JP2013034958A - Nanobubble producing apparatus - Google Patents

Nanobubble producing apparatus Download PDF

Info

Publication number
JP2013034958A
JP2013034958A JP2011174076A JP2011174076A JP2013034958A JP 2013034958 A JP2013034958 A JP 2013034958A JP 2011174076 A JP2011174076 A JP 2011174076A JP 2011174076 A JP2011174076 A JP 2011174076A JP 2013034958 A JP2013034958 A JP 2013034958A
Authority
JP
Japan
Prior art keywords
liquid
nanobubble
pipe
range
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011174076A
Other languages
Japanese (ja)
Inventor
Kenichi Honda
健一 本田
Ryoichi Miyanabe
僚一 宮鍋
Shuji Ueki
修次 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011174076A priority Critical patent/JP2013034958A/en
Publication of JP2013034958A publication Critical patent/JP2013034958A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nanobubble producing apparatus capable of easily producing nanobubbles without using a large-scale apparatus.SOLUTION: The nanobubble producing apparatus includes: a microbubble producing section 1 that includes piping 100 for liquid to flow through, a branch pipe 103 diverging a part of liquid at a branch part 104 upstream in the piping 100 and returning the part of the liquid again at a confluence part 105 downstream in the piping 100, and a gas-liquid mixing part provided at an intermediate part of the branch pipe 103 to mix gas with the part of the liquid, and produces microbubbles in a range of 4-100 μm in the liquid; and a nanobubble producing section 2 that includes a nanobubble producing part body 200 connected to the downstream end side of the piping 100, perforated plates provided in the body 200, and collision plates provided downstream of the perforated plates, in proximity to the perforated plates, and produces nanobubbles in a range of 100 nm or less in the liquid. A distance from the confluence part 105 to the perforated plates is in a range of 5D-6D based on the inner diameter D of the piping 100.

Description

本発明はナノバブルの製造装置に関し、詳しくは、大がかりな装置を用いることなく、簡便にナノバブルを製造できるナノバブル製造装置に関する。   The present invention relates to a nanobubble production apparatus, and more particularly to a nanobubble production apparatus that can easily produce nanobubbles without using a large-scale apparatus.

従来、特許文献1には、マイクロバブルを含む液体を貯留槽に供給し、この供給されたマイクロバブルを含む液体に対し超音波振動装置により超音波振動を印加することにより、液体中のマイクロバブルを圧壊し、液体中にナノバブルを生成するナノバブルの製造方法が開示されている。この方法によると、液体中のマイクロバブルの圧壊を促進し、液体中にナノバルブを短時間で大量に生成することができる。   Conventionally, in Patent Document 1, a liquid containing microbubbles is supplied to a storage tank, and ultrasonic vibration is applied to the liquid containing the supplied microbubbles by an ultrasonic vibration device, whereby microbubbles in the liquid are contained. A method for producing nanobubbles is disclosed in which a nanobubble is generated in a liquid. According to this method, the collapse of the microbubbles in the liquid can be promoted, and a large amount of nanovalves can be generated in the liquid in a short time.

特許文献2には、液体中に含まれる微小気泡に水中放電に伴う衝撃波の刺激を加えることにより、前記微小気泡を急激に縮小させることによりナノバブルを製造する方法が記載されている。   Patent Document 2 describes a method of manufacturing nanobubbles by applying a stimulus of shock waves accompanying underwater discharge to microbubbles contained in a liquid to rapidly reduce the microbubbles.

特許文献3には、マイクロバブル生成手段Mとナノバブル生成手段Nとを備えているナノバブル発生装置が開示されている。マイクロバブル生成手段Mは、第1の液体容器と、加熱手段と、羽根付き回転体とで構成される。またナノバブル生成手段Nは、マイクロバブル生成手段Mと配管により接続された第2の液体容器と、冷却手段と、マイクロ波発生装置、超音波発生装置、羽根付き回転体及び磁石の少なくとも一つからなるバブル圧壊手段を備える。   Patent Document 3 discloses a nanobubble generator including a microbubble generator M and a nanobubble generator N. The microbubble generating means M is composed of a first liquid container, a heating means, and a rotating body with blades. The nanobubble generating means N includes at least one of a second liquid container connected to the microbubble generating means M by piping, a cooling means, a microwave generator, an ultrasonic generator, a bladed rotor, and a magnet. The bubble crushing means is provided.

