JP2010194425A - Air diffuser and bubble generator - Google Patents

Air diffuser and bubble generator Download PDF

Info

Publication number
JP2010194425A
JP2010194425A JP2009040221A JP2009040221A JP2010194425A JP 2010194425 A JP2010194425 A JP 2010194425A JP 2009040221 A JP2009040221 A JP 2009040221A JP 2009040221 A JP2009040221 A JP 2009040221A JP 2010194425 A JP2010194425 A JP 2010194425A
Authority
JP
Japan
Prior art keywords
diffuser
plate
air
gas
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009040221A
Other languages
Japanese (ja)
Inventor
Masanori Goto
正典 後藤
Masaharu Ishii
正治 石井
Reika Cho
令家 趙
Yoshiyuki Maruta
芳幸 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2009040221A priority Critical patent/JP2010194425A/en
Publication of JP2010194425A publication Critical patent/JP2010194425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bubble generator which generates a large amount of fine bubbles whose radius is roughly 50 μm or shorter, preferably 30 μm or shorter, while substantially reducing power without adding a chemical agent such as a surfactant, and is easily manufactured, and to provide an air diffuser. <P>SOLUTION: The air diffuser 12 includes: a gas chamber 16; a gas inflow pipe 18 for making a gas flow into the gas chamber 16; and a diffusion part 24 for diffusing the gas which has flowed in from the gas chamber 16 into liquid outside and making it flow out as bubbles. The diffusion part 24 is configured by laminating at least two planar members 30 and 32 which have many diffusion holes 30a and 32a in the inside respectively and comprise materials of different modulus of longitudinal elasticity while communicating the diffusion holes 30a and 32a with each other. The hole diameter of the diffusion holes 30a provided on one planar member 30 comprising the material of the larger modulus of longitudinal elasticity is larger than the hole diameter of the diffusion holes 32a provided on the other planar member 32 comprising the material of the smaller modulus of longitudinal elasticity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水等の液体中に空気等の気体を微細な数多くの気泡にして分散させる気泡発生装置及び該気泡発生装置に使用される散気装置に関する。本発明の気泡発生装置は、例えば下水処理槽、河川、湖沼または養殖用水槽等で使用することにより、水中の溶存酸素量を高めて水質を改善し、種々の有用な生物が繁殖しやすくしたり、有益な気体を溶解させた液体を製造したり、また、液体中に混合している浮遊物に微細な気泡を付着させ浮遊物を浮上させて分離するのに用いられる。   The present invention relates to a bubble generating device that disperses a gas such as air into a large number of fine bubbles in a liquid such as water, and an air diffuser used in the bubble generating device. The bubble generating apparatus of the present invention is used in, for example, a sewage treatment tank, a river, a lake, aquaculture tank, etc., thereby improving the water quality by increasing the amount of dissolved oxygen in water, thereby facilitating the propagation of various useful organisms. Or a liquid in which a useful gas is dissolved, and fine bubbles are attached to the suspended matter mixed in the liquid to float and separate the suspended matter.

液体中に微細気泡を発生させる気泡発生装置として、例えば、液体をポンプで気体溶解装置に供給して加圧するとともに、気体を液体に混入して溶解させた後に、吐出ノズルに設けた多孔質部材や多孔板によって、液体を急激に減圧させて微細気泡を発生させるようにしたものが知られている(特許文献1参照)。これは、非常に微細な気泡を大量に発生させることが可能な方法である。しかし、気体を混入した液体を高圧にするために、非常に大きな動力が必要になる。   As a bubble generating device for generating fine bubbles in a liquid, for example, a liquid is supplied to a gas dissolving device by a pump and pressurized, and a porous member provided in a discharge nozzle after mixing and dissolving the gas in the liquid In addition, there is known a technique in which fine bubbles are generated by rapidly depressurizing a liquid using a perforated plate (see Patent Document 1). This is a method capable of generating a large amount of very fine bubbles. However, in order to make the liquid mixed with gas high pressure, very large power is required.

また、液体をポンプで気泡発生装置に供給して該気泡発生装置のケーシング内で高速の旋回流を作り、上記液体旋回流の中に気体を導入し、旋回流の中心で気体を剪断して、微細気泡を発生させるようにしたものも提案されている(特許文献2参照)。これは、微細気泡が混在する液体を得るために、液体の旋回流により気体を剪断して気泡を微細化するという技術である。この方法によれば、微細気泡が混在した液体を直接的に得ることができる。しかし、気体を液体に混入して溶解させた後に急減圧して気泡を発生させる前述の方法より、微細気泡の発生量が少ない。また、液体に高速な旋回流を発生させるために、液体をかなり加圧しているため、大きな動力が必要になる。   Also, a liquid is supplied to the bubble generating device by a pump to create a high-speed swirling flow in the casing of the bubble generating device, gas is introduced into the liquid swirling flow, and the gas is sheared at the center of the swirling flow. Also proposed is one that generates fine bubbles (see Patent Document 2). This is a technique in which, in order to obtain a liquid in which fine bubbles are mixed, the gas is sheared by the swirling flow of the liquid to make the bubbles fine. According to this method, a liquid in which fine bubbles are mixed can be obtained directly. However, the amount of fine bubbles generated is less than that of the above-described method in which gas is mixed in a liquid and dissolved, and then rapidly decompressed to generate bubbles. Moreover, in order to generate a high-speed swirling flow in the liquid, the liquid is considerably pressurized, so that a large amount of power is required.

また、液体用管路中に突起を設け、気泡を混入した液体を突起に衝突させ、その際発生する剪断流によって気泡を剪断して、微細気泡を発生させるようにした気泡発生装置も提案されている(特許文献3参照)。この方法も、微細気泡が混在した液体を直接的に得ることができる。しかし、気体を液体に混入して溶解させた後に急減圧して気泡を発生させる前述の方法より、微細気泡の発生量が少ない。また、水路中の突起物に気泡を混入した液体を衝突させる際に大きな損失が発生するため、液体をかなり加圧する必要があり、大きな動力が必要になる。   There is also proposed a bubble generating device in which a projection is provided in a liquid conduit, a bubble mixed liquid is collided with the projection, and the bubble is sheared by a shear flow generated at that time to generate fine bubbles. (See Patent Document 3). This method can also directly obtain a liquid in which fine bubbles are mixed. However, the amount of fine bubbles generated is less than that of the above-described method in which gas is mixed in a liquid and dissolved, and then rapidly decompressed to generate bubbles. Further, since a large loss occurs when the liquid mixed with bubbles collides with the protrusions in the water channel, it is necessary to pressurize the liquid considerably, and a large amount of power is required.

また、液体中に微細気泡を発生させるための気泡発生装置として、中空で、少なくとも一面に微細な散気孔を有する多孔質散気板、微細な散気孔の開いた散気板、または微細な散気孔の開いた散気膜等を取付けた散気装置(散気部)を備え、この散気装置を散気槽(処理槽)内の液体中に浸漬させて配置したり、液体用管路の液体中に浸漬させて該液体の流れ方向に沿って配置したりした構造にして、散気装置の内部に導入した気体を微細な散気孔から流れのある液体に気泡として散気させるようにしたものが一般に知られている(特許文献4、特許文献5及び特許文献6参照)。これらは、散気孔から吐出される気体を、気泡の浮力と液体の流れにより剪断することで、微細気泡を発生させる方法である。これらの方法では、液体が通る流路に大きな損失を起させる構造があまり無いため、他の方法より液体を高圧にする必要がなく、他の方法よりもより少ないエネルギーで気泡を発生させることができる。   Also, as a bubble generating device for generating fine bubbles in a liquid, a porous diffuser plate that is hollow and has fine diffuser holes on at least one surface, an diffuser plate with fine diffuser holes, or a fine diffuser plate is provided. Equipped with an air diffuser (air diffuser) with a diffused membrane with open pores, and this air diffuser can be placed immersed in the liquid in the air diffuser (treatment tank), or a liquid conduit So that the gas introduced into the air diffuser is diffused as bubbles from the fine air holes into the flowing liquid. This is generally known (see Patent Document 4, Patent Document 5 and Patent Document 6). These are methods for generating fine bubbles by shearing the gas discharged from the air holes by the buoyancy of the bubbles and the flow of the liquid. In these methods, since there is not much structure that causes a large loss in the flow path through which the liquid passes, it is not necessary to increase the pressure of the liquid compared to other methods, and bubbles can be generated with less energy than other methods. it can.

しかし、上記の方法のうち、多孔質散気板から吐出した気体を液体の流れで剪断して微細気泡を発生させる方法では、多孔質散気板から気体が吐出される際に気泡同士が合体してしまうため、そのままでは大きな気泡になってしまう。従って、この場合には、例えば液体中に界面活性剤を添加する等の処置をしないと、微細気泡を発生させることが極めて困難となる。   However, among the above methods, in the method of generating fine bubbles by shearing the gas discharged from the porous diffuser plate with a liquid flow, the bubbles are combined when the gas is discharged from the porous diffuser plate. Therefore, it will become a big bubble as it is. Therefore, in this case, it is very difficult to generate fine bubbles unless a treatment such as adding a surfactant to the liquid is performed.

一方、多孔質散気板に代えて、多数の散気孔の開いた散気板や散気膜の該散気孔から気体を吐出す方法で非常に微細な気泡を発生させるためには、散気孔の孔径を非常に小さくする必要がある。孔径が非常に小さな多数の散気孔の開いた散気板を用いる場合、非常に多くの微細な散気孔の加工は容易ではなく、しかも散気孔の目詰りの発生が問題となる。   On the other hand, instead of the porous diffuser plate, in order to generate very fine bubbles by a method of discharging gas from the diffuser plate with a large number of diffuser holes or diffuser membrane, It is necessary to make the hole diameter of the very small. When a diffuser plate having a large number of diffused holes having a very small hole diameter is used, it is not easy to process a very large number of fine diffused holes, and clogging of the diffused holes becomes a problem.

そこで、針等で散気孔となる孔を開けた樹脂膜製の散気膜の該孔(散気孔)から気体を液体中に散気する方法が多く採用されている。即ち、一定の弾性を有しかつ金属板などと比較して加工も容易な樹脂膜を使用し、これに針等で孔(散気孔)を開けることにより、多数の孔を容易に開けることが可能になるうえ、気体に圧力を印加していないときの孔径を小さくして実質的に孔を塞ぐことができる。従って、気体に必要な圧力を印加して散気するときにだけ孔(散気孔)が開き、散気を中止すべく気体の圧力を下げると孔が塞がるため、孔(散気孔)の目詰りの発生が少なくなる。そのため樹脂膜に針等で散気孔となる孔を開けて散気膜を形成する方法は広く採用されている。しかし、従来の散気膜を使用した気泡発生装置では、発生する気泡の径を十分に小さくすることができなかった。   In view of this, many methods have been adopted in which gas is diffused into the liquid from the holes (diffusive holes) of the diffuser film made of a resin film in which holes that become diffuse holes are formed by a needle or the like. That is, by using a resin film that has a certain elasticity and is easy to process compared to a metal plate or the like, a number of holes can be easily formed by opening holes (aeration holes) with a needle or the like. In addition, the hole diameter when the pressure is not applied to the gas can be reduced to substantially close the hole. Therefore, the hole (air diffused hole) opens only when the necessary pressure is applied to the gas, and the hole is closed when the gas pressure is lowered to stop the air diffused, so the hole (air diffused hole) is clogged. The occurrence of is reduced. For this reason, a method of forming a diffused film by opening a hole to be a diffused hole with a needle or the like in a resin film is widely adopted. However, the conventional bubble generator using a diffuser membrane cannot sufficiently reduce the diameter of the generated bubbles.

特開2003−265938号公報JP 2003-265938 A 特開2003−181258号公報JP 2003-181258 A 特開平9−150044号公報Japanese Patent Laid-Open No. 9-150044 特開2000−205200号公報JP 2000-205200 A 特開平8−230762号公報JP-A-8-230762 特開平8−225094号公報JP-A-8-2225094

微細気泡は、例えば下水処理槽や河川水、湖沼水の浄化用水槽、養殖用水槽等において、空気を水に溶解して水を浄化するために利用されたり、液体中に含まれる浮遊物に微細気泡を付けて、浮遊物を浮上させて分離したりするために利用されるが、この場合に用いられる微細気泡は、その直径が100μm以下、好ましくは50〜60μm以下であることが効果的である。   Microbubbles are used to purify water by dissolving air in water, for example, in sewage treatment tanks, river water, lake water purification tanks, aquaculture tanks, etc. It is used for attaching fine bubbles to float and separate suspended matter, but the fine bubbles used in this case have an effective diameter of 100 μm or less, preferably 50 to 60 μm or less. It is.

微細気泡による所望の効果を好適に得るためには、微細気泡直径の最大値を一定限度以下に抑えることができる技術が開発できればそれで十分といえる。即ち、微細気泡の直径の下限値をある一定寸法以上にする技術をわざわざ開発しなくても良い。なぜなら、相対的に小動力で簡素な構成の気泡発生装置では、大径の気泡は製造し易い一方で、小径の気泡は一般に製造困難であり、しかも小径の気泡が自然に集合して大径の気泡になることはあっても、大径の気泡が自然に小径の気泡になることはないからである。即ち、小径の気泡が製造できればそれよりも大きい気泡の製造は容易である。   In order to suitably obtain the desired effect of the fine bubbles, it can be said that it is sufficient if a technique capable of suppressing the maximum value of the fine bubble diameter to a certain limit or less can be developed. That is, it is not necessary to bother to develop a technique for setting the lower limit of the diameter of the fine bubbles to a certain size or more. This is because, in a bubble generator with a relatively small power and a simple configuration, large-sized bubbles are easy to manufacture, but small-sized bubbles are generally difficult to manufacture, and the small-sized bubbles are naturally gathered to form a large-diameter. This is because a large-sized bubble does not naturally become a small-sized bubble. That is, if a small-sized bubble can be manufactured, it is easy to manufacture a larger bubble.

気体を含む液体を加圧して気体を液体に溶解させた後に、吐出ノズルに設けた多孔質部材や多孔板によって液体を急激に減圧させて微細気泡を発生させる方法や、液体に旋回流を作り、上記液体旋回流の中に気体を導入し、旋回流の中心で気体を剪断して微細気泡を発生させる方法、更には、気泡を混入した液体を突起に衝突させて、その際発生する剪断流によって気泡を剪断して微細気泡を発生させる方法は、いずれも大きな動力を必要とする。また、多孔質散気板から気体を吐出し液体の流れで微細気泡を発生させる方法では、気泡が合体して大きい気泡になってしまう。   After the liquid containing gas is pressurized to dissolve the gas in the liquid, the liquid is abruptly decompressed by the porous member or perforated plate provided in the discharge nozzle, and fine bubbles are generated. , A method of introducing a gas into the liquid swirl flow and shearing the gas at the center of the swirl flow to generate fine bubbles; Any method of generating fine bubbles by shearing bubbles by a flow requires large power. Further, in the method in which gas is discharged from the porous diffuser plate and fine bubbles are generated by the flow of liquid, the bubbles are combined to form large bubbles.

