JP2013035991A - タイヤ用ゴム組成物及び空気入りタイヤ - Google Patents

タイヤ用ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
JP2013035991A
JP2013035991A JP2011175095A JP2011175095A JP2013035991A JP 2013035991 A JP2013035991 A JP 2013035991A JP 2011175095 A JP2011175095 A JP 2011175095A JP 2011175095 A JP2011175095 A JP 2011175095A JP 2013035991 A JP2013035991 A JP 2013035991A
Authority
JP
Japan
Prior art keywords
group
formula
rubber composition
mass
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011175095A
Other languages
English (en)
Inventor
Michio Hirayama
道夫 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011175095A priority Critical patent/JP2013035991A/ja
Publication of JP2013035991A publication Critical patent/JP2013035991A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】低燃費性、耐摩耗性及びウェットスキッド性能をバランスよく改善できるタイヤ用ゴム組成物及び空気入りタイヤを提供する。
【解決手段】1,3−ブタジエン、スチレン及び下記式(I)で表される化合物を共重合して得られ、一方の末端にアミノ基を有し、他方の末端に窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する重量平均分子量が1.0×10〜2.5×10である共重合体と、式[R101−S−S−A−S−S−R102]で表される化合物とを含むタイヤ用ゴム組成物。
Figure 2013035991

【選択図】なし

Description

本発明は、タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤに関する。
近年、タイヤへの要求性能が高くなってきており、トレッド部の耐摩耗性やウェットスキッド性能の向上が要求されている。これらの性能を満足させる方法として、カーボンブラックを微粒子化し、耐摩耗性を向上させる方法が知られているが、摩耗末期にはゴムの硬度が高くなり、ウェットスキッド性能が低下するという問題があった。
また、特許文献1には、シリカを配合し、転がり抵抗、耐摩耗性を悪化させることなく、ウェットスキッド性能を向上できるタイヤ用ゴム組成物が開示されているが、これらの性能をバランスよく改善する点については、未だ改善の余地がある。また、上記カーボンブラックの場合と同様に、摩耗末期にはゴムの硬度が高くなり、ウェットスキッド性能が低下するという問題があった。
特開2008−31244号公報
本発明は、前記課題を解決し、低燃費性、耐摩耗性及びウェットスキッド性能をバランスよく改善できるタイヤ用ゴム組成物及び空気入りタイヤを提供することを目的とする。
本発明は、1,3−ブタジエン、スチレン及び下記式(I)で表される化合物を共重合して得られ、一方の末端にアミノ基を有し、他方の末端に窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する重量平均分子量が1.0×10〜2.5×10である共重合体と、下記式(1)で表される化合物とを含むタイヤ用ゴム組成物に関する。
Figure 2013035991
(式中、Rは、炭素数が1〜10の炭化水素基を表す。)
Figure 2013035991
[式中、Aは炭素数2〜10のアルキレン基、R101及びR102は、同一若しくは異なって、窒素原子を含む1価の有機基を表す。]
前記タイヤ用ゴム組成物は、硫黄を含むことが好ましい。また、シリカを含むことが好ましい。
前記硫黄の配合量<前記式(1)で表される化合物の配合量であることが好ましい。
前記硫黄及び前記式(1)で表される化合物の配合量が、それぞれゴム成分100質量部に対して0.1〜2質量部であることが好ましい。
前記官能基がアルコキシシリル基であることが好ましい。また、前記官能基がアルコキシシリル基及びアミノ基であることが好ましい。
前記一方の末端に有するアミノ基が、アルキルアミノ基、又は下記式(II)で表される基であることが好ましい。
Figure 2013035991
(式中、R11は、炭素数が2〜50の2価の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
また、前記式(II)で表される基が下記式(III)で表される基であることが好ましい。
Figure 2013035991
(式中、R12〜R19は、同一又は異なって、水素原子、又は炭素数が1〜5の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
前記一方の末端にアミノ基と共に、イソプレン単位を有することが好ましい。
前記共重合体中、前記式(I)で表される化合物の含有量が0.05〜35質量%であることが好ましい。
前記共重合体は、リチウム原子とアミノ基を有する化合物を重合開始剤として、1,3−ブタジエン、スチレン及び前記式(I)で表される化合物を共重合した後、重合末端を窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する変性剤により変性して得られるものであることが好ましい。
前記変性剤が下記式(IV)、下記式(V)、又は下記式(VI)で表される化合物であることが好ましい。
Figure 2013035991
(式中、R21、R22及びR23は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R24及びR25は、同一若しくは異なって、水素原子又はアルキル基を表す。nは整数を表す。)
Figure 2013035991
(式中、R26、R27及びR28は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R29は、環状エーテル基を表す。p及びqは整数を表す。)
Figure 2013035991
(式中、R30〜R33は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。)
前記重合開始剤が、アルキルアミノ基、又は下記式(II)で表される基を有することが好ましい。
Figure 2013035991
(式中、R11は、炭素数が2〜50の2価の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
また、前記式(II)で表される基が下記式(III)で表される基であることが好ましい。
Figure 2013035991
(式中、R12〜R19は、同一又は異なって、水素原子、又は炭素数が1〜5の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
前記重合開始剤がイソプレン単位を有することが好ましい。
前記ゴム成分100質量%中、前記共重合体の含有量が5質量%以上であり、前記ゴム成分100質量部に対して、前記シリカの含有量が5〜150質量部であることが好ましい。
前記タイヤ用ゴム組成物は、タイヤトレッド用ゴム組成物として用いられることが好ましい。
本発明はまた、前記ゴム組成物を用いて作製した空気入りタイヤに関する。
本発明によれば、特定の共重合体及び特定の化合物を含むタイヤ用ゴム組成物であるので、低燃費性、耐摩耗性及びウェットスキッド性能をバランスよく改善できる。また、長期にわたりこれらの性能を維持できる。
本発明のタイヤ用ゴム組成物は、1,3−ブタジエン、スチレン及び下記式(I)で表される化合物を共重合して得られ、一方の末端にアミノ基を有し、他方の末端に窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する重量平均分子量が1.0×10〜2.5×10である共重合体と、特定の化合物とを含む。
Figure 2013035991
(式中、Rは、炭素数が1〜10の炭化水素基を表す。)
通常、末端が変性されたスチレンブタジエンゴムを使用すると、タイヤの使用に伴いゴムが劣化(硬度が上昇)し、ウェットグリップ性能が低下する懸念があるが、本発明では、特定の共重合体及び特定の化合物を併用するため、耐摩耗性及びウェットスキッド性能を両立でき、特に耐熱老化性を向上し、摩耗末期まで長期にわたりこれらの性能を維持できる。また、優れた低燃費性が得られる。
[ゴム成分]
<共重合体>
本明細書において「共重合体」は、ゴム成分に含まれる概念として記載する。
上記共重合体は、上記式(I)で表される化合物で主鎖が変性されているため、該化合物(特に、該化合物中に含まれる酸素原子)とフィラーとの相互作用が生じ、フィラーの分散性が向上するとともに、共重合体の動きが拘束される。その結果、ヒステリシスロスが低減して低燃費性が改善でき、また、良好なウェットグリップ性能、耐摩耗性が得られる。さらに、共重合体の一方の末端にアミノ基を有し、他方の末端に上記官能基を有するため、共重合体の両方の末端部分においてもフィラーとの相互作用が生じ、フィラーの分散性が向上するとともに、共重合体の動きが拘束される。その結果、ヒステリシスロスが低減して低燃費性が改善でき、また、良好なウェットグリップ性能、耐摩耗性が得られる。そして、上記式(I)で表される化合物に基づく構成単位、一方の末端に有するアミノ基、他方の末端に有する上記官能基を組み合わせた上記共重合体では、低燃費性、ウェットグリップ性能を相乗的に改善できる。
