JP2013033948A - Ultraviolet light radiation apparatus - Google Patents

Ultraviolet light radiation apparatus Download PDF

Info

Publication number
JP2013033948A
JP2013033948A JP2012142734A JP2012142734A JP2013033948A JP 2013033948 A JP2013033948 A JP 2013033948A JP 2012142734 A JP2012142734 A JP 2012142734A JP 2012142734 A JP2012142734 A JP 2012142734A JP 2013033948 A JP2013033948 A JP 2013033948A
Authority
JP
Japan
Prior art keywords
gas
casing
ultraviolet lamp
ultraviolet
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012142734A
Other languages
Japanese (ja)
Inventor
Takeshi Katagiri
毅 片桐
Kazunori Hiroi
和則 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012142734A priority Critical patent/JP2013033948A/en
Publication of JP2013033948A publication Critical patent/JP2013033948A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the replacement efficiency of a gas in a casing housing an ultraviolet lamp and thereby shortening the gas replacement time and reducing the usage of the gas in the replacement.SOLUTION: An ultraviolet light radiation apparatus comprises: an ultraviolet lamp 2 radiating ultraviolet light to a workpiece W; a casing 3 housing the ultraviolet lamp 2 and having an opening 31 that opens with facing the workpiece W; and a gas supply mechanism 4 supplying a gas to the interior of the casing 3. A circulation guide surface 3x used for circulating the gas that is supplied by the gas supply mechanism 4 around the ultraviolet lamp 2 in one direction is provided on an inner surface or an internal space of the casing 3.

Description

本発明は、紫外線照射装置に関するものである。   The present invention relates to an ultraviolet irradiation device.

従来、基板等のワークの表面を清浄化するために、ワークの表面に紫外線を照射して表面上の有機物を酸化分解する紫外線照射装置が用いられている。   Conventionally, in order to clean the surface of a workpiece such as a substrate, an ultraviolet irradiation device that irradiates the surface of the workpiece with ultraviolet rays to oxidatively decompose organic substances on the surface has been used.

ここで、紫外線ランプから射出される例えば波長172nmの紫外線は、雰囲気中の酸素分子に吸収されてしまう。具体的には波長172nmの紫外線は、大気中で2mm進むだけで30%〜40%程度に減衰してしまう。このため、特許文献1や特許文献2等に示すように、紫外線ランプを収容するケーシング(ランプハウス)内に例えば窒素(N)ガス等の不活性ガスを充満させるとともに、紫外線ランプとワークとの間を不活性ガスで充満させている。このように紫外線ランプの周囲雰囲気を不活性ガスで充満させることで、紫外線ランプから射出された紫外線の減衰を防止して、ワークへの紫外線の照射効率を向上させることによってワークの洗浄効率の向上を図っている。 Here, for example, ultraviolet light having a wavelength of 172 nm emitted from the ultraviolet lamp is absorbed by oxygen molecules in the atmosphere. Specifically, ultraviolet light having a wavelength of 172 nm is attenuated to about 30% to 40% only by traveling 2 mm in the atmosphere. Therefore, as shown in Patent Documents 1 and 2 or the like, a casing for accommodating the ultraviolet lamp (lamp house) in the example nitrogen (N 2) with is filled with an inert gas such as a gas, and the ultraviolet lamp and the workpiece It is filled with an inert gas. By filling the ambient atmosphere of the UV lamp with inert gas in this way, the UV radiation emitted from the UV lamp is prevented from being attenuated, and the efficiency of UV irradiation on the work is improved. I am trying.

しかしながら、上記の特許文献1や特許文献2に示すものでは、概略直方体形状をなすケーシングの上面から下方向に不活性ガスを供給する、あるいは、ランプハウスの側面から横方向に不活性ガスを供給するため、ランプハウス内の不活性ガス置換に時間がかかってしまうという問題がある。また、ランプハウス内の角部に滞留したガスが置換されにくいだけでなく、紫外線ランプにおける不活性ガス導入口とは反対側の空間でガス置換が起こりにくく、置換が終了するまでに使用する不活性ガスの供給量も増えてしまうという問題がある。   However, in the above-described Patent Document 1 and Patent Document 2, the inert gas is supplied downward from the upper surface of the substantially rectangular parallelepiped casing, or the inert gas is supplied laterally from the side surface of the lamp house. Therefore, there is a problem that it takes time to replace the inert gas in the lamp house. Further, not only is the gas staying in the corners of the lamp house difficult to replace, but gas replacement is unlikely to occur in the space on the opposite side of the inert gas inlet in the ultraviolet lamp, and it is not used until the replacement is completed. There is a problem that the supply amount of the active gas also increases.

また、ケーシング内を不活性雰囲気にするためには、ケーシングの紫外線照射側に設けた開口部を光透過窓で密閉する必要があるし、光透過窓とワークの間の空間を不活性ガス雰囲気にするために、第2のガス供給機構を設けたり、光透過窓とケーシングの間に隙間を設けて、ケーシング内のガスをワーク側へ導入する機構を設ける必要があり、部品点数が多くなるという問題もある。   Moreover, in order to make the inside of the casing an inert atmosphere, it is necessary to seal the opening provided on the ultraviolet irradiation side of the casing with a light transmission window, and the space between the light transmission window and the workpiece is an inert gas atmosphere. Therefore, it is necessary to provide a second gas supply mechanism, or to provide a mechanism for introducing a gas in the casing to the workpiece side by providing a gap between the light transmission window and the casing, which increases the number of parts. There is also a problem.

特開2009−268974号公報JP 2009-268974 A 特開2010−125368号公報JP 2010-125368 A

そこで本発明は、上記問題点を一挙に解決すべくなされたものであって、紫外線ランプを収容するケーシング内のガスの置換効率を向上させることにより、ガスの置換時間を短縮するとともに、当該置換におけるガスの使用量を低減することをその主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above problems all at once, and by improving the gas replacement efficiency in the casing housing the ultraviolet lamp, the gas replacement time is shortened and the replacement is performed. Reducing the amount of gas used in this is the main desired issue.

