gas supply unit at a position above the meniscus, and the nozzle cross-sectional shape has a long side positioned in the longitudinal direction of the mold. A dipping nozzle having a flat shape and a nozzle inner diameter width of 100 mm or more in the long side direction is dipped in a mold of a continuous casting facility, and argon gas is supplied from the supply unit to the inner space of the nozzle, and the nozzle discharge hole The molten steel is supplied while an electromagnetic brake is applied in the vicinity.

本発明の浸漬ノズルは、モールドの長手方向に長辺が位置し、長辺方向のノズル内径幅が100mm以上である扁平な断面形状を持つものであり、吐出孔は長手方向の両端に形成されている。このため従来の断面円形の浸漬ノズルとは異なり、溶鋼がノズルの中央から長手方向の両端に形成された吐出孔に達するまでにある程度の時間を要する。しかも本発明ではノズルの吐出孔の近傍に電磁ブレーキを作用させ、吐出流とは反対方向のMHD対向流を生じさせて吐出流にブレーキを掛け、吐出流の流速を抑制する。   The immersion nozzle of the present invention has a flat cross-sectional shape in which the long side is located in the longitudinal direction of the mold and the inner diameter of the nozzle in the long side direction is 100 mm or more, and the discharge holes are formed at both ends in the longitudinal direction. ing. For this reason, unlike a conventional immersion nozzle having a circular cross section, it takes a certain time for molten steel to reach the discharge holes formed at both ends in the longitudinal direction from the center of the nozzle. In addition, in the present invention, an electromagnetic brake is applied in the vicinity of the discharge hole of the nozzle to generate an MHD counter flow in the direction opposite to the discharge flow, thereby braking the discharge flow and suppressing the flow velocity of the discharge flow.

このため後述する実施例に示すように、扁平な浸漬ノズルの内部を移動する間に溶鋼中のアルゴン気泡を十分に浮上させ、吐出孔からモールド内に流出するアルゴン気泡量を減少させることができる。この結果、浸漬ノズルに吹き込まれたアルゴンガスによるスリバーの発生を抑制することが可能となる。   For this reason, as shown in the examples described later, the argon bubbles in the molten steel can sufficiently float while moving inside the flat immersion nozzle, and the amount of argon bubbles flowing out from the discharge holes into the mold can be reduced. . As a result, it is possible to suppress the occurrence of sliver due to the argon gas blown into the immersion nozzle.

本発明の浸漬ノズルの実施形態を示す縦断面図と水平断面図である。It is the longitudinal cross-sectional view and horizontal sectional view which show embodiment of the immersion nozzle of this invention. 本発明の浸漬ノズルの実施形態を示す側面方向の断面図である。It is sectional drawing of the side surface direction which shows embodiment of the immersion nozzle of this invention. 本発明の浸漬ノズルの使用状態を示す断面図である。It is sectional drawing which shows the use condition of the immersion nozzle of this invention. 本発明の浸漬ノズルの使用状態を示す平面図である。It is a top view which shows the use condition of the immersion nozzle of this invention. 吐出孔部分の拡大断面図である。It is an expanded sectional view of a discharge hole part. ノズル内径幅とモールド内に出て行く気泡比率との関係を示すグラフである。It is a graph which shows the relationship between the nozzle inner diameter width and the bubble ratio which goes out in a mold.

以下に本発明の実施形態を説明する。
図1と図2は本発明の浸漬ノズルの断面図である。この浸漬ノズル1は全体が耐火物製であり、円筒状の首部2と、扁平で断面形状が長方形に近い本体部3とからなるものである。比較的浸食され易いメニスカス(溶湯液面)近傍の本体部3の外周面には、高耐食層4が形成されている。またメニスカスよりも上方位置には、アルゴンガスの供給部5が形成されている。
Embodiments of the present invention will be described below.
1 and 2 are sectional views of the immersion nozzle of the present invention. The entire immersion nozzle 1 is made of a refractory material and includes a cylindrical neck portion 2 and a main body portion 3 which is flat and has a cross-sectional shape close to a rectangle. A highly corrosion-resistant layer 4 is formed on the outer peripheral surface of the main body 3 in the vicinity of a meniscus (molten liquid surface) that is relatively easily eroded. Further, an argon gas supply unit 5 is formed at a position above the meniscus.

