JP2013036378A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2013036378A
JP2013036378A JP2011172536A JP2011172536A JP2013036378A JP 2013036378 A JP2013036378 A JP 2013036378A JP 2011172536 A JP2011172536 A JP 2011172536A JP 2011172536 A JP2011172536 A JP 2011172536A JP 2013036378 A JP2013036378 A JP 2013036378A
Authority
JP
Japan
Prior art keywords
passage
intake
egr
fresh air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011172536A
Other languages
Japanese (ja)
Other versions
JP5755072B2 (en
Inventor
Akira Takahashi
亮 高橋
Kenji Nakajima
健治 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011172536A priority Critical patent/JP5755072B2/en
Publication of JP2013036378A publication Critical patent/JP2013036378A/en
Application granted granted Critical
Publication of JP5755072B2 publication Critical patent/JP5755072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress deterioration of an intake pressure sensor caused by stuck soot while enabling a large amount of EGR gas to merge into intake air.SOLUTION: There is adopted an internal combustion engine 0 that includes: a drive turbine 52 installed in an exhaust passage 4; a compressor 51 driven by the drive turbine; an EGR apparatus 2 which is a low-pressure loop type exhaust gas recycling apparatus where an EGR valve 22 is installed on an EGR passage 20 connecting the downstream side of the drive turbine and the upstream side of the compressor; a throttle valve 33 installed on the downstream side of the compressor in an intake passage 3; a fresh air bypass passage 7 connecting the upstream side of an outlet 20b of the EGR passage in the intake passage and the downstream side of the throttle valve; a bypass valve 71 which is a flow adjusting valve to control the flow rate of the fresh air and is installed on the fresh air bypass passage; and an intake pressure sensor 8 which is a pressure sensor installed between the bypass valve and an outlet 7b in the fresh air bypass passage.

Description

本発明は、排気ターボ過給機及び排気ガス再循環装置が付帯した内燃機関に関する。   The present invention relates to an internal combustion engine accompanied by an exhaust turbocharger and an exhaust gas recirculation device.

従来より、気筒内の燃焼温度を低下させ、以て有害物質であるNOxの排出量を削減する排気ガス再循環(Exhaust Gas Recirculation)装置が知られている。EGR装置は、燃焼により発生した排気ガスの一部を吸気に混入するものである。 Conventionally, to reduce the combustion temperature in the cylinders, than Te to reduce the emissions of the NO x which is a harmful substance exhaust gas recirculation (Exhaust Gas Recirculation) system has been known. The EGR device mixes a part of exhaust gas generated by combustion into intake air.

このようなEGR装置を備えた内燃機関において、EGR通路を経て吸気通路に導入された排気ガス中のススにより吸気通路中に設けられた吸気圧センサ等のセンサが汚れて劣化する不具合の発生を抑制すべく、種々の構成が考えられてきている。その一例として、吸気通路中のセンサより上流側かつEGR通路の出口よりも下流側に吸気の流通方向を偏向させる偏向部材を設けてススの一部をこの偏向部材に付着させる態様や、吸気通路内においてススの分布密度が小さい箇所にセンサを設ける態様が考えられている(例えば、特許文献1を参照)。   In an internal combustion engine equipped with such an EGR device, there is a problem that a sensor such as an intake pressure sensor provided in the intake passage is contaminated and deteriorated by soot in exhaust gas introduced into the intake passage through the EGR passage. Various configurations have been considered for suppression. As an example thereof, a mode in which a deflection member that deflects the flow direction of the intake air is provided upstream of the sensor in the intake passage and downstream of the outlet of the EGR passage, and a part of the soot is attached to the deflection member, An aspect in which a sensor is provided at a location where the soot distribution density is small is considered (for example, see Patent Document 1).

ここで、特許文献1記載の内燃機関では、気筒から排出された直後の高温高圧の排気ガスを吸気通路に還流する高圧ループEGRが採用されているが、これに対し、排気ターボ過給機のタービン及び排気ガス浄化用の触媒を通過した低温低圧の排気ガスを吸気通路に還流する低圧ループEGRは、大量のEGRガスを吸気に混入できる点で有利である。低圧ループEGRでは、大気圧に近いEGRガスを還流させる都合上、EGR通路の出口を排気ターボ過給機のコンプレッサの上流側に接続している。このような低圧ループEGRを採用した内燃機関では、大量のEGRガスを吸気に混入できることから、EGR通路を経て吸気通路に導入された排気ガス中のススの量もより多くなることがある。   Here, in the internal combustion engine described in Patent Document 1, a high-pressure loop EGR that recirculates the high-temperature and high-pressure exhaust gas immediately after being discharged from the cylinder to the intake passage is employed. The low-pressure loop EGR that recirculates the low-temperature and low-pressure exhaust gas that has passed through the turbine and the exhaust gas purifying catalyst to the intake passage is advantageous in that a large amount of EGR gas can be mixed into the intake air. In the low pressure loop EGR, the outlet of the EGR passage is connected to the upstream side of the compressor of the exhaust turbocharger for the purpose of recirculating the EGR gas close to the atmospheric pressure. In an internal combustion engine that employs such a low-pressure loop EGR, a large amount of EGR gas can be mixed into the intake air, so that the amount of soot in the exhaust gas introduced into the intake passage via the EGR passage may be larger.