特開2006−289183号公報JP 2006-289183 A 特開2005−245817号公報JP 2005-245817 A 特開2007−136255号公報JP 2007-136255 A

しかしながら、上記従来技術においては、超音波振動装置や、水中放電に伴う衝撃波の製造装置、超音波発生装置といった、大がかりな装置が必要であった。   However, in the above-described prior art, large-scale devices such as an ultrasonic vibration device, an apparatus for producing a shock wave accompanying underwater discharge, and an ultrasonic generator are required.

そこで、本発明は、上記課題に鑑みて為されたものであり、大がかりな装置を用いることなく、簡便にナノバブルを製造できるナノバブル製造装置を提供することを課題とする。   Then, this invention is made | formed in view of the said subject, and makes it a subject to provide the nano bubble manufacturing apparatus which can manufacture a nano bubble simply, without using a large-scale apparatus.

また本発明の他の課題は、以下の記載によって明らかになる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
液体を通液する配管と、該配管の上流側の分岐部で前記液体の一部を分岐させて再度該配管の下流側の合流部で戻す分岐管と、該分岐管の途中に設けられ前記液体の一部に気体を混合する気液混合部とからなり、液中に4〜100μmの範囲のマイクロバブルを生成するマイクロバブル製造部と、
前記配管の下流末端に接続されたナノバブル製造部本体と、該本体内に設けられた孔付き板と、該孔付き板の下流側に該孔付き板に近接して設けられた衝突板とからなり、液中に100nm以下の範囲のナノバブルを発生させるナノバブル製造部とからなるナノバブル製造装置であって、
前記合流部と前記孔付き板までの距離Lが、前記配管の内径Dに対して5D〜6Dの範囲であることを特徴とするナノバブル製造装置。
(Claim 1)
A pipe through which the liquid flows, a branch pipe that branches a part of the liquid at a branch section on the upstream side of the pipe and returns again at a junction section on the downstream side of the pipe, and provided in the middle of the branch pipe A microbubble production unit that includes a gas-liquid mixing unit that mixes a gas with a part of the liquid, and generates microbubbles in the range of 4 to 100 μm in the liquid;
From the nanobubble production unit main body connected to the downstream end of the pipe, a plate with a hole provided in the main body, and a collision plate provided in the vicinity of the plate with the hole on the downstream side of the plate with the hole A nanobubble production apparatus comprising a nanobubble production unit that generates nanobubbles in a range of 100 nm or less in a liquid,
The distance L to the said junction part and the said board with a hole is the range of 5D-6D with respect to the internal diameter D of the said piping, The nano bubble manufacturing apparatus characterized by the above-mentioned.

(請求項2)
前記孔付き板が、スリット板であることを特徴とする請求項1記載のナノバブル製造装置。
(Claim 2)
The nanobubble manufacturing apparatus according to claim 1, wherein the plate with holes is a slit plate.

(請求項3)
マイクロバブル製造部の配管内の圧力が、0.5MPa〜1.0MPaの範囲に維持されることを特徴とする請求項1又は2記載のナノバブル製造装置。
(Claim 3)
The nanobubble production apparatus according to claim 1 or 2, wherein the pressure in the pipe of the microbubble production unit is maintained in a range of 0.5 MPa to 1.0 MPa.

本発明によれば、大がかりな装置を用いることなく、簡便にナノバブルを製造できるナノバブル製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nano bubble manufacturing apparatus which can manufacture a nano bubble simply can be provided, without using a large-scale apparatus.