すなわち本発明に係る紫外線照射装置は、ワークに紫外線を照射する紫外線ランプと、前記紫外線ランプを収容し、前記ワークに対向して開口する開口部を有するケーシングと、前記ケーシング内にガスを供給するガス供給機構とを備え、前記ケーシングの内面又は内部空間に、前記ガス供給機構により供給されたガスを前記紫外線ランプの周囲を一方向に循環させるための循環案内面が設けられていることを特徴とする。   That is, an ultraviolet irradiation device according to the present invention includes an ultraviolet lamp that irradiates a workpiece with ultraviolet rays, a casing that accommodates the ultraviolet lamp and has an opening that faces the workpiece, and supplies gas into the casing. And a circulation guide surface for circulating the gas supplied by the gas supply mechanism in one direction around the ultraviolet lamp in the inner surface or internal space of the casing. And

このような紫外線照射装置であれば、ガス供給機構により供給されたガスがケーシングの内面又は内部空間に設けられた循環案内面に沿って紫外線ランプの周囲を一方向に循環することになるので、ケーシング内のガスの置換効率を向上させることができる。これによって、ケーシング内のガスの置換時間を短縮することができるとともに、ガスの使用量を低減することができる。ガスの使用量を低減できることから、紫外線照射装置のランニングコストのうち3分の1〜2分の1を占めるといわれるガスのコストを削減することができる。   With such an ultraviolet irradiation device, the gas supplied by the gas supply mechanism circulates around the ultraviolet lamp in one direction along the circulation guide surface provided in the inner surface or internal space of the casing. The replacement efficiency of the gas in the casing can be improved. As a result, the replacement time of the gas in the casing can be shortened, and the amount of gas used can be reduced. Since the amount of gas used can be reduced, the cost of gas, which is said to account for one third to one half of the running cost of the ultraviolet irradiation device, can be reduced.

また、本発明の紫外線照射装置は、ガスを紫外線ランプの周囲に循環させることから、紫外線ランプとワークとの間の空間(紫外線ランプの紫外線照射側の空間)のガスの置換効率を向上させることができる。これにより、紫外線ランプとワークとの距離を大きくすることができ、1つの紫外線ランプによるワーク照射範囲を可及的に大きくすることができる。   Moreover, since the ultraviolet irradiation device of the present invention circulates the gas around the ultraviolet lamp, it improves the gas replacement efficiency in the space between the ultraviolet lamp and the workpiece (the space on the ultraviolet irradiation side of the ultraviolet lamp). Can do. Thereby, the distance of an ultraviolet lamp and a workpiece | work can be enlarged, and the workpiece irradiation range by one ultraviolet lamp can be enlarged as much as possible.

さらに、本発明の紫外線照射装置は、ガスを紫外線ランプの周囲を循環させることで、紫外線ランプへの白粉の付着を防止することもできる。なお、この白粉は、紫外線ランプの雰囲気中に有機溶剤、酸、アルカリ等の各種薬品が気化、霧化して浮遊している場合に、それが紫外線を受けて硫酸アンモニウム等の反応生成物を生じ、紫外線ランプに付着して生じる他、照射中のワークから発生する飛散物がランプに接触して再結晶化して生じる。この白粉により、紫外線の透過が阻害されて紫外線強度が低下する、白粉が紫外線ランプから剥がれ落ちて、ワークを汚染するという問題が生じる。   Furthermore, the ultraviolet irradiation device of the present invention can prevent white powder from adhering to the ultraviolet lamp by circulating gas around the ultraviolet lamp. In addition, when various chemicals such as organic solvents, acids, and alkalis are vaporized and atomized in the atmosphere of the ultraviolet lamp, this white powder is subjected to ultraviolet rays to generate a reaction product such as ammonium sulfate. In addition to adhering to the ultraviolet lamp, scattered matter generated from the workpiece being irradiated comes into contact with the lamp and recrystallizes. Due to the white powder, the transmission of ultraviolet rays is hindered to lower the ultraviolet intensity, and the white powder is peeled off from the ultraviolet lamp and contaminates the workpiece.

前記ガス供給機構によるガス供給方向に沿った仮想線と、当該仮想線及び前記ケーシングの内面又は前記循環案内面の交点における接線とのなす角度が鋭角であることが望ましい。これならば、ガス供給機構により供給されたガスがケーシングの内面又は循環案内面に当たった後に、当該内面又は循環案内面に沿って流れ、紫外線ランプの周囲を一方向に循環し易くなる。したがって、ケーシング内のガスの置換効率、ガスの置換時間の短縮効果、及びガスの使用量の低減効果を高めることができる。   It is desirable that an angle formed by an imaginary line along the gas supply direction by the gas supply mechanism and a tangent line at the intersection of the imaginary line and the inner surface of the casing or the circulation guide surface is an acute angle. In this case, after the gas supplied by the gas supply mechanism hits the inner surface or the circulation guide surface of the casing, the gas flows along the inner surface or the circulation guide surface and easily circulates around the ultraviolet lamp in one direction. Accordingly, the gas replacement efficiency in the casing, the effect of shortening the gas replacement time, and the effect of reducing the amount of gas used can be enhanced.

前記ガス供給機構が、前記ケーシング内に形成されるガスの循環方向と同一方向に前記ガスを供給するものであることが望ましい。これならば、ガス供給機構により供給されたガスが、循環案内面に沿って紫外線ランプの周囲を一方向にさらに循環し易くなり、ケーシング内のガスの置換効率、ガスの置換時間の短縮効果、及びガスの使用量の低減効果をさらに高めることができる。   It is preferable that the gas supply mechanism supplies the gas in the same direction as the circulation direction of the gas formed in the casing. If this is the case, the gas supplied by the gas supply mechanism is more easily circulated around the ultraviolet lamp in one direction along the circulation guide surface, the gas replacement efficiency in the casing, the effect of shortening the gas replacement time, In addition, the effect of reducing the amount of gas used can be further enhanced.