このアルゴンガスの供給部5は多孔質層を首部2の内周面に形成したもので、外部側方から供給されるアルゴンガスを首部2内のメニスカスよりも上部空間7に供給するためのものである。上部空間7に供給されたアルゴンガスは落下する溶鋼流に巻き込まれて溶鋼中に入り、アルゴン気泡となって介在物の浮上分離等の機能を発揮する。また浸漬ノズル1内への空気の進入を阻止してアルミナクラスター等の生成を防止し、ノズル閉塞を防止する。   The argon gas supply unit 5 is formed by forming a porous layer on the inner peripheral surface of the neck 2 and supplies argon gas supplied from the outside to the upper space 7 rather than the meniscus in the neck 2. It is. The argon gas supplied to the upper space 7 is rolled into the falling molten steel flow and enters the molten steel, and functions as an argon bubble, such as floating separation of inclusions. Further, the entry of air into the immersion nozzle 1 is blocked to prevent the formation of alumina clusters and the like, and the nozzle is blocked.

この浸漬ノズル1は図3、図4に示されるように、比較的小型の鋳片を連続鋳造するための、横長のモールド6の内部に浸漬されるものである。モールド6の内径寸法は、例えば250mm×1630mmであり、この実施形態ではIF鋼用の比較的小型の鋳片を連続鋳造するものである。本発明の浸漬ノズル1はこのようなモールド6の中心に浸漬されるものであるから、その本体部3のノズルの断面形状は、モールド6の長手方向に長辺8が位置する扁平形状となっている。また短辺9の外径サイズは150mm前後としてモールド6内に浸漬できるようにしてある。なお本体部3の短辺方向の内径サイズは50mm程度である。吐出孔10は浸漬ノズル1の下端部の短辺9にそれぞれ形成されている。   As shown in FIGS. 3 and 4, the immersion nozzle 1 is immersed in a horizontally long mold 6 for continuously casting a relatively small slab. The inner diameter of the mold 6 is, for example, 250 mm × 1630 mm. In this embodiment, a relatively small slab for IF steel is continuously cast. Since the immersion nozzle 1 of the present invention is immersed in the center of such a mold 6, the cross-sectional shape of the nozzle of the main body 3 is a flat shape in which the long side 8 is located in the longitudinal direction of the mold 6. ing. The outer diameter of the short side 9 is about 150 mm so that it can be immersed in the mold 6. The inner diameter of the main body 3 in the short side direction is about 50 mm. The discharge holes 10 are respectively formed in the short side 9 of the lower end portion of the immersion nozzle 1.

本発明の浸漬ノズル1は、その長辺方向のノズル内径幅Wを100mm以上と大きくしてある。このように長辺方向のノズル内径幅Wを100mm以上とすることにより、溶鋼がノズルの中央から長手方向の両端に形成された吐出孔10に達するまでに要する時間が従来よりも長くなり、その間にアルゴン気泡を浮上させることができる。このためには長辺方向のノズル内径幅Wは大きいほうが好ましく、120mm以上とすることがより好ましい。しかしノズル内径幅Wを余りに大きくすると浸漬ノズル1の現場での取り回しが困難となるうえ、余りに大きくすると、吐出流がモールド短辺へ衝突する影響が大きくなり、凝固シェル厚みの健全な形成を阻害することから、300mm以下とすることが好ましい。   In the immersion nozzle 1 of the present invention, the nozzle inner diameter width W in the long side direction is increased to 100 mm or more. Thus, by setting the nozzle inner diameter width W in the long side direction to 100 mm or more, the time required for the molten steel to reach the discharge holes 10 formed at both ends in the longitudinal direction from the center of the nozzle becomes longer than before, Argon bubbles can be floated on the surface. For this purpose, the inner diameter width W of the nozzle in the long side direction is preferably large, and more preferably 120 mm or more. However, if the nozzle inner diameter width W is too large, it is difficult to handle the submerged nozzle 1 on the site, and if it is too large, the influence of the discharge flow colliding with the short side of the mold increases, and the solid formation of the solidified shell thickness is hindered. Therefore, the thickness is preferably 300 mm or less.

本発明の浸漬ノズル1を使用して連続鋳造を行う際には、図3に示すようにアルゴンガスの供給部5から上部空間7にアルゴンガスを供給するとともに、吐出孔10の近傍に電磁コイル11を配置して電磁ブレーキを作用させながら、連続鋳造を行う。これにより図5に示すように、吐出流とは反対方向のMHD対向流を生じさせて吐出流にブレーキを掛け、吐出流の流速を抑制する。   When continuous casting is performed using the immersion nozzle 1 of the present invention, argon gas is supplied from the argon gas supply unit 5 to the upper space 7 as shown in FIG. Continuous casting is performed while 11 is placed and the electromagnetic brake is applied. As a result, as shown in FIG. 5, an MHD counter flow in the opposite direction to the discharge flow is generated, the discharge flow is braked, and the flow rate of the discharge flow is suppressed.