本発明に係るナノバブル製造装置の一例を示す断面図Sectional drawing which shows an example of the nanobubble manufacturing apparatus which concerns on this invention ナノバブル製造部の一例を示す説明断面図Explanatory cross-sectional view showing an example of a nanobubble manufacturing unit (A)はナノバブル製造部に用いるスリット板の形状の一例を示し、(B)は衝突板の一例を示す断面図(A) shows an example of the shape of the slit plate used in the nanobubble manufacturing section, and (B) is a cross-sectional view showing an example of a collision plate

以下、本発明に係る実施の形態を説明する。   Embodiments according to the present invention will be described below.

図1は、本発明に係るナノバブル製造装置の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of a nanobubble production apparatus according to the present invention.

図1において、1はマイクロバブル製造部であり、2はナノバブル製造部である。   In FIG. 1, 1 is a microbubble manufacturing part, and 2 is a nanobubble manufacturing part.

マイクロバブル製造部1は、液体を通液する配管100を備える。配管100の断面形状は円形でもよいし、方形状でもよい。   The microbubble manufacturing unit 1 includes a pipe 100 through which liquid flows. The cross-sectional shape of the pipe 100 may be circular or rectangular.

該配管100には増圧ポンプ101(BP:ブースターポンプの略)を設けることができるが、該配管の入口102に圧力水を供給可能であれば、該増圧ポンプ101を設けなくてもよい。   The pipe 100 can be provided with a booster pump 101 (BP: abbreviation of booster pump), but the pressure booster pump 101 need not be provided if pressure water can be supplied to the inlet 102 of the pipe. .

増圧ポンプ101の吐出圧は、配管100内の圧力を0.5MPa〜1.0MPaの範囲に維持できる圧力が好ましく、0.6MPa〜0.8MPaの範囲に維持できる圧力がより好ましい。増圧ポンプ101を設けない場合には、配管100内の圧力を0.5MPa〜1.0MPaの範囲に圧力が保持されることが好ましく、0.6MPa〜0.8MPaの範囲に保持されることがより好ましい。   The discharge pressure of the booster pump 101 is preferably a pressure capable of maintaining the pressure in the pipe 100 in the range of 0.5 MPa to 1.0 MPa, and more preferably a pressure capable of maintaining the pressure in the range of 0.6 MPa to 0.8 MPa. When the booster pump 101 is not provided, the pressure in the pipe 100 is preferably maintained in the range of 0.5 MPa to 1.0 MPa, and is preferably maintained in the range of 0.6 MPa to 0.8 MPa. Is more preferable.

本発明において、液体は、淡水、海水、酸、アルカリ水、微生物含有水、消化液(メタン発酵槽などから排出される)などが挙げられる。   In the present invention, examples of the liquid include fresh water, seawater, acid, alkaline water, microorganism-containing water, digestive fluid (discharged from a methane fermentation tank, etc.) and the like.

103は分岐管であり、配管100の上流側(図面上左側)の分岐部104で分岐させて再度該配管100の下流側の合流部105で戻すように構成されている。分岐された液体の一部は、分岐管103内を流れ、該分岐管103の途中に設けられた気液混合部106において、気体が混合される。   Reference numeral 103 denotes a branch pipe, which is configured to branch at the branch section 104 on the upstream side (left side in the drawing) of the pipe 100 and return again at the junction section 105 on the downstream side of the pipe 100. A part of the branched liquid flows in the branch pipe 103, and the gas is mixed in the gas-liquid mixing section 106 provided in the middle of the branch pipe 103.

気液混合部106は、液体に気体を混合できる気液混合装置であれば格別限定されないが、例えば、エジェクター、ラインミキサーなどが挙げられる。   Although the gas-liquid mixing part 106 will not be specifically limited if it is a gas-liquid mixing apparatus which can mix gas with a liquid, For example, an ejector, a line mixer, etc. are mentioned.