前記循環案内面における前記ケーシングの長手方向に垂直な断面が、概略部分円形状、概略部分長円形状、概略部分楕円形状又は角部が円弧状をなす概略部分矩形状をなすことが望ましい。これならば、紫外線ランプの周囲にガスを循環させることができ、ケーシング内のガスの置換効率を向上させて、ガスの置換時間を短縮するとともに、当該置換におけるガスの使用量を低減することができる。ケーシングの内面が概略部分円形状又は概略部分楕円形状の場合には、その内面全体が循環案内面となり、概略部分長円形状(概略部分トラック形状)の場合には、その両側の円弧部が循環案内面となり、角部が円弧状をなす概略部分矩形状の場合には、その角部の円弧部が循環案内面となる。   It is desirable that a cross section perpendicular to the longitudinal direction of the casing on the circulation guide surface has an approximately partial circular shape, an approximately partial oval shape, an approximately partial elliptical shape, or an approximately partial rectangular shape in which corners form an arc shape. If this is the case, the gas can be circulated around the ultraviolet lamp, the gas replacement efficiency in the casing can be improved, the gas replacement time can be shortened, and the amount of gas used in the replacement can be reduced. it can. When the inner surface of the casing is approximately partially circular or approximately elliptical, the entire inner surface is a circulation guide surface. When the casing is approximately elliptical (approximately partial track shape), the arcs on both sides circulate. In the case of a substantially partial rectangular shape with corners forming arcuate shapes, the arcuate portions of the corners become circulation guide surfaces.

前記紫外線ランプが、長尺円筒形状をなすものであり、前記ケーシングが、前記紫外線ランプを収容する長尺筒形状をなすとともに、前記紫外線ランプの長手方向に沿った開口部を有するものが望ましい。これならば、紫外線ランプが円筒形状であるため、その軸方向周りの周囲にガスを循環させ易くなり、さらにケーシング内のガスの置換効率を向上させることができる。   It is desirable that the ultraviolet lamp has a long cylindrical shape, and the casing has a long cylindrical shape for accommodating the ultraviolet lamp and has an opening along the longitudinal direction of the ultraviolet lamp. In this case, since the ultraviolet lamp has a cylindrical shape, the gas can be easily circulated around the axial direction, and the replacement efficiency of the gas in the casing can be improved.

前記ガス供給機構が、前記ケーシングの長手方向略全体に亘って、前記ケーシング内にガスを供給するものであることが望ましい。これならば、長尺円筒形状をなす紫外線ランプを収容するケーシングにおいては、当該紫外線ランプの周囲を効率よくガスで充填させることができる。 It is desirable that the gas supply mechanism supplies gas into the casing over substantially the entire longitudinal direction of the casing. In this case, in the casing that accommodates the ultraviolet lamp having a long cylindrical shape, the periphery of the ultraviolet lamp can be efficiently filled with gas.

前記ガス供給機構が、前記ケーシングの上部において、前記ケーシング内に形成されるガスの循環方向と同一方向にガスを供給する第1の供給部と、前記ケーシングの開口部において、前記第1の供給部により供給されたガスの循環方向と同一方向にガスを供給する第2の供給部とを有することが望ましい。特に、第2供給部が、紫外線ランプとワークとの間の空間に向かって、第1供給部により供給されたガスの循環方向と同一方向にガスを供給するものであることが望ましい。これならば、紫外線ランプの上側と下側との両方からガスを供給することになるので、紫外線ランプ周囲のガスの循環を効率よく行うことができ、ガスの置換効率を向上させることができる。   In the upper part of the casing, the gas supply mechanism supplies a gas in the same direction as a gas circulation direction formed in the casing, and the first supply in the opening of the casing. It is desirable to have the 2nd supply part which supplies gas in the same direction as the circulation direction of the gas supplied by the part. In particular, it is desirable that the second supply unit supplies gas in the same direction as the circulation direction of the gas supplied by the first supply unit toward the space between the ultraviolet lamp and the workpiece. In this case, since the gas is supplied from both the upper side and the lower side of the ultraviolet lamp, the gas around the ultraviolet lamp can be circulated efficiently, and the gas replacement efficiency can be improved.

前記ガス供給機構により供給されたガスの循環方向が、前記ワークの搬送方向に沿った方向であることが望ましい。このように循環方向と搬送方向とを揃えることによって、ワークの搬送によってガスの循環が乱されることが無く、より一層ガスの循環を促進させることができる。   It is desirable that the circulation direction of the gas supplied by the gas supply mechanism is a direction along the conveyance direction of the workpiece. By aligning the circulation direction and the conveyance direction in this way, the circulation of the gas is not disturbed by the conveyance of the workpiece, and the circulation of the gas can be further promoted.

紫外線ランプのワーク照射領域を可及的に大きくする場合には、紫外線ランプとワークとの距離を大きくすることが考えられる。このとき、ケーシングの開口部が、紫外線ランプの紫外線照射範囲を遮らないように形成するとともに、紫外線ランプ及びケーシングとワークとの距離を大きくすることが考えられる。このとき、ケーシングとワークとの間の空間におけるガスの置換が難しくなる。このため、ケーシングの開口部からワーク側に延設されて、前記紫外線ランプの紫外線照射範囲を遮らないように前記ワークを覆うカバー部を有することが望ましい。   In order to increase the work irradiation area of the ultraviolet lamp as much as possible, it is conceivable to increase the distance between the ultraviolet lamp and the work. At this time, it is conceivable that the opening of the casing is formed so as not to block the ultraviolet irradiation range of the ultraviolet lamp, and the distance between the ultraviolet lamp and the casing and the workpiece is increased. At this time, it is difficult to replace the gas in the space between the casing and the workpiece. For this reason, it is desirable to have the cover part extended from the opening part of a casing to the workpiece | work side, and covering the said workpiece | work so that the ultraviolet irradiation range of the said ultraviolet lamp may not be interrupted.