通常、主鎖に官能基を有する重合体(主鎖変性重合体)の末端に、更に官能基を付加した場合(主鎖末端変性重合体とした場合)であっても、上記性能が向上するとは一概には言えない。これは、官能基の種類によりシリカとの親和性が異なるためであり、性能を好適に向上させるためには官能基の組合せが非常に重要である。本発明では、上記式(I)で表される化合物に基づく構成単位、一方の末端に有するアミノ基、他方の末端に有する上記官能基の組合せが非常に良好であるため、低燃費性、ウェットグリップ性能を相乗的に改善できるものと推測される。
上記式(I)において、Rは、炭素数が1〜10の炭化水素基を表す。炭素数が10を超えると、高コストになる傾向がある。また、低燃費性及びウェットグリップ性能を充分に改善できない傾向がある。得られる重合体による低燃費性及びウェットグリップ性能の改善効果が高いという点から、炭素数は、好ましくは1〜8、より好ましくは1〜6、更に好ましくは1〜3である。
で表される炭化水素基としては、例えば、アルキル基などの1価の脂肪族炭化水素基、アリール基などの1価の芳香族炭化水素基などが挙げられる。得られる重合体による低燃費性及びウェットグリップ性能の改善効果が高いという点から、Rは、アルキル基が好ましく、メチル基、tert−ブチル基がより好ましい。
また、得られる共重合体による低燃費性及びウェットグリップ性能の改善効果が高いという点から、式(I)で表される化合物のなかでも、下記式(I−I)で表される化合物が好ましい。
Figure 2013035991
(上記式(I−I)中のRは、上記式(I)中のRと同様である。)
式(I)で表される化合物としては、例えば、p−メトキシスチレン、p−エトキシスチレン、p−(n−プロポキシ)スチレン、p−(tert−ブトキシ)スチレン、m−メトキシスチレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせてもよい。
上記共重合体における上記式(I)で表される化合物の含有量は、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは35質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、特に好ましくは5質量%以下、最も好ましくは2質量%以下である。0.05質量%未満では低燃費性及びウェットグリップ性能の改善効果が得られにくく、一方、35質量%を超えると高コストになる傾向がある。
上記共重合体におけるスチレン含有量は、好ましくは2質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、特に好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下、特に好ましくは22質量%以下である。2質量%未満ではウェットグリップ性能が悪化する傾向があり、一方、50質量%を超えると低燃費性が悪化する傾向がある。
上記共重合体における1,3−ブタジエンの含有量は特に限定されず、他の成分の含有量に合わせて適宜調整すればよいが、好ましくは15質量%以上、より好ましくは20質量%以上、更に好ましくは60質量%以上であり、また、好ましくは97質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。15質量%未満ではウェットグリップ性能が悪化する傾向があり、一方、97質量%を超えると低燃費性が悪化する傾向がある。
上記共重合体における式(I)で表される化合物、1,3−ブタジエン及びスチレンの含有量は、後述する実施例の方法で測定できる。
一方の末端に有するアミノ基(1級アミノ基、2級アミノ基、3級アミノ基)は、非環状アミノ基であっても、環状アミノ基であってもよい。
非環状アミノ基を構成する非環状アミンとしては、例えば、1,1−ジメチルプロピルアミン、1,2−ジメチルプロピルアミン、2,2−ジメチルプロピルアミン、2−エチルブチルアミン、ペンチルアミン、2,2−ジメチルブチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、2−エチルヘキシルアミン、イソデシルアミンなどのモノアルキルアミンや、ジメチルアミン、メチルイソブチルアミン、メチル(t−ブチル)アミン、メチルペンチルアミン、メチルヘキシルアミン、メチル(2−エチルヘキシル)アミン、メチルオクチルアミン、メチルノニルアミン、メチルイソデシルアミン、ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミン、エチルブチルアミン、エチルイソブチルアミン、エチル(t−ブチル)アミン、エチルペンチルアミン、エチルヘキシルアミン、エチル(2−エチルヘキシル)アミン、エチルオクチルアミン、ジプロピルアミン、ジイソプロピルアミン、プロピルブチルアミン、プロピルイソブチルアミン、プロピル(t−ブチル)アミン、プロピルペンチルアミン、プロピルヘキシルアミン、プロピル(2−エチルヘキシル)アミン、プロピルオクチルアミン、イソプロピルブチルアミン、イソプロピルイソブチルアミン、イソプロピル(t−ブチル)アミン、イソプロピルペンチルアミン、イソプロピルヘキシルアミン、イソプロピル(2−エチルヘキシル)アミン、イソプロピルオクチルアミン、ジブチルアミン、ジイソブチルアミン、ジt−ブチルアミン、ブチルペンチルアミン、ジペンチルアミン、ジシクロヘキシルアミンなどのジアルキルアミンやラウリルアミンメチルブチルアミンなどが挙げられる。これらの非環状アミンが有する窒素原子に結合している水素原子が脱離することにより非環状アミノ基となる。
非環状アミノ基としては、上記式(I)で表される化合物に基づく構成単位、他方の末端に有する上記官能基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できるという理由から、アルキルアミノ基(モノアルキルアミン、ジアルキルアミンが有する窒素原子に結合している水素原子が脱離した基)が好ましく、ジアルキルアミノ基(ジアルキルアミンが有する窒素原子に結合している水素原子が脱離した基)がより好ましい。なお、アルキルアミノ基、ジアルキルアミノ基が有するアルキル基の炭素数は、1〜10が好ましく、1〜3がより好ましい。
また、環状アミノ基を構成する環状アミンとしては、例えば、アジリジン、2−メチルアジリジン、2−エチルアジリジン、ピロリジン環を有する化合物(ピロリジン、2−メチルピロリジン、2−エチルピロリジン、2−ピロリドン、スクシンイミド)、ピペリジン、2−メチルピペリジン、3,5−ジメチルピペリジン、2−エチルピペリジン、4−ピペリジノピペリジン、2−メチル−4−ピロリジノピペリジン、1−メチルピペラジン、1−メチル−3−エチルピペラジンモルフォリン、2−メチルモルフォリン、3,5−ジメチルモルフォリン、チオモルフォリン、3−ピロリン、2,5−ジメチル−3−ピロリン、2−フェニル−2−ピロリン、ピラゾリン、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、ピラゾール、ピラゾールカルボン酸、α−ピリドン、γ−ピリドン、アニリン、3−メチルアニリン、N−メチルアニリン、N−イソプロピルアニリンなどが挙げられる。これらの環状アミンが有する窒素原子に結合している水素原子が脱離することにより環状アミノ基となる。
環状アミノ基としては、上記式(I)で表される化合物に基づく構成単位、他方の末端に有する上記官能基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できるという理由から、下記式(II)で表される基が好ましい。
Figure 2013035991
(式中、R11は、炭素数が2〜50の2価の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
11は、炭素数が2〜50(好ましくは2〜10、より好ましくは3〜5)の2価の炭化水素基を表す。
該炭化水素基としては、例えば、炭素数2〜10のアルキレン基、炭素数2〜10のアルケニレン基、2〜10のアルキニレン基、炭素数6〜10のアリーレン基などが挙げられる。なかでも、アルキレン基が好ましい。
上記式(II)で表される基の中でも、下記式(III)で表される基が好ましい。
Figure 2013035991
(式中、R12〜R19は、同一又は異なって、水素原子、又は炭素数が1〜5の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
12〜R19の炭素数が1〜5(好ましくは1〜3)の炭化水素基としては、Rで表される炭化水素基と同様の基が挙げられる。なかでも、アルキル基が好ましく、メチル基、エチル基がより好ましい。
12〜R19としては、水素原子が好ましく、R12〜R19の全てが水素原子であることがより好ましい。
一方の末端には、上記アミノ基と共に、イソプレン単位(下記式(VII)で表される単位)を有することが好ましい。これにより、上記式(I)で表される化合物に基づく構成単位、他方の末端に有する上記官能基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できる。特に、アルキルアミノ基と共に、イソプレン単位を有することがより好ましく、ジアルキルアミノ基と共に、イソプレン単位を有することが更に好ましく、例えば、式(A)で表される基が好適である。
Figure 2013035991
(式中、sは、1〜100(好ましくは1〜50、より好ましくは1〜10、更に好ましくは1〜5)の整数を表す。)
Figure 2013035991
(式中、sは、1〜100(好ましくは1〜50、より好ましくは1〜10、更に好ましくは1〜5)の整数を表す。)