この結果、浸漬ノズル1の吐出孔10から吐出流とともにモールド6内に流出しようとするアルゴン気泡を十分に浮上させ、吐出孔10からモールド6内に流出するアルゴン気泡量を減少させることができる。従って本発明によれば、アルゴンガスによるノズル閉塞の防止や介在物の浮上分離などの効果を維持しつつ、スリバーの発生を抑制することが可能となる。またアルゴンガスの消費量も削減することができる。なお、供給部5からのアルゴンガスの供給流量は、溶鋼中への消費量とノズル内への浮上・回収量バランスを考慮し、ノズル7内を正圧に確保する流量とする。   As a result, the argon bubbles that are about to flow into the mold 6 together with the discharge flow from the discharge hole 10 of the immersion nozzle 1 can be sufficiently floated, and the amount of argon bubbles flowing out from the discharge hole 10 into the mold 6 can be reduced. Therefore, according to the present invention, it is possible to suppress the occurrence of sliver while maintaining effects such as prevention of nozzle clogging by argon gas and floating separation of inclusions. In addition, the consumption of argon gas can be reduced. In addition, the supply flow rate of the argon gas from the supply unit 5 is set to a flow rate that secures the inside of the nozzle 7 at a positive pressure in consideration of the consumption amount in the molten steel and the balance of floating and recovery amount in the nozzle.

上記した本発明の効果を得るために必要な条件は、浸漬ノズル1のノズル内径幅Wを100mm以上とすることと、吐出流に電磁ブレーキを加えることである。図6はノズル内径幅Wとモールド6内に出て行く気泡比率との関係を示すグラフである。上記サイズのモールド6に溶鋼を供給するために用いる従来の浸漬ノズルは水平断面が円形でノズル内径幅Wは70mmであるから、この従来型の浸漬ノズルを用いた場合に直径が1mmのアルゴン気泡がモールド6内に出て行く量を100%とし、ノズル内径幅Wを変化させた場合の値を求めた。なお、この測定を実機により行うことは不可能であるから、図6のグラフの値は市販の熱・流体解析ソフトであるフルーエントを用いた計算により求めた結果である。この場合、鋳造速度Vcは1.6m/minとした。   The conditions necessary for obtaining the effect of the present invention described above are that the nozzle inner diameter width W of the immersion nozzle 1 is 100 mm or more and that an electromagnetic brake is applied to the discharge flow. FIG. 6 is a graph showing the relationship between the nozzle inner diameter width W and the ratio of bubbles that go out into the mold 6. Since the conventional immersion nozzle used for supplying molten steel to the mold 6 of the above size has a circular horizontal section and the nozzle inner diameter width W is 70 mm, when this conventional immersion nozzle is used, an argon bubble having a diameter of 1 mm is used. Assuming that the amount that goes out into the mold 6 is 100%, the value when the nozzle inner diameter width W is changed was obtained. In addition, since it is impossible to perform this measurement with an actual machine, the values in the graph of FIG. 6 are results obtained by calculation using a fluent, which is commercially available thermal / fluid analysis software. In this case, the casting speed Vc was 1.6 m / min.

このグラフに示されるように、従来は70mmであったノズル内径幅Wを100mmとするとモールド6内に出て行く気泡比率は80%に減少し、120mmとすると70%に減少する。さらに170mmとすれば50%にまで減少する。本発明者はノズル内径幅Wが170mmの扁平ノズルを試作して実機による鋳造試験を行ったところ、スリバー欠陥の発生数が従来の50%以下にまで減少することを確認済みである。   As shown in this graph, when the nozzle inner diameter width W, which was 70 mm in the prior art, is set to 100 mm, the ratio of bubbles that go out into the mold 6 is reduced to 80%, and to 120 mm, the ratio is reduced to 70%. Furthermore, if it is 170 mm, it will reduce to 50%. The inventor made a prototype flat nozzle having a nozzle inner diameter width of 170 mm and conducted a casting test using an actual machine. As a result, it was confirmed that the number of sliver defects was reduced to 50% or less of the conventional one.

なお、電磁ブレーキの強度は通常の場合よりもやや強く設定することは好ましく、例えば0.3〜0.5T(テスラ)とすることが好ましい。   In addition, it is preferable to set the intensity | strength of an electromagnetic brake somewhat stronger than usual, for example, it is preferable to set it as 0.3-0.5T (Tesla).