また、ガス供給機構がケーシング内に供給するガスとしては、不活性ガス又はプロセスガスであることが考えられる。ここで、プロセスガスとは、紫外線の吸収を抑えるとともに、ワークの処理を効率的に行うためのガスであり、例えば窒素ガス等の不活性ガスと酸素ガス等との混合ガスである。   The gas supplied by the gas supply mechanism into the casing may be an inert gas or a process gas. Here, the process gas is a gas for suppressing the absorption of ultraviolet rays and efficiently processing the workpiece, and is, for example, a mixed gas of an inert gas such as nitrogen gas and oxygen gas.

このように構成した本発明によれば、紫外線ランプを収容するケーシング内のガスの置換効率を向上させることにより、ガスの置換時間を短縮するとともに、当該置換におけるガスの使用量を低減することができる。   According to the present invention configured as described above, it is possible to shorten the gas replacement time and reduce the amount of gas used in the replacement by improving the replacement efficiency of the gas in the casing housing the ultraviolet lamp. it can.

本実施形態の紫外線照射装置を示す斜視図。The perspective view which shows the ultraviolet irradiation device of this embodiment. 同実施形態の紫外線照射装置を示す断面図。Sectional drawing which shows the ultraviolet irradiation device of the embodiment. 置換開始後10秒後のシミュレーション結果を示す図。The figure which shows the simulation result 10 seconds after the start of substitution. 基板搬送後のシミュレーション結果を示す図。The figure which shows the simulation result after board | substrate conveyance. 変形実施形態に係る紫外線照射装置の断面図。Sectional drawing of the ultraviolet irradiation device which concerns on deformation | transformation embodiment. ケーシングの第1変形例を示す断面図。Sectional drawing which shows the 1st modification of a casing. ケーシングの第2変形例を示す断面図。Sectional drawing which shows the 2nd modification of a casing. ケーシングの第3変形例を示す断面図。Sectional drawing which shows the 3rd modification of a casing. ケーシングの第4変形例を示す断面図。Sectional drawing which shows the 4th modification of a casing. 変形実施形態の紫外線照射装置を示す断面図。Sectional drawing which shows the ultraviolet irradiation device of deformation | transformation embodiment.

以下に本発明に係る紫外線照射装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an ultraviolet irradiation device according to the present invention will be described with reference to the drawings.

本実施形態に係る紫外線照射装置100は、液晶ディスプレイ用のガラス基板や半導体装置用の半導体基板等のワークWに紫外線を照射して、ワークWの表面を洗浄する基板洗浄装置に用いられるものである。   The ultraviolet irradiation apparatus 100 according to the present embodiment is used for a substrate cleaning apparatus that irradiates a workpiece W such as a glass substrate for a liquid crystal display or a semiconductor substrate for a semiconductor device with ultraviolet rays to clean the surface of the workpiece W. is there.

具体的にこの紫外線照射装置100は、図1及び図2に示すように、下方に設けられたワークWに対して紫外線を照射する紫外線ランプ2と、この紫外線ランプ2を収容し、ワークWに対向して下方に開口する開口部31を有するケーシング3と、このケーシング3の内面に沿ってケーシング3内に窒素(N)ガス等の不活性ガスを供給するガス供給機構4とを備える。なお、ワークWは、図示しない搬送機構によって、紫外線照射装置100の下方を、図1の矢印S(紫外線照射装置100の長手方向に直交する方向、図2では紙面左から右の方向)に沿って搬送される。 Specifically, as shown in FIGS. 1 and 2, the ultraviolet irradiation device 100 accommodates the ultraviolet lamp 2 that irradiates ultraviolet rays onto the workpiece W provided below, and the ultraviolet lamp 2. A casing 3 having an opening 31 facing downwards and a gas supply mechanism 4 for supplying an inert gas such as nitrogen (N 2 ) gas into the casing 3 along the inner surface of the casing 3 is provided. In addition, the workpiece | work W is below the ultraviolet irradiation device 100 by the conveyance mechanism which is not shown in figure along the arrow S of FIG. 1 (direction orthogonal to the longitudinal direction of the ultraviolet irradiation device 100, the left to right direction in FIG. 2). Are transported.

紫外線ランプ2は、例えば波長172nmの真空紫外線を射出するエキシマランプである。具体的にこの紫外線ランプ2は、図1に示すように、長尺円筒形状をなすものであり、図2に示すように、合成石英ガラス製の軸方向に直交する断面が円形状をなす密閉容器内に例えばキセノン(Xe)ガス等の放電用ガスが充填されており、軸方向から見て左右一対の対向面に、金属薄膜からなる帯状の電極21、22を設けられている。また、紫外線ランプ2は、その両端部がケーシング3内部に設けられた保持体5の貫通孔(不図示)に嵌入されて保持されるとともに、当該保持体5を介して電圧が印加されて点灯し、対をなす帯状の電極21、22の間から上下に紫外線を射出する。なお、対をなす帯状の電極21、22の間から下方向に射出される紫外線がワークWに照射される。また、紫外線ランプ2から照射された紫外線を有効に用いるために、紫外線ランプ2の内面上側又は外面上側に、紫外線を反射する層を設けても良い。   The ultraviolet lamp 2 is an excimer lamp that emits vacuum ultraviolet light having a wavelength of 172 nm, for example. Specifically, the ultraviolet lamp 2 has a long cylindrical shape as shown in FIG. 1, and a hermetically sealed cross section perpendicular to the axial direction made of synthetic quartz glass as shown in FIG. The container is filled with a discharge gas such as xenon (Xe) gas, for example, and strip-like electrodes 21 and 22 made of a metal thin film are provided on a pair of left and right opposing surfaces as viewed in the axial direction. In addition, the ultraviolet lamp 2 is held by fitting both ends thereof into through holes (not shown) of a holding body 5 provided inside the casing 3, and a voltage is applied via the holding body 5. Then, ultraviolet rays are emitted vertically between the pair of strip-like electrodes 21 and 22. In addition, the workpiece | work W is irradiated with the ultraviolet-ray inject | emitted below from between the strip | belt-shaped electrodes 21 and 22 which make a pair. In order to effectively use the ultraviolet rays emitted from the ultraviolet lamp 2, a layer that reflects the ultraviolet rays may be provided on the inner surface upper side or the outer surface upper side of the ultraviolet lamp 2.