しかして、特許文献1記載の構成では、確かにセンサ付近を通過する空気に含まれるススの量を抑制することはできるものの、低圧ループEGRを採用した内燃機関においては上述したように吸気通路を通過するススの絶対量が多いので、ススにより吸気通路中に設けられたセンサが汚れて劣化する不具合を十分抑制できないおそれが存在する。   In the configuration described in Patent Document 1, the amount of soot contained in the air passing through the vicinity of the sensor can surely be suppressed. However, in the internal combustion engine employing the low pressure loop EGR, as described above, the intake passage is not provided. Since the absolute amount of soot passing therethrough is large, there is a possibility that a problem that the sensor provided in the intake passage is contaminated and deteriorated by soot cannot be sufficiently suppressed.

さらに、センサが汚れて劣化する不具合の発生を抑制するには、吸気通路中のセンサの上流側にススを除去するためのフィルタを設ける態様が考えられるが、この場合、除去されたススはフィルタに付着しているので、定期的にフィルタの交換作業を行う手間が発生するという別の不具合が発生する。   Furthermore, in order to suppress the occurrence of a problem that the sensor becomes dirty and deteriorates, there may be a mode in which a filter for removing soot is provided on the upstream side of the sensor in the intake passage. In this case, the removed soot is filtered. As a result, another problem arises in that it takes time to periodically replace the filter.

特開平10−141113号公報JP-A-10-141113

本発明は以上の点に着目し、大量のEGRガスを吸気に混入できるようにしつつ、吸気圧センサがススにより汚れて劣化する不具合の発生を効果的に抑制することを目的とする。   The present invention focuses on the above points, and an object thereof is to effectively suppress the occurrence of a problem that the intake pressure sensor is contaminated and deteriorated by soot while allowing a large amount of EGR gas to be mixed into the intake air.

すなわち本発明に係る内燃機関は、排気通路に設けられたタービンと、吸気通路に設けられ前記タービンにより駆動されるコンプレッサと、前記排気通路における前記タービンの下流側と前記吸気通路における前記コンプレッサの上流側とを接続するEGR通路上にEGR弁が設けられてなる低圧ループ式の排気ガス再循環装置と、前記吸気通路における前記コンプレッサの下流側に設けられたスロットル弁と、前記吸気通路における前記EGR通路の出口の上流側と前記スロットル弁の下流側とを接続する新気バイパス通路と、前記新気バイパス通路中に設けてなり新気の流量を制御する流量調整弁と、前記新気バイパス通路中の前記流量調整弁と出口との間に設けてなる圧力センサとを具備することを特徴とする。   That is, an internal combustion engine according to the present invention includes a turbine provided in an exhaust passage, a compressor provided in an intake passage and driven by the turbine, a downstream side of the turbine in the exhaust passage, and an upstream of the compressor in the intake passage. A low-pressure loop type exhaust gas recirculation device in which an EGR valve is provided on an EGR passage connecting the side, a throttle valve provided downstream of the compressor in the intake passage, and the EGR in the intake passage A fresh air bypass passage connecting the upstream side of the outlet of the passage and the downstream side of the throttle valve, a flow rate adjusting valve provided in the fresh air bypass passage for controlling the flow rate of fresh air, and the fresh air bypass passage And a pressure sensor provided between the flow rate adjusting valve and the outlet.

このようなものであれば、新気バイパス通路中を新気が流通するごとに新気の流れを利用して圧力センサの清掃を行うことができるので、大量のEGRガスを燃焼室に導入するようにしつつ、吸気通路中にフィルタを設けることなく、圧力センサのEGRガスに含まれるスス等による劣化を抑制することができる。また、EGRガスを含む吸気の流れから外れた新気バイパス通路中に圧力センサを設けているので、この点からもEGRガスに含まれるスス等による圧力センサの劣化を抑制できる。   If it is such, since a pressure sensor can be cleaned using the flow of fresh air every time fresh air flows through the fresh air bypass passage, a large amount of EGR gas is introduced into the combustion chamber. In this way, deterioration due to soot contained in the EGR gas of the pressure sensor can be suppressed without providing a filter in the intake passage. In addition, since the pressure sensor is provided in the fresh air bypass passage deviated from the flow of the intake air including the EGR gas, the deterioration of the pressure sensor due to the soot contained in the EGR gas can be suppressed also from this point.