一方、他方の末端に有する、窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基としては、例えばアミノ基、アミド基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、カルボキシル基、ヒドロキシル基、ニトリル基、ピリジル基などが挙げられる。
他方の末端に有する上記官能基としては、上記式(I)で表される化合物に基づく構成単位、一方の末端に有するアミノ基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できるという理由から、アルコキシシリル基、アミノ基、エーテル基が好ましく、アルコキシシリル基、アミノ基を両方有することがより好ましい。
アミノ基としては、上述の一方の末端に有するアミノ基と同様の基が挙げられる。なかでも、アルキルアミノ基が好ましく、ジアルキルアミノ基がより好ましい。なお、アルキルアミノ基、ジアルキルアミノ基が有するアルキル基の炭素数は、1〜10が好ましく、1〜3がより好ましい。
アルコキシシリル基としては、メトキシシリル基、エトキシシリル基、プロポキシシリル基、ブトキシシリル基などが挙げられる。アルコキシシリル基が有するアルコキシ基の炭素数は、1〜10が好ましく、1〜3がより好ましい。
<共重合体の製造方法>
本発明の共重合体は、例えば、リチウム原子とアミノ基を有する化合物を重合開始剤として、1,3−ブタジエン、スチレン及び上記式(I)で表される化合物を共重合した後、重合末端を窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する変性剤により変性することにより製造でき、具体的には、以下の製造方法で製造できる。
(重合方法)
スチレン、1,3−ブタジエンおよび上記式(I)で表される化合物などのモノマー成分を共重合する際の重合方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に式(I)で表される化合物の安定性の観点から、溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
溶液重合法を用いた場合には、溶液中のモノマー濃度(スチレン、1,3−ブタジエン、式(I)で表される化合物などの合計)は、好ましくは5質量%以上、より好ましくは10質量%以上である。溶液中のモノマー濃度が5質量%未満では、得られる共重合体の量が少なく、高コストになる傾向がある。また、溶液中のモノマー濃度は、好ましくは50質量%以下、より好ましくは30質量%以下である。溶液中のモノマー濃度が50質量%を超えると、溶液粘度が高くなりすぎて撹拌が困難となり、重合しにくくなる傾向がある。
(アニオン重合における重合開始剤)
アニオン重合を行う場合、重合開始剤として、リチウム原子とアミノ基を有する化合物を使用することが好ましい。これにより、重合開始末端にアミノ基を有し、他方の末端が重合活性部位である共役ジエン系重合体(リビングポリマー)が得られる。
重合開始剤(リチウム原子とアミノ基を有する化合物)が有するアミノ基としては、当該アミノ基が重合開始末端にそのまま残存することとなるため、上述の非環状アミノ基、環状アミノ基と同様の基が好適である。なお、好適な態様も同様である。
リチウム原子とアミノ基を有する化合物は、例えば、リチウム化合物とアミノ基を有する化合物とを反応させて得られる(例えば、リチウムアミド化合物)。
リチウム化合物としては特に制限はないが、ヒドロカルビルリチウムが好ましく用いられる。ヒドロカルビルリチウムとしては、炭素数2〜20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチル−フェニルリチウム、4−フェニル−ブチルリチウム、シクロへキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物などが挙げられるが、これらの中で、特にn−ブチルリチウムが好適である。
アミノ基を有する化合物としては、当該アミノ基が重合開始末端に残存することとなるため、上述の非環状アミノ基を構成する非環状アミン、環状アミノ基を構成する環状アミン(特に、ピロリジン環を有する化合物)と同様の化合物を好適に使用できる。そのため、アミノ基を有する化合物としては、アルキルアミノ基を有する化合物(モノアルキルアミン、ジアルキルアミン)が好ましく、ジアルキルアミノ基を有する化合物(ジアルキルアミン)がより好ましい。なお、アルキルアミノ基、ジアルキルアミノ基が有するアルキル基の好ましい炭素数は、上述の非環状アミノ基の場合と同様である。
また、アミノ基を有する化合物としては、上記式(II)で表される基を有する化合物が好ましく、上記式(III)で表される基を有する化合物がより好ましい。なお、上記式(II)で表される基、上記式(III)で表される基の好適な態様は上述の環状アミノ基の場合と同様である。
リチウム化合物とアミノ基を有する化合物とを反応させる条件は、特に限定されないが、例えば、リチウム化合物とアミノ基を有する化合物を炭化水素系溶剤に溶解させ、反応温度0〜80℃で、0.01〜1時間反応させればよい。使用するリチウム化合物とアミノ基を有する化合物のモル比(リチウム化合物/アミノ基を有する化合物)は、特に限定されないが、例えば、0.8〜1.5であればよい。
また、反応に使用する炭化水素系溶剤は、特に限定されないが、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
リチウム原子とアミノ基を有する化合物(例えば、リチウムアミド化合物)としては、リチウム化合物とアミノ基を有する化合物とを反応させて得てもよく、また、市販品を使用してもよい。リチウム化合物とアミノ基を有する化合物とを反応させる場合、モノマー成分を投入する前に、事前に反応させておいてもよく、モノマー成分の存在下でリチウム化合物、アミノ基を有する化合物を反応させてもよい。モノマー成分が存在しても、アミノ基を有する化合物の方が反応性が高いため、リチウム化合物とアミノ基を有する化合物の反応が優先的に進行する。
リチウムアミド化合物としては、例えば、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、下記式で表される化合物などが挙げられる。なかでも、リチウムピロリジド、リチウムジメチルアミド、リチウムジエチルアミドが好ましい。
また、リチウム原子とアミノ基を有する化合物として、アミノ基と共に、イソプレン単位(下記式(VII)で表される単位)を有する化合物も好適に使用できる。これにより、上記式(I)で表される化合物に基づく構成単位、他方の末端に有する上記官能基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できる。
Figure 2013035991
(式中、sは、1〜100(好ましくは1〜50、より好ましくは1〜10、更に好ましくは1〜5)の整数を表す。)
なかでも、特に、アルキルアミノ基と共に、上記イソプレン単位を有することがより好ましく、ジアルキルアミノ基と共に、上記イソプレン単位を有することが更に好ましく、例えば、下記式で表される化合物が好適である。なお、下記式で表される化合物のうちs=2の化合物は、FMCリチウム社により商品名AI−200として販売されている。
Figure 2013035991
(式中、sは、1〜100(好ましくは1〜50、より好ましくは1〜10、更に好ましくは1〜5)の整数を表す。)
(アニオン重合の方法)
上記リチウム原子とアミノ基を有する化合物を重合開始剤として用い、アニオン重合によって共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、上記リチウム原子とアミノ基を有する化合物を重合開始剤とし、必要に応じてランダマイザーの存在下で、スチレン、1,3−ブタジエン及び式(I)で表される化合物などとをアニオン重合させればよい。なお、アニオン重合後に、必要に応じて、公知の老化防止剤や、重合反応を停止する目的でアルコールなどを加えてもよい。
(アニオン重合における炭化水素系溶剤)
上記炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。
(アニオン重合におけるランダマイザー)
また、上記ランダマイザーとは、共重合体中の共役ジエン部分のミクロ構造制御(例えば、ブタジエンにおける1,2−結合の増加など)や、共重合体におけるモノマー単位の組成分布の制御(例えば、ブタジエン−スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化など)などの作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを用いることができる。例えば、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ビステトラヒドロフリルプロパン、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピペリジノエタンなどのエーテル類及び第三級アミン類などを挙げることができる。また、カリウム−t−アミレート、カリウム−t−ブトキシドなどのカリウム塩類、ナトリウム−t−アミレートなどのナトリウム塩類も用いることができる。
ランダマイザーの使用量は、重合開始剤1モル当たり、0.01モル当量以上が好ましく、0.05モル当量以上がより好ましい。ランダマイザーの使用量が0.01モル当量未満では、添加効果が小さく、ランダム化しにくい傾向がある。また、ランダマイザーの使用量は、重合開始剤1モル当たり1000モル当量以下が好ましく、500モル当量以下がより好ましい。ランダマイザーの使用量が1000モル当量を超えると、モノマーの反応速度が大きく変化してしまい、逆にランダム化しにくくなる傾向がある。