ケーシング3は、長尺筒形状をなすものであり、その内部に、ケーシング3の軸方向(長手方向)と紫外線ランプ2の軸方向(長手方向)が平行となるように、紫外線ランプ2を収容する。また、ケーシング3の下方に形成された開口部31は、紫外線ランプ2の軸方向に沿って形成されており、軸方向から見て紫外線ランプ2の紫外線照射範囲Aを遮らないように形成されている。なお、紫外線ランプ2の紫外線照射範囲Aは、図2に示すように、対をなす帯状の電極21、22の下端と紫外線ランプ2の中心とを結ぶ角を中心角とする範囲である。   The casing 3 has a long cylindrical shape, and the ultraviolet lamp 2 is accommodated therein so that the axial direction (longitudinal direction) of the casing 3 and the axial direction (longitudinal direction) of the ultraviolet lamp 2 are parallel to each other. To do. The opening 31 formed below the casing 3 is formed along the axial direction of the ultraviolet lamp 2, and is formed so as not to block the ultraviolet irradiation range A of the ultraviolet lamp 2 when viewed from the axial direction. Yes. In addition, the ultraviolet irradiation range A of the ultraviolet lamp 2 is a range having a central angle at an angle connecting the lower ends of the pair of strip-like electrodes 21 and 22 and the center of the ultraviolet lamp 2 as shown in FIG.

そして、ケーシング3の内面は、ガス供給機構4により供給された不活性ガスを紫外線ランプ2の周囲を一方向に循環させるための循環案内面3xを有するように構成している。より詳細には、図2に示すように、ケーシング3の内面の長手方向に垂直な断面が、左右両端に部分円弧部3a、3bを有する概略部分長円形状(概略部分トラック形状)をなすものであり、この左右両端の部分円弧部3a、3bが循環案内面3xとして機能する。このようにケーシング3の内面は、長手方向に垂直な断面において、不活性ガスが滞留するような角部の無い滑らかな構造としている。   The inner surface of the casing 3 is configured to have a circulation guide surface 3x for circulating the inert gas supplied by the gas supply mechanism 4 around the ultraviolet lamp 2 in one direction. More specifically, as shown in FIG. 2, the cross section perpendicular to the longitudinal direction of the inner surface of the casing 3 forms a substantially partial oval shape (schematic partial track shape) having partial arc portions 3a and 3b on both left and right ends. The partial arc portions 3a and 3b at the left and right ends function as the circulation guide surface 3x. Thus, the inner surface of the casing 3 has a smooth structure with no corners where the inert gas stays in a cross section perpendicular to the longitudinal direction.

また、このケーシング3の開口部31からワークW側に延設されて、紫外線ランプ2の紫外線照射範囲Aを遮らないようにワークWを覆うカバー部32a、32bを有する。このカバー部32a、32bは、開口部31から左右それぞれにおいて外側に広がるように形成されおり、紫外線ランプ2とワークWとの距離を大きくした場合に生じるワークW上の開放空間を覆うことで、紫外線照射範囲A全体が不活性ガスに置換されるようにするものである。なお、このカバー部32a、32bとワークWとの間隙から、ワークWの処理に必要な少量の酸素が、ワークWの搬送に伴って、ケーシング3内に流入する。   Moreover, it has the cover parts 32a and 32b extended from the opening part 31 of this casing 3 to the workpiece | work W side, and covering the workpiece | work W so that the ultraviolet irradiation range A of the ultraviolet lamp 2 may not be interrupted. The cover portions 32a and 32b are formed so as to spread outward from the left and right sides of the opening portion 31, and cover the open space on the workpiece W that occurs when the distance between the ultraviolet lamp 2 and the workpiece W is increased. The entire ultraviolet irradiation range A is replaced with an inert gas. A small amount of oxygen necessary for processing the workpiece W flows into the casing 3 as the workpiece W is conveyed from the gap between the cover portions 32a and 32b and the workpiece W.

ガス供給機構4は、ケーシング3の上部において、ケーシング3の長手方向全体に亘って、ケーシング3の内面に沿って不活性ガスを供給するものである。つまり、ケーシング3の長手方向に垂直な断面において、ガス供給機構4によるガス供給方向に沿った仮想線L1と、当該仮想線L1及びケーシング3の内面の交点Xにおける接線L2とのなす角度θが鋭角とされており、ガス供給機構4が、ケーシング3内に形成される不活性ガスの循環方向R(後述)と同一方向に不活性ガスを供給するものである。具体的にガス供給機構4は、ケーシング3の一方(図2では右側)の部分円弧部3bに設けられて、当該部分円弧部3bの内面の接線方向に沿って不活性ガスをケーシング3内に供給するものであり、部分円弧部3bに接続されるとともに部分円弧部3bの内面にて開口するガス導入部411と、このガス導入部411に不活性ガスを供給するガス供給配管412とを有する。   The gas supply mechanism 4 supplies an inert gas along the inner surface of the casing 3 over the entire longitudinal direction of the casing 3 in the upper part of the casing 3. That is, in the cross section perpendicular to the longitudinal direction of the casing 3, the angle θ formed by the imaginary line L1 along the gas supply direction by the gas supply mechanism 4 and the tangent line L2 at the intersection X of the imaginary line L1 and the inner surface of the casing 3 is The gas supply mechanism 4 supplies an inert gas in the same direction as an inert gas circulation direction R (described later) formed in the casing 3. Specifically, the gas supply mechanism 4 is provided in one partial arc portion 3b of the casing 3 (on the right side in FIG. 2), and inert gas is introduced into the casing 3 along the tangential direction of the inner surface of the partial arc portion 3b. A gas introduction part 411 that is connected to the partial arc part 3b and opens at the inner surface of the partial arc part 3b, and a gas supply pipe 412 that supplies an inert gas to the gas introduction part 411 are provided. .