107は気液混合部106に気体を供給するための気体供給源である。108は分岐管103のライン中に設けられる気液混合ポンプ(EP:エジェクターポンプの略)である。気液混合ポンプの圧力は、気液混合部106の圧力損失、気体供給源からの気体の供給圧力、合流部105における配管100内の流体圧力などを考慮して決定されるが、好ましくは0.3〜1.0MPaの範囲であり、より好ましくは0.5〜0.9MPaの範囲である。   Reference numeral 107 denotes a gas supply source for supplying gas to the gas-liquid mixing unit 106. Reference numeral 108 denotes a gas-liquid mixing pump (EP: abbreviation of ejector pump) provided in the line of the branch pipe 103. The pressure of the gas-liquid mixing pump is determined in consideration of the pressure loss of the gas-liquid mixing unit 106, the supply pressure of the gas from the gas supply source, the fluid pressure in the pipe 100 at the confluence unit 105, and preferably 0. The range is from 3 to 1.0 MPa, and more preferably from 0.5 to 0.9 MPa.

気体供給源107から供給する気体は、オゾン、酸素、空気、二酸化炭素等が挙げられる。   Examples of the gas supplied from the gas supply source 107 include ozone, oxygen, air, and carbon dioxide.

本発明におけるマイクロバブル製造部1は、上記のように構成されるために、分岐管103で生成された気液混合液が、合流部105で、配管100に合流され、その合流後の流体の中に、直径4〜100μmの範囲のマイクロバブルを生成する。   Since the microbubble manufacturing unit 1 according to the present invention is configured as described above, the gas-liquid mixed solution generated in the branch pipe 103 is joined to the pipe 100 by the joining unit 105 and the fluid after the joining is obtained. Inside, microbubbles having a diameter of 4 to 100 μm are generated.

マイクロバブルを生成する要因としては、合流の際の配管100内の圧力が0.5MPa〜1.0MPaの範囲に維持され、高圧であることが推定的に挙げられる。分岐管103で生成された気液混合液には、気泡が混入しており、その気泡径は直径4〜1000μmの範囲であるが、合流の際の配管100内の圧力が0.5MPa〜1.0MPaの範囲に維持され、高圧であるために、直径4〜100μmの範囲のマイクロバブルとなるものと推定される。   As a factor which produces | generates a microbubble, the pressure in the piping 100 in the case of confluence | merging is maintained in the range of 0.5 MPa-1.0 MPa, and it is estimated presumably that it is a high pressure. Bubbles are mixed in the gas-liquid mixed solution generated in the branch pipe 103, and the bubble diameter is in the range of 4 to 1000 μm, but the pressure in the pipe 100 at the time of merging is 0.5 MPa to 1. It is estimated that microbubbles having a diameter of 4 to 100 μm are formed because the pressure is maintained in the range of 0.0 MPa and high pressure.

ナノバブル製造部2は、マイクロバブル製造部1を構成する配管100の下流末端側に設けられる。200は配管100の下流末端に接続されたナノバブル製造部本体である。ナノバブル製造部本体200の形状は、図示のように、液流方向における中央近傍に向かって膨出しており、中央の膨出部201の両側に傾斜面が形成されている。頂部を反対方向に向けて二つの円錐状漏斗202、203が中央の膨出部201近傍で接合された形状でもある。   The nanobubble manufacturing unit 2 is provided on the downstream end side of the pipe 100 constituting the microbubble manufacturing unit 1. Reference numeral 200 denotes a nanobubble manufacturing unit main body connected to the downstream end of the pipe 100. The shape of the nanobubble manufacturing unit main body 200 bulges toward the vicinity of the center in the liquid flow direction, as shown in the figure, and inclined surfaces are formed on both sides of the central bulging part 201. It is also a shape in which two conical funnels 202 and 203 are joined in the vicinity of the central bulging portion 201 with the tops facing in opposite directions.

204はナノバブル製造部2の下流側に必要により形成される接続配管である。該接続配管204には、ナノバブル検出管(図示せず)を装着できる。   A connection pipe 204 is formed on the downstream side of the nanobubble manufacturing unit 2 as necessary. A nanobubble detection tube (not shown) can be attached to the connection pipe 204.