以上に説明したように、本発明によれば溶鋼中のアルゴン気泡を浸漬ノズルの内部において十分に浮上させ、吐出孔からモールド内に流出するアルゴン気泡量を減少させることにより、スリバー欠陥を抑制することが可能となる。   As described above, according to the present invention, argon bubbles in molten steel are sufficiently floated inside the immersion nozzle, and the amount of argon bubbles flowing out from the discharge holes into the mold is reduced, thereby suppressing sliver defects. It becomes possible.

なお、吐出孔10のサイズはモールド6内に供給すべき溶鋼量によって決定されるものであるから、従来と変わるものではない。また短辺方向のノズル内径幅は本発明においては特に重要なものではなく、モールドサイズから決定される値とすれば差支えない。   In addition, since the size of the discharge hole 10 is determined by the amount of molten steel to be supplied into the mold 6, it is not different from the conventional one. Further, the inner diameter width of the nozzle in the short side direction is not particularly important in the present invention, and may be a value determined from the mold size.

上記した実施形態では浸漬ノズル1の本体部3の水平断面は略長方形であるが、長楕円形としても差支えない。また本発明はIF鋼以外にも表面欠陥の発生を嫌う鋳片の製造に広く適用できることは言うまでもない。   In the above-described embodiment, the horizontal section of the main body 3 of the immersion nozzle 1 is substantially rectangular, but it may be oval. Further, it goes without saying that the present invention can be widely applied to the production of slabs that do not like the occurrence of surface defects other than IF steel.

1 浸漬ノズル
2 首部
3 本体部
4 高耐食層
5 アルゴンガスの供給部
6 モールド
7 上部空間
8 長辺
9 短辺
10 吐出孔
11 電磁コイル
DESCRIPTION OF SYMBOLS 1 Immersion nozzle 2 Neck part 3 Body part 4 High corrosion-resistant layer 5 Argon gas supply part 6 Mold 7 Upper space 8 Long side 9 Short side 10 Discharge hole 11 Electromagnetic coil

Claims (4)

連続鋳造設備のモールド内に溶鋼を供給する浸漬ノズルであって、メニスカスよりも上方位置にアルゴンガスの供給部を備え、ノズルの断面形状がモールドの長手方向に長辺が位置する扁平形状であり、長辺方向のノズル内径幅が100mm以上であることを特徴とする浸漬ノズル。   It is an immersion nozzle that supplies molten steel into the mold of a continuous casting facility, and is provided with an argon gas supply part above the meniscus, and the cross-sectional shape of the nozzle is a flat shape with the long side positioned in the longitudinal direction of the mold An immersion nozzle having a nozzle inner diameter width of 100 mm or more in the long side direction. 長辺方向のノズル内径幅が120mm以上であることを特徴とする請求項1に記載の浸漬ノズル。   The immersion nozzle according to claim 1, wherein the inner diameter of the nozzle in the long side direction is 120 mm or more. 長辺方向のノズル内径幅が300mm以下であることを特徴とする請求項1または2に記載の浸漬ノズル。   The immersion nozzle according to claim 1 or 2, wherein the inner diameter width of the nozzle in the long side direction is 300 mm or less. メニスカスよりも上方位置にアルゴンガスの供給部を備え、ノズルの断面形状がモールドの長手方向に長辺が位置する扁平形状であり、長辺方向のノズル内径幅が100mm以上である浸漬ノズルを連続鋳造設備のモールド内に浸漬し、前記供給部からノズルの内部空間にアルゴンガスを供給するとともに、ノズルの吐出孔の近傍に電磁ブレーキを作用させながら溶鋼を供給することを特徴とする鋼の連続鋳造方法。   An argon gas supply unit is provided at a position above the meniscus, and the nozzle cross-sectional shape is a flat shape with long sides positioned in the longitudinal direction of the mold, and continuous immersion nozzles having a nozzle inner diameter width of 100 mm or more in the long side direction are continuous. A continuous steel, characterized in that it is immersed in a mold of a casting facility, and argon gas is supplied to the internal space of the nozzle from the supply unit, and molten steel is supplied while operating an electromagnetic brake in the vicinity of the discharge hole of the nozzle. Casting method.
JP2011177407A 2011-08-15 2011-08-15 Immersion nozzle and continuous casting method of steel using the same Active JP5741314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177407A JP5741314B2 (en) 2011-08-15 2011-08-15 Immersion nozzle and continuous casting method of steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177407A JP5741314B2 (en) 2011-08-15 2011-08-15 Immersion nozzle and continuous casting method of steel using the same

Publications (2)

Publication Number Publication Date
JP2013039590A true JP2013039590A (en) 2013-02-28
JP5741314B2 JP5741314B2 (en) 2015-07-01

Family

ID=47888486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177407A Active JP5741314B2 (en) 2011-08-15 2011-08-15 Immersion nozzle and continuous casting method of steel using the same

Country Status (1)

Country Link
JP (1) JP5741314B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290064A (en) * 2015-06-26 2017-01-04 鞍钢股份有限公司 A kind of ladle soft argon blowing effect detection method
CN113927009A (en) * 2021-08-30 2022-01-14 山东钢铁集团日照有限公司 Method for improving back pressure between quick-change rear plates of submerged nozzle
CN116855920A (en) * 2023-09-05 2023-10-10 山西中设华晋铸造有限公司 Steel strip casting process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192803A (en) * 1996-01-08 1997-07-29 Nkk Corp Method for continuously casting steel
JP2002346706A (en) * 2001-05-22 2002-12-04 Shinagawa Refract Co Ltd Continuous casting apparatus
JP2007069222A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp Method for continuously casting steel
US20090120604A1 (en) * 2006-07-06 2009-05-14 Anders Lehman Method And Apparatus For Controlling The Flow Of Molten Steel In A Mould
JP2009136876A (en) * 2007-12-03 2009-06-25 Kurosaki Harima Corp Immersion nozzle
JP2010110765A (en) * 2008-11-04 2010-05-20 Nippon Steel Corp Continuous casting apparatus for steel
JP2011136354A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Immersion nozzle and continuous casting method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192803A (en) * 1996-01-08 1997-07-29 Nkk Corp Method for continuously casting steel
JP2002346706A (en) * 2001-05-22 2002-12-04 Shinagawa Refract Co Ltd Continuous casting apparatus
JP2007069222A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp Method for continuously casting steel
US20090120604A1 (en) * 2006-07-06 2009-05-14 Anders Lehman Method And Apparatus For Controlling The Flow Of Molten Steel In A Mould
JP2009136876A (en) * 2007-12-03 2009-06-25 Kurosaki Harima Corp Immersion nozzle
JP2010110765A (en) * 2008-11-04 2010-05-20 Nippon Steel Corp Continuous casting apparatus for steel
JP2011136354A (en) * 2009-12-28 2011-07-14 Nippon Steel Corp Immersion nozzle and continuous casting method using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290064A (en) * 2015-06-26 2017-01-04 鞍钢股份有限公司 A kind of ladle soft argon blowing effect detection method
CN106290064B (en) * 2015-06-26 2018-10-09 鞍钢股份有限公司 A kind of ladle soft argon blowing effect detection method
CN113927009A (en) * 2021-08-30 2022-01-14 山东钢铁集团日照有限公司 Method for improving back pressure between quick-change rear plates of submerged nozzle
CN116855920A (en) * 2023-09-05 2023-10-10 山西中设华晋铸造有限公司 Steel strip casting process
CN116855920B (en) * 2023-09-05 2023-11-21 山西中设华晋铸造有限公司 Steel strip casting process

Also Published As

Publication number Publication date
JP5741314B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP4505530B2 (en) Equipment for continuous casting of steel
JP5741314B2 (en) Immersion nozzle and continuous casting method of steel using the same
JP2008030069A (en) Molten metal continuous casting method
KR101063466B1 (en) Stopper and Stopper Assembly
JP5910578B2 (en) Steel continuous casting method
JP4585504B2 (en) Method for continuous casting of molten metal
JP2008200732A (en) Continuous casting method of steel, and manufacturing method of hot-dip galvanized steel sheet
JP2011143449A (en) Method for removing inclusion in tundish for continuous casting
CN203030884U (en) Multihole type immersive type water port for continuous casting
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
JP5510061B2 (en) Continuous casting method
JP4492333B2 (en) Steel continuous casting method
JP2008030089A (en) Immersion nozzle for continuously casting molten steel and continuous casting method
JP6551161B2 (en) Pouring nozzle for twin roll casting apparatus, twin roll casting apparatus, and cast piece casting method
JP2017127886A (en) Soaking nozzle
JP4750013B2 (en) Immersion nozzle with drum type weir
JP2023178223A (en) Continuous casting method for steel
JP6287901B2 (en) Steel continuous casting method
JP5266154B2 (en) Rectifying structure that suppresses drift caused by opening and closing of slide plate
JP2002103009A (en) Continuous casting method
JP2007237244A (en) Tundish upper nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350