上記変性剤による変性方法としては特に限定されず、公知の方法を用いることができる。例えば、アニオン重合で主鎖が変性された共重合体を合成した後、該共重合体と変性剤とを接触させることにより、共重合体末端部のアニオンと変性剤の官能基とが反応し、共重合体末端部が変性される。変性剤を反応させる量は、通常、共重合体100質量部に対して0.01〜10質量部とすればよい。
<変性剤>
上記変性剤としては、例えば3−グリシドキシプロピルトリメトキシシラン、(3−トリエトキシシリルプロピル)テトラスルフィド、1−(4−N,Nジメチルアミノフェニル)−1−フェニルエチレン、1,1−ジメトキシトリメチルアミン、1,2−ビス(トリクロロシリル)エタン、1,3,5−トリス(3−トリエトキシシリルプロピル)イソシアヌレート、1,3,5−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、1,3−ジメチル−2−イミダゾリジノン、1,3−プロパンジアミン、1,4−ジアミノブタン、1−[3−(トリエトキシシリル)プロピル]−4,5−ジヒドロイミダゾール、1−グリシジル−4−(2−ピリジル)ピペラジン、1−グリシジル−4−フェニルピペラジン、1−グリシジル−4−メチルピベラジン、1−グリシジル−4−メチルホモピベラジン、1−グリシジルヘキサメチレンイミン、11−アミノウンデシルトリエトキシシラン、11−アミノウンデシルトリメトキシシラン、1−ベンジル−4−グリシジルピペラジン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(4−モルフォリノジチオ)ベンゾチアゾール、2−(6−アミノエチル)−3−アミノプロピルトリメトキシシラン、2−(トリエトキシシリルエチル)ピリジン、2−(トリメトキシシリルエチル)ピリジン、2−(2−ピリジルエチル)チオプロピルトリメトキシシラン、2−(4−ピリジルエチル)チオプロビルトリメトキシシラン、2,2−ジエトキシ−1,6−ジアザ−2−シラシクロオクタン、2,2−ジメトキシ−1,6−ジアザ−2−シラシクロオクタン、2,3−シクロロ−1,4−ナフトキノン、2,4−ジニトロベンゼンスルホニルクロライド、2,4−トリレンジイソシアナート、2−(4−ピリジルエチル)トリエトキシシラン、2−(4−ピリジルエチル)トリメトキシシラン、2−シアノエチルトリエトキシシラン、2−トリブチルスタニル−1,3−ブタジエン、2−(トリメトキシシリルエチル)ピリジン、2−ビニルピリジン、2−(4−ピリジルエチル)トリエトキシシラン、2−(4−ピリジルエチル)トリメトキシシラン、2−ラウリルチオエチルフェニルケトン、3−(1−ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、3−(1,3−ジメチルブチリデン)アミノプロピルトリエトキシシラン、3−(1,3−ジメチルブチリデン)アミノプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン、3−(m−アミノフェノキシ)プロピルトリメトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリエトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリメトキシシラン、3−(N−メチルアミノ)プロピルトリエトキシシラン、3−(N−メチルアミノ)プロピルトリメトキシシラン、3−(N−アリルアミノ)プロピルトリメトキシシラン、3,4−ジアミノ安息香酸、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリス(メトキシジエトキシ)シラン、3−アミノプロピルジイソプロピルエトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−ジエチルアミノプロピルトリメトキシシラン、3−ジエトキシ(メチル)シリルプロピル無水コハク酸、3−(N,N−ジエチルアミノプロピル)トリエトキシシラン、3−(N,N−ジエチルアミノプロピル)トリメトキシシラン、3−(N,N−ジメチルアミノプロピル)ジエトキシメチルシラン、3−(N,N−ジメチルアミノプロピル)トリエトキシシラン、3−(N,N−ジメチルアミノプロピル)トリメトキシシラン、3−トリエトキシシリルプロピル無水コハク酸、3−トリエトキシシリルプロピル無水酢酸、3−トリフェノキシシリルプロピル無水コハク酸、3−トリフェノキシシリルプロピル無水酢酸、3−トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−ヘキサメチレンイミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、(3−トリエトキシシリルプロピル)ジエチレントリアミン、(3−トリメトキシシリルプロピル)ジエチレントリアミン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4’−(イミダゾール−1−イル)−アセトフェノン、4−[3−(N,N−ジグリシジルアミノ)プロピル]モルホリン、4−グリシジル−2,2,6,6−テトラメチルピベリジニルオキシ、4−アミノブチルトリエトキシシラン、4−ビニルピリジン、4−モルホリノアセトフェノン、4−モルホリノベンゾフェノン、m−アミノフェニルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(トリメトキシシリル)−1−プロパンアミン、N−(1−メチルエチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(2−アミノエチル)−3−アミノブロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリエトキシシラン、N−(2−アミノエチル)−11−アミノウンデシルトリメトキシシラン、N−(2−アミノエチル)−3−アミノイソブチルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノイソブチルメチルジメトキシシラン、N−(3−ジエトキシメチルシリルプロピル)サクシンイミド、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、N−(3−トリエトキシシリルプロピル)ピロール、N−(3−トリメトキシシリルプロピル)ピロール、N−3−[アミノ(ポリプロピレンオキシ)]アミノプロピルトリメトキシシラン、N−[5−(トリエトキシシリル)−2−アザ−1−オキソペンチル]カプロラクタム、N−[5−(トリメトキシシリル)−2−アザ−1−オキソペンチル]カプロラクタム、N−(6−アミノヘキシル)アミノメチルトリエトキシシラン、N−(6−アミノヘキシル)アミノメチルトリメトキシシラン、N−アリル−アザ−2,2−ジエトキシシラシクロペンタン、N−アリル−アザ−2,2−ジメトキシシラシクロペンタン、N−(シクロヘキシルチオ)フタルイミド、N−n−ブチル−アザ−2,2−ジエトキシシラシクロペンタン、N−n−ブチル−アザ−2,2−ジメトキシシラシクロペンタン、N,N,N’,N’−テトラエチルアミノベンゾフェノン、N,N,N’,N’−テトラメチルチオ尿素、N,N,N’,N’−テトラメチル尿素、N,N’−エチレン尿素、N,N’−ジエチルアミノベンゾフェノン、N,N’−ジエチルアミノベンゾフェノン、N,N’−ジエチルアミノベンゾフラン、N,N’−ジエチルカルバミン酸メチル、N,N’−ジエチル尿素、(N,N−ジエチル−3−アミノプロピル)トリエトキシシラン、(N,N−ジエチル−3−アミノプロピル)トリメトキシシラン、N,N−ジオクチル−N’−トリエトキシシリルプロピルウレア、N,N−ジオクチル−N’−トリメトキシシリルプロピルウレア、N,N−ジエチルカルバミン酸メチル、N,N−ジグリシジルシクロヘキシルアミン、N,N−ジメチル−o−トルイジン、N,N−ジメチルアミノスチレン、N,N−ジエチルアミノプロピルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N−エチルアミノイソブチルトリエトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、N−エチルアミノイソブチルメチルジエトキシシラン、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N−シクロヘキシルアミノプロピルトリエトキシシラン、N−シクロヘキシルアミノプロピルトリメトキシシラン、N−メチルアミノプロピルメチルジメトキシシラン、N−メチルアミノプロピルメチルジエトキシシラン、N−ビニルベンジルアザシクロヘプタン、N−フェニルピロリドン、N−フェニルアミノプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン、N−フェニルアミノメチルトリエトキシシラン、N−フェニルアミノメチルトリメトキシシラン、n−ブチルアミノプロピルトリエトキシシラン、n−ブチルアミノプロピルトリメトキシシラン、N−メチルアミノプロピルトリエトキシシラン、N−メチルアミノプロピルトリメトキシシラン、N−メチル−2−ピペリドン、N−メチル−2−ピロリドン、N−メチル−ε−カプロラクタム、N−メチルインドリノン、N−メチルピロリドン、p−(2−ジメチルアミノエチル)スチレン、p−アミノフェニルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、(アミノエチルアミノ)−3−イソブチルジエトキシシラン、(アミノエチルアミノ)−3−イソブチルジメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、アクリル酸、アジピン酸ジエチル、アセタミドプロピルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノベンゾフェノン、ウレイドプロピルトリエトキシシラン、ウレイドプロピルトリメトキシシラン、エチレンオキシド、オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロリド、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリセロールトリステアレート、クロロトリエトキシシラン、クロロプロピルトリエトキシシラン、クロロポリジメチルシロキサン、クロロメチルジフェノキシシラン、ジアリルジフェニルスズ、ジエチルアミノメチルトリエトキシシラン、ジエチルアミノメチルトリメトキシシラン、ジエチル(グリシジル)アミン、ジエチルジチオカルバミン酸2−ベンゾチアゾイルェステル、ジエトキシジクロロシラン、(シクロヘキシルアミノメチル)トリエトキシシラン、(シクロヘキシルアミノメチル)トリメトキシシラン、ジグリシジルポリシロキサン、ジクロロジフェノキシシラン、ジシクロヘキシルカルボジイミド、ジビニルベンゼン、ジフェニルカルボジイミド、ジフェニルシアナミド、ジフェニルメタンジイソシアネート、ジフェノキシメチルクロロシラン、ジブチルジクロロスズ、ジメチル(アセトキシ−メチルシロキサン)ポリジメチルシロキサン、ジメチルアミノメチルトリエトキシシラン、ジメチルアミノメチルトリメトキシシラン、ジメチル(メトキシ−メチルシロキサン)ポリジメチルシロキサン、ジメチルイミダゾリジノン、ジメチルエチレン尿素、ジメチルジクロロシラン、ジメチルスルホモイルクロライド、シルセスキオキサン、ソルビタントリオレイン酸エステル、ソルビタンモノラウリン酸エステル、チタンテトラキス(2−エチルヘキシオキシド)、テトラエトキシシラン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、テトラフェノキシシラン、テトラメチルチウラムジスルフィド、テトラメトキシシラン、トリエトキシビニルシラン、トリス(3−トリメトキシシリルプロピル)シアヌレート、トリフェニルホスフェート、トリフェノキシクロロシラン、トリフェノキシメチルケイ素、トリフェノキシメチルシラン、二酸化炭素、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス[3−(トリエトキシシリル)プロピル]エチレンジアミン、ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ビス[3−(トリエトキシシリル)プロピル]ウレア、ビス[(トリメトキシシリル)プロピル]ウレア、ビス(2−ヒドロキシメチル)−3−アミノプロピルトリエトキシシラン、ビス(2−ヒドロキシメチル)−3−ア
ミノプロピルトリメトキシシラン、ビス(2−エチルヘキサノエート)スズ、ビス(2−メチルブトキシ)メチルクロロシラン、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビスジエチルアミノベンゾフェノン、ビスフェノールAジグリシジルエーテル、ビスフェノキシエタノールフルオレンジグリシジルエーテル、ビス(メチルジエトキシシリルプロピル)アミン、ビス(メチルジメトキシシリルプロピル)−N−メチルアミン、ヒドロキシメチルトリエトキシシラン、ビニルトリス(2−エチルヘキシルオキシ)シラン、ビニルベンジルジエチルアミン、ビニルベンジルジメチルアミン、ビニルベンジルトリブチルスズ、ビニルベンジルピペリジン、ビニルベンジルピロリジン、ピロリジン、フェニルイソシアナート、フェニルイソチオシアナート、(フェニルアミノメチル)メチルジメトキシシラン、(フェニルアミノメチル)メチルジエトキシシラン、フタル酸アミド、ヘキサメチレンジイソシアナート、ベンジリデンアニリン、ポリジフェニルメタンジイソシアネート、ポリジメチルシロキサン、メチル−4−ピリジルケトン、メチルカプロラクタム、メチルトリエトキシシラン、メチルトリフェノキシシラン、ラウリルチオプロピオン酸メチル、四塩化ケイ素などがあげられる。
上記式(I)で表される化合物に基づく構成単位、一方の末端に有するアミノ基と組み合わせた場合に、低燃費性、ウェットグリップ性能をより相乗的に改善できるという理由から、上記変性剤としては、下記式(IV)、下記式(V)、又は下記式(VI)で表される化合物が好ましく、下記式(IV)、下記式(V)で表される化合物がより好ましく、下記式(IV)で表される化合物が更に好ましい。
Figure 2013035991
(式中、R21、R22及びR23は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。R24及びR25は、同一若しくは異なって、水素原子又はアルキル基を表す。nは整数を表す。)
Figure 2013035991
(式中、R26、R27及びR28は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。R29は、環状エーテル基を表す。p及びqは整数を表す。)
Figure 2013035991
(式中、R30〜R33は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。)
上記式(IV)で表される化合物において、R21、R22及びR23のアルキル基としては、例えば、メチル基などの炭素数1〜4のアルキル基(好ましくは炭素数1〜3)などが挙げられる。R21、R22及びR23のアルコキシ基としては、例えば、メトキシ基などの炭素数1〜8のアルコキシ基(好ましくは炭素数1〜6、より好ましくは炭素数1〜4)などが挙げられる。なお、アルコキシ基には、シクロアルコキシ基、アリールオキシ基も含まれる。R21、R22及びR23のシリルオキシ基としては、例えば、炭素数1〜20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリベンジルシリルオキシ基など)などが挙げられる。
上記式(IV)で表される化合物において、R24及びR25のアルキル基としては、例えば、上記アルキル基(R21、R22及びR23のアルキル基)と同様の基を挙げることができる。
低燃費性及びウェットグリップ性能の改善効果が大きいという理由から、R21、R22及びR23としては、アルコキシ基が好ましく、R24及びR25としては、アルキル基が好ましい。
n(整数)としては、入手容易性という理由から0〜5が好ましい。更には、nは2〜4がより好ましく、3が最も好ましい。nが6以上であるとコストが増大する。
上記式(IV)で表される化合物の具体例としては、上記変性剤として例示した3−(N,N−ジメチルアミノ)プロピルトリエトキシシラン、3−(N,N−ジメチルアミノ)プロピルトリメトキシシランなどが挙げられる。なかでも、3−(N,N−ジメチルアミノ)プロピルトリメトキシシランが好ましい。
上記式(V)で表される化合物において、R26、R27及びR28は、上記式(IV)で表される化合物におけるR21、R22及びR23と同様である。R26、R27及びR28としては、低燃費性及びウェットグリップ性能の改善効果が大きいという理由から、アルコキシ基が好ましい。
上記式(V)で表される化合物において、R29の環状エーテル基としては、例えば、オキシラン基などのエーテル結合を1つ有する環状エーテル基、ジオキソラン基などのエーテル結合を2つ有する環状エーテル基、トリオキサン基などのエーテル結合を3つ有する環状エーテル基などが挙げられる。なかでも、低燃費性及びウェットグリップ性能の改善効果が大きいという点から、エーテル結合を1つ有する環状エーテル基が好ましく、オキシラン基がより好ましい。環状エーテル基の炭素数は、好ましくは2〜7、より好ましくは2〜4である。また、環状エーテル基は環骨格内に不飽和結合を有していないことが好ましい。
p(整数)としては、入手容易性、反応性という理由から0〜5が好ましい。更には、pは2〜4がより好ましく、3が最も好ましい。pが6以上であるとコストが増大する。
q(整数)としては、入手容易性、反応性という理由から0〜5が好ましい。更には、qは1〜3がより好ましく、1が最も好ましい。qが6以上であるとコストが増大する。
上記式(V)で表される化合物の具体例としては、上記変性剤として例示した3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシランなどが挙げられる。なかでも、3−グリシドキシプロピルトリメトキシシランが好ましい。
上記式(VI)で表される化合物において、R30〜R33は、上記式(IV)で表される化合物におけるR21、R22及びR23と同様である。R30〜R33としては、低燃費性及びウェットグリップ性能の改善効果が大きいという理由から、アルコキシ基が好ましい。
上記式(VI)で表される化合物の具体例としては、上記変性剤として例示したテトラエトキシシラン、テトラメトキシシランなどが挙げられる。なかでも、テトラエトキシシランが好ましい。
上記式(IV)、(V)、又は(VI)で表される化合物以外の好適な変性剤として、N−(3−トリエトキシシリルプロピル)−4,5−ジヒドロイミダゾール、四塩化ケイ素などを挙げることもできる。
本発明においては、上記変性剤による変性反応を行った後に、必要に応じて、公知の老化防止剤や、重合反応を停止する目的でアルコールなどを加えてもよい。
上記共重合体の重量平均分子量Mwは、1.0×10〜2.5×10である。Mwが1.0×10未満の場合は低燃費性が悪くなる傾向があり、一方、Mwが2.5×10を超えると加工性が悪くなる傾向がある。Mwの下限は、好ましくは2.0×10以上、より好ましくは3.0×10以上であり、上限は、好ましくは1.5×10以下、より好ましくは1.0×10以下である。
なお、Mwは、重合時に使用する重合開始剤の量を変更するなどの方法により適宜調節することができ、後述の実施例の方法で測定できる。