このガス導入部411は、ケーシング3の部分円弧部3bにおいて長手方向に沿って設けられている。またガス導入部411は、上下2枚の平板によって部分円弧部3bの内面において長手方向に延びる1つの開口を有する。その他、ガス導入部411を、複数の管を例えば部分円弧部3bの長手方向に等間隔に接続することによって複数の開口を有するものとして形成しても良い。また、ガス供給配管412は、ガス導入部411に接続されるとともに、図示しない不活性ガス源から不活性ガスをガス導入部411に供給するものである。   The gas introduction part 411 is provided along the longitudinal direction in the partial arc part 3 b of the casing 3. Moreover, the gas introduction part 411 has one opening extended in a longitudinal direction in the inner surface of the partial circular arc part 3b by two upper and lower flat plates. In addition, you may form the gas introducing | transducing part 411 as what has a some opening by connecting a some pipe | tube, for example to the longitudinal direction of the partial arc part 3b at equal intervals. The gas supply pipe 412 is connected to the gas introduction unit 411 and supplies an inert gas from an inert gas source (not shown) to the gas introduction unit 411.

このガス供給機構4によってケーシング3内に供給された不活性ガスは、ケーシング3の内面に沿って流れる。つまり、一方の部分円弧部3bから供給された不活性ガスは、ケーシング3の平板部3cの内面に沿って他方の部分円弧部3aに流れて、当該部分円弧部3aの内面に沿って紫外線ランプ2の紫外線射出側(下側)に流れる。そして、紫外線ランプ2の紫外線射出側に流れた不活性ガスは、(ワークWがある場合はワークWの表面に沿って)一方の部分円弧部3bに流れて、この一方の部分円弧部3bの内面に沿って下側から上側に流れる。このようにして、紫外線ランプ2の周囲に一方向に循環する不活性ガスの流れRが形成される。この不活性ガスの循環方向Rは、搬送機構によってケーシング3の開口部31の下側を搬送されるワークWの搬送方向Sに沿った方向である。つまり、開口部31において不活性ガスは、左から右に向かって流れ、開口部31の下側においてワークWは、左から右に向かって流れる。   The inert gas supplied into the casing 3 by the gas supply mechanism 4 flows along the inner surface of the casing 3. That is, the inert gas supplied from one partial arc portion 3b flows along the inner surface of the flat plate portion 3c of the casing 3 to the other partial arc portion 3a, and the ultraviolet lamp along the inner surface of the partial arc portion 3a. 2 flows to the ultraviolet emission side (lower side). Then, the inert gas that has flowed to the ultraviolet emission side of the ultraviolet lamp 2 flows along one partial arc portion 3b (along the surface of the workpiece W when there is a workpiece W), and the one partial arc portion 3b It flows from the lower side to the upper side along the inner surface. In this way, an inert gas flow R circulating in one direction is formed around the ultraviolet lamp 2. The circulation direction R of the inert gas is a direction along the conveyance direction S of the workpiece W that is conveyed below the opening 31 of the casing 3 by the conveyance mechanism. That is, the inert gas flows from the left to the right in the opening 31, and the workpiece W flows from the left to the right below the opening 31.

次にこのように構成した紫外線照射装置100を用いた不活性ガスの置換効率のシミュレーション結果を示す。なお、比較例として、直方体形状をなすケーシングにおいて、シャワー状に上部から不活性ガスを供給する従来の紫外線照射装置における置換効率のシミュレーション結果を示す。なお、本実施形態及び比較例において不活性ガス(Nガス)の供給流速は、1m/sであり、ケーシング内のNガス置換を開始してから10秒後にワークの搬送を開始した。図3にNガス置換開始後10秒(ワーク搬送直前)のケーシング内の窒素濃度を示し、図4にワーク搬送開始後のケーシング内の窒素濃度を示す。 Next, the simulation result of the replacement efficiency of the inert gas using the ultraviolet irradiation apparatus 100 configured as described above will be shown. As a comparative example, a simulation result of the replacement efficiency in a conventional ultraviolet irradiation apparatus that supplies an inert gas from the top in a shower shape in a rectangular parallelepiped casing is shown. In this embodiment and the comparative example, the supply flow rate of the inert gas (N 2 gas) is 1 m / s, and the conveyance of the workpiece is started 10 seconds after the N 2 gas replacement in the casing is started. FIG. 3 shows the nitrogen concentration in the casing 10 seconds after the start of N 2 gas replacement (immediately before the workpiece transfer), and FIG. 4 shows the nitrogen concentration in the casing after the workpiece transfer starts.

図3に示すように、本実施形態の紫外線照射装置100では、従来の紫外線照射装置に比べて、紫外線ランプよりも下側(紫外線照射側)において窒素濃度が高くなる時間が早いことが分かる。つまり、本実施形態の紫外線照射装置100は、従来の紫外線照射装置に比べてNガスの置換効率が改善されていることが分かる。 As shown in FIG. 3, in the ultraviolet irradiation device 100 of this embodiment, it can be seen that the time for the nitrogen concentration to increase on the lower side (ultraviolet irradiation side) of the ultraviolet lamp is earlier than that of the conventional ultraviolet irradiation device. That is, it can be seen that the ultraviolet irradiation device 100 of the present embodiment has improved N 2 gas replacement efficiency compared to the conventional ultraviolet irradiation device.