さらに、前記流量調整弁の開度を調整することによりアイドル回転数制御を行う制御装置を具備するものであれば、アイドル運転を行うごとに圧力センサの清掃を行うことができるので、より効果的に圧力センサの汚れに伴う劣化を抑制できる。さらに、運転者が運転操作を行っていないアイドル運転時に圧力センサの清掃を行うことにより、運転者の意図に関わらず新気が流入し、これに伴い燃料噴射量及びエンジン回転数が上昇し運転者に違和感を与える不具合の発生も抑制することができる。   Furthermore, if a control device that performs idle speed control by adjusting the opening of the flow rate adjusting valve is provided, the pressure sensor can be cleaned every time the idle operation is performed, which is more effective. In addition, it is possible to suppress deterioration due to contamination of the pressure sensor. In addition, by cleaning the pressure sensor during idle operation when the driver is not driving, fresh air flows in regardless of the driver's intention, and the fuel injection amount and engine speed increase accordingly. It is also possible to suppress the occurrence of a problem that gives the person a sense of discomfort.

本発明によれば、大量のEGRガスを吸気に混入できるようにしつつ、吸気圧センサがススにより汚れて劣化する不具合の発生を効果的に抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the malfunction which an intake pressure sensor becomes dirty and deteriorates by soot can be suppressed effectively, enabling it to mix a lot of EGR gas into intake air.

本発明の一実施形態における内燃機関及び排気ガス再循環装置の構成を示す図。The figure which shows the structure of the internal combustion engine and exhaust-gas recirculation apparatus in one Embodiment of this invention. 同実施形態におけるバイパス弁を示す図。The figure which shows the bypass valve in the same embodiment. 本発明の他の実施態様におけるバイパス弁を示す図。The figure which shows the bypass valve in the other embodiment of this invention. 本発明の他の実施態様におけるバイパス弁を示す図。The figure which shows the bypass valve in the other embodiment of this invention.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関0の概要を示す。本実施形態の内燃機関0は、複数の気筒1(図1には、そのうち一つを図示している)と、各気筒1内に燃料を噴射するインジェクタ11と、各気筒1に吸気を供給するための吸気通路3と、各気筒1から排気を排出するための排気通路4と、吸気通路3を流通する吸気を過給する排気ターボ過給機5と、排気通路4から吸気通路3に向けてEGRガスを還流させる排気ガス再循環装置(以下、EGR装置2と称する)と、吸気通路3の中途をバイパスする新気バイパス通路7とを備えている。   An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the outline | summary of the internal combustion engine 0 for vehicles in this embodiment is shown. The internal combustion engine 0 of the present embodiment includes a plurality of cylinders 1 (one of which is shown in FIG. 1), an injector 11 that injects fuel into each cylinder 1, and supplies intake air to each cylinder 1. An intake passage 3 for exhausting the exhaust gas, an exhaust passage 4 for discharging exhaust gas from each cylinder 1, an exhaust turbocharger 5 for supercharging intake air flowing through the intake passage 3, and an exhaust passage 4 to the intake passage 3. An exhaust gas recirculation device (hereinafter referred to as EGR device 2) that recirculates EGR gas toward the vehicle and a fresh air bypass passage 7 that bypasses the midway of the intake passage 3 are provided.

本実施形態における内燃機関0は、二気筒の4サイクルエンジンであり、第一気筒1の行程と第二気筒1の行程との間には360°CA(クランク角度)の位相差が存在する。つまり、第一気筒1のピストン12と第二気筒1のピストン12とは同時に上昇し、また同時に下降する。   The internal combustion engine 0 in this embodiment is a two-cylinder four-cycle engine, and there is a phase difference of 360 ° CA (crank angle) between the stroke of the first cylinder 1 and the stroke of the second cylinder 1. That is, the piston 12 of the first cylinder 1 and the piston 12 of the second cylinder 1 are simultaneously raised and simultaneously lowered.

吸気通路3は、外部から空気を取り入れて気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、吸気絞り弁35、過給機5のコンプレッサ51、インタクーラ32、電子スロットル弁33、サージタンク34、吸気マニホルド36を、上流からこの順序に配置している。   The intake passage 3 takes in air from the outside and guides it to the intake port of the cylinder 1. On the intake passage 3, an air cleaner 31, an intake throttle valve 35, a compressor 51 of the supercharger 5, an intercooler 32, an electronic throttle valve 33, a surge tank 34, and an intake manifold 36 are arranged in this order from the upstream.