一方、微細な孔加工がなされた散気板や散気膜等の孔(散気孔)から気体を吐出し、液体の流れによって気体を剪断して微細気泡を発生させる方法は、上記の方法と比較して気泡発生の動力が少なくて済む。しかし、微細な散気孔から気泡を発生させるとき、発生する気泡を小さくするためには、散気孔の孔径を十分に小さく加工する必要がある。   On the other hand, the method of generating fine bubbles by discharging gas from holes (aeration holes) such as a diffuser plate or a diffuser membrane that has been subjected to fine hole processing and shearing the gas by the flow of liquid In comparison, less power is required to generate bubbles. However, when bubbles are generated from the fine air diffusion holes, in order to reduce the generated air bubbles, it is necessary to process the hole diameter of the air diffusion holes sufficiently small.

従来の散気膜を使用した気泡発生装置では、気泡発生に必要な動力が少なく、しかも気泡を発生させないときは気泡を発生させる孔(散気孔)が殆ど塞がり、目詰まりを起しにくいうえ、細い針などで孔を開けることができるので、散気膜の製作が容易であるという長所がある。   In a conventional bubble generator using a diffuser membrane, there is little power required to generate bubbles, and when bubbles are not generated, the holes that generate bubbles (diffuse holes) are almost blocked, and clogging is difficult to occur. Since the hole can be opened with a thin needle or the like, there is an advantage that it is easy to manufacture a diffuser membrane.

しかし、発生する気泡を小さくするために、散気孔となる孔の径を小さく製作すると、気体吐出し時の圧力損失が大きくなって、気体側の吐出圧を大きくする必要があり、必要動力が増加してしまう。更に、気泡を発生させるために、単に気体の圧力を上昇させただけでは、この上昇する圧力によって、樹脂膜等からなる散気膜が大きく引き伸ばされて、孔(散気孔)が所望の大きさよりも大きくなる。このため、発生する気泡の半径を、例えば50μm以下(直径100μm以下)にすることが極めて困難であり、結果として上記の望ましい大きさの気泡を十分な量だけ発生させることができない。   However, if the diameter of the hole that becomes the diffuser hole is made small in order to reduce the generated bubbles, the pressure loss during gas discharge becomes large, and it is necessary to increase the discharge pressure on the gas side. It will increase. Furthermore, in order to generate bubbles, simply increasing the pressure of the gas greatly expands the diffuser film made of a resin film or the like, and the holes (air diffuser holes) are larger than the desired size. Also grows. For this reason, it is extremely difficult to set the radius of the generated bubbles to, for example, 50 μm or less (diameter of 100 μm or less), and as a result, a sufficient amount of bubbles having the desired size cannot be generated.

本発明は、上記事情に鑑みてなされたもので、界面活性剤等の薬剤を添加することなく、半径が略50μm以下、好ましくは30μm以下の微細な気泡を大量に発生させることができ、同程度の大きさの気泡を発生させる従来方式の気泡発生装置より気泡発生動力を大幅に低減でき、かつ容易に製造できる気泡発生装置及び該気泡発生装置に用いられる散気装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can generate a large amount of fine bubbles having a radius of about 50 μm or less, preferably 30 μm or less without adding a chemical such as a surfactant. An object of the present invention is to provide a bubble generating device that can greatly reduce the bubble generation power and can be easily manufactured compared to a conventional bubble generating device that generates bubbles of a certain size, and an air diffuser used for the bubble generating device. And

発明者は上記課題を解決するために鋭意検討した結果、例えば金属のように相対的に変形し難い材料、換言すれば、縦弾性係数の大きい材料で形成され、内部に多数の散気孔を有する散気板と、例えば樹脂のように相対的に弾性変形し易い縦弾性係数の小さい材料で形成され、内部に多数の散気孔を有する散気膜とを用意し、散気膜に設けられた散気孔の孔径を散気板の孔径よりも小さく設定して、散気板と散気膜とを、散気膜に形成された散気孔が散気板に形成された散気孔の領域内に入るように、好ましくは、これらの散気孔の中心が互いに一致するようにして、例えば貼合せなどにより組合せて散気部を形成し気泡生成のための構成とすることにより、半径が略50μm以下、好ましくは30μm以下の微細な気泡を大量に発生させることができることに想到した。   As a result of intensive studies to solve the above-mentioned problems, the inventor is formed of a material that is relatively difficult to deform, such as metal, in other words, a material having a large longitudinal elastic modulus, and has a large number of air holes inside. A diffuser plate and a diffuser film formed of a material having a small longitudinal elastic modulus that is relatively elastically deformable, such as resin, and having a large number of diffuser holes therein are provided and provided on the diffuser film. The hole diameter of the air diffuser is set smaller than the hole diameter of the air diffuser plate, and the air diffuser plate and the air diffuser film are placed within the region of the air diffuser hole formed in the air diffuser plate. Preferably, the center of these diffused holes coincides with each other, for example, by combining them by bonding or the like to form a diffused portion to form a bubble, so that the radius is approximately 50 μm or less. It is preferable to generate a large amount of fine bubbles of preferably 30 μm or less. I thought that I could do it.

即ち、例えば金属やセラミックス等の縦弾性係数の大きい材料からなり、内部に多数の貫通孔を有する散気板と、例えば樹脂やゴム等の縦弾性係数の小さい材料からなり、内部に多数の散気孔を有する散気膜とを、相互の散気孔の位置を互いに一致させつつ、例えば接着材等を用いて貼合せて散気部を構成する。これにより、気体の圧力を受けて変形する散気膜の大きさ(面積)は散気板の散気孔の大きさ(面積)とほぼ等しくなり、散気部が、例えば散気膜だけで形成されていた従来例と比べて、気体の圧力を受けて変形する散気膜の散気孔の大きさが極めて小さくなる。従って、散気膜の散気孔の変形(即ち拡大)量を小さい値に抑えることができ、当該散気孔寸法を小さいままに維持できるから、当該散気孔から流出する気体により微細な気泡を発生させることが可能である。前記散気孔の数を適宜な値とすることで、大量の微細気泡を発生させることができる。   That is, it is made of a material having a large longitudinal elastic modulus, such as metal or ceramics, and is made of a diffuser plate having a large number of through holes inside, and a material having a small longitudinal elastic modulus, such as resin or rubber, for example. The diffuser film having the pores is bonded by using, for example, an adhesive or the like while the positions of the diffuser pores are made to coincide with each other. As a result, the size (area) of the diffuser film that deforms under the pressure of the gas becomes substantially equal to the size (area) of the diffuser plate of the diffuser plate, and the diffuser part is formed only by the diffuser film, for example. Compared to the conventional example, the size of the diffuser holes of the diffuser film that deforms under the pressure of the gas is extremely small. Therefore, the amount of deformation (ie, expansion) of the air diffuser of the air diffuser can be suppressed to a small value, and the size of the air diffuser can be kept small, so that fine bubbles are generated by the gas flowing out from the air diffuser. It is possible. By setting the number of the air holes to an appropriate value, a large amount of fine bubbles can be generated.

請求項1に記載の発明は、気体室と、該気体室へ気体を流入させる気体流入管と、流入した気体を気体室から外部の液体中へ気泡として散気して流出させる散気部とを備えた散気装置であって、前記散気部は、内部に多数の散気孔をそれぞれ有し縦弾性係数が異なる材料からなる少なくとも2枚の板状部材を該散気孔を互いに連通させつつ積層して構成され、縦弾性係数が大きい材料からなる一方の板状部材に設けられた前記散気孔の孔径は、縦弾性係数が小さい材料からなる他方の板状部材に設けられた前記散気孔の孔径より大きいことを特徴とする散気装置である。   The invention described in claim 1 includes a gas chamber, a gas inflow pipe for allowing gas to flow into the gas chamber, and an air diffuser for diffusing and flowing out the inflowed gas as bubbles from the gas chamber into an external liquid. The air diffuser has at least two plate-like members made of materials each having a large number of air diffuser holes and having different longitudinal elastic modulus while communicating with each other. The diffused holes provided in the other plate-shaped member made of a material having a small longitudinal elastic modulus are formed by laminating and the hole diameter of the diffused holes provided in the one plate-shaped member made of a material having a large longitudinal elastic modulus It is an air diffuser characterized by being larger than the pore diameter.

縦弾性係数の大きい材料としてステンレス鋼板等の鋼板が、縦弾性係数が鋼板等よりも小さい材料としてポリウレタン樹脂膜等の樹脂膜が好ましく用いられる。以下、縦弾性係数の大きな材料からなる板状部材を鋼板製板状部材、縦弾性係数の小さな材料からなる板状部材を樹脂膜製板状部材として説明する。   A steel plate such as a stainless steel plate is preferably used as the material having a large longitudinal elastic modulus, and a resin film such as a polyurethane resin film is preferably used as a material having a smaller longitudinal elastic modulus than the steel plate. Hereinafter, a plate-like member made of a material having a large longitudinal elastic modulus will be described as a steel plate-like member, and a plate-like member made of a material having a small longitudinal elastic modulus will be explained as a resin film-made plate-like member.

縦弾性係数が小さい材料として、例えばポリウレタン樹脂膜等の樹脂膜を使用することで、樹脂膜製板状部材の内部に、十分に径の小さい微細気泡を発生させるための気体流を通過させる散気孔として使用される孔を、例えば針を用いて容易に形成することができる。しかも、この孔(散気孔)は、気体流が停止しているときには自然に閉じられるから、開口部に異物が付着しにくく、目詰まり防止等の効果もある。樹脂膜製板状部材に設けた散気孔よりも大径の散気孔が形成された鋼板製板状部材に樹脂膜製板状部材を、両散気孔を互いに連通させつつ、例えば接着剤を用いて貼付けて両板状部材を互いに積層することで散気部が形成される。   By using a resin film such as a polyurethane resin film as a material having a small longitudinal elastic modulus, a gas flow for generating fine bubbles having a sufficiently small diameter is allowed to pass inside the plate member made of resin film. The holes used as the pores can be easily formed using a needle, for example. In addition, since the holes (air diffusion holes) are naturally closed when the gas flow is stopped, it is difficult for foreign matters to adhere to the openings, and there is an effect of preventing clogging. For example, an adhesive is used while connecting the resin film plate-like member to the steel plate plate-like member having a larger diameter of the air diffuser holes formed in the resin film plate-like member and communicating the two air diffuser holes to each other. A diffused part is formed by laminating and pasting the two plate members together.

例えば縦弾性係数の異なる板状部材に散気される気体の圧力が印加された時、その圧力により縦弾性係数が小さい材料からなる板状部材の方が縦弾性係数が大きい材料からなる板状部材より変形し易い。しかし、上記のように構成すれば、樹脂膜製板状部材が単独で存在するのは鋼板製板状部材に形成された散気孔の内部(即ち、散気孔の内側)に限られるので、鋼板製板状部材を備えない、例えば樹脂膜製板状部材のみからなる散気部と比較すると、樹脂膜製板状部材の変位の絶対量を小さく抑えて、樹脂膜製板状部材に形成された孔(散気孔)の孔径の変化量(増加量)も小さい値に抑えることができる。また、鋼板製板状部材に設けられた散気孔の孔径は、鋼板の縦弾性係数が大きいから、気体圧が印加されても極めて小さい増加に留まる。従って、散気部に散気のために気体圧が印加されても、樹脂膜製板状部材の孔(散気孔)の大きさは、微細気泡を発生させるのに必要な微細な状態を維持できるので微細気泡の発生が可能となる。   For example, when a gas pressure is applied to a plate-like member having a different longitudinal elastic modulus, a plate-like member made of a material having a smaller longitudinal elastic modulus is applied to the plate-like member made of a material having a larger longitudinal elastic modulus. It is easier to deform than members. However, if configured as described above, the resin film-made plate-like member alone is limited to the inside of the air holes formed in the steel plate-like plate member (that is, inside the air holes). Compared with a diffuser made only of a resin film plate member, for example, which is not provided with a plate member, the absolute amount of displacement of the resin film plate member is kept small and formed on the resin film plate member. The amount of change (increase) in the diameter of the holes (aeration holes) can also be suppressed to a small value. Moreover, since the longitudinal elastic modulus of a steel plate is large, the hole diameter of the diffused hole provided in the steel plate-like member remains very small even when a gas pressure is applied. Therefore, even when gas pressure is applied to the diffuser for diffusion, the size of the holes (diffuse holes) in the resin film plate-like member maintains the fine state necessary for generating fine bubbles. As a result, fine bubbles can be generated.

請求項2に記載の発明は、前記一方の板状部材は縦弾性係数が50GPa以上の材料からなり、前記他方の板状部材は樹脂膜からなり、前記一方の板状部材の厚みは、前記他方の板状部材の厚みよりも厚いことを特徴とする請求項1記載の散気装置である。   In the invention according to claim 2, the one plate-like member is made of a material having a longitudinal elastic modulus of 50 GPa or more, the other plate-like member is made of a resin film, and the thickness of the one plate-like member is The air diffuser according to claim 1, wherein the air diffuser is thicker than the other plate-like member.

縦弾性係数が大きい材料からなる板状部材は、内部に印加される気体の圧力による散気部の変形量を小さくすることにより、縦弾性係数が小さな材料からなる板状部材に形成された散気孔の孔径の変化を抑制するために用いられる。一方、縦弾性係数が小さな材料からなる板状部材は、当該散気部材に形成された孔(散気孔)を通して気体を通過させると共に、気体流が停止しているときには孔が閉塞されるのが望ましいことから、材質自体の特性として形状復元性が大きいことが好ましい。即ち、散気装置内部の気体室の気体圧が気泡を発生させるために上昇したときに、散気孔の孔径が適正な寸法まで開く必要があり、気泡の発生を停止させるために上記気体圧が低下したときには散気孔は閉塞するのが好ましい。従って、縦弾性係数が大きな材料からなる板状部材の厚みは、縦弾性係数が小さな材料からなる板状部材の厚みより厚く、縦弾性係数が小さな材料からなる板状部材の材質は樹脂であることが好ましい。   A plate-like member made of a material having a large longitudinal elastic modulus is a diffuser formed on a plate-like member made of a material having a small longitudinal elastic modulus by reducing the amount of deformation of the diffuser due to the pressure of the gas applied inside. Used to suppress changes in pore diameter. On the other hand, a plate-like member made of a material having a small longitudinal elastic modulus allows gas to pass through a hole (aeration hole) formed in the diffusion member, and the hole is blocked when the gas flow is stopped. Since it is desirable, it is preferable that the shape restoring property is large as a characteristic of the material itself. That is, when the gas pressure in the gas chamber inside the diffuser rises to generate bubbles, the hole diameter of the diffuser holes needs to open to an appropriate size, and the gas pressure is set to stop the bubble generation. It is preferred that the air diffuser closes when lowered. Therefore, the thickness of the plate member made of a material having a large longitudinal elastic modulus is thicker than the thickness of the plate member made of a material having a small longitudinal elastic modulus, and the material of the plate member made of a material having a small longitudinal elastic modulus is resin. It is preferable.

また、縦弾性係数が大きな材料からなる板状部材の縦弾性係数が50GPa以上ならば、縦弾性係数が小さな材料からなる板状部材の散気孔の孔径の変化量を小さく抑えることができ、この結果、散気部が、例えば樹脂膜だけを用いて構成され、縦弾性係数の大きい板状部材を使用しない場合に比較して、気泡発生時における樹脂膜の散気孔の孔径を小さい値に抑えることができる。   In addition, if the longitudinal elastic modulus of the plate-like member made of a material having a large longitudinal elastic modulus is 50 GPa or more, the amount of change in the diameter of the air diffusion hole of the plate-like member made of a material having a small longitudinal elastic modulus can be suppressed. As a result, the air diffuser is configured using only a resin film, for example, and the hole diameter of the air diffuser in the resin film is suppressed to a small value compared to the case where a plate-like member having a large longitudinal elastic modulus is not used. be able to.