図4に示すように、本実施形態の紫外線照射装置100では、ワークの搬送に伴って、ワークの搬送方向とNガスの循環方向が揃っているため、Nガスの循環が促進されることにより、紫外線ランプの下側のNガスの置換効率が向上していることが分かる。 As shown in FIG. 4, in the ultraviolet irradiation device 100 of the present embodiment, as the workpiece is conveyed, the workpiece conveyance direction and the N 2 gas circulation direction are aligned, so that the circulation of the N 2 gas is promoted. This shows that the replacement efficiency of the N 2 gas on the lower side of the ultraviolet lamp is improved.

このように構成した本実施形態に係る紫外線照射装置100によれば、ケーシング3内面に沿って供給された不活性ガスがケーシング3内面に設けられた循環案内面3xに沿って紫外線ランプ2の周囲を一方向に循環することになるので、ケーシング3内の不活性ガスの置換効率を向上させることができる。これによって、ケーシング3内の不活性ガスの置換時間を短縮することができるとともに、不活性ガスの使用量を低減することができる。不活性ガスの使用量を低減できることから、紫外線照射装置100のランニングコストのうち3分の1〜2分の1を占めるといわれる不活性ガスのコストを削減することができる。また、不活性ガスを紫外線ランプ2の周囲に循環させることから、紫外線ランプ2とワークWとの間の空間(紫外線ランプ2の紫外線照射側の空間)の不活性ガスの置換効率を向上させることができる。これにより、紫外線ランプ2とワークWとの距離を大きくすることができ、1つの紫外線ランプ2によるワーク照射範囲を可及的に大きくすることができる。さらに、不活性ガスを紫外線ランプ2の周囲を循環させることで、紫外線ランプ2への白粉の付着を防止することもできる。その上、紫外線ランプ2の周囲を循環させることで、紫外線ランプ2の冷却も行うことができる。   According to the ultraviolet irradiation apparatus 100 according to the present embodiment configured as described above, the inert gas supplied along the inner surface of the casing 3 is surrounded by the ultraviolet lamp 2 along the circulation guide surface 3x provided on the inner surface of the casing 3. Is circulated in one direction, so that the replacement efficiency of the inert gas in the casing 3 can be improved. Thereby, the replacement time of the inert gas in the casing 3 can be shortened, and the amount of the inert gas used can be reduced. Since the usage-amount of an inert gas can be reduced, the cost of the inert gas said to occupy 1-2 / 3 of the running cost of the ultraviolet irradiation device 100 can be reduced. Moreover, since the inert gas is circulated around the ultraviolet lamp 2, the replacement efficiency of the inert gas in the space between the ultraviolet lamp 2 and the workpiece W (the space on the ultraviolet irradiation side of the ultraviolet lamp 2) is improved. Can do. Thereby, the distance of the ultraviolet lamp 2 and the workpiece | work W can be enlarged, and the workpiece irradiation range by one ultraviolet lamp 2 can be enlarged as much as possible. Further, by circulating an inert gas around the ultraviolet lamp 2, it is possible to prevent white powder from adhering to the ultraviolet lamp 2. In addition, the ultraviolet lamp 2 can be cooled by circulating it around the ultraviolet lamp 2.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、図5に示すように、ガス供給機構4が、ケーシング3の上部において、ケーシング3内に形成される不活性ガスの循環方向Rと同一方向にガスを供給する第1の供給部41と、ケーシング3の開口部31においてケーシング3の長手方向全体に亘って前記第1の供給部41により供給された不活性ガスの循環方向Rと同一方向に不活性ガスを供給する第2の供給部42とを有するものであっても良い。なお、第1の供給部41は、前記実施形態のガス供給機構4と同一の構成である。   For example, as shown in FIG. 5, the gas supply mechanism 4 includes a first supply unit 41 that supplies gas in the same direction as the circulation direction R of the inert gas formed in the casing 3 in the upper part of the casing 3. The second supply unit that supplies the inert gas in the same direction as the circulation direction R of the inert gas supplied by the first supply unit 41 over the entire longitudinal direction of the casing 3 in the opening 31 of the casing 3. 42 may be included. In addition, the 1st supply part 41 is the same structure as the gas supply mechanism 4 of the said embodiment.

この第2の供給部42は、ケーシング3の他方のカバー部32aに設けられて、カバー部32aから開口部31に向かって不活性ガスを供給するものであり、他方のカバー部32aに設けられるとともに、カバー部32aにて開口するガス導入部421と、このガス導入部421に不活性ガスを供給するガス供給配管422とを有する。   The second supply part 42 is provided in the other cover part 32a of the casing 3 and supplies an inert gas from the cover part 32a toward the opening part 31, and is provided in the other cover part 32a. In addition, a gas introduction part 421 opened at the cover part 32a and a gas supply pipe 422 for supplying an inert gas to the gas introduction part 421 are provided.

このガス導入部421は、ケーシング3のカバー部32aにおいて長手方向に沿って設けられている。なお、図5においては、第1の供給部41と同様に、上下2枚の平板によってガス導入部421が形成されているが、ガス導入部421を複数の管を例えば等間隔にカバー部32aに接続することによって形成しても良い。また、ガス供給配管422は、ガス導入部421に接続されるとともに、図示しない不活性ガス源から不活性ガスをガス導入部421に供給するものである。   The gas introduction part 421 is provided along the longitudinal direction in the cover part 32 a of the casing 3. In FIG. 5, similarly to the first supply unit 41, the gas introduction unit 421 is formed by two upper and lower flat plates. However, the gas introduction unit 421 includes a plurality of tubes, for example, at equal intervals. You may form by connecting to. The gas supply pipe 422 is connected to the gas introduction part 421 and supplies an inert gas from an inert gas source (not shown) to the gas introduction part 421.