排気ターボ過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成したものである。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The exhaust turbocharger 5 is configured such that the drive turbine 52 and the compressor 51 are connected and linked in a coaxial manner. Then, the driving turbine 52 is rotationally driven by using the energy of the exhaust gas, and the compressor 51 is pumped by using the rotational force, whereby the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

EGR装置2は、いわゆる低圧ループEGRを実現するものである。低圧ループEGR通路の圧力損失は、数百Pa程度と非常に小さい。このEGR装置2は、その入口20aを駆動タービン52の下流側、より詳細には排気通路4における三元触媒41の下流側の所定箇所に接続しているとともにその出口20bを吸気通路3における吸気絞り弁35の下流側、かつコンプレッサ51の上流側の所定箇所に接続しているEGR通路20と、このEGR通路20上に設けてなるEGRクーラ21及びEGR弁22とを備えている。   The EGR device 2 realizes a so-called low pressure loop EGR. The pressure loss in the low-pressure loop EGR passage is as small as several hundred Pa. The EGR device 2 has an inlet 20 a connected to a predetermined position downstream of the drive turbine 52, more specifically, a downstream side of the three-way catalyst 41 in the exhaust passage 4, and an outlet 20 b connected to the intake air in the intake passage 3. An EGR passage 20 connected to a predetermined location downstream of the throttle valve 35 and upstream of the compressor 51, and an EGR cooler 21 and an EGR valve 22 provided on the EGR passage 20 are provided.

低圧ループEGRでは、大気圧に近い低圧の排気ガスをEGR通路2を通じて吸気通路3に還流する。そのために、EGR通路20の出口20bの上流にある吸気絞り弁35を絞ることで、EGR通路20の出口20bの周囲を負圧化する。なお、吸気通路3における、吸気絞り弁35よりも上流側の圧力は略大気圧、またはコンプレッサ51の稼働によって幾分負圧となる。   In the low-pressure loop EGR, low-pressure exhaust gas close to atmospheric pressure is recirculated to the intake passage 3 through the EGR passage 2. For this purpose, the pressure around the outlet 20b of the EGR passage 20 is reduced to a negative pressure by restricting the intake throttle valve 35 upstream of the outlet 20b of the EGR passage 20. It should be noted that the pressure upstream of the intake throttle valve 35 in the intake passage 3 becomes substantially atmospheric pressure or becomes somewhat negative due to the operation of the compressor 51.

新気バイパス通路7は、コンプレッサ51やインタクーラ32、スロットル弁33を回避して空気を気筒1の吸気ポートへと導く。新気バイパス通路7の入口7aは、EGR通路20の出口20bの上流側、より詳細には吸気通路3における吸気絞り弁35の上流側の所定箇所に接続している。新気バイパス通路7の出口7bは、吸気通路3におけるスロットル弁33の下流側の所定箇所、より具体的にはサージタンク34に接続している。この新気バイパス通路7上には、新気の流量を制御する流量調整弁たるバイパス弁71を設けてある。本実施形態では、この新気バイパス通路7がアイドル運転時に気筒1に新気を導入するためのバイパス通路としての機能をも有し、バイパス弁71がアイドル運転時に導入される新気の量を調節するためのISCバルブとしての機能をも有する。   The fresh air bypass passage 7 avoids the compressor 51, the intercooler 32, and the throttle valve 33 and guides air to the intake port of the cylinder 1. The inlet 7 a of the fresh air bypass passage 7 is connected to a predetermined location upstream of the outlet 20 b of the EGR passage 20, more specifically, upstream of the intake throttle valve 35 in the intake passage 3. The outlet 7 b of the fresh air bypass passage 7 is connected to a predetermined location on the downstream side of the throttle valve 33 in the intake passage 3, more specifically, to the surge tank 34. On the fresh air bypass passage 7, a bypass valve 71 serving as a flow rate adjusting valve for controlling the flow rate of fresh air is provided. In the present embodiment, the fresh air bypass passage 7 also has a function as a bypass passage for introducing fresh air into the cylinder 1 during idle operation, and the amount of fresh air introduced by the bypass valve 71 during idle operation is reduced. It also has a function as an ISC valve for adjustment.