ゴム成分100質量%中の共重合体の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは40質量%以上である。5質量%未満であると、低燃費性及びウェットグリップ性能の改善効果が得られにくい傾向がある。また、共重合体の含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは60質量%以下である。90質量%を超えると、高コストになり、耐摩耗性が低下する傾向がある。
<他に使用できるゴム成分>
上記共重合体以外に使用できるゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)などのジエン系ゴムなどが挙げられる。なかでも、低燃費性、ウェットグリップ性能及び耐摩耗性をバランス良く示すことから、ジエン系ゴムが好ましく、NR、BR、SBRがより好ましく、NR、BR、SBRを併用することが更に好ましい。
ゴム成分100質量%中のNRの含有量は、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、また、好ましくは50質量%以下、より好ましくは40質量%以下である。上記範囲内であれば、低燃費性、ウェットグリップ性能及び耐摩耗性がバランス良く得られる。
ゴム成分100質量%中のBRの含有量は、好ましくは1質量%以上、より好ましくは5質量%以上であり、また、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは25質量%以下である。上記範囲内であれば、低燃費性、ウェットグリップ性能及び耐摩耗性がバランス良く得られる。
SBRのスチレン含量は、好ましくは10質量%以上、より好ましくは15質量%以上である。10質量%未満であると、グリップ性能が低下するおそれがある。該スチレン含量は、好ましくは50質量%以下、より好ましくは45質量%以下である。50質量%を超えると、耐摩耗性が悪化する傾向がある。
なお、本発明において、SBRのスチレン含量は、H−NMR測定により算出される。
ゴム成分100質量%中のSBRの含有量は、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上である。30質量%未満であると、加工性が悪化する傾向がある。該含有量は、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。90質量%を超えると、シリカが分散しにくくなり、低燃費性、ウェットグリップ性能及び耐摩耗性がバランス良く得らないおそれがある。
[式(1)で表される化合物]
本発明では、下記式(1)で表される化合物が使用される。これにより、結合エネルギーが高く、熱安定性が高いCC結合をゴム組成物に保有させることができ、長期にわたり前述の性能を高い次元で維持できる。
Figure 2013035991
[式中、Aは炭素数2〜10のアルキレン基、R101及びR102は、同一若しくは異なって、窒素原子を含む1価の有機基を表す。]
Aのアルキレン基(炭素数2〜10)としては、特に限定されず、直鎖状、分岐状、環状のものがあげられるが、なかでも、直鎖状のアルキレン基が好ましい。炭素数は4〜8が好ましい。アルキレン基の炭素数が1では、熱的な安定性が悪く、アルキレン基を有することによる効果が得られない傾向があり、炭素数が11以上では、−S−S−A−S−S−で表される架橋鎖の形成が困難になる傾向がある。
上記条件を満たすアルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基などがあげられる。なかでも、ポリマー間に−S−S−A−S−S−で表される架橋がスムーズに形成され、熱的にも安定であるという理由から、ヘキサメチレン基が好ましい。
101及びR102としては、窒素原子を含む1価の有機基であれば特に限定されないが、芳香環を少なくとも1つ含むものが好ましく、炭素原子がジチオ基に結合したN−C(=S)−で表される結合基を含むものがより好ましい。R101及びR102は、それぞれ同一でも異なっていてもよいが、製造の容易さなどの理由から同一であることが好ましい。
式(1)で表される化合物としては、例えば、1,2−ビス(N,N’−ジベンジルチオカルバモイルジチオ)エタン、1,3−ビス(N,N’−ジベンジルチオカルバモイルジチオ)プロパン、1,4−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ブタン、1,5−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ペンタン、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン、1,7−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘプタン、1,8−ビス(N,N’−ジベンジルチオカルバモイルジチオ)オクタン、1,9−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ノナン、1,10−ビス(N,N’−ジベンジルチオカルバモイルジチオ)デカンなどがあげられる。なかでも、熱的に安定であり、分極性に優れるという理由から、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。
式(1)で表される化合物の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは1質量部以上である。0.1質量部未満であると、式(1)で表される化合物の添加による効果が充分に得られないおそれがある。該含有量は、好ましくは2.0質量部以下、より好ましくは1.9質量部以下、更に好ましくは1.8質量部以下である。2.0質量部を超えると、架橋密度が高くなり過ぎて、耐摩耗性が悪化するおそれがある。また、破壊特性が悪化する傾向がある。
[シリカ]
本発明のゴム組成物は、補強剤としてシリカを配合することが好ましい。上記共重合体によってシリカの分散が促進され、低燃費性、ウェットグリップ性能及び耐摩耗性の向上効果を高めることができる。シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。
シリカの窒素吸着比表面積(NSA)は、好ましくは50m/g以上、より好ましくは150m/g以上であり、また、好ましくは300m/g以下、より好ましくは200m/g以下である。窒素吸着比表面積が50m/g未満のシリカでは、ゴム組成物の補強効果が小さく、ゴム組成物の耐摩耗性が低下する傾向があり、300m/gを超えるシリカでは、ゴム組成物中での分散性が悪く、ゴム組成物のヒステリシスロスが増大し、低燃費性が低下する傾向がある。
なお、シリカのBET法による窒素吸着比表面積は、ASTM D3037−81に準拠した方法により測定することができる。
シリカの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは20質量部以上、更に好ましくは50質量部以上であり、また、好ましくは150質量部以下、より好ましくは120質量部以下、更に好ましくは70質量部以下である。該含有量が5質量部未満であると、ウェットグリップ性能、低燃費性の改善効果が充分に得られない傾向があり、150質量部を超えると、得られたゴム組成物が硬くなりすぎて、充分なウェットグリップ性能が得られない傾向がある。
[シランカップリング剤]
本発明では、シリカとともに、シランカップリング剤を使用することが好ましい。シランカップリング剤としては特に限定されず、従来からタイヤ分野において汎用されているものを使用でき、例えば、スルフィド系、メルカプト系、ビニル系、アミノ系、グリシドキシ系、ニトロ系、クロロ系シランカップリング剤などが挙げられる。なかでも、カップリング剤添加効果及びコストの両立という点から、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、3−メルカプトプロピルトリメトキシシランなどを好適に使用できる。
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.1質量部以上、より好ましくは4質量部以上である。0.1質量部未満では、カップリング効果が不充分であり、ウェットグリップ性能、耐摩耗性が充分に得られないおそれがある。該含有量は、好ましくは20質量部以下、より好ましくは10質量部以下である。20質量部を超えると、ウェットグリップ性能が低下する傾向がある。
[硫黄]
本発明では、硫黄を使用することが好ましい。硫黄としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられる。
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、更に好ましくは0.3質量部以上である。0.1質量部未満であると、加硫速度が遅くなり、生産性が悪化するおそれがある。硫黄の含有量は、好ましくは2.0質量部以下、より好ましくは1.8質量部以下、更に好ましくは1質量部以下である。2.0質量部を超えると、老化後のゴム物性変化が大きくなるおそれがある。
本発明のゴム組成物に硫黄が使用される場合、硫黄及び式(1)で表される化合物の合計含有量は、ゴム成分100質量部に対して、好ましくは0.5質量部以上、より好ましくは1.5質量部以上である。該合計含有量は、好ましくは4質量部以下であり、より好ましくは3質量部以下である。上記範囲内にすることにより、良好な架橋構造が形成され、本発明の効果が良好に得られる。
また、硫黄の含有量(質量)<式(1)で表される化合物の含有量(質量)を満たすことが好ましい。硫黄の含有量(質量)≧式(1)で表される化合物の含有量(質量)の場合には、式(1)で表される化合物を配合する効果が充分に得られないおそれがある。
硫黄の含有量(質量)/式(1)で表される化合物の含有量(質量)は、好ましくは0.05以上、より好ましくは0.1以上である。0.05未満であると、加硫速度が遅くなる傾向がある。また、該質量比は、好ましくは0.95以下、より好ましくは0.9以下である。
本発明のゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、カーボンブラック、クレーなどの補強用充填剤、酸化亜鉛、ステアリン酸、各種老化防止剤、加硫促進剤などを適宜配合することができる。
本発明のゴム組成物は、一般的な方法で製造できる。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法などにより製造できる。
特に、上記共重合体などのゴム成分、シリカ及びシランカップリング剤などを混合する工程1と、工程1で得られた混合物、ステアリン酸、酸化亜鉛及び老化防止剤などを混合する工程2と、工程2で得られた混合物、式(1)で表される化合物、硫黄及び加硫促進剤などを混合する工程3からなる混練工程により得られることが好ましい。これにより、シランカップリング剤の反応効率を向上でき、本発明の効果が良好に得られる。
なお、上記工程1における混合温度は130〜160℃が好ましく、上記工程2における混合温度は130〜155℃が好ましく、上記工程3における混合温度は70〜120℃が好ましい。これらの上限を超えると、ゴムが劣化する傾向がある。
本発明のゴム組成物は、トレッド、サイドウォール、インナーライナーなどのタイヤの各部材に使用できる。なかでも、低燃費性、ウェットグリップ性能及び耐摩耗性に優れるため、トレッドに好適に使用できる。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造できる。すなわち、前記成分を配合したゴム組成物を、未加硫の段階でトレッドなどの各タイヤ部材の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成できる。この未加硫タイヤを加硫機中で加熱加圧して、本発明の空気入りタイヤを製造できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、合成、重合時に用いた各種薬品について、まとめて説明する。なお、薬品は必要に応じて定法に従い精製を行った。
n−ヘキサン:関東化学(株)製
スチレン:関東化学(株)製
1,3−ブタジエン:東京化成工業(株)製
p−メトキシスチレン:関東化学(株)製(式(I)で表される化合物)
p−(tert−ブトキシ)スチレン:和光純薬工業(株)製(式(I)で表される化合物)
テトラメチルエチレンジアミン:関東化学(株)製
変性剤A−1:関東化学(株)製ジメチルアミン
変性剤A−2:関東化学(株)製ピロリジン
変性剤A−3:FMCリチウム社製のAI−200(下記式で表される化合物(s=2))
Figure 2013035991
n−ブチルリチウム:関東化学(株)製の1.6M n−ブチルリチウムヘキサン溶液
変性剤B−1:関東化学(株)製のテトラエトキシシラン
変性剤B−2:アヅマックス社製の3−グリシドキシプロピルトリメトキシシラン
変性剤B−3:アヅマックス社製の3−(N,N−ジメチルアミノ)プロピルトリメトキシシラン
2,6−tert−ブチル−p−クレゾール:大内新興化学工業(株)製のノクラック200
<共重合体の分析>
下記により得られた共重合体の分析は以下の方法で行った。
(重量平均分子量Mwの測定)
共重合体の重量平均分子量Mwは、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC−8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ−M)による測定値を基に標準ポリスチレン換算により求めた。
(共重合体の構造同定)
共重合体の構造同定は、日本電子(株)製JNM−ECAシリーズの装置を用いて行った。測定結果から、共重合体中の1,3−ブタジエン、式(I)で表される化合物(p−メトキシスチレン、p−(tert−ブトキシ)スチレン)、及びスチレンの含有量を算出した。
<共重合体の合成>
(共重合体(1))
十分に窒素置換した耐熱容器にn−ヘキサン1500ml、スチレン100mmol、1,3−ブタジエン800mmol、p−メトキシスチレン5mmol、テトラメチルエチレンジアミン0.2mmol、変性剤A−1 0.12mmol、n−ブチルリチウム0.12mmolを加えて、0℃で48時間攪拌した。その後、変性剤B−1 0.15mmolを加えて0℃で15分間撹拌した。その後、アルコールを加えて反応を止め、反応溶液に2,6−tert−ブチル−p−クレゾール1gを添加後、再沈殿精製により共重合体(1)を得た。得られた共重合体(1)の重量平均分子量は500,000、上記式(I)で表される化合物の含有量(アルコキシスチレン成分含有率)は1.1質量%、スチレン含有量(スチレン成分含有率)は19質量%であった。
(共重合体(2)〜(15))
表1のレシピにて共重合体(1)と同様の方法で合成した。得られたポリマーの特性を表1に示す。
Figure 2013035991
<実施例及び比較例>
以下に、実施例及び比較例で用いた各種薬品について説明する。
NR:RSS#3
BR:宇部興産(株)製のウベポールBR150B
SBR:JSR(株)製のSL574
共重合体(1)〜(15):上記方法で合成
シリカ:デグッサ社製のウルトラシルVN3(NSA:175m/g)
シランカップリング剤:デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学(株)製の粉末硫黄
KA9188:ランクセス社製のVulcuren VP KA9188(1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−t−ブチル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤D:大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
表2〜3に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、NR、BR、SBR、共重合体(1)〜(15)、シリカ及びシランカップリング剤を150℃の条件下で3分間混練りして混練り物を作製し(工程1)、さらに、工程1で得られた混練り物に老化防止剤、ステアリン酸及び酸化亜鉛を添加し、140℃の条件下で3分間混練りして混練り物を作製した(工程2)。工程2で得られた混練り物に硫黄、KA9188及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で3分間練り込み、未加硫ゴム組成物を得た(工程3)。得られた未加硫ゴム組成物を170℃で20分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃で15分間加硫し、試験用タイヤ(サイズ:215/45ZR17)を製造した。
(劣化条件)
上記にて作製した試験用タイヤを80℃のオーブンで168時間熱劣化(老化)させた。得られたものを劣化品(老化後の試験用タイヤ)とした。
得られた加硫ゴム組成物及び試験用タイヤ(新品、劣化品)について、以下に示す試験方法により評価を行った。それぞれの試験結果を表2〜3に示す。
(転がり抵抗)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で各配合のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が大きいほど転がり抵抗性に優れ、低燃費性に優れる。
転がり抵抗指数=(比較例1のtanδ)/(各配合のtanδ)×100
(ウェットスキッド性能)
試験用タイヤ(新品)を車輌(国産FF2000cc)の全輪に装着して、湿潤アスファルト路面にて初速度100km/hからの制動距離を求めた。比較例1のウェットスキッド性能を100として、下記計算式により指数表示した。指数が大きいほどウェットスキッド性能が良好である。
ウェットスキッド性能指数=(比較例1の新品の制動距離)/(各配合の新品の制動距離)×100
また、老化後のウェットスキッド性能については、老化後の試験用タイヤを用いて上記同様に制動距離を求め、下記計算式により指数表示した。
老化後のウェットスキッド性能指数=(比較例1の新品の制動距離)/(各配合の劣化品の制動距離)×100
指数が大きいほど老化後のウェットスキッド性能が良好である。
(耐摩耗性)
試験用タイヤ(新品)を車輌(国産FF2000cc)の全輪に装着して、テストコースを実車走行し、30000km走行後のパターン溝深さの変化を求めた。結果は、比較例1を100として指数表示した。指数が大きいほど耐摩耗性が良好である。
また、老化後の耐摩耗性については、老化後の試験用タイヤを用いて上記同様に溝深さの変化を求め、下記計算式により指数表示した。
老化後の耐摩耗性指数=(比較例1の新品の溝深さの変化)/(各配合の劣化品の溝深さの変化)×100
指数が大きいほど老化後の耐摩耗性が良好である。
Figure 2013035991
Figure 2013035991
表2〜3に示すように、特定の共重合体(共重合体1〜9及び11)及び特定の化合物(KA9188)を含む実施例は、比較例に比べて、低燃費性、ウェットスキッド性能、耐摩耗性がバランスよく改善された。また、これらの実施例では、新品から劣化品にかけての性能劣化が小さく、老化後のウェットスキッド性能、耐摩耗性が良好に得られた。

Claims (19)

  1. 1,3−ブタジエン、スチレン及び下記式(I)で表される化合物を共重合して得られ、一方の末端にアミノ基を有し、他方の末端に窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する重量平均分子量が1.0×10〜2.5×10である共重合体と、
    下記式(1)で表される化合物とを含むタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、Rは、炭素数が1〜10の炭化水素基を表す。)
    Figure 2013035991
    [式中、Aは炭素数2〜10のアルキレン基、R101及びR102は、同一若しくは異なって、窒素原子を含む1価の有機基を表す。]
  2. 硫黄を含む請求項1記載のタイヤ用ゴム組成物。
  3. シリカを含む請求項1又は2に記載のタイヤ用ゴム組成物。
  4. 前記硫黄の配合量<前記式(1)で表される化合物の配合量である請求項1〜3のいずれかに記載のタイヤ用ゴム組成物。
  5. 前記硫黄及び前記式(1)で表される化合物の配合量が、それぞれゴム成分100質量部に対して0.1〜2質量部である請求項1〜4のいずれかに記載のタイヤ用ゴム組成物。
  6. 前記官能基がアルコキシシリル基である請求項1〜5のいずれかに記載のタイヤ用ゴム組成物。
  7. 前記官能基がアルコキシシリル基及びアミノ基である請求項1〜6のいずれかに記載のタイヤ用ゴム組成物。
  8. 前記一方の末端に有するアミノ基が、アルキルアミノ基、又は下記式(II)で表される基である請求項1〜7のいずれかに記載のタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、R11は、炭素数が2〜50の2価の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
  9. 前記式(II)で表される基が下記式(III)で表される基である請求項8記載のタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、R12〜R19は、同一又は異なって、水素原子、又は炭素数が1〜5の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
  10. 前記一方の末端にアミノ基と共に、イソプレン単位を有する請求項1〜9のいずれかに記載のタイヤ用ゴム組成物。
  11. 前記共重合体中、前記式(I)で表される化合物の含有量が0.05〜35質量%である請求項1〜10のいずれかに記載のタイヤ用ゴム組成物。
  12. 前記共重合体は、
    リチウム原子とアミノ基を有する化合物を重合開始剤として、1,3−ブタジエン、スチレン及び前記式(I)で表される化合物を共重合した後、重合末端を窒素、酸素及びケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する変性剤により変性して得られるものである請求項1〜11のいずれかに記載のタイヤ用ゴム組成物。
  13. 前記変性剤が下記式(IV)、下記式(V)、又は下記式(VI)で表される化合物である請求項12記載のタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、R21、R22及びR23は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R24及びR25は、同一若しくは異なって、水素原子又はアルキル基を表す。nは整数を表す。)
    Figure 2013035991
    (式中、R26、R27及びR28は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R29は、環状エーテル基を表す。p及びqは整数を表す。)
    Figure 2013035991
    (式中、R30〜R33は、同一若しくは異なって、アルキル基、アルコキシ基、シリルオキシ基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。)
  14. 前記重合開始剤が、アルキルアミノ基、又は下記式(II)で表される基を有する請求項12又は13記載のタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、R11は、炭素数が2〜50の2価の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
  15. 前記式(II)で表される基が下記式(III)で表される基である請求項14記載のタイヤ用ゴム組成物。
    Figure 2013035991
    (式中、R12〜R19は、同一又は異なって、水素原子、又は炭素数が1〜5の炭化水素基を表し、窒素原子、酸素原子を有してもよい。)
  16. 前記重合開始剤がイソプレン単位を有する請求項12〜15のいずれかに記載のタイヤ用ゴム組成物。
  17. 前記ゴム成分100質量%中、前記共重合体の含有量が5質量%以上であり、
    前記ゴム成分100質量部に対して、前記シリカの含有量が5〜150質量部である請求項1〜16のいずれかに記載のタイヤ用ゴム組成物。
  18. タイヤトレッド用ゴム組成物として用いられる請求項1〜17のいずれかに記載のタイヤ用ゴム組成物。
  19. 請求項1〜18のいずれかに記載のゴム組成物を用いて作製した空気入りタイヤ。

JP2011175095A 2011-08-10 2011-08-10 タイヤ用ゴム組成物及び空気入りタイヤ Withdrawn JP2013035991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175095A JP2013035991A (ja) 2011-08-10 2011-08-10 タイヤ用ゴム組成物及び空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175095A JP2013035991A (ja) 2011-08-10 2011-08-10 タイヤ用ゴム組成物及び空気入りタイヤ

Publications (1)

Publication Number Publication Date
JP2013035991A true JP2013035991A (ja) 2013-02-21

Family

ID=47885889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175095A Withdrawn JP2013035991A (ja) 2011-08-10 2011-08-10 タイヤ用ゴム組成物及び空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP2013035991A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310868B1 (ko) 2013-02-26 2013-10-14 금호석유화학 주식회사 알콕시실란 유도체에 의해 말단 변성된 공역 디엔계 고분자
JP2015054900A (ja) * 2013-09-11 2015-03-23 住友ゴム工業株式会社 空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310868B1 (ko) 2013-02-26 2013-10-14 금호석유화학 주식회사 알콕시실란 유도체에 의해 말단 변성된 공역 디엔계 고분자
JP2015054900A (ja) * 2013-09-11 2015-03-23 住友ゴム工業株式会社 空気入りタイヤ

Similar Documents

Publication Publication Date Title
US8431644B2 (en) Rubber composition and tire
JP5244064B2 (ja) 重合体、ゴム組成物およびそれを用いたタイヤ
JP5324384B2 (ja) 重合体、タイヤ用ゴム組成物及び空気入りタイヤ
WO2013027746A1 (ja) ゴム組成物及び空気入りタイヤ
JP5681575B2 (ja) ゴム組成物及び空気入りタイヤ
US20100099795A1 (en) Rubber composition and tire
JP2011132298A (ja) 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2013043954A (ja) ゴム組成物及び空気入りタイヤ
JP2011089086A (ja) 変性共重合体およびそれを用いたゴム組成物
JP5466473B2 (ja) ゴム組成物およびそれを用いたタイヤ
JP5592809B2 (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP5580255B2 (ja) ゴム組成物及び空気入りタイヤ
JP2012167207A (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP5543392B2 (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP2012057097A (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP5571627B2 (ja) ゴム組成物及び空気入りタイヤ
JP5437765B2 (ja) タイヤ用ゴム組成物及びスタッドレスタイヤ
JP2013035991A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2012224768A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5519584B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2012172138A (ja) 共重合体、ゴム組成物及び空気入りタイヤ
JP2013007010A (ja) ゴム組成物及び空気入りタイヤ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104