ナノバブル製造部本体200の内部には孔付き板の一例としてスリット板205を設置している。設置手法は格別限定されない。スリット板205には、図3の(A)に示すように、複数のスリット205Aが平行に設けられている。スリット数は特に限定されないが、スリット幅は、100〜1000μmの範囲が好ましい。   A slit plate 205 is installed as an example of a plate with a hole inside the nanobubble manufacturing unit main body 200. The installation method is not particularly limited. As shown in FIG. 3A, the slit plate 205 is provided with a plurality of slits 205A in parallel. The number of slits is not particularly limited, but the slit width is preferably in the range of 100 to 1000 μm.

206A、206B、206Cは、該スリット板205の下流側に該スリット板205に近接して設けられた衝突板である。衝突板206A、206B、206Cは、図2に示すように、前記スリット板205のスリットを通過する液体が、そのまま直進したまま実質的に通過できないように邪魔をする板状体である。   206A, 206B, and 206C are collision plates that are provided in the vicinity of the slit plate 205 on the downstream side of the slit plate 205. As shown in FIG. 2, the collision plates 206A, 206B, and 206C are plate-like bodies that obstruct the liquid that passes through the slits of the slit plate 205 so that it cannot substantially pass through as it goes straight.

本実施の形態では、図3の(B)に示すように、206A、206B、206Cというように、3分割板状体であるが、1枚板でも、2以上の分割板状体でもよい。   In this embodiment, as shown in FIG. 3B, a three-divided plate-like body such as 206A, 206B, and 206C may be used, but it may be a single plate or two or more divided plate-like bodies.

本発明において、前記合流部105と前記スリット板205までの距離Lは、配管内径Dに対して5D〜6Dの範囲である。ここで距離Lを規定する合流部105は配管100と分岐管103の接続部位でスリット板側に近い方の部位を意味し、スリット板205はスリット板の上流側に位置する面を意味する。例えば配管100の内径が100mmである場合には、合流部105とスリット板205までの距離Lは、500〜600mmの範囲である。   In the present invention, the distance L between the joining portion 105 and the slit plate 205 is in the range of 5D to 6D with respect to the pipe inner diameter D. Here, the merging portion 105 that defines the distance L means a portion closer to the slit plate side at the connecting portion of the pipe 100 and the branch pipe 103, and the slit plate 205 means a surface located on the upstream side of the slit plate. For example, when the inner diameter of the pipe 100 is 100 mm, the distance L between the joining portion 105 and the slit plate 205 is in the range of 500 to 600 mm.

本発明者は、合流部105とスリット板205までの距離Lが、配管内径Dに対して5D〜6Dの範囲であることにより、スリット板205と衝突板206A、206B、206Cの作用とも相まって、液中に100nm以下の範囲のナノバブルを発生させることができることを見出した。   The present inventor combined with the action of the slit plate 205 and the collision plates 206A, 206B, and 206C because the distance L between the joining portion 105 and the slit plate 205 is in the range of 5D to 6D with respect to the pipe inner diameter D. It has been found that nanobubbles in the range of 100 nm or less can be generated in the liquid.

本発明において、ナノバブルの検出方法は、動的光散乱光度計により測定でき、また電子スピン共鳴法(ESR)により計測できる。   In the present invention, the nanobubble detection method can be measured by a dynamic light scattering photometer, or can be measured by electron spin resonance (ESR).

以上の実施の形態では、孔付き板としてスリット板を用いた場合を説明したが、スリット板に代えて、パンチング板を用いることもできる。パンチング孔の直径は、配管100内の圧力が0.5Mpa〜1.0Mpaの範囲に圧力を維持できる孔径が好ましく、0.6Mpa〜0.8Mpaの範囲に圧力を維持できる孔径がより好ましい。   In the above embodiment, the case where the slit plate is used as the holed plate has been described. However, a punching plate may be used instead of the slit plate. The diameter of the punching hole is preferably a hole diameter capable of maintaining the pressure in the pipe 100 in the range of 0.5 Mpa to 1.0 Mpa, and more preferably a hole diameter capable of maintaining the pressure in the range of 0.6 Mpa to 0.8 Mpa.

本発明のナノバブル製造装置により得られたナノバブルは、植物の葉等への吹きかけ、風呂水浄化などに使用できる。また、海水を膜処理する際に、ナノバブルは、水の粘度低下機能を果たす。例えば、膜に海水を通す際、冬は海水の粘度が上がり、ろ過量が低下する。ナノバブルによって海水粘度を低下させると、冬場でも膜処理を継続できる効果を発揮する。マイクロバブルでも粘度は下がるが、ナノバブルは更に下がる効果がある。   Nanobubbles obtained by the nanobubble production apparatus of the present invention can be used for spraying leaves on plants, purifying bath water, and the like. Moreover, when membrane-treating seawater, nanobubbles fulfill the function of reducing the viscosity of water. For example, when passing seawater through a membrane, the viscosity of seawater increases in winter and the amount of filtration decreases. If the seawater viscosity is reduced by nanobubbles, the membrane treatment can be continued even in winter. Microbubbles also have a lower viscosity, but nanobubbles have the effect of lowering.

1:マイクロバブル製造部
100:配管
101:増圧ポンプ
102:配管入口
103:分岐管
104:分岐部
105:合流部
106:気液混合装置
107:気体供給源
108:気液混合ポンプ
2:ナノバブル製造部
200:ナノバブル製造部本体
201:膨出部
202、203:円錐状漏斗
205:スリット板
206A、206B、206C:衝突板
DESCRIPTION OF SYMBOLS 1: Microbubble manufacturing part 100: Piping 101: Booster pump 102: Piping inlet 103: Branch pipe 104: Branching part 105: Merging part 106: Gas-liquid mixing apparatus 107: Gas supply source 108: Gas-liquid mixing pump 2: Nano bubble Manufacturing part 200: Nano bubble manufacturing part main body 201: Swelling part 202, 203: Conical funnel 205: Slit plate 206A, 206B, 206C: Collision plate

Claims (3)

液体を通液する配管と、該配管の上流側の分岐部で前記液体の一部を分岐させて再度該配管の下流側の合流部で戻す分岐管と、該分岐管の途中に設けられ前記液体の一部に気体を混合する気液混合部とからなり、液中に4〜100μmの範囲のマイクロバブルを生成するマイクロバブル製造部と、
前記配管の下流端側に接続されたナノバブル製造部本体と、該本体内に設けられた孔付き板と、該孔付き板の下流側に該孔付き板に近接して設けられた衝突板とからなり、液中に100nm以下の範囲のナノバブルを発生させるナノバブル製造部とからなるナノバブル製造装置であって、
前記合流部と前記孔付き板までの距離Lが、前記配管の内径Dに対して5D〜6Dの範囲であることを特徴とするナノバブル製造装置。
A pipe through which the liquid flows, a branch pipe that branches a part of the liquid at a branch section on the upstream side of the pipe and returns again at a junction section on the downstream side of the pipe, and provided in the middle of the branch pipe A microbubble production unit that includes a gas-liquid mixing unit that mixes a gas with a part of the liquid, and generates microbubbles in the range of 4 to 100 μm in the liquid;
A nanobubble production unit main body connected to the downstream end side of the pipe, a plate with a hole provided in the main body, and a collision plate provided in the vicinity of the plate with a hole on the downstream side of the plate with the hole; A nanobubble production apparatus comprising a nanobubble production unit that generates nanobubbles in a range of 100 nm or less in a liquid,
The distance L to the said junction part and the said board with a hole is the range of 5D-6D with respect to the internal diameter D of the said piping, The nano bubble manufacturing apparatus characterized by the above-mentioned.
前記孔付き板が、スリット板であることを特徴とする請求項1記載のナノバブル製造装置。   The nanobubble manufacturing apparatus according to claim 1, wherein the plate with holes is a slit plate. マイクロバブル製造部の配管内の圧力が、0.5MPa〜1.0MPaの範囲に維持されることを特徴とする請求項1又は2記載のナノバブル製造装置。
The nanobubble production apparatus according to claim 1 or 2, wherein the pressure in the pipe of the microbubble production unit is maintained in a range of 0.5 MPa to 1.0 MPa.
JP2011174076A 2011-08-09 2011-08-09 Nanobubble producing apparatus Pending JP2013034958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174076A JP2013034958A (en) 2011-08-09 2011-08-09 Nanobubble producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174076A JP2013034958A (en) 2011-08-09 2011-08-09 Nanobubble producing apparatus

Publications (1)

Publication Number Publication Date
JP2013034958A true JP2013034958A (en) 2013-02-21

Family

ID=47885093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174076A Pending JP2013034958A (en) 2011-08-09 2011-08-09 Nanobubble producing apparatus

Country Status (1)

Country Link
JP (1) JP2013034958A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170263A (en) * 2013-03-19 2013-06-26 联邦奈泡科技股份有限公司 Nano-bubble generating device
JP2019509894A (en) * 2016-03-11 2019-04-11 モリアー インコーポレイテッド Composition comprising nanobubbles in a liquid carrier
JP2020078769A (en) * 2018-11-12 2020-05-28 株式会社フジタ Methane fermentation tank, methane fermentation system, and methane fermentation treatment method
KR20210003880A (en) * 2018-05-30 2021-01-12 가부시키가이샤 아쿠아솔루션 Microbubble generator
CN112218707A (en) * 2018-05-30 2021-01-12 株式会社水改质 Liquid supply apparatus
US11331633B2 (en) 2019-03-14 2022-05-17 Moleaer, Inc Submersible nano-bubble generating device and method
KR102649121B1 (en) 2023-07-21 2024-03-19 주식회사 에이피알 Microbubble cleanser including electrolysis tube
KR102701016B1 (en) 2023-07-21 2024-08-30 주식회사 에이피알 Microbubble cleanser including electrolysis tube having a mesh-type electrode
KR102701015B1 (en) 2023-07-21 2024-08-30 주식회사 에이피알 Electrolysis tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200156A (en) * 2001-10-30 2003-07-15 Kaiyo Kaihatsu Gijutsu Kenkyusho:Kk Apparatus for killing microorganisms in liquid
JP2011078858A (en) * 2009-10-02 2011-04-21 Siltronic Ag Method for generating microbubble and microbubble generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200156A (en) * 2001-10-30 2003-07-15 Kaiyo Kaihatsu Gijutsu Kenkyusho:Kk Apparatus for killing microorganisms in liquid
JP2011078858A (en) * 2009-10-02 2011-04-21 Siltronic Ag Method for generating microbubble and microbubble generator