バイパス弁71は、弁体711と、閉弁時にこの弁体711が着座する弁座712a及び前記弁体711を駆動するステッピングモータ等の駆動装置712bを少なくとも内蔵するとともに上流側に開口する流入ポート712x及び下流側に開口する流出ポート712yを設けてなるハウジング712とを備えている。また、このバイパス弁71は、駆動装置712が後述するECU(電子制御装置)6からの開度操作信号lの入力を受けることにより作動する。より具体的には、このバイパス弁71を通過する空気量の制御は、開度操作信号lとしてソレノイドに入力されるパルス電流(または、電圧)のデューティ比に応じて弁体711の進退の距離を変化させることにより行うようにしている。そして、このバイパス弁71の下流側かつ新気バイパス通路7の出口7bの上流側には、吸気通路3内を流通する空気の圧力を測定する圧力センサである吸気圧センサ8を設けている。   The bypass valve 71 incorporates at least a valve body 711, a valve seat 712a on which the valve body 711 is seated when the valve is closed, and a driving device 712b such as a stepping motor for driving the valve body 711, and an inflow port opened upstream. 712x and a housing 712 provided with an outflow port 712y opened on the downstream side. The bypass valve 71 operates when the drive device 712 receives an opening operation signal l from an ECU (Electronic Control Device) 6 described later. More specifically, the amount of air passing through the bypass valve 71 is controlled by the distance of advancement / retraction of the valve body 711 according to the duty ratio of the pulse current (or voltage) input to the solenoid as the opening operation signal l. This is done by changing An intake pressure sensor 8, which is a pressure sensor that measures the pressure of air flowing through the intake passage 3, is provided on the downstream side of the bypass valve 71 and on the upstream side of the outlet 7 b of the fresh air bypass passage 7.

内燃機関0の運転制御を司るECU6は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。入力インタフェースには、車速を検出する車速センサから出力される車速信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、アクセルペダルの踏込量を検出するアクセルセンサから出力されるアクセル開度要求信号c、吸気圧(過給圧)を検出する吸気圧センサ8から出力される吸気圧信号d、サージタンク34の吸気温を検出する温度センサから出力される吸気温信号e、スロットル弁33の開閉状態を検出するためのアイドルスイッチから出力されるIDL信号f、等が入力される。出力インタフェースからは、インジェクタ11に対して燃料噴射信号g、点火プラグ(のイグニッションコイル)に対して点火信号h、EGR弁22に対して開度操作信号i、吸気絞り弁35に対して開度操作信号j、スロットル弁33に対して開度操作信号k、バイパス弁71(の駆動装置712)に対して開度操作信号l等を出力する。このECU6は、請求項中の制御装置としての機能を有する。   The ECU 6 that controls the operation of the internal combustion engine 0 is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The input interface outputs a vehicle speed signal a output from a vehicle speed sensor that detects the vehicle speed, a rotation speed signal b output from a rotation speed sensor that detects the engine rotation speed, and an accelerator sensor that detects the amount of depression of the accelerator pedal. The accelerator opening request signal c, the intake pressure signal d output from the intake pressure sensor 8 that detects the intake pressure (supercharging pressure), and the intake air temperature signal e that is output from the temperature sensor that detects the intake temperature of the surge tank 34 The IDL signal f output from the idle switch for detecting the open / close state of the throttle valve 33 is input. From the output interface, the fuel injection signal g for the injector 11, the ignition signal h for the ignition plug (ignition coil), the opening operation signal i for the EGR valve 22, and the opening degree for the intake throttle valve 35. An opening operation signal k is output to the operation signal j, the throttle valve 33, and an opening operation signal l is output to the bypass valve 71 (drive device 712). The ECU 6 has a function as a control device in claims.

ECU6のプロセッサは、予めメモリに格納されているプログラムを解釈、実行して、内燃機関0の運転を制御する。ECU6は、内燃機関0の運転制御に必要な各種情報a、b、c、d、e、fを入力インタフェースを介して取得し、それらに基づいて吸気量や要求燃料噴射量、点火時期、要求EGR量、目標アイドル回転数等を演算する。そして、演算結果に対応した各種制御信号g、h、i、j、k、lを出力インタフェースを介して印加する。   The processor of the ECU 6 interprets and executes a program stored in the memory in advance, and controls the operation of the internal combustion engine 0. The ECU 6 obtains various information a, b, c, d, e, and f necessary for operation control of the internal combustion engine 0 via the input interface, and based on them, the intake air amount, the required fuel injection amount, the ignition timing, the request EGR amount, target idle speed, etc. are calculated. Then, various control signals g, h, i, j, k, and l corresponding to the calculation result are applied through the output interface.