この第2の供給部42によって開口部31に向かって流れる不活性ガスは、第1の供給部41により供給された不活性ガスとともに紫外線ランプ2の紫外線射出側(下側)に流れる。そして、第2の供給部42により供給された不活性ガスは、第1の供給部により供給された不活性ガスと共に、一方の部分円弧部3aの内面に沿って下側から上側に流れ、紫外線ランプ2の周囲に一方向に循環する不活性ガスの流れRが形成される。   The inert gas flowing toward the opening 31 by the second supply part 42 flows to the ultraviolet emission side (lower side) of the ultraviolet lamp 2 together with the inert gas supplied from the first supply part 41. Then, the inert gas supplied by the second supply unit 42 flows from the lower side to the upper side along the inner surface of the one partial arc portion 3a together with the inert gas supplied by the first supply unit, and ultraviolet rays An inert gas flow R circulating in one direction is formed around the lamp 2.

また、ケーシングの断面形状としては、前記実施形態に限られず、図6に示すように、概略部分円形状をなすものとしても良いし、図7に示すように、概略部分楕円形状をなすものとしても良い。この場合、ケーシング3の内面全体が循環案内面3xとして機能し、ガス供給機構4は、ケーシング3の断面円形をなす内面の接線方向に沿って不活性ガスを供給する。また、図8に示すように、角部が円弧状をなす概略部分矩形状をなすものとしても良い。この場合、ケーシング3の内面のうち、角部に形成された円弧部が循環案内面3xとして機能する。   In addition, the cross-sectional shape of the casing is not limited to the above-described embodiment, and may be a substantially partial circular shape as shown in FIG. 6, or a substantially partial elliptical shape as shown in FIG. Also good. In this case, the entire inner surface of the casing 3 functions as the circulation guide surface 3x, and the gas supply mechanism 4 supplies an inert gas along the tangential direction of the inner surface forming a circular cross section of the casing 3. Moreover, as shown in FIG. 8, it is good also as what makes | forms the general | schematic partial rectangular shape in which a corner | angular part makes circular arc shape. In this case, of the inner surface of the casing 3, an arc portion formed at the corner functions as the circulation guide surface 3x.

さらに図9に示すように、ケーシング3にカバー部を設けることなく構成し、左右の部分円弧部3a、3bに第1の供給部41及び第2の供給部42を設けるようにしても良い。   Further, as shown in FIG. 9, the casing 3 may be configured without providing a cover portion, and the first supply portion 41 and the second supply portion 42 may be provided on the left and right partial arc portions 3a and 3b.

また、前記実施形態では、ケーシング3の内面に循環案内面3xを設けた場合を示しているが、その他、図10に示すように、ケーシング3の内部空間3Kに循環案内面3xを設けても良い。具体的には、ケーシング3の内部空間3Kにおいて、紫外線ランプ2の周囲に、循環案内面3xが内面に形成された案内面形成部材300を設けることが考えられる。これならば、ケーシング3を従来の構成としつつ、ケーシング内のガスの置換効率、ガスの置換時間の短縮効果、及びガスの使用量の低減効果を奏することができる。なお、図10においては、ガス供給機構4が、循環案内面3xに向けてガスを供給する場合を示している。   Moreover, although the case where the circulation guide surface 3x is provided on the inner surface of the casing 3 is shown in the above embodiment, the circulation guide surface 3x may be provided in the internal space 3K of the casing 3 as shown in FIG. good. Specifically, it is conceivable to provide a guide surface forming member 300 having a circulation guide surface 3x formed on the inner surface around the ultraviolet lamp 2 in the internal space 3K of the casing 3. If this is the case, while the casing 3 has a conventional configuration, the gas replacement efficiency in the casing, the gas replacement time can be shortened, and the amount of gas used can be reduced. FIG. 10 shows a case where the gas supply mechanism 4 supplies gas toward the circulation guide surface 3x.

その上、前記実施形態ではケーシング内を不活性ガスで置換するものであったが、不活性ガスにワークの表面処理に有効な処理用ガス(例えば酸素ガス)を混合したガス(プロセスガス)を用いて、ケーシング内をこのプロセスガスで置換するものであっても良い。このようなものであれば、不活性ガスで完全に置換させることによってワークの表面処理の効率が低下してしまう恐れを未然に防止することができる。   Moreover, in the embodiment, the inside of the casing is replaced with an inert gas. However, a gas (process gas) obtained by mixing an inert gas with a processing gas (for example, oxygen gas) effective for the surface treatment of the workpiece is used. It may be used to replace the inside of the casing with this process gas. In such a case, it is possible to prevent the possibility that the efficiency of the surface treatment of the work will be reduced by completely replacing it with an inert gas.

加えて、前記実施形態では、ケーシング内に1本の紫外線ランプを収容するものであったが、互いに平行に配置された複数の紫外線ランプを配置するようにしても良い。その他、紫外線ランプの外観形状は、長尺円筒形状をなすものに限られず、その他の形状を有するものであっても良い。また、紫外線ランプは、断面円形状をなすものに限られず、その他、断面矩形状をなす扁平な角筒形であり、その上下の一対の平坦面に電極(下側の電極はメッシュ状)を設けたものであっても良い。   In addition, in the above-described embodiment, one ultraviolet lamp is accommodated in the casing. However, a plurality of ultraviolet lamps arranged in parallel to each other may be arranged. In addition, the external shape of the ultraviolet lamp is not limited to a long cylindrical shape, and may have other shapes. In addition, the ultraviolet lamp is not limited to one having a circular cross section, but