請求項3に記載の発明は、前記一方の板状部材は前記気体室側に、前記他方の板状部材は外部の液体と接する側にそれぞれ配置されていることを特徴とする請求項1または2に記載の散気装置である。   The invention according to claim 3 is characterized in that the one plate-like member is arranged on the gas chamber side, and the other plate-like member is arranged on the side in contact with the external liquid. 2. The air diffuser according to 2.

散気装置の散気部に形成された散気孔から気体が該散気装置外部の流動液体中に流出するときに、その気体は気泡として流動液体から抗力を受け、この抗力により気体が散気孔から離脱し気泡となる。抗力は流動液体の速度が速いほど大きくなるので、微細気泡を生成するためには、散気部の流動液体側表面での流動液体の流速が大きいことが望ましい。もし、縦弾性係数の大きい材料からなる板状部材を流動液体側に配置してしまうと、当該板状部材に形成された散気孔の深さは当該板状部材の厚さに等しいから、縦弾性係数の小さな材料からなる板状部材の表面近傍の流動液体の流速は、縦弾性係数の大きい材料からなる板状部材の厚さの影響を受けて小さくなり、発生する気泡径は大きくなってしまう。従って、縦弾性係数の小さい材料からなる板状部材、例えば樹脂膜製板状部材を流動液体側に配置するのが好ましい。   When the gas flows out from the diffuser holes formed in the diffuser part of the diffuser into the flowing liquid outside the diffuser, the gas receives a drag force from the flowing liquid as bubbles, and the gas is diffused by this drag. Detaches from and becomes a bubble. Since the drag increases as the velocity of the flowing liquid increases, in order to generate fine bubbles, it is desirable that the flow velocity of the flowing liquid on the flowing liquid side surface of the diffuser is large. If a plate-shaped member made of a material having a large longitudinal elastic modulus is disposed on the fluid liquid side, the depth of the air diffusion holes formed in the plate-shaped member is equal to the thickness of the plate-shaped member. The flow velocity of the flowing liquid in the vicinity of the surface of the plate member made of a material having a small elastic modulus becomes smaller due to the influence of the thickness of the plate member made of a material having a large longitudinal elastic modulus, and the generated bubble diameter becomes larger. End up. Therefore, it is preferable to dispose a plate-like member made of a material having a small longitudinal elastic modulus, for example, a resin film-made plate-like member on the flowing liquid side.

請求項4に記載の発明は、前記一方の板状部材に設けられた散気孔の孔径は、0.5〜2mmで、前記他方の板状部材に設けられた散気孔の孔径は、30μm以下であることを特徴とする請求項1乃至3のいずれか一項に記載に散気装置である。   In the invention according to claim 4, the hole diameter of the air diffuser provided in the one plate-like member is 0.5 to 2 mm, and the hole diameter of the air diffuser provided in the other plate-like member is 30 μm or less. It is a diffuser as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned.

縦弾性係数が大きな材料からなる板状部材に設けられる散気孔の孔径は、一般には0.5〜2mmで、0.5〜1mmであることが好ましい。また、縦弾性係数が小さな材料からなる板状部材に設けられる散気孔の孔径は、一般には30μm以下で、20μm以下であることが好ましい。   The diameter of the air diffuser provided in the plate-like member made of a material having a large longitudinal elastic modulus is generally 0.5 to 2 mm, and preferably 0.5 to 1 mm. Moreover, the hole diameter of the diffused holes provided in the plate-like member made of a material having a small longitudinal elastic modulus is generally 30 μm or less and preferably 20 μm or less.

請求項5に記載の発明は、請求項1乃至3のいずれか一項に記載の散気装置を複数備え、前記散気装置の散気部を互いに平行にして該散気装置を液体通路中に設置したことを特徴とする気泡発生装置である。   A fifth aspect of the present invention includes a plurality of the air diffusion devices according to any one of the first to third aspects, wherein the air diffusion portions of the air diffusion devices are parallel to each other and the air diffusion devices are disposed in the liquid passage. It is the bubble generator characterized by having installed in.

散気装置の散気部を、縦弾性係数の大きい板状部材と縦弾性係数の小さい板状部材とを互いに貼り合わせることなどで固着した態様として構成することによって、散気部によって隔てられた気体側と液体側の圧力差が増加しても、散気部の散気面に垂直な方向の撓み量を小さい値に維持できる。そのため、気体室と該気体室へ気体を流入させる気体流入管と、該流入した気体を気体室から外部の流動液体中へ微細気泡として散気して流出させる散気部とを備えた散気装置であって、当該散気部が上記の通り縦弾性係数が相対的に大きく且つ相対的に孔径の大きい多数の孔が形成された板状部材と、縦弾性係数が相対的に小さく且つ相対的に孔径の小さい多数の孔が形成された板状部材とを、互いに貼り付けることなどで固着した態様として構成された散気部である散気装置であれば、この散気装置を複数個用意しそれらを液体通路中に散気部が互いに平行になるように設置して気泡発生装置を構成すれば、ある一つの散気部が他の散気部と接触する恐れがない。従って、液体通路中に上記散気装置を相互の間隔を狭めて複数個設置することが可能になり、狭い液体通路空間に気泡発生孔を大量に設けることが可能になるため、コンパクトな気泡発生装置で大量の微細な気泡を発生することが可能になる。   The air diffuser of the air diffuser is separated by the air diffuser by configuring the air diffuser as a mode in which a plate-like member having a large longitudinal elastic modulus and a plate-like member having a low longitudinal elastic modulus are bonded to each other. Even if the pressure difference between the gas side and the liquid side increases, the amount of deflection in the direction perpendicular to the diffuser surface of the diffuser can be maintained at a small value. Therefore, an air diffuser comprising a gas chamber, a gas inflow pipe that allows gas to flow into the gas chamber, and an air diffuser that diffuses the inflowed gas as fine bubbles from the gas chamber into an external flowing liquid. A plate-like member in which a large number of holes having a relatively large longitudinal elastic modulus and a relatively large hole diameter are formed as described above; If the air diffuser is an air diffuser configured as an embodiment in which a plate-like member having a large number of holes having a small hole diameter is fixed to each other, for example, a plurality of air diffusers are provided. If the bubble generating device is configured by preparing them and arranging them in the liquid passage so that the air diffusers are parallel to each other, there is no fear that one air diffuser will come into contact with another air diffuser. Accordingly, it is possible to install a plurality of the air diffusers in the liquid passage with a small interval between them, and it is possible to provide a large number of bubble generation holes in a narrow liquid passage space. A large amount of fine bubbles can be generated in the apparatus.

請求項6に記載の発明は、散気槽内の液体中に浸漬させて配置された請求項1乃至3のいずれか一項に記載の散気装置と、前記散気装置の散気部表面に沿って前記散気槽内の液体の流れを形成する液体流形成装置とを備えたことを特徴とする気泡発生装置である。   The invention according to claim 6 is the air diffuser according to any one of claims 1 to 3, which is disposed so as to be immersed in the liquid in the air diffuser, and the surface of the air diffuser of the air diffuser. And a liquid flow forming device for forming a flow of liquid in the air diffusion tank along the air bubble generating device.

液体流形成装置を、例えばポンプ、液体用配管及びノズルを備えて構成し、例えば散気槽内の液体を前記ノズルから吐出させて散気槽内で液体流を形成し、その液体流が例えば上記散気槽内に備えられた散気装置の散気部表面(散気面)に沿って流れる様に上記散気装置やノズルを散気槽内に配置する。このように構成して、散気部に形成された散気孔から気体を上記散気部表面に沿う液体流中に流出させると、該散気孔から吐出された気体は上記液体流から抗力を受けて気泡径が小さいうちに散気孔から離脱するため、微細気泡を発生させることができる。このとき、上記散気部表面に沿う散気部近傍の液体流の流速は、3m/s〜5m/s程度にすることが好ましい。また例えば上記液体流形成装置により形成される液体流が散気槽内を循環するように構成すれば、液体中の気体の溶解量を大きくすることができる。   The liquid flow forming device is configured to include, for example, a pump, a liquid pipe and a nozzle, and for example, the liquid in the air diffusing tank is discharged from the nozzle to form a liquid flow in the air diffusing tank. The air diffuser and the nozzle are arranged in the air diffuser so as to flow along the surface of the air diffuser (air diffuser surface) of the air diffuser provided in the air diffuser. With this configuration, when the gas flows out from the diffuser holes formed in the diffuser part into the liquid flow along the surface of the diffuser part, the gas discharged from the diffuser hole receives a drag force from the liquid flow. Thus, the fine bubbles can be generated because the bubbles are separated from the diffuser holes while the bubble diameter is small. At this time, it is preferable that the flow velocity of the liquid flow in the vicinity of the diffuser along the diffuser surface is about 3 m / s to 5 m / s. Further, for example, if the liquid flow formed by the liquid flow forming device is configured to circulate in the air diffusion tank, the amount of gas dissolved in the liquid can be increased.

本発明によれば、微細な気泡を低い動力で大量に発生させ、かつ散気孔の目詰まりが少なく、コンパクトで製作が容易な気泡発生装置及び該気泡発生装置に用いられる散気装置を提供できる。   Advantageous Effects of Invention According to the present invention, it is possible to provide a bubble generating device that generates a large amount of fine bubbles with low power, has a small amount of clogging of the diffusion holes, is compact and easy to manufacture, and an aeration device used for the bubble generating device. .

本発明の実施形態の気泡発生装置の概要図である。It is a schematic diagram of a bubble generating device of an embodiment of the present invention. 図1に示す気泡発生装置に備えられている散気装置の横断平面図である。It is a cross-sectional top view of the diffuser with which the bubble generator shown in FIG. 1 is equipped. 本発明の他の実施形態の気泡発生装置の概要図である。It is a schematic diagram of the bubble generator of other embodiment of this invention. 本発明の更に他の実施形態の気泡発生装置を示す横断平面図である。It is a cross-sectional top view which shows the bubble generator of further another embodiment of this invention. 気泡発生の原理の説明に付する図である。It is a figure attached to description of the principle of bubble generation. 外周端で単純支持されている散気膜に、面に垂直に等分布荷重が作用した時の散気膜の変形の説明に付する図である。It is a figure attached | subjected to description of a deformation | transformation of a diffuser film when a uniformly distributed load acts on the diffuser film simply supported by the outer peripheral end perpendicularly to the surface. 図6に示す散気膜の断面図である。It is sectional drawing of the diffuser film shown in FIG. 外周端で固定支持されている散気板に、面に垂直に等分布荷重が作用した時の散気板の変形の説明に付する図である。It is a figure attached | subjected to description of a deformation | transformation of a diffuser plate when a uniformly distributed load acts on the diffuser plate fixedly supported by the outer peripheral end perpendicularly to the surface. 図8に示す散気板の断面図である。It is sectional drawing of the diffuser plate shown in FIG. 鋼板製板状部材と樹脂膜製板状部材とを積層した場合における該鋼板製板状部材と樹脂膜製板状部材の変形の説明に付する図で、(a)は平面図、(b)は断面図である。It is a figure attached | subjected to description of a deformation | transformation of this steel plate plate-shaped member and resin film plate-shaped member at the time of laminating | stacking a steel plate plate-shaped member and a resin film plate-shaped member, (a) is a top view, (b ) Is a cross-sectional view.

以下、本発明の実施形態を図面を参照して説明する。なお、以下の各例において、同一または相当する部材には同一符号を付して重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, the same or corresponding members are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の実施形態の気泡発生装置の概要図で、図2は、図1に示す気泡発生装置に備えられている散気装置の横断平面図である。図1に示すように、気泡発生装置は、液体通路(液体用管路)10の内部を流れる液体に浸漬させ、該液体の流れ方向に沿って互いに並列に配置された複数(図示では2つ)の散気装置12を備えている。各散気装置12は、断面形状が略翼形の散気部本体14と、図示しないブロア等に接続され、散気部本体14の内部に設けられた気体室16(図2参照)に気体を流入させる気体流入管18とを備えている。   FIG. 1 is a schematic diagram of a bubble generating device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional plan view of an air diffuser provided in the bubble generating device shown in FIG. As shown in FIG. 1, the bubble generating device is immersed in a liquid flowing inside a liquid passage (liquid conduit) 10, and a plurality of (two in the drawing) arranged in parallel with each other along the flow direction of the liquid. A diffuser 12). Each air diffuser 12 is connected to a diffuser body 14 having a substantially wing-shaped cross section and a blower (not shown), and gas is supplied to a gas chamber 16 (see FIG. 2) provided inside the diffuser body 14. And a gas inflow pipe 18 through which gas flows in.

散気部本体14は、両側面に矩形状の開口部20を備えたボックス状で、断面形状が略翼形の外殻22を有し、この各開口部20に散気部24を取り付けることで、図2に示すように、内部に気体流入管18の下端と連通する気体室16が形成されている。散気装置12は、図1に示すように、散気装置12の散気部24が互いに平行となるように、液体通路10の内部に配置されている。   The diffuser body 14 has a box shape with rectangular openings 20 on both side surfaces, and has a substantially wing-shaped outer shell 22, and the diffuser 24 is attached to each opening 20. Thus, as shown in FIG. 2, a gas chamber 16 communicating with the lower end of the gas inflow pipe 18 is formed inside. As shown in FIG. 1, the air diffuser 12 is disposed inside the liquid passage 10 so that the air diffusers 24 of the air diffuser 12 are parallel to each other.

図2に示すように、各散気部24は、縦弾性係数が異なる材料からなる2枚の板状部材、この例では、縦弾性係数が2×1011(Pa)(200GPa)程度のステンレス鋼板からなる板状部材(以下、鋼板製板状部材という)30と、縦弾性係数が3×10(Pa)(3GPa)程度のポリウレタン樹脂膜からなる板状部材(以下、樹脂膜製板状部材という)32を互いに接着等で積層して構成されている。 As shown in FIG. 2, each air diffuser 24 includes two plate-like members made of materials having different longitudinal elastic modulus, and in this example, stainless steel having a longitudinal elastic modulus of about 2 × 10 11 (Pa) (200 GPa). A plate-like member made of a steel plate (hereinafter referred to as a steel plate-like plate-like member) 30 and a plate-like member made of a polyurethane resin film having a longitudinal elastic modulus of about 3 × 10 9 (Pa) (3 GPa) (hereinafter referred to as a resin film-made plate) (Referred to as a member) 32 are laminated by bonding or the like.

鋼板製板状部材30の内部には多数の散気孔30aが設けられ、樹脂膜製板状部材32の内部にも多数の散気孔32aが設けられている。鋼板製板状部材30の散気孔30aの孔径は、樹脂膜製板状部材32の散気孔32aの孔径よりも大径に設定されている。鋼板製板状部材30の散気孔30aの孔径は、一般には0.5〜2mm、好ましくは、0.5〜1mmで、例えば1mmである。樹脂膜製板状部材32の散気孔32aの孔径は、一般には、30μm以下、好ましくは20μm以下、例えば10μmである。   A large number of air diffusion holes 30 a are provided inside the steel plate plate member 30, and a large number of air diffusion holes 32 a are also provided inside the resin film plate member 32. The hole diameter of the air diffuser hole 30 a of the steel plate plate member 30 is set larger than the hole diameter of the air diffuser hole 32 a of the resin film plate member 32. The hole diameter of the air diffuser 30a of the steel plate plate member 30 is generally 0.5 to 2 mm, preferably 0.5 to 1 mm, for example 1 mm. The hole diameter of the air diffusion holes 32a of the resin film plate member 32 is generally 30 μm or less, preferably 20 μm or less, for example, 10 μm.

液体流中に微細な散気孔から気体を排出して半径が50μm以下の気泡を発生させる場合には、液体の流速が例えば数m/s程度とすると、散気孔の孔径を10μm程度にする必要がある。しかし、鋼板製板状部材30の厚さを1mm程度と仮定すると、鋼板製板状部材30にこのような微細な孔を開けることは製作上困難である。これに対して、樹脂膜製板状部材32にあっては、十分に径の小さい微細気泡を発生させるための気体流を通過させる散気孔として使用される、例えば孔径が10μm程度の孔を、例えば針を用いて容易に形成することができる。しかも、この孔(散気孔)は、気体流が停止しているときには、気体室内の気体の圧力が低下するので自然に閉じられるから、目詰まり防止等の効果がある。   In the case where gas is discharged from a fine air diffuser into a liquid flow to generate bubbles having a radius of 50 μm or less, if the flow rate of the liquid is, for example, about several m / s, the diameter of the air diffuser must be about 10 μm. There is. However, assuming that the thickness of the steel plate member 30 is about 1 mm, it is difficult to manufacture such fine holes in the steel plate member 30. On the other hand, in the resin film-made plate-like member 32, for example, a hole having a hole diameter of about 10 μm is used as an air diffusion hole through which a gas flow for generating fine bubbles having a sufficiently small diameter is passed. For example, it can be easily formed using a needle. In addition, this hole (aeration hole) is naturally closed because the pressure of the gas in the gas chamber is reduced when the gas flow is stopped, so that there is an effect of preventing clogging and the like.

そして、鋼板製板状部材30と樹脂膜製板状部材32とを、両散気孔30a,32aを互いに連通させつつ、樹脂膜製板状部材32が液体と接する外側に位置するようにして、接着剤34で互いに貼り付けて積層することで、散気部24が構成されている。鋼板製板状部材30の厚みは、例えば1mmで、樹脂膜製板状部材32の厚みは、例えば0.5mmである。   Then, the steel plate plate member 30 and the resin film plate member 32 are positioned on the outside where the resin film plate member 32 is in contact with the liquid while the diffuser holes 30a and 32a are in communication with each other. The air diffuser 24 is configured by pasting and laminating each other with an adhesive 34. The thickness of the steel plate plate member 30 is, for example, 1 mm, and the thickness of the resin film plate member 32 is, for example, 0.5 mm.

散気部24は、外殻22の開口部20を塞ぐ位置に、散気部24の周縁部と外殻22の開口部20の周囲に位置する部位との間に散気部24と外殻22との隙間から気体が漏れ出すのを防止する矩形枠状のシートパッキン36を介装させつつ、外殻22に取り付けられている。気体室16と鋼板製板状部材30とを一体構造にして、気体が漏れ出さないようにしてもよい。   The air diffuser 24 is located between the peripheral edge of the air diffuser 24 and a portion located around the opening 20 of the outer shell 22 at a position that closes the opening 20 of the outer shell 22. A rectangular frame-shaped sheet packing 36 that prevents gas from leaking from the gap between the outer shell 22 and the outer shell 22 is attached. The gas chamber 16 and the steel plate plate member 30 may be integrated to prevent the gas from leaking out.

鋼板製板状部材30の散気孔30aの中心と樹脂膜製板状部材32の散気孔32aの中心とが互いに一致するように鋼板製板状部材30と樹脂膜製板状部材32とを積層することが好ましいが、必ずしも一致していなくても良い。例えば多数加工された樹脂膜製板状部材32の散気孔32aの相互間のピッチの2倍で鋼板製板状部材30の散気孔30aが加工されていても良いし、樹脂膜製板状部材32の散気孔32aは、鋼板製板状部材30の散気孔30aの内部(即ち、鋼板製板状部材30の散気孔30aが形成されている範囲内)に納まっていれば良い。   The steel plate member 30 and the resin film plate member 32 are laminated so that the center of the air hole 30a of the steel plate member 30 and the center of the air hole 32a of the resin film plate member 32 coincide with each other. However, it is not always necessary to match. For example, the air holes 30a of the steel plate member 30 may be processed at twice the pitch between the air holes 32a of the resin film plate member 32 processed in large numbers, or the resin film plate member The 32 air diffuser holes 32a may be accommodated in the air diffuser holes 30a of the steel plate member 30 (that is, within the range in which the air diffuser holes 30a of the steel plate member 30 are formed).

また、鋼板製板状部材30の散気孔30aと樹脂膜製板状部材32の散気孔32aとが必ずしも一対一で対応する必要はなく、鋼板製板状部材30の1つの散気孔30aに対して、樹脂膜製板状部材32に複数の散気孔32aを形成しても良い。   Further, the air diffuser holes 30a of the steel plate plate member 30 and the air diffuser holes 32a of the resin film plate member 32 do not necessarily correspond one-to-one. Then, a plurality of air diffusion holes 32 a may be formed in the resin film plate-like member 32.

更に、図示しないが、縦弾性係数の異なる2枚の板状部材を含む3枚以上の板状部材それぞれに散気孔を形成し、それらの散気孔を互いに連通させつつ、接着等により相互に固着して積層することで散気部を形成するようにしてもよい。   Further, although not shown in the figure, air diffused holes are formed in each of three or more plate-like members including two plate-like members having different longitudinal elastic coefficients, and these diffused holes are connected to each other and fixed to each other by bonding or the like. Then, the diffuser portion may be formed by stacking.

このように、鋼板製板状部材30と樹脂板製板状部材32とを積層して散気部24を構成すると、樹脂膜製板状部材32が単独で存在するのは鋼板製板状部材30に形成された散気孔30aの内部(即ち、散気孔30aの内側)に限られるので、鋼板製板状部材30を備えていない、例えば樹脂膜製板状部材32のみからなる散気部と比較すると、樹脂膜製板状部材32の変位の絶対量を小さく抑えて、樹脂膜製板状部材32に形成された散気孔32aの孔径の変化量(増加量)も小さい値に抑えることができる。また、鋼板製板状部材30に設けられた散気孔30aの孔径は、鋼板の縦弾性係数が大きいから、気体圧が印加されても極めて小さい増加に留まる。従って、散気部24に散気のために気体圧が印加されても、樹脂膜製板状部材32の散気孔32aの大きさは、微細気泡を発生させるのに必要な微細な状態を維持できるので微細気泡の発生が可能となる。   As described above, when the air diffuser 24 is configured by laminating the steel plate plate member 30 and the resin plate plate member 32, the resin film plate member 32 is present alone. 30 is limited to the inside of the air diffuser hole 30a formed in the air hole 30a (that is, the inner side of the air diffuser hole 30a). In comparison, the absolute amount of displacement of the resin film-made plate-like member 32 can be kept small, and the change amount (increase amount) of the air hole 32a formed in the resin film-made plate-like member 32 can be kept small. it can. Moreover, since the longitudinal elastic modulus of the steel plate is large, the hole diameter of the diffused holes 30a provided in the steel plate-like plate member 30 remains extremely small even when a gas pressure is applied. Therefore, even when a gas pressure is applied to the diffuser 24 to diffuse, the size of the diffuser holes 32a of the resin film-made plate-like member 32 maintains a fine state necessary for generating fine bubbles. As a result, fine bubbles can be generated.

この例では、縦弾性係数の大きな材料として、ステンレス鋼板を使用しているが、他の鋼板等、縦弾性係数が50GPa以上のものを使用してもよく、また縦弾性係数の小さな材料として、ポリウレタン樹脂膜以外の任意の樹脂膜を使用しても良い。また、鋼板製板状部材30等の縦弾性係数の大きな材料からなる板状部材の厚みは、樹脂膜製板状部材32等の縦弾性係数の小さな材料からなる板状部材の厚みより厚い方が好ましい。   In this example, a stainless steel plate is used as a material having a large longitudinal elastic modulus. However, other steel plates or the like having a longitudinal elastic modulus of 50 GPa or more may be used. Any resin film other than the polyurethane resin film may be used. In addition, the thickness of the plate-like member made of a material having a large longitudinal elastic modulus such as the steel plate-like plate member 30 is thicker than the thickness of the plate-like member made of a material having a small longitudinal elastic modulus such as the resin film plate-like member 32. Is preferred.

この気泡発生装置によれば、例えばブロア等によって、気体流入管18を通して、散気槽本体14内の気体室16の内部に空気等の気体を供給する。すると、気体室16内に導入された気体は、鋼板製板状部材30の散気孔30a及び樹脂膜製板状部材32の散気孔32aを順次通過した後、液体通路10を流れる液体の力を受け、液体通路10に沿って流れる液体中に気泡となって散気される。   According to this bubble generating device, a gas such as air is supplied into the gas chamber 16 in the diffuser tank main body 14 through the gas inflow pipe 18 by, for example, a blower. Then, the gas introduced into the gas chamber 16 sequentially passes through the air holes 30a of the plate member 30 made of steel plate and the air holes 32a of the plate member 32 made of resin film, and then the liquid force flowing through the liquid passage 10 is increased. The air bubbles are diffused into the liquid flowing along the liquid passage 10.

この例のように、散気装置10を複数個用意し、液体通路10中に散気部24が互いに平行になるように散気装置10を設置して気泡発生装置を構成すれば、散気するための気体により気体室内圧が上昇しても散気部の変形量はわずかで事実上無視できる値であるから、ある一つの散気部が他の散気部と接触する恐れがない。従って、液体通路10中に散気装置12を相互の間隔を狭めて複数個設置することが可能になり、狭い液体通路空間に気泡発生孔を大量に設けることが可能になるため、コンパクトな気泡発生装置で大量の微細な気泡を発生させることが可能になる。   As in this example, if a plurality of air diffusers 10 are prepared and the air diffuser 10 is installed in the liquid passage 10 so that the air diffusers 24 are parallel to each other, the air bubble generator is configured. Even if the pressure in the gas chamber increases due to the gas used, the amount of deformation of the air diffuser is small and virtually negligible. Therefore, there is no possibility that one air diffuser will come into contact with another air diffuser. Accordingly, it is possible to install a plurality of air diffusers 12 in the liquid passage 10 with a small interval between them, and it is possible to provide a large number of bubble generation holes in a narrow liquid passage space. A large amount of fine bubbles can be generated by the generator.

また、散気装置12の散気部24の表面を、液体通路10中に間隔を狭めてほぼ平行に並べることによって、散気部24の表面に沿った液体の流れ状態をほぼ一定にすることができるため、気泡径分布が広がりにくくなり、ほぼ一定の気泡径の気泡を液体中に発生させることができ、大きな気泡の発生を抑えることが可能になる。   Further, by arranging the surface of the air diffuser 24 of the air diffuser 12 in the liquid passage 10 so as to be almost parallel to each other, the flow state of the liquid along the surface of the air diffuser 24 is made substantially constant. Therefore, the bubble diameter distribution is difficult to spread, bubbles having a substantially constant bubble diameter can be generated in the liquid, and generation of large bubbles can be suppressed.

図3は、本発明の他の実施形態の気泡発生装置を示す。この例の気泡発生装置には、内部に液体(処理液)を溜めた散気槽40の内部に該液体に浸漬させて配置された散気装置12を備えている。散気装置12は、散気部24(図2参照)の表面が鉛直面に沿って拡がるように縦置きに設置され、散気装置12の上端に、散気装置12の内部の気体室16に気体を流入させる気体流入管18が接続されている。   FIG. 3 shows a bubble generator according to another embodiment of the present invention. The bubble generating device of this example includes an air diffuser 12 disposed so as to be immersed in the liquid diffuser tank 40 in which a liquid (treatment liquid) is stored. The air diffuser 12 is installed vertically so that the surface of the air diffuser 24 (see FIG. 2) extends along the vertical plane, and the gas chamber 16 inside the air diffuser 12 is disposed at the upper end of the air diffuser 12. A gas inflow pipe 18 for allowing gas to flow into is connected.

気泡発生装置は、ポンプ42、液体用配管44及びノズル46を有し、ポンプ42の駆動に伴って、散気装置12の散気部表面に沿って散気槽40内の流体の流れを形成する液体流形成装置48を備えている。この例では、ノズル46は、散気装置12のやや上方に位置して鉛直方向下方に向けて配置され、ポンプ42の駆動に伴って、散気装置12の散気部表面に沿った液体の下向きの流れが形成される。   The bubble generating device has a pump 42, a liquid pipe 44 and a nozzle 46, and forms a fluid flow in the air diffusing tank 40 along the surface of the air diffusing portion of the air diffusing device 12 as the pump 42 is driven. The liquid flow forming device 48 is provided. In this example, the nozzle 46 is positioned slightly above the air diffuser 12 and is arranged downward in the vertical direction. As the pump 42 is driven, the liquid along the air diffuser surface of the air diffuser 12 is discharged. A downward flow is formed.

この例によれば、ポンプ42を駆動して、散気装置12の散気部表面に沿った液体の下向きの流れが形成しながら、例えばブロア等によって、気体流入管18を通して、散気槽本体14内の気体室16の内部に空気等の気体を供給する。すると、気体室16内に導入された気体は、前述と同様に、鋼板製板状部材30の散気孔30a及び樹脂膜製板状部材32の散気孔32aを順次通過した後、散気装置12の散気部表面に沿って流れる液体の抗力を受け、散気槽40内の液体中に気泡となって散気される。このように、散気孔から吐出された気体は、液体流から抗力を受けて気泡径が小さいうちに散気孔から離脱するため、微細気泡を発生させることができる。   According to this example, the pump 42 is driven to form a downward flow of the liquid along the surface of the air diffuser of the air diffuser 12. A gas such as air is supplied to the inside of the gas chamber 16 in 14. Then, the gas introduced into the gas chamber 16 sequentially passes through the air diffuser holes 30a of the steel plate plate member 30 and the air diffuser holes 32a of the resin film plate member 32 in the same manner as described above, and then the air diffuser 12. In response to the drag of the liquid flowing along the surface of the air diffuser, air bubbles are diffused into the liquid in the air diffuser 40. Thus, since the gas discharged from the air diffuser receives drag from the liquid flow and is released from the air diffuser while the bubble diameter is small, fine bubbles can be generated.

散気部24の表面に沿う散気部24近傍の液体流の流速は、3m/s〜5m/s程度にすることが好ましい。また、例えば上記液体流形成装置48により形成される液体流が散気槽40内を循環するように構成することで、散気槽40内の液体中の気体の溶解量を大きくすることができる。   The flow rate of the liquid flow in the vicinity of the air diffuser 24 along the surface of the air diffuser 24 is preferably about 3 m / s to 5 m / s. In addition, for example, by configuring the liquid flow formed by the liquid flow forming device 48 to circulate in the air diffusion tank 40, the amount of gas dissolved in the liquid in the air diffusion tank 40 can be increased. .