ここで、ECU6は、アイドル運転状態において、上述したようにバイパス弁71をISCバルブとして機能させ、回転数を目標アイドル回転数に収束させるアイドル回転数制御を行う。このアイドル回転数制御は、従来周知のアイドル回転数制御と同様の手法で行われる。すなわち、回転数信号bが示すエンジン回転数が目標アイドル回転数を上回る場合にはより多くの混合気を気筒1内に導入させるべく、バイパス弁71の開度を大きくするとともに燃料噴射量を増量し、回転数信号bが示すエンジン回転数が目標アイドル回転数を下回る場合には気筒1内に導入させる混合気の量を減量すべくバイパス弁71の開度を小さくするとともに燃料噴射量を減量する制御を行う。   Here, in the idle operation state, the ECU 6 performs the idle rotation speed control that causes the bypass valve 71 to function as an ISC valve as described above and converges the rotation speed to the target idle rotation speed. This idle speed control is performed in the same manner as the conventionally known idle speed control. That is, when the engine speed indicated by the speed signal b exceeds the target idle speed, the opening degree of the bypass valve 71 is increased and the fuel injection amount is increased so that more air-fuel mixture is introduced into the cylinder 1. When the engine speed indicated by the rotation speed signal b is lower than the target idle speed, the opening degree of the bypass valve 71 is reduced and the fuel injection amount is reduced to reduce the amount of air-fuel mixture introduced into the cylinder 1. Control.

本実施形態の構成によれば、新気バイパス通路7中を新気が流通するごとに新気の流れを利用して吸気圧センサ8の清掃を行うことができるので、大量のEGRガスを気筒1内の燃焼室に導入するようにしつつ、吸気通路3中にフィルタを設けることなく、吸気圧センサ8のEGRガスに含まれるスス等による劣化を抑制することができる。また、EGRガスを含む吸気の流れから外れた新気バイパス通路7中に吸気圧センサ8を設けているので、この点からもEGRガスに含まれるスス等による吸気圧センサ8の劣化を抑制できる。   According to the configuration of the present embodiment, the intake pressure sensor 8 can be cleaned using the flow of fresh air every time fresh air flows through the fresh air bypass passage 7, so that a large amount of EGR gas is discharged from the cylinder. The deterioration due to the soot contained in the EGR gas of the intake pressure sensor 8 can be suppressed without providing a filter in the intake passage 3 while being introduced into the combustion chamber in 1. Further, since the intake pressure sensor 8 is provided in the fresh air bypass passage 7 deviated from the flow of the intake air including the EGR gas, the deterioration of the intake pressure sensor 8 due to the soot contained in the EGR gas can be suppressed also from this point. .

さらに、前記バイパス弁71の開度を調整することによりアイドル回転数制御を行うECU6を備えているので、アイドル運転を行うごとに吸気圧センサ8の清掃を行うことができる。従って、より効果的に吸気圧センサ8の汚れに伴う劣化を抑制できる。さらに、運転者が運転操作を行っていないアイドル運転時に吸気圧センサ8の清掃を行うことにより、運転者の意図に関わらず新気バイパス通路7を経て気筒1内に新気が流入し、これに伴い燃料噴射量及びエンジン回転数が上昇し運転者に違和感を与える不具合の発生も抑制することができる。   Further, since the ECU 6 that performs idle speed control by adjusting the opening degree of the bypass valve 71 is provided, the intake pressure sensor 8 can be cleaned each time the idle operation is performed. Therefore, it is possible to more effectively suppress the deterioration due to the dirt of the intake pressure sensor 8. Furthermore, by cleaning the intake pressure sensor 8 during idling when the driver is not performing driving operation, fresh air flows into the cylinder 1 through the fresh air bypass passage 7 regardless of the driver's intention. As a result, the fuel injection amount and the engine speed increase, and the occurrence of a problem that makes the driver feel uncomfortable can be suppressed.

なお、本発明は以上に述べた実施形態に限らない。   The present invention is not limited to the embodiment described above.

例えば、図3に示すように、スロットルバルブ33の下流側に隣接する部位に吸気通路3に設けた孔3aと連通する副室A72を設け、この副室A72に新気バイパス通路7を接続するとともに、この副室内A72の圧力を測定する吸気圧センサ8を設ける態様が考えられる。   For example, as shown in FIG. 3, a sub chamber A72 communicating with the hole 3a provided in the intake passage 3 is provided in a portion adjacent to the downstream side of the throttle valve 33, and the fresh air bypass passage 7 is connected to the sub chamber A72. In addition, an aspect in which an intake pressure sensor 8 for measuring the pressure in the sub chamber A72 is provided can be considered.