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170263A (en) * 2013-03-19 2013-06-26 联邦奈泡科技股份有限公司 Nano-bubble generating device
JP2019509894A (en) * 2016-03-11 2019-04-11 モリアー インコーポレイテッド Composition comprising nanobubbles in a liquid carrier
JP7088850B2 (en) 2016-03-11 2022-06-21 モリアー インコーポレイテッド Compositions containing nanobubbles in liquid carriers
JP7038809B2 (en) 2018-05-30 2022-03-18 株式会社アクアソリューション Fine bubble generator
KR102559147B1 (en) * 2018-05-30 2023-07-24 가부시키가이샤 아쿠아솔루션 liquid supply equipment
CN112236219A (en) * 2018-05-30 2021-01-15 株式会社水改质 Micro-bubble generating device
KR20210005924A (en) * 2018-05-30 2021-01-15 가부시키가이샤 아쿠아솔루션 Liquid supply equipment
JPWO2019230787A1 (en) * 2018-05-30 2021-03-25 株式会社アクアソリューション Fine bubble generator
JPWO2019230775A1 (en) * 2018-05-30 2021-04-08 株式会社アクアソリューション Liquid supply equipment
EP3804843A4 (en) * 2018-05-30 2021-07-14 Aqua Solution Co., Ltd. Liquid supply apparatus
EP3804844A4 (en) * 2018-05-30 2021-07-14 Aqua Solution Co., Ltd. Microbubble-generating device
AU2019277516B2 (en) * 2018-05-30 2021-12-16 Aquasolution Corporation Liquid supply apparatus
KR20210003880A (en) * 2018-05-30 2021-01-12 가부시키가이샤 아쿠아솔루션 Microbubble generator
JP7038808B2 (en) 2018-05-30 2022-03-18 株式会社アクアソリューション Liquid supply equipment
US11980854B2 (en) 2018-05-30 2024-05-14 Aquasolution Corporation Liquid supply apparatus
US11980855B2 (en) 2018-05-30 2024-05-14 Aquasolution Corporation Ultrafine bubble generating apparatus
CN112218707B (en) * 2018-05-30 2022-07-19 株式会社水改质 Liquid supply apparatus
KR102440907B1 (en) * 2018-05-30 2022-09-05 가부시키가이샤 아쿠아솔루션 microbubble generator
TWI813695B (en) * 2018-05-30 2023-09-01 日商艾科亞股份有限公司 Liquid supply facilities
CN112218707A (en) * 2018-05-30 2021-01-12 株式会社水改质 Liquid supply apparatus
JP7213484B2 (en) 2018-11-12 2023-01-27 株式会社フジタ Methane fermentation tank, methane fermentation system and methane fermentation treatment method
JP2020078769A (en) * 2018-11-12 2020-05-28 株式会社フジタ Methane fermentation tank, methane fermentation system, and methane fermentation treatment method
US11331633B2 (en) 2019-03-14 2022-05-17 Moleaer, Inc Submersible nano-bubble generating device and method
KR102649121B1 (en) 2023-07-21 2024-03-19 주식회사 에이피알 Microbubble cleanser including electrolysis tube
KR102701016B1 (en) 2023-07-21 2024-08-30 주식회사 에이피알 Microbubble cleanser including electrolysis tube having a mesh-type electrode
KR102701015B1 (en) 2023-07-21 2024-08-30 주식회사 에이피알 Electrolysis tube

Similar Documents

Publication Publication Date Title
JP2013034958A (en) Nanobubble producing apparatus
CN107744732B (en) Tubular micro-bubble generator
CN108704504B (en) Venturi microbubble generator and application thereof in ozone catalytic oxidation
JP4914399B2 (en) Nanobubble generating method and nanobubble generating apparatus
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
JP2006289183A (en) Nano-bubble forming method and apparatus
JP2010075838A (en) Bubble generation nozzle
CN103861488A (en) Micro-bubble generating device
CZ103895A3 (en) Apparatus for dissolving gases in liquids
KR20170076464A (en) Ozone Water Treatment System Using Lower Energy
JP5839771B2 (en) Microbubble generator and generation method
KR101792157B1 (en) Gas soluble device for enhancing gas disovled and generating microbubble
KR200396134Y1 (en) air spout mixer
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
JP2007253000A (en) Apparatus and process for producing micro bubble
JP2010115586A (en) Microbubble generator
CN209237735U (en) A kind of nano-bubble generating apparatus of secondary pressurized multiple stage crushing
JP2007330894A (en) Activated sludge treatment apparatus
CN202880986U (en) Radial flow aerator
CN203319759U (en) Annular water beam group nozzle multi-injection jet aerator
JP2010194425A (en) Air diffuser and bubble generator
JP5814185B2 (en) Nozzle for generating fine bubbles
JP3188601U (en) Microbubble generator
JP7223768B2 (en) Composition and use for introducing gas into the main medium, especially in wastewater treatment
KR101962903B1 (en) micro bubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804