図4は、本発明の更に他の実施形態の気泡発生装置を示す。この例の気泡発生装置は、図2に示す散気装置12と、図2に示す散気装置12を半割状に分割した他の2つの散気装置12a,12aを備え、この散気装置12,12a,12aは、液体通路(液体用配管)10の内部に該流体通路10に沿って流れる液体の流れ方向に沿って互いに並列に配置されている。   FIG. 4 shows a bubble generator according to still another embodiment of the present invention. The bubble generating apparatus of this example includes an air diffuser 12 shown in FIG. 2 and two other air diffusers 12a and 12a obtained by dividing the air diffuser 12 shown in FIG. 12, 12 a and 12 a are arranged in parallel with each other along the flow direction of the liquid flowing along the fluid passage 10 inside the liquid passage (liquid pipe) 10.

各散気装置12aは、断面形状が半翼形状で、開口部20aを有する外殻22aを備えた散気部本体14aを有しており、この開口部20aに散気部24が取り付けられている。そして、外殻22aの半割面を液体通路10の測壁面に密着させて、散気装置12aを流体通路10内に設置することで、外殻22aと液体通路10の測壁面との間に、外部から延びる気体流入管18(図2参照)に連通する気体室16aが形成されている。   Each air diffuser 12a has a diffuser body 14a having an outer shell 22a having a half-wing cross-sectional shape and an opening 20a, and the air diffuser 24 is attached to the opening 20a. Yes. Then, the halved surface of the outer shell 22a is brought into close contact with the wall surface of the liquid passage 10 and the air diffuser 12a is installed in the fluid passage 10 so that the space between the outer shell 22a and the wall surface of the liquid passage 10 is measured. A gas chamber 16a communicating with a gas inflow pipe 18 (see FIG. 2) extending from the outside is formed.

この例によれば、幅の狭い流体通路内に散気装置を効果的に配置して、気泡発生孔を大量に設けることが可能になるため、コンパクトな気泡発生装置で大量の微細な気泡を発生させることが可能になる。   According to this example, it is possible to effectively dispose a diffuser device in a narrow fluid passage and to provide a large amount of bubble generating holes, so a large amount of fine bubbles can be generated with a compact bubble generating device. Can be generated.

次に、上記のように構成された散気部において、樹脂膜製板状部材32に設けられた散気孔32a等の、縦弾性係数の小さな材料からなる板状部材に設けられた散気孔の孔径の半径方向変形量及び撓み量等について説明する。   Next, in the air diffuser configured as described above, air diffuser holes provided in a plate member made of a material having a small longitudinal elastic coefficient, such as air diffuser holes 32a provided in the resin film plate member 32, etc. The amount of radial deformation and the amount of deflection of the hole diameter will be described.

先ず、図5に示すように、気体と流路中を流動する液体とが微細な円形孔である散気孔50を備えた板52で仕切られており、その気体が流動する液体の方に気泡54として流出する状態を考察する。ここで微細な円形の散気孔50から液体の流路中に気体を注入し、その気体が上記散気孔50から液体側に流出したときに、気体を液体で剪断して微細な気泡54を発生させる場合、気泡54が散気孔50から離れようとする力が、気泡54が散気孔50の位置に留まろうとする力より大きくなると、散気孔50から気泡54が離脱する。   First, as shown in FIG. 5, the gas and the liquid flowing in the flow path are partitioned by a plate 52 having a diffused hole 50 which is a fine circular hole. Consider the state of flowing out as 54. Here, when a gas is injected into the liquid flow path from the fine circular air diffuser hole 50 and the gas flows out from the air diffuser hole 50 to the liquid side, the gas is sheared with the liquid to generate fine bubbles 54. In this case, when the force that causes the bubbles 54 to leave the diffuser holes 50 becomes larger than the force that the bubbles 54 try to stay at the positions of the diffuser holes 50, the bubbles 54 are detached from the diffuser holes 50.

気泡54が散気孔50の位置に留まろうとする力は、気泡54と散気孔50とが接する部分、即ち気液界面に作用する表面張力に等しい。気液界面における表面張力係数をσ(N/m)、散気孔50の孔半径をb(m)とすると、気泡54に作用する表面張力F(N)は式(1)となる。

Figure 2010194425
The force with which the bubbles 54 stay at the position of the diffuser holes 50 is equal to the surface tension acting on the portion where the bubbles 54 and the diffuser holes 50 are in contact, that is, the gas-liquid interface. Assuming that the surface tension coefficient at the gas-liquid interface is σ (N / m) and the hole radius of the air diffusion hole 50 is b (m), the surface tension F (N) acting on the bubble 54 is expressed by the following equation (1).
Figure 2010194425

気泡54を散気孔50から離脱させる力は流動する液体から受ける。気泡54の孔径が小さいほど気泡54が液体から受ける力も小さいのは自明であることを考慮すれば、式(1)から、微細な散気孔50から発生する気泡54の気泡径を小さくするためには、散気孔50の孔径を小さくする必要があることが分る。例えば通常の液体通路(液体用管路)内を流れる液体の流速を数m/s程度にして、発生させる気泡の気泡半径を50μm以下にするためには、散気孔の半径を数μm以下にする必要がある。   The force for separating the bubbles 54 from the diffuser holes 50 is received from the flowing liquid. Considering that it is obvious that the smaller the hole diameter of the bubbles 54, the smaller the force that the bubbles 54 receive from the liquid. From the equation (1), in order to reduce the bubble diameter of the bubbles 54 generated from the fine air diffusion holes 50, Indicates that the hole diameter of the air diffusion holes 50 needs to be reduced. For example, in order to set the flow velocity of the liquid flowing in the normal liquid passage (liquid conduit) to about several m / s and the bubble radius of the generated bubbles to be 50 μm or less, the radius of the air diffuser is set to be several μm or less. There is a need to.

次に、この気泡54を発生させる散気孔50を気体が通過するために必要な散気孔50の入口出口間の差圧は、気体が孔散気50を通過する際の摩擦による圧力損失Pで、以下にこの圧力損失Pの量を示す。ここで、上記気泡54を発生させる散気孔50の半径をb(m)、散気孔50の長さは、板52の厚さと同じでh(m)、散気孔50を通過する気体の流速をV(m/s)、気体の密度をρ(kg/m)、気体通路を形成する円管の摩擦係数をλ、気体の動粘度をη(m/s)とし、散気孔50が小さいために散気孔50を通過する気体のレイノルズ数は小さく層流であると仮定すれば、気体が散気孔50を通過する際の摩擦による圧力損失Pは式(2)となる。

Figure 2010194425
Then, the differential pressure between the inlet outlet of diffusing pores 50 necessary for the diffusing pores 50 for generating the bubble 54 is gas passes, the pressure loss due to friction when the gas passes through the hole diffuser 50 P h in, indicating the amount of the pressure loss P h below. Here, the radius of the diffuser hole 50 for generating the bubble 54 is b (m), the length of the diffuser hole 50 is the same as the thickness of the plate 52, h (m), and the flow velocity of the gas passing through the diffuser hole 50 is determined. V (m / s), the density of gas is ρ (kg / m 3 ), the friction coefficient of the circular tube forming the gas passage is λ, the kinematic viscosity of the gas is η (m 2 / s), and the diffuser holes 50 are assuming that the Reynolds number of the gas passing through the diffusing pores 50 smaller is smaller laminar flow pressure loss P h due to friction when passing through the pores 50 gas dispersion becomes equation (2).
Figure 2010194425

従って、散気孔50の半径bを小さくすると、気体が散気孔50を通過する際の圧力損失Pが大きくなり、気体と液体間を仕切る板52に、気体側から液体側に向けた該板52に垂直な方向の圧力、すなわち均一な分布荷重が作用することになる。 Therefore, reducing the radius b of the diffusing pores 50, the pressure loss P h when passing through the pores 50 gas dispersion is increased, the plate 52 which partitions between the gas and liquid, directed from the gas side to the liquid side the plate A pressure in a direction perpendicular to 52, that is, a uniform distributed load acts.

次に、図2に示す散気装置12の散気部24の鋼板製板状部材30に設けられた散気孔30a及び樹脂膜製板状部材32に設けられた散気孔32aの半径方向変形量、並びに鋼板製板状部材30及び樹脂膜製板状部材32の撓み量について考える。このとき、散気部24を挟んで存在する気体側の圧力と液体側の圧力との圧力差に等しい圧力が、鋼板製板状部材30または樹脂膜製板状部材32に均一な分布荷重として作用するものとする。上記半径方向変形量および撓み量については鋼板製板状部材30及び樹脂膜製板状部材32とに分けて以下記述する。   Next, the amount of deformation in the radial direction of the air holes 30a provided in the steel plate plate member 30 and the air holes 32a provided in the resin film plate member 32 of the air diffuser 24 of the air diffuser 12 shown in FIG. The amount of bending of the steel plate plate member 30 and the resin film plate member 32 will be considered. At this time, a pressure equal to the pressure difference between the pressure on the gas side and the pressure on the liquid side existing across the air diffuser 24 is a uniform distributed load on the steel plate plate member 30 or the resin film plate member 32. It shall act. The radial deformation amount and the bending amount will be described below separately for the plate member 30 made of steel plate and the plate member 32 made of resin film.

今、簡単のために、中央に微細な散気孔が一つ開いた円形の散気板(鋼板製板状部材30に相当)または散気膜(樹脂膜製板状部材32に相当)に、面に垂直な方向の圧力、すなわち均一な分布荷重が作用する場合を考える。先ず、散気膜に関しては、針等で散気孔を開けた一般に使用されている変形し易い樹脂膜を想定し外周端で変形するものとし、外周端で自由に変形する単純支持を仮定する。一方、散気板の場合は、外周端で変形できないものとし、外周端で固定されていると仮定する。なお上記した一般に使用されている変形し易い樹脂膜に針等で開けた孔は、必ずしも円形孔とは限らないが、ここでは円形孔と見做す。これにより本発明で奏せられる作用効果を分り易く説明できる。   Now, for the sake of simplicity, a circular diffuser plate (corresponding to a steel plate plate member 30) or a diffuser film (corresponding to a resin film plate member 32) having one fine diffuser hole in the center, Consider a case where pressure in a direction perpendicular to the surface, that is, a uniform distributed load is applied. First, regarding the diffuser membrane, it is assumed that a commonly used resin film that is easily deformed with a diffuser hole formed by a needle or the like is assumed to be deformed at the outer peripheral end, and simple support that is freely deformed at the outer peripheral end is assumed. On the other hand, it is assumed that the diffuser plate cannot be deformed at the outer peripheral end and is fixed at the outer peripheral end. In addition, although the hole opened with the needle | hook etc. in the resin film which is generally used above which is easy to deform | transform is not necessarily a circular hole, it is considered here as a circular hole. Thereby, the operational effects achieved by the present invention can be easily understood.

まず、図6に示すように、中央に微細な円状の散気孔60aがある、厚さがh(m)の円状の散気膜60に、面に垂直に等分布荷重p(Pa)が作用し、外周端で単純支持の場合の変形を考える。円状の散気膜60の外半径をa(m)、中央にある微細な散気孔60aの内半径をb(m)、縦弾性係数をE(N/m)、ポアソン比をν(−)とすると、散気膜60の撓み量w(m)は、式(3)となり、周方向応力σθ(N/m)は、式(4)となる。

Figure 2010194425
Figure 2010194425
First, as shown in FIG. 6, an evenly distributed load p (Pa) perpendicular to the surface is formed on a circular diffuser film 60 having a fine circular diffuser hole 60 a in the center and having a thickness h (m). Consider the deformation in the case of simple support at the outer peripheral edge. The outer radius of the circular diffuser membrane 60 is a (m), the inner radius of the fine diffuser hole 60a at the center is b (m), the longitudinal elastic modulus is E (N / m 2 ), and the Poisson's ratio is ν ( When −), the deflection amount w (m) of the diffuser membrane 60 is expressed by equation (3), and the circumferential stress σ θ (N / m 2 ) is expressed by equation (4).
Figure 2010194425
Figure 2010194425

中央にある微細な散気孔60aの開口部近傍の周方向応力σθmaxは、寸法aに対してb≒0と見なせるから、式(4)を変形してポアソン比νを0.3とすれば、式(5)となる。

Figure 2010194425
Since the circumferential stress σ θmax in the vicinity of the opening of the fine diffuser hole 60a at the center can be regarded as b≈0 with respect to the dimension a, if Equation (4) is modified to set the Poisson's ratio ν to 0.3. Equation (5) is obtained.
Figure 2010194425

なお、散気孔60aの開口部近傍の半径方向応力は零である。中央にある微細な散気孔60aの開口部近傍において、半径方向の変形率と周方向の変形率は同じになることと、散気孔60aの周方向の変形量と散気孔60aの周方向応力の関係式を用い、中央の散気孔60aが寸法aに対しb≒0と見なせる程度に微少な孔として求めた孔近傍の周方向応力の式(5)を応力と変形の基礎式である下記の式(6)の第2項に代入することで、散気孔60aの開口部の半径方向変形量uは、式(6)により求めることができる。

Figure 2010194425
The radial stress in the vicinity of the opening of the air diffusion hole 60a is zero. In the vicinity of the opening of the fine diffuser hole 60a at the center, the deformation rate in the radial direction and the deformation rate in the circumferential direction are the same, the amount of deformation in the circumferential direction of the diffuser hole 60a and the circumferential stress of the diffuser hole 60a. Using the relational expression, the circumferential stress equation (5) in the vicinity of the hole obtained as a minute hole such that the central diffuser hole 60a can be regarded as b≈0 with respect to the dimension a is a basic expression of stress and deformation as follows. by substituting the second term of equation (6), the radial deformation of u b of the opening of the aeration pores 60a can be obtained by equation (6).
Figure 2010194425

また、散気膜60の最大撓み量wmaxは、中央の散気孔60aが寸法aに対しb≒0と見なせる程度に微少な孔として式(3)を変形し、ポアソン比νを0.3とすれば、式(7)となる。

Figure 2010194425
Further, the maximum deflection amount w max of the diffuser membrane 60 is obtained by modifying Equation (3) as a minute hole so that the central diffuser hole 60a can be regarded as b≈0 with respect to the dimension a, and the Poisson's ratio ν is set to 0.3. Then, Expression (7) is obtained.
Figure 2010194425

ここで、材料が樹脂膜だけの場合であることを明確にするため、図7に示すように、各記号に添え字filmを付けて表し、樹脂膜60の外周半径をafilm,l、樹脂膜60の散気孔60aの半径をbfilm、樹脂膜60の厚さをhfilm、樹脂膜60の縦弾性係数をEfilmとすれば、樹脂膜60の散気孔60aの半径bfilmの半径方向変形量ubfilm,filmは式(8)に、最大撓み量wfilm,maxは式(9)になる。

Figure 2010194425
Figure 2010194425
Here, in order to clarify that the material is only the resin film, as shown in FIG. 7, each symbol is represented by adding a subscript film, and the outer peripheral radius of the resin film 60 is represented by a film, l . If the radius of the diffuser hole 60a of the film 60 is b film , the thickness of the resin film 60 is h film , and the longitudinal elastic modulus of the resin film 60 is E film , the radial direction of the radius b film of the diffuser hole 60a of the resin film 60 The deformation amount ubfilm, film is given by equation (8), and the maximum deflection amount w film, max is given by equation (9).
Figure 2010194425
Figure 2010194425

一方、図9に示すように、中央に微細な円形の散気孔70aのある円形の散気板70に、面に垂直に分布荷重p(Pa)が作用し、外周端で固定支持されている場合の変形を考えると、散気板70の撓み量w(m)は式(10)となり、周方向応力σθ(N/m)は式(11)となる。