また、図4に示すように、サージタンク34の外壁にこのサージタンク34に設けた孔を介してこのサージタンク34の内部空間と連通する副室B73を一体に設け、この副室B73に新気バイパス通路7を接続するとともに、この副室B73内の圧力を測定する吸気圧センサ7を設ける態様が考えられる。   Further, as shown in FIG. 4, a sub chamber B73 communicating with the internal space of the surge tank 34 through a hole provided in the surge tank 34 is integrally provided on the outer wall of the surge tank 34. It is conceivable to provide an intake pressure sensor 7 for connecting the air bypass passage 7 and measuring the pressure in the sub chamber B73.

なお、図3及び図4に係る実施態様の説明において、副室A72、B73以外の各部には上述した実施形態におけるものと同一の名称及び符号を付している。また、図3及び図4を参照しつつ前述した各実施態様の内燃機関は、吸気圧センサ8の取り付け箇所が異なること、及び副室A72、B73を設けていること以外は、上述した実施形態における内燃機関0と同一の構成を有する。   In addition, in description of the embodiment which concerns on FIG.3 and FIG.4, each part other than subchamber A72, B73 is attached | subjected with the same name and code | symbol as the thing in embodiment mentioned above. Further, the internal combustion engine of each embodiment described above with reference to FIGS. 3 and 4 is the embodiment described above except that the attachment position of the intake pressure sensor 8 is different and that the sub chambers A72 and B73 are provided. The internal combustion engine 0 in FIG.

これらの態様によっても、副室は吸気通路内のEGRガスを含む空気の流れの外側に位置しているとともに、バイパス弁(流量制御弁)の開弁時には副室内に新気が導入されるので、この副室に設けた吸気圧センサはススにより汚れにくく、しかも新気の流れにより吸気圧センサの清掃を行うことができる。従って、EGRガスに含まれるスス等による吸気圧センサの劣化を抑制できる。   Even in these modes, the sub chamber is located outside the air flow including the EGR gas in the intake passage, and fresh air is introduced into the sub chamber when the bypass valve (flow control valve) is opened. The intake pressure sensor provided in the sub chamber is not easily contaminated by soot, and the intake pressure sensor can be cleaned by the flow of fresh air. Therefore, deterioration of the intake pressure sensor due to soot contained in the EGR gas can be suppressed.

加えて、減速要求、すなわちアクセルペダルの操作量が減少に伴う燃料カット制御時に、一時的にバイパス弁を開弁してEGRガスを含まない空気を新気バイパス通路経由で気筒に取り入れるようにしてもよい。減速時にはスロットル弁の開度を絞るので、サージタンク内圧力が負圧となり、このような制御を行うことにより、バイパス弁を開くのみで新気バイパス通路内を空気が高い速度で流通し、より効率よく圧力センサの清掃を行うことが可能となる。   In addition, at the time of deceleration request, that is, fuel cut control accompanying a decrease in the amount of operation of the accelerator pedal, the bypass valve is temporarily opened so that air that does not contain EGR gas is taken into the cylinder via the fresh air bypass passage. Also good. Since the opening of the throttle valve is reduced during deceleration, the pressure in the surge tank becomes negative, and by performing such control, the air flows through the fresh air bypass passage at a high speed just by opening the bypass valve. It becomes possible to clean the pressure sensor efficiently.

そして、新気バイパス通路の入口は、EGR通路の出口の上流側であれば任意の箇所に接続してもよく、また、新気バイパス通路の出口も、吸気通路におけるスロットル弁の下流側であれば任意の箇所に接続してもよい。   The inlet of the fresh air bypass passage may be connected to any location as long as it is upstream of the outlet of the EGR passage, and the outlet of the fresh air bypass passage may be downstream of the throttle valve in the intake passage. For example, you may connect to arbitrary places.

その他、本発明の趣旨を損ねない範囲で種々に変更してよい。   In addition, various changes may be made without departing from the spirit of the present invention.

0…内燃機関
2…EGR通路
22…EGR弁
3…吸気通路
33…スロットル弁
4…排気通路
51…コンプレッサ
52…駆動タービン(タービン)
7…新気バイパス通路
71…バイパス弁(流量調整弁)
8…吸気圧センサ(圧力センサ)
DESCRIPTION OF SYMBOLS 0 ... Internal combustion engine 2 ... EGR passage 22 ... EGR valve 3 ... Intake passage 33 ... Throttle valve 4 ... Exhaust passage 51 ... Compressor 52 ... Drive turbine (turbine)
7 ... Fresh air bypass passage 71 ... Bypass valve (flow control valve)
8 ... Intake pressure sensor (pressure sensor)

Claims (2)