Figure 2010194425
Figure 2010194425
On the other hand, as shown in FIG. 9, a distributed load p (Pa) acts on a circular diffuser plate 70 having a fine circular diffuser hole 70a in the center perpendicularly to the surface, and is fixedly supported at the outer peripheral end. In consideration of the deformation in the case, the deflection amount w (m) of the diffuser plate 70 is expressed by equation (10), and the circumferential stress σ θ (N / m 2 ) is expressed by equation (11).
Figure 2010194425
Figure 2010194425

中央にある微細な散気孔70aの開口部近傍の周方向応力σθmaxは、寸法aに対してb≒0と見なせるから、式(11)を変形してポアソン比νを0.3とすれば、式(12)となる。

Figure 2010194425
Since the circumferential stress σ θmax in the vicinity of the opening of the fine diffuser hole 70a at the center can be regarded as b≈0 with respect to the dimension a, if Equation (11) is modified to set the Poisson's ratio ν to 0.3. Equation (12) is obtained.
Figure 2010194425

なお、散気孔70aの開口部近傍の半径方向応力は零である。中央にある微細な散気孔70aの開口部近傍において、半径方向の変形率と周方向の変形率は同じになることと、散気孔70aの周方向の変形量と散気孔70aの周方向応力の関係式を用い、中央の散気孔70aが寸法aに対しb≒0と見なせる程度に微少な孔として求めた散気孔70a近傍の周方向応力の式(12)を応力と変形の基礎式である下記の式(13)の第2項に代入することで、散気孔70aの半径方向変形量uは式(13)により求めることができる。

Figure 2010194425
The radial stress in the vicinity of the opening of the diffuser hole 70a is zero. In the vicinity of the opening of the fine air diffuser hole 70a in the center, the deformation rate in the radial direction and the deformation rate in the circumferential direction are the same, the amount of deformation in the circumferential direction of the air diffuser hole 70a and the circumferential stress of the air diffuser hole 70a. Using the relational expression, the expression (12) of the circumferential stress in the vicinity of the diffuser hole 70a obtained as a minute hole such that the central diffuser hole 70a can be regarded as b≈0 with respect to the dimension a is a basic expression of stress and deformation. by substituting the second term of the following formula (13), the radial deformation of u b of diffusing pores 70a can be obtained by equation (13).
Figure 2010194425

また、散気板70の最大撓み量wmaxは、中央の散気孔70aが寸法aに対しb≒0と見なせる程度に微少な孔として式(10)を変形し、ポアソン比νを0.3とすれば、式(14)となる。

Figure 2010194425
Further, the maximum deflection amount w max of the diffuser plate 70 is modified so that the central diffuser hole 70a is a minute hole such that b≈0 with respect to the dimension a, and the Poisson's ratio ν is set to 0.3. If it becomes, it will become a formula (14).
Figure 2010194425

ここで、材料が例えばステンレス鋼板のような材料だけの場合であることを明確にするために、図9に示すように、各記号に添え字susを付けて表し、散気板70の外周半径をasus、散気板70の散気孔70aの半径をbsus、散気板70の厚さをhsus、散気板70の縦弾性係数をEsusとすれば、散気板70の散気孔70aの半径bsusの半径方向変形量ubsus,susは式(15)に、最大撓み量wsus,maxは式(16)になる。

Figure 2010194425
Figure 2010194425
Here, in order to clarify that the material is only a material such as a stainless steel plate, for example, as shown in FIG. Is a sus , the radius of the diffuser hole 70 a of the diffuser plate 70 is b sus , the thickness of the diffuser plate 70 is h sus , and the longitudinal elastic modulus of the diffuser plate 70 is E sus , the diffuser of the diffuser plate 70 The radial deformation amount u bsus, sus of the radius b sus of the pore 70a is expressed by the equation (15), and the maximum deflection amount w sus, max is expressed by the equation (16).
Figure 2010194425
Figure 2010194425

従って、円形の散気膜60および散気板70の中央にある微細な散気孔60a,70aの半径方向変形量は、外周端が自由支持の場合も固定支持の場合も、分布荷重p、初期の孔半径b、および円形の散気膜60および散気板70の外周半径aの2乗に比例し、縦弾性係数E、および散気膜60および散気板70の厚さhの2乗に反比例する。   Therefore, the amount of deformation in the radial direction of the fine diffuser holes 60a and 70a at the center of the circular diffuser membrane 60 and the diffuser plate 70 is the distributed load p, the initial value regardless of whether the outer peripheral end is free support or fixed support. Is proportional to the square of the outer peripheral radius a of the circular diffuser membrane 60 and the diffuser plate 70, and is the square of the longitudinal elastic modulus E and the thickness h of the diffuser membrane 60 and diffuser plate 70. Inversely proportional to

また、円形の散気膜60および散気板70の最大撓み量は、外周端が自由支持の場合も固定支持の場合も、分布荷重p、および円状の円形の散気膜60および散気板70の外周半径aの4乗に比例し、縦弾性係数E、および円形の散気膜60および散気板70の厚さhの3乗に反比例する。   Further, the maximum amount of deflection of the circular diffuser membrane 60 and the diffuser plate 70 is the distributed load p, and the circular circular diffuser membrane 60 and diffuser, regardless of whether the outer peripheral end is free support or fixed support. It is proportional to the fourth power of the outer peripheral radius a of the plate 70 and inversely proportional to the third power of the longitudinal elastic modulus E and the thickness h of the circular diffuser film 60 and the diffuser plate 70.

次に、相対的に変形し易い材料で形成された散気膜60として、例えばポリウレタン樹脂膜を用い、相対的に変形し難い材料で形成された散気板70として、例えばステンレス鋼板を用いて構成された数十cm程度の大きさの散気面を有する散気部を考え、その散気部において半径数cmの円形部分を想定して以下に比較する。まず、ポリウレタン樹脂膜製の散気膜60とステンレス鋼板製の散気板70の厚さが同じで、散気板70の場合も散気膜60と同じ径の散気孔70aを開けることができたと仮定して、初期の(等分布荷重による変形前の)孔径が同じ場合を比較する。 Next, as the diffuser film 60 formed of a relatively easily deformable material, for example, a polyurethane resin film is used, and as the diffuser plate 70 formed of a relatively hardly deformable material, for example, a stainless steel plate is used. A diffused part having a diffused surface with a size of about several tens of cm 2 is considered, and a circular part having a radius of several centimeters is assumed in the diffused part and compared below. First, the thickness of the diffuser film 60 made of polyurethane resin film and the diffuser plate 70 made of stainless steel plate are the same, and in the case of the diffuser plate 70, the diffuser holes 70a having the same diameter as the diffuser film 60 can be opened. Assuming that the hole diameter is the same (before deformation due to an evenly distributed load), comparison is made.

散気孔60a,70aの変形に関しては、散気膜60の散気孔60aの半径方向変形の式(8)と散気板70の散気孔70aの半径方向変形の式(15)の比較になる。縦弾性係数は、ステンレス鋼板でEsus≒2×1011(Pa)(200GPa)程度であり、ポリウレタン樹脂膜でEfilm≒3×10(Pa)(3GPa)程度である。外周端の支持条件が同一ならば、縦弾性係数Eの違いによって、ステンレス鋼板製の散気板70の散気孔70aの半径方向変形量は、ポリウレタン樹脂膜製の散気膜60の散気膜60aの半径方向変形量より1/67(=3×10/2×1011)程度に小さくなる。さらに、外周端の支持条件は、ステンレス鋼板製の散気板70とポリウレタン樹脂膜製の散気膜60とでそれぞれ固定支持、単純支持とみなすのが適当だから、外周端における支持の単純支持と固定支持の違いによって、ステンレス鋼板製の散気板70の散気孔70aの半径方向変形量は、ポリウレタン樹脂膜製の散気膜60の散気膜60aの半径方向変形量より1/2.5(=0.975/2.475)程度に小さくなる。 Regarding the deformation of the diffuser holes 60a and 70a, the expression (8) of the radial deformation of the diffuser hole 60a of the diffuser film 60 and the expression (15) of the radial deformation of the diffuser hole 70a of the diffuser plate 70 are compared. The longitudinal elastic modulus is about E sus ≈2 × 10 11 (Pa) (200 GPa) for the stainless steel plate and about E film ≈3 × 10 9 (Pa) (3 GPa) for the polyurethane resin film. If the support conditions at the outer peripheral end are the same, the amount of deformation in the radial direction of the diffuser hole 70a of the diffuser plate 70 made of stainless steel plate is different from that of the diffuser membrane 60 made of the polyurethane resin film due to the difference in the longitudinal elastic modulus E. than the radial deformation of the 60a 1/67 (= 3 × 10 9 /2 × 10 11) smaller in extent. Furthermore, since it is appropriate to consider the support condition of the outer peripheral end as a fixed support and a simple support for the diffuser plate 70 made of stainless steel plate and the diffuser film 60 made of a polyurethane resin film, respectively, Due to the difference in fixed support, the amount of deformation in the radial direction of the diffuser hole 70a of the diffuser plate 70 made of stainless steel plate is 1 / 2.5 of the amount of radial deformation of the diffuser membrane 60a of the diffuser membrane 60 made of polyurethane resin film. It becomes as small as (= 0.975 / 2.475).

このため、縦弾性係数および支持条件の相違から両材質の違いによって、両者の散気孔の半径方向変形量が大きく異なり、上記1/67と1/2.5との相乗積から、ステンレス鋼板製の散気板70の散気孔70aの半径方向変形量は、ポリウレタン樹脂膜製の散気膜60の散気孔60aの半径方向変形量の1/170程度に小さくなる。   For this reason, due to the difference in the longitudinal elastic modulus and the support conditions, the amount of radial deformation of both diffuser holes varies greatly depending on the difference in both materials. From the synergistic product of the above 1/67 and 1/2. The amount of deformation in the radial direction of the air diffusion hole 70a of the air diffusion plate 70 is reduced to about 1/170 of the amount of deformation in the radial direction of the air diffusion hole 60a of the air diffusion film 60 made of a polyurethane resin film.

次に、図2に示す、鋼板製板状部材30と樹脂膜製板状部材32とが接着剤34等で貼り付けられ構成された散気部24における、鋼板製板状部材30に設けられた散気孔30aと樹脂膜製板状部材32に設けられた散気孔32aの半径方向変形量を、図10を参照して説明する。   Next, as shown in FIG. 2, the steel plate plate member 30 and the resin film plate member 32 are provided on the steel plate plate member 30 in the air diffuser 24 formed by being bonded with an adhesive 34 or the like. The amount of radial deformation of the diffuser holes 32a provided in the diffuser holes 30a and the resin film plate-like member 32 will be described with reference to FIG.

この場合、まず、鋼板製板状部材30に圧力が作用することによって鋼板製板状部材30が撓み、鋼板製板状部材30の散気孔30aが半径方向に変形する。この鋼板製板状部材30の散気孔30aの半径方向変形量をubsus,sus(S)とする。この鋼板製板状部材30の散気孔30aの半径方向の変形によって、鋼板製板状部材30の散気孔30aの径である2bsus(=2afilm,2)を外周直径とする樹脂膜製板状部材32が半径方向に引き延ばされる。鋼板製板状部材30の散気孔30aの半径方向の変形によって生じる樹脂膜製板状部材32の散気孔32aの半径方向変形量をubfilm,sus+film,A(A)とする。 In this case, first, when a pressure is applied to the plate member 30 made of steel plate, the plate member 30 made of steel plate is bent, and the diffuser holes 30a of the plate member 30 made of steel plate are deformed in the radial direction. The amount of deformation in the radial direction of the air diffusion hole 30a of the plate member 30 made of steel plate is defined as u bsus, sus (S). A resin film plate having an outer peripheral diameter of 2b sus (= 2a film, 2 ) , which is the diameter of the air diffuser hole 30a of the steel plate plate member 30, due to the deformation in the radial direction of the air diffuser hole 30a of the steel plate member 30. The shaped member 32 is stretched in the radial direction. The amount of deformation in the radial direction of the air diffusion holes 32a of the resin film plate-like member 32 caused by the deformation in the radial direction of the air diffusion holes 30a of the steel plate-like plate member 30 is defined as ubfilm, sus + film, A (A).

また同時に、鋼板製板状部材30の散気孔30aの部分である2bsus(=2afilm,2)を外周直径とする樹脂膜製板状部材32に圧力が作用することによって樹脂膜製板状部材32が撓み、樹脂膜製板状部材32の散気孔32aが半径方向に引き延ばされる。樹脂膜製板状部材32に圧力が作用することが原因で発生する樹脂膜製板状部材32の散気孔32aの半径方向変形量をubfilm,sus+film,B(B)とする。 At the same time, a pressure is applied to the resin film plate member 32 having an outer diameter of 2b sus (= 2a film, 2 ) , which is the portion of the air diffuser 30a of the steel plate plate member 30, whereby a resin film plate shape is formed. The member 32 is bent, and the air diffusion holes 32a of the resin film plate-like member 32 are extended in the radial direction. The amount of deformation in the radial direction of the air diffusion hole 32a of the resin film-made plate-like member 32 caused by the pressure acting on the resin film-made plate-like member 32 is defined as ubfilm, sus + film, B (B).

樹脂膜製板状部材32を鋼板製板状部材30に接着剤34等で貼り付けた散気部24において、樹脂膜製板状部材32の中心にある微細な散気孔32aの半径方向変形量は、鋼板製板状部材30の散気孔30aの半径方向の変形によって生じる樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,A(A)と、樹脂膜製板状部材32に圧力が作用することが原因で発生する樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,B(B)との和ubfilm,sus+film(A+B)になる。 In the air diffuser 24 in which the resin film plate member 32 is bonded to the steel plate plate member 30 with an adhesive 34 or the like, the amount of radial deformation of the fine air diffuser holes 32a at the center of the resin film plate member 32 is reduced. Is the amount of deformation u bfilm, sus + film, A (A) in the radial direction of the air diffusion holes 32a of the resin film plate-like member 32 caused by the radial deformation of the air diffusion holes 30a of the steel plate-like member 30 and the resin film The sum of the deformation amount u bfilm, sus + film, B (B) in the radial direction of the air diffuser 32a of the resin film plate-like member 32 generated due to the pressure acting on the plate-like member 32 u bfilm, sus + film (A + B).

まず、鋼板製板状部材30の散気孔30aの半径方向の変形によって生じる樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,A(A)に関する式を示す。
中央に微細な円形の散気孔30aのある円形の鋼板製板状部材30に、面に垂直に分布荷重pが作用するときの、鋼板製板状部材30の散気孔30aの半径bsusの半径方向変形量ubsus,sus(S)は式(15)になる。
First, an expression relating to the amount of deformation u bfilm, sus + film, A (A) in the radial direction of the air diffusion hole 32a of the resin film plate-like member 32 caused by the deformation in the radial direction of the air diffusion hole 30a of the steel plate-like plate member 30 is shown. .
The radius b sus of the air diffuser 30a of the steel plate member 30 when the distributed load p is applied to the circular plate member 30 having the fine circular air diffuser 30a in the center and perpendicular to the surface. The directional deformation amount u bsus, sus (S) is expressed by equation (15).

次に、樹脂膜製板状部材32の散気孔32aに生じる半径方向変形量を求めるため、外径が2afilm,2で中心の散気孔32aの径が2bfilmの高さが低い円筒形状の樹脂膜製板状部材32を仮定する。ここに、外周には半径方向の均一な分布荷重pが作用し、内周には荷重が作用しない場合の、円筒形状の樹脂膜製板状部材32内の半径rにおける半径方向変形量ufilm,Aは、式(17)となる。

Figure 2010194425
Next, in order to obtain the amount of deformation in the radial direction generated in the diffuser holes 32a of the resin film plate-like member 32, the outer diameter is 2a film, the diameter of the central diffuser hole 32a is 2b film and the cylindrical shape is low. A resin film plate-like member 32 is assumed. Here, uniform distribution load p 2 in the radial direction acts on the outer periphery, the inner of the case where the load on the peripheral does not act, the radial deformation of the radius r of the resin film made plate member 32 of the cylindrical u film, A is represented by Expression (17).
Figure 2010194425

従って、式(17)から、鋼板製板状部材30の散気孔30aの径である2bsus(=2afilm,2)を外周直径とする樹脂膜製板状部材32の外周における半径方向変形量uafilm,sus+film,Aに対する樹脂膜製板状部材32の散気孔32aの半径bfilmにおける半径方向変形量ubfilm,sus+film,Aの比は、ポアソン比νを0.3とすれば、式(18)となる。

Figure 2010194425
Therefore, from equation (17), the amount of radial deformation at the outer periphery of the resin film plate-like member 32 having an outer diameter of 2b sus (= 2a film, 2 ) , which is the diameter of the air diffuser 30a of the steel plate-like plate member 30. u afilm, sus + film, radial deformation of the radial b film of diffusing pores 32a of the resin film made plate member 32 with respect to a u bfilm, sus + film, the ratio of a them to Poisson's ratio ν and 0.3 For example, Expression (18) is obtained.
Figure 2010194425

鋼板製板状部材30の散気孔30aの径である2bsus(=2afilm,2)を外周直径とする樹脂膜製板状部材32の外周における半径方向変形量uafilm,sus+film,Aは、鋼板製板状部材30の散気孔30aの半径bsusの半径方向変形量ubsus,susに等しいため、式(15)を用いると、鋼板製板状部材30の散気孔30aの半径方向の変形によって生じる樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,A(A)は、式(19)となる。

Figure 2010194425
The amount of deformation u afilm, sus + film, A in the radial direction on the outer periphery of the resin film plate member 32 having the outer diameter of 2b sus (= 2a film, 2 ) which is the diameter of the air diffuser 30a of the steel plate member 30 Is equal to the radial deformation amount u bsus, sus of the radius b sus of the air diffuser 30a of the steel plate-like member 30. Therefore, using Equation (15), the radial direction of the air diffuser 30a of the steel plate-like member 30 is as follows. The amount of deformation u bfilm, sus + film, A (A) in the radial direction of the air diffusion hole 32a of the resin film plate-like member 32 generated by the deformation of (3) is expressed by Equation (19).
Figure 2010194425

次に、樹脂膜製板状部材32に圧力が作用することが原因で発生する樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,B(B)は、式(8)から式(20)となる。

Figure 2010194425
Next, the amount of deformation u bfilm, sus + film, B (B) in the radial direction of the air diffusion hole 32a of the resin film plate member 32 generated due to the pressure acting on the resin film plate member 32 is: From Equation (8) to Equation (20).
Figure 2010194425

樹脂膜製板状部材32を鋼板製板状部材30に接着剤34等で貼り付けた散気部24の場合に、樹脂膜製板状部材32の中心にある微細な散気孔32aの半径方向変形量は、鋼板製板状部材30の散気孔30aの半径方向の変形によって生じる樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,A(A)と、樹脂膜製板状部材32に圧力が作用することが原因で発生する樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,sus+film,B(B)との和ubfilm,sus+film(A+B)であるから、式(19)および式(20)を用いると式(21)となる。

Figure 2010194425
In the case of the air diffuser 24 in which the resin film plate member 32 is bonded to the steel plate plate member 30 with an adhesive 34 or the like, the radial direction of the fine air diffuser holes 32a at the center of the resin film plate member 32 The amount of deformation is the amount of deformation u bfilm, sus + film, A (A) in the radial direction of the air diffusion hole 32a of the resin film plate-like member 32 caused by the deformation in the radial direction of the air diffusion hole 30a of the steel plate-like plate member 30; The sum u bfilm of the radial deformation amount u bfilm, sus + film, B (B) of the air diffusion hole 32a of the resin film plate member 32 generated due to the pressure acting on the resin film plate member 32 , sus + film (A + B), using equation (19) and equation (20) yields equation (21).
Figure 2010194425

さらに、散気部24における樹脂膜製板状部材32の中心にある微細な散気孔32aの半径方向変形量ubfilm,sus+film(A+B)を、樹脂膜製板状部材32だけの場合における樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,filmに対して比を取ると、式(8)および式(21)から式(22)が得られる。

Figure 2010194425
Furthermore, the amount of radial deformation u bfilm, sus + film (A + B) of the fine air diffusion hole 32a at the center of the resin film plate-like member 32 in the air diffusion portion 24 is the case where only the resin film plate-like member 32 is used. When a ratio is taken with respect to the radial deformation amount u film, film of the air diffusion hole 32a of the resin film plate-like member 32, Expression (22) is obtained from Expression (8) and Expression (21).
Figure 2010194425

液体流中に微細な孔から気体を排出して半径が50μm以下の気泡を発生させる場合には、液体の流速が例えば数m/s程度とすると、孔径を10μm程度にする必要がある。しかし、鋼板製板状部材30の厚さを1mm程度と仮定すると、鋼板製板状部材30にこのように微細な散気孔30aを開けることは製作上困難である。そこで、厚さ1mm程度の鋼板製板状部材30に容易に開けられる散気孔30aの孔径2bsus(=2afilm,2)を1mm程度と考えて、樹脂膜製板状部材32に開けられた散気孔32aの孔径2bfilmの100倍程度と仮定する。また、鋼板製板状部材30の外径(2asus)は60mmと仮定する。このように仮定すると、樹脂膜製板状部材32に開けられた散気孔32aの孔半径に対する鋼板製板状部材30の散気孔30aの孔半径の比はbsus/bfilm≒100に、鋼板製板状部材30の外周半径に対する鋼板製板状部材30の散気孔30aの孔半径の比はbsus/asus≒1/60になる。 When the gas is discharged from the fine holes in the liquid flow to generate bubbles having a radius of 50 μm or less, if the flow rate of the liquid is, for example, about several m / s, the hole diameter needs to be about 10 μm. However, assuming that the thickness of the steel plate-like member 30 is about 1 mm, it is difficult to manufacture such fine air diffusion holes 30 a in the steel plate-like member 30. Therefore, the hole diameter 2b sus (= 2a film, 2 ) of the diffuser hole 30a that can be easily opened in the steel plate member 30 having a thickness of about 1 mm is considered to be about 1 mm, and the resin film plate member 32 is opened. It is assumed that the hole diameter of the air diffusion hole 32a is about 100 times the 2b film . The outer diameter (2a sus ) of the steel plate member 30 is assumed to be 60 mm. Assuming in this way, the ratio of the hole radius of the air diffuser hole 30a of the steel plate plate member 30 to the hole radius of the air diffuser hole 32a opened in the resin film plate member 32 is b sus / b film ≈100. The ratio of the hole radius of the air diffusion hole 30a of the steel plate member 30 to the outer radius of the plate member 30 is bsus / asus≈1 / 60.

これらの値を用いると、鋼板製板状部材30の散気孔30aの径である2bsus(=2afilm,2)を外周直径とする樹脂膜製板状部材32の外周における半径方向変形量uafilm,sus+film,Aに対する樹脂膜製板状部材32の散気孔32aの半径bfilmにおける半径方向変形量ubfilm,sus+film,Aの比は、式(18)から35.0分の1(=(2×100)/(0.7×100+1.3))程度になる。

Figure 2010194425
When these values are used, the amount of radial deformation u at the outer periphery of the resin film plate member 32 having an outer diameter of 2b sus (= 2a film, 2 ) , which is the diameter of the air diffuser 30a of the plate member 30 made of steel plate. The ratio of the amount of radial deformation u bfilm, sus + film, A in the radius b film of the air diffuser 32a of the resin film plate-like member 32 to afilm, sus + film, A is 35.0 minutes from the equation (18). 1 (= (2 × 100) / (0.7 × 100 2 +1.3)).
Figure 2010194425

上記の値を用いると、式(22)から樹脂膜製板状部材32だけの場合における樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,filmに対する、樹脂膜製板状部材32を鋼板製板状部材30に接着剤34等で貼り付けた場合における樹脂膜製板状部材32の中心にある散気孔32aの半径方向変形量ubfilm,sus+film(A+B)の比は、式(23)となる。

Figure 2010194425
When the above values are used, the resin film plate shape with respect to the radial deformation amount ubfilm, film of the air diffusion hole 32a of the resin film plate member 32 in the case of only the resin film plate member 32 from the equation (22). Ratio of the amount of deformation u bfilm, sus + film (A + B) in the radial direction of the air diffusion hole 32a at the center of the resin film plate member 32 when the member 32 is attached to the steel plate plate member 30 with an adhesive 34 or the like Becomes Equation (23).
Figure 2010194425

ここで、ポリウレタン樹脂膜の縦弾性係数に対するステンレス鋼板の縦弾性係数の比は約Esus/Efilm≒2×1011/3×10≒66.6である。さらに樹脂膜製板状部材32の厚さを0.5mmとし、鋼板製板状部材30の厚さを樹脂膜製板状部材32の厚さの2倍で1.0mmとした場合には、式(23)から、樹脂膜製板状部材32を、外径が60mmと仮定して散気孔30aの孔径が1mmである鋼板製板状部材30に接着剤34等で貼り付けた散気部24の樹脂膜製板状部材32の中心に形成された直径が10μmの散気孔32aの半径方向変形量ubfilm,sus+filmは、散気部が樹脂膜製板状部材32だけで形成されており当該樹脂膜製板状部材32の外径を60mmと仮定した場合の当該樹脂膜製板状部材32の中心に形成された直径が10μmの散気孔32aの半径方向変形量ubfilm,filmの222.3分の1程度に小さくすることが可能になる。

Figure 2010194425
The ratio of the longitudinal elastic coefficient of the stainless steel plate for the longitudinal elastic modulus of the polyurethane resin film is about E sus / E film ≒ 2 × 10 11/3 × 10 9 ≒ 66.6. Furthermore, when the thickness of the resin film plate member 32 is 0.5 mm and the thickness of the steel plate member 30 is 1.0 mm which is twice the thickness of the resin film plate member 32, From formula (23), a diffused portion in which the resin film-made plate-like member 32 is affixed to the steel plate-like plate-like member 30 in which the outer diameter is 60 mm and the diameter of the diffused holes 30a is 1 mm with an adhesive 34 or the like. The amount of deformation u bfilm, sus + film in the radial direction of the air diffusion hole 32a having a diameter of 10 μm formed at the center of the 24 resin film plate members 32 is formed by the resin film plate members 32 alone. The amount of deformation u bfilm, film in the radial direction of the air diffusion hole 32a having a diameter of 10 μm formed at the center of the resin film plate member 32 when the outer diameter of the resin film plate member 32 is assumed to be 60 mm. It is possible to make it as small as about 222.3.
Figure 2010194425

次に、散気部が仮に鋼板製板状部材30単体である場合と樹脂膜製板状部材32単体である場合のそれぞれの場合において、板面(膜面)に対して垂直方向の最大撓み量を、式(9)および式(16)を用いて比較する。この比較は、鋼板製板状部材30と樹脂膜製板状部材32とは同一の直径を有する円板であるとの仮定のもとに行なう。今、鋼板製板状部材30の厚みを樹脂膜製板状部材32の厚みの2倍と仮定すれば、厚みの違いによって、鋼板製板状部材30の場合の最大撓み量は、樹脂膜製板状部材32の場合の8分の1(=1/2)になる。縦弾性係数Eはステンレス鋼板でE≒2×1011(Pa)(200GPa)程度であり、樹脂膜でE≒3×109(Pa)(3GPa)程度であるため、材質の違いによって最大撓み量が67分の1(=3×10/2×1011)程度に小さくなる。 Next, in each case where the diffuser is a single plate member 30 made of steel plate and a single plate member 32 made of resin film, the maximum deflection in the direction perpendicular to the plate surface (film surface) The amounts are compared using equation (9) and equation (16). This comparison is made on the assumption that the steel plate plate member 30 and the resin film plate member 32 are disks having the same diameter. Now, assuming that the thickness of the plate member 30 made of steel plate is twice the thickness of the plate member 32 made of resin film, the maximum deflection amount in the case of the plate member 30 made of steel plate is made of resin film due to the difference in thickness. It becomes 1/8 (= 1/2 3 ) in the case of the plate-like member 32. The longitudinal elastic modulus E is about E S ≈2 × 10 11 (Pa) (200 GPa) for the stainless steel plate, and about E P ≈3 × 109 (Pa) (3 GPa) for the resin film. deflection amount is 1 67 minutes (= 3 × 10 9/2 × 10 11) smaller in extent.

また、外周端における支持の単純支持と固定支持の違いによって、鋼板製板状部材を用いた場合は、樹脂膜製板状部材32を用いた場合より、散気孔の変形量が3.8分の1(=0.182/0.695625)程度に小さくなる。従って、樹脂膜製板状部材32の厚さが鋼板製板状部材30の厚さの1/2である場合、板面(膜面)に対して垂直方向の最大撓み量の比は、上記各値の相乗積から全体で、鋼板製板状部材30の場合は樹脂膜製板状部材32の場合の2037分の1程度に小さくなる。   Further, due to the difference between the simple support and the fixed support at the outer peripheral end, when the plate member made of steel plate is used, the amount of deformation of the air diffuser is 3.8 minutes than when the plate member 32 made of resin film is used. 1 (= 0.182 / 0.695625). Therefore, when the thickness of the resin film-made plate-like member 32 is ½ of the thickness of the steel plate-like plate-like member 30, the ratio of the maximum deflection amount in the direction perpendicular to the plate surface (film surface) is as described above. From the synergistic product of each value, in the case of the plate member 30 made of steel plate, the value is reduced to about 1/2037 in the case of the plate member 32 made of resin film.

例えば、縦弾性係数がE≒3×10(Pa)(3GPa)のポリウレタン樹脂膜からなる樹脂膜製板状部材32で、外周の半径が30(mm)、厚さが0.5(mm)、板面(膜面)に掛かる圧力が1×10(Pa)(0.1MPa)の場合、樹脂膜製板状部材32の最大撓み量の計算値は150(mm)程度という極めて大きな値になる。

Figure 2010194425
For example, it is a resin film plate-like member 32 made of a polyurethane resin film having a longitudinal elastic modulus of E P ≈3 × 10 9 (Pa) (3 GPa), and has an outer periphery radius of 30 (mm) and a thickness of 0.5 ( mm), when the pressure applied to the plate surface (film surface) is 1 × 10 5 (Pa) (0.1 MPa), the calculated value of the maximum deflection amount of the resin film plate-like member 32 is about 150 (mm). Great value.
Figure 2010194425

一方、例えば、縦弾性係数がE≒2×1011(Pa)(200GPa)のステンレス鋼板からなる鋼板製板状部材30で、外周の半径が30(mm)、厚さが1(mm)、板面に掛かる圧力が1×10(Pa)(0.1MPa)の場合、鋼板製板状部材30の最大撓み量は0.074(mm)程度になり、撓みによる影響をほとんど無視できる。

Figure 2010194425
On the other hand, for example, a plate-like member 30 made of a stainless steel plate having a longitudinal elastic modulus of E S ≈2 × 10 11 (Pa) (200 GPa), the outer radius is 30 (mm), and the thickness is 1 (mm). When the pressure applied to the plate surface is 1 × 10 5 (Pa) (0.1 MPa), the maximum amount of bending of the steel plate member 30 is about 0.074 (mm), and the influence of the bending can be almost ignored. .
Figure 2010194425

従って、上記のように、鋼板製板状部材30に樹脂膜製板状部材32を貼り付けて形成した散気部24を表面に備え、内部に気体を受容する気体室16が形成されており、気体流入管18によって気体室16に導入された気体を散気部24から外部の流動液体に微細気泡として流出させる散気装置12を、例えば液体通路10内に複数配設し、それらの散気部24の表面(散気面)が互いに平行になるように、且つ狭い間隔を置いて配置して気泡発生装置を構成した場合、散気装置12の気体室16に散気のために必要な気圧を印加しても、散気部24の鋼板製板状部材30や樹脂膜製板状部材32において、それらに垂直方向の撓み量を小さく抑えることが出来るから、散気部24が相互に接触しないように構成することが出来る。換言すれば、複数の散気装置12を密に配置した気泡発生装置を構成することができる。   Therefore, as described above, the gas chamber 16 is provided which has a diffuser portion 24 formed on the surface of the steel plate plate member 30 and the resin film plate member 32 and receives gas therein. For example, a plurality of air diffusers 12 for allowing the gas introduced into the gas chamber 16 through the gas inflow pipe 18 to flow out as fine bubbles from the air diffuser 24 to the external fluid liquid are disposed in the liquid passage 10, for example. Necessary for air diffusion in the gas chamber 16 of the air diffuser 12 when the bubble generating device is configured so that the surfaces (air diffuser surfaces) of the air parts 24 are parallel to each other and arranged at a narrow interval. Even when a certain atmospheric pressure is applied, the amount of bending in the direction perpendicular to the steel plate plate member 30 and the resin film plate member 32 of the air diffuser 24 can be kept small. It can comprise so that it may not touch. In other words, it is possible to configure a bubble generating device in which a plurality of air diffusers 12 are densely arranged.

従って、このような気泡発生装置を収容する液体通路、例えば液体用管路等を考えたとき、その管路等の単位体積あたりの散気部の散気面面積を増大する事ができるから、単位体積あたりの気泡発生量を増大することが可能となる。   Therefore, when considering a liquid passage that accommodates such a bubble generating device, such as a liquid conduit, it is possible to increase the diffused surface area of the diffuser per unit volume of the conduit, etc. It is possible to increase the amount of bubbles generated per unit volume.

前述のように、縦弾性係数の大きな材料として、縦弾性係数が50GPa以上のものを使用し、縦弾性係数の小さな材料として、樹脂を使用しても良い。これを定量的に説明する。   As described above, a material having a large longitudinal elastic modulus may be a material having a longitudinal elastic modulus of 50 GPa or more, and a resin may be used as a material having a small longitudinal elastic modulus. This will be described quantitatively.

散気部が樹脂膜製板状部材32だけで形成されている場合における樹脂膜製板状部材32の散気孔32aの半径方向変形量ubfilm,filmに対する、樹脂膜製板状部材32を鋼板製板状部材30に接着剤34等で貼り付けて構成されている散気部24における樹脂膜製板状部材32の中心にある散気孔32aの半径方向変形量ubfilm,sus+filmの比は、式(23)に示すように、樹脂膜製板状部材32の縦弾性係数に対する鋼板製板状部材30の縦弾性係数の比Esus/Efilmにほぼ反比例する。また樹脂膜製板状部材32を鋼板製板状部材30に貼り付けて構成されてる散気部24における最大撓み量wsus,maxは、式(16)に示すように、鋼板製板状部材30の縦弾性係数Esusに反比例する。 When the air diffuser is formed only by the resin film-made plate-like member 32, the resin film-made plate-like member 32 is a steel plate with respect to the radial deformation amount ubfilm, film of the air diffuser hole 32a of the resin film-made plate-like member 32. The ratio of the amount of deformation u bfilm, sus + film in the radial direction of the air diffuser 32a at the center of the resin film plate member 32 in the air diffuser 24 formed by adhering to the plate member 30 with an adhesive 34 or the like Is substantially inversely proportional to the ratio E sus / E film of the longitudinal elastic modulus of the steel plate member 30 to the longitudinal elastic modulus of the resin film plate member 32, as shown in Equation (23). Further, the maximum deflection amount w sus, max in the air diffuser 24 formed by adhering the resin film plate member 32 to the steel plate plate member 30 is as shown in Equation (16). It is inversely proportional to the longitudinal elastic modulus E sus of 30.

前述の通り、ステンレス鋼板の縦弾性係数Eは200GPa程度で、ポリウレタン樹脂膜の縦弾性係数Eは3GPa程度であり、例えばポリウレタン樹脂膜からなる樹脂膜製板状部材32の厚さを0.5mmとし、ステンレス鋼板製の鋼板製板状部材30の厚さを樹脂膜製板状部材32の厚さの2倍で1.0mmとした場合には、樹脂膜製板状部材32を鋼板製板状部材30に接着剤34等で貼り付けた散気部24における樹脂膜製板状部材32の中心にある散気孔32aの半径方向変形量ubfilm,sus+filmは、樹脂膜製板状部材32だけの場合の222.3分の1程度に小さくすることが可能である。 As described above, the vertical elasticity coefficient E S about 200GPa stainless steel, longitudinal elastic modulus E P of the polyurethane resin film is about 3 GPa, for example the thickness of the resin film made plate member 32 made of a polyurethane resin film 0 When the thickness of the plate member 30 made of stainless steel plate is 1.0 mm, which is twice the thickness of the plate member 32 made of resin film, the plate member 32 made of steel plate is made of steel plate. The amount of deformation ubfilm, sus + film in the radial direction of the air diffuser 32a at the center of the resin film plate member 32 in the air diffuser 24 attached to the plate member 30 with an adhesive 34 or the like is the resin film plate. It is possible to reduce the size to about 1 / 2.23 / 3 of the case of the shape member 32 alone.

ここで、上記の鋼板製板状部材30に対応する多数の散気孔30aの開いた縦弾性係数の大きい板状部材として、縦弾性係数が50GPa以上の材料を用いれば、散気孔の半径方向変形量を散気部が樹脂膜製板状部材だけで構成されている場合の50分の1程度に小さくすることができる。また、散気部の最大撓み量wsus,maxを0.3mm程度以下に収めることができるため、該散気部を備えた複数の散気装置を散気部の散気面が互いに平行になるように近接して並べることが可能である。 Here, when a material having a longitudinal elastic modulus of 50 GPa or more is used as a plate-like member having a large longitudinal elastic coefficient having a large number of diffused holes 30a corresponding to the steel sheet plate-shaped member 30 described above, radial deformation of the diffused holes is performed. The amount can be reduced to about 1/50 of the case where the air diffuser is composed of only a resin film plate member. In addition, since the maximum deflection amount w sus, max of the air diffuser can be kept to about 0.3 mm or less, the air diffuser surfaces of the air diffuser are arranged in parallel with each other. It is possible to arrange them as close as possible.

上記鋼板製板状部材30に対応する縦弾性係数が大きい板状部材をリブなどの補強部材で補強しても樹脂膜製板状部材32の散気孔32aの変形量を小さい値に維持できる。従って、発生する気泡の径も小さい値に維持できる。   Even if the plate-like member having a large longitudinal elastic coefficient corresponding to the steel plate-like plate member 30 is reinforced with a reinforcing member such as a rib, the deformation amount of the air diffusion holes 32a of the resin film-made plate-like member 32 can be maintained at a small value. Therefore, the diameter of the generated bubbles can be maintained at a small value.

これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and it goes without saying that the present invention may be implemented in various forms within the scope of the technical idea.

10 液体通路(液体用管路)
12,12a 散気装置
14,14a 散気部本体
16,16a 気体室
18 気体流入管
20,20a 開口部
22,22a 外殻
24 散気部
30 鋼板製板状部材
30a 散気孔
32 樹脂膜製板状部材
32a 散気孔
34 接着剤
36 シールドパッキン
40 散気槽
42 ポンプ
44 液体用配管
46 ノズル
48 液体流形成装置
50 散気孔
52 板
54 気泡
10 Liquid passage (pipe for liquid)
12, 12a Air diffuser 14, 14a Air diffuser body 16, 16a Gas chamber 18 Gas inflow pipe 20, 20a Opening portion 22, 22a Outer shell 24 Air diffuser 30 Steel plate plate member 30a Air diffuser 32 Resin film plate Shaped member 32a Aeration hole 34 Adhesive 36 Shield packing 40 Aeration tank 42 Pump 44 Liquid piping 46 Nozzle 48 Liquid flow forming device 50 Aeration hole 52 Plate 54 Bubble

Claims (6)

気体室と、該気体室へ気体を流入させる気体流入管と、流入した気体を気体室から外部の液体中へ気泡として散気して流出させる散気部とを備えた散気装置であって、
前記散気部は、内部に多数の散気孔をそれぞれ有し縦弾性係数が異なる材料からなる少なくとも2枚の板状部材を該散気孔を互いに連通させつつ積層して構成され、縦弾性係数が大きい材料からなる一方の板状部材に設けられた前記散気孔の孔径は、縦弾性係数が小さい材料からなる他方の板状部材に設けられた前記散気孔の孔径より大きいことを特徴とする散気装置。
An air diffuser comprising: a gas chamber; a gas inflow pipe that allows gas to flow into the gas chamber; and an air diffuser that diffuses the inflowed gas as bubbles from the gas chamber into an external liquid. ,
The air diffuser is formed by laminating at least two plate-like members made of materials each having a large number of air diffuser holes and having different longitudinal elastic modulus, with the air diffuser communicating with each other. A hole diameter of the air diffusion hole provided in one plate-shaped member made of a large material is larger than a hole diameter of the air diffusion hole provided in the other plate-shaped member made of a material having a small longitudinal elastic coefficient. Qi device.
前記一方の板状部材は縦弾性係数が50GPa以上の材料からなり、前記他方の板状部材は樹脂膜からなり、前記一方の板状部材の板厚は、前記他方の板状部材の板厚よりも厚いことを特徴とする請求項1記載の散気装置。   The one plate-like member is made of a material having a longitudinal elastic modulus of 50 GPa or more, the other plate-like member is made of a resin film, and the plate thickness of the one plate-like member is the plate thickness of the other plate-like member. The diffuser according to claim 1, wherein the diffuser is thicker. 前記一方の板状部材は前記気体室側に、前記他方の板状部材は外部の液体と接する側にそれぞれ配置されていることを特徴とする請求項1または2に記載の散気装置。   3. The air diffuser according to claim 1, wherein the one plate-like member is arranged on the gas chamber side, and the other plate-like member is arranged on the side in contact with an external liquid. 前記一方の板状部材に設けられた散気孔の孔径は、0.5〜2mmで、前記他方の板状部材に設けられた散気孔の孔径は、30μm以下であることを特徴とする請求項1乃至3のいずれか一項に記載に散気装置。   The hole diameter of the air holes provided in the one plate-shaped member is 0.5 to 2 mm, and the hole diameter of the air holes provided in the other plate-shaped member is 30 μm or less. The air diffuser according to any one of claims 1 to 3. 請求項1乃至4のいずれか一項に記載の散気装置を複数備え、前記散気装置の散気部を互いに平行にして該散気装置を液体通路中に設置したことを特徴とする気泡発生装置。   An air bubble comprising a plurality of the air diffusers according to any one of claims 1 to 4, wherein the air diffusers are installed in a liquid passage so that the air diffusers of the air diffuser are parallel to each other. Generator. 散気槽内の液体中に浸漬させて配置された請求項1乃至3のいずれか一項に記載の散気装置と、
前記散気装置の散気部表面に沿って前記散気槽内の液体の流れを形成する液体流形成装置とを備えたことを特徴とする気泡発生装置。
The air diffuser according to any one of claims 1 to 3, which is disposed so as to be immersed in the liquid in the air diffuser.
A bubble generating device comprising: a liquid flow forming device that forms a flow of liquid in the air diffusion tank along the surface of the air diffusion portion of the air diffusion device.
JP2009040221A 2009-02-24 2009-02-24 Air diffuser and bubble generator Pending JP2010194425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009040221A JP2010194425A (en) 2009-02-24 2009-02-24 Air diffuser and bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040221A JP2010194425A (en) 2009-02-24 2009-02-24 Air diffuser and bubble generator

Publications (1)

Publication Number Publication Date
JP2010194425A true JP2010194425A (en) 2010-09-09

Family

ID=42819726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040221A Pending JP2010194425A (en) 2009-02-24 2009-02-24 Air diffuser and bubble generator

Country Status (1)

Country Link
JP (1) JP2010194425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081481A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Diffuser tube
WO2012081632A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Aeration/mixing device
CN111499014B (en) * 2020-04-27 2021-01-05 南京钛净流体技术有限公司 Method for aerating by using oxygen-enriched ceramic membrane aeration device
JP2021172367A (en) * 2020-04-23 2021-11-01 トキコシステムソリューションズ株式会社 Liquid fuel supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081481A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Diffuser tube
WO2012081632A1 (en) * 2010-12-15 2012-06-21 メタウォーター株式会社 Aeration/mixing device
JP2012125692A (en) * 2010-12-15 2012-07-05 Metawater Co Ltd Diffuser tube
JP2021172367A (en) * 2020-04-23 2021-11-01 トキコシステムソリューションズ株式会社 Liquid fuel supply device
CN111499014B (en) * 2020-04-27 2021-01-05 南京钛净流体技术有限公司 Method for aerating by using oxygen-enriched ceramic membrane aeration device

Similar Documents

Publication Publication Date Title
Rehman et al. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
TWI638681B (en) Hollow fiber membrane module and cleaning method thereof
EA036231B1 (en) Nano-bubble generator and method of generating nano-bubbles
JP2008149209A (en) Fine air bubble producer and fine air bubble supply system
CZ103895A3 (en) Apparatus for dissolving gases in liquids
JP2007000843A (en) Apparatus for generating fine bubble
JP2010194425A (en) Air diffuser and bubble generator
JP2013034958A (en) Nanobubble producing apparatus
KR101406268B1 (en) Tiny bubble generator
JP2007000848A (en) Method for generating fine bubble
JP2011183328A (en) Aerator
Lee et al. Experimental study on breakup mechanism of microbubble in 2D channel
JP2002301345A (en) Bubble water manufacturing apparatus
JP4743162B2 (en) Diffuser and diffuser
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
US11110414B2 (en) Bubble generation device, tubular member, bubble generation method, and method for manufacturing bubble generation device
JP2010201400A (en) Gas diffuser and bubble generator
JP6646300B2 (en) Bubble generator for sewage purification and sewage purification method
JP2009226328A (en) Gas dissolving vessel
JP2005052683A (en) Apparatus for mixing two fluids
JP2018130653A5 (en)
JP2012161791A (en) Membrane separation equipment, membrane separation device and method for operating membrane separation equipment
JP2013017948A (en) Apparatus and method for agitating fluid
JP2010029774A (en) Fine bubble generating apparatus