排気通路に設けられたタービンと、
吸気通路に設けられ前記タービンにより駆動されるコンプレッサと、
前記排気通路における前記タービンの下流側と前記吸気通路における前記コンプレッサの上流側とを接続するEGR通路上にEGR弁が設けられてなる低圧ループ式の排気ガス再循環装置と、
前記吸気通路における前記コンプレッサの下流側に設けられたスロットル弁と、
前記吸気通路における前記EGR通路の出口の上流側と前記スロットル弁の下流側とを接続する新気バイパス通路と、
前記新気バイパス通路中に設けてなり新気の流量を制御する流量調整弁と、
前記新気バイパス通路中の前記流量調整弁と出口との間に設けてなる圧力センサと
を具備することを特徴とする内燃機関。
A turbine provided in the exhaust passage;
A compressor provided in the intake passage and driven by the turbine;
A low-pressure loop exhaust gas recirculation device in which an EGR valve is provided on an EGR passage connecting the downstream side of the turbine in the exhaust passage and the upstream side of the compressor in the intake passage;
A throttle valve provided on the downstream side of the compressor in the intake passage;
A fresh air bypass passage connecting the upstream side of the outlet of the EGR passage in the intake passage and the downstream side of the throttle valve;
A flow rate adjusting valve provided in the fresh air bypass passage for controlling the flow rate of fresh air;
An internal combustion engine comprising: a pressure sensor provided between the flow rate adjusting valve and the outlet in the fresh air bypass passage.
前記流量調整弁の開度を調整することによりアイドル回転数制御を行う制御装置を具備する請求項1記載の内燃機関。 The internal combustion engine according to claim 1, further comprising a control device that performs idle speed control by adjusting an opening of the flow rate adjusting valve.
JP2011172536A 2011-08-08 2011-08-08 Internal combustion engine Expired - Fee Related JP5755072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011172536A JP5755072B2 (en) 2011-08-08 2011-08-08 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011172536A JP5755072B2 (en) 2011-08-08 2011-08-08 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013036378A true JP2013036378A (en) 2013-02-21
JP5755072B2 JP5755072B2 (en) 2015-07-29

Family

ID=47886217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011172536A Expired - Fee Related JP5755072B2 (en) 2011-08-08 2011-08-08 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP5755072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495990A (en) * 2016-02-04 2018-09-04 标致雪铁龙汽车股份有限公司 The method that pressure sensor in engine charge pipeline is calibrated according to temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859939U (en) * 1981-10-19 1983-04-22 トヨタ自動車株式会社 Control device for supercharged engine
JP2000045832A (en) * 1998-07-31 2000-02-15 Suzuki Motor Corp Engine speed control device
JP2012102617A (en) * 2010-11-08 2012-05-31 Daihatsu Motor Co Ltd Internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859939U (en) * 1981-10-19 1983-04-22 トヨタ自動車株式会社 Control device for supercharged engine
JP2000045832A (en) * 1998-07-31 2000-02-15 Suzuki Motor Corp Engine speed control device
JP2012102617A (en) * 2010-11-08 2012-05-31 Daihatsu Motor Co Ltd Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495990A (en) * 2016-02-04 2018-09-04 标致雪铁龙汽车股份有限公司 The method that pressure sensor in engine charge pipeline is calibrated according to temperature

Also Published As

Publication number Publication date
JP5755072B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US9163590B2 (en) Vaporized-fuel processing system
US8931462B2 (en) EGR system for an internal combustion engine that feeds exhaust gas independent of intake air
US9726090B2 (en) Engine having low pressure EGR system and control method thereof
US9020739B2 (en) Control device for internal combustion engine having an external exhaust gas recirculation system
JP5545654B2 (en) Turbocharged internal combustion engine
CN105683538A (en) Engine starting control device for vehicle with manual transmission
JP4525544B2 (en) Internal combustion engine with a supercharger
WO2007066833A1 (en) Exhaust gas purification system for internal combustion engine
EP2998562B1 (en) Internal combustion engine with supercharger
JP5332674B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2013060914A (en) Control device of internal combustion engine
JP4736969B2 (en) Diesel engine control device
JP5679185B2 (en) Control device for internal combustion engine
JPH10196463A (en) Exhaust gas recirculation device
JP2014227844A (en) Controller of internal combustion engine
JP5755072B2 (en) Internal combustion engine
JP5812711B2 (en) Internal combustion engine
KR101887954B1 (en) Surge Control Apparatus and Control Method thereof for Turbo-Charger
JP6613882B2 (en) Engine control device
JP2007255371A (en) Injection control method of reducing agent for exhaust gas
WO2011005560A2 (en) Engine breathing system, components and method thereof
JP5730056B2 (en) Exhaust gas recirculation system for internal combustion engines
JP2013002371A (en) Internal combustion engine
JP2018184870A (en) Control device for engine
JP2018184873A (en) Control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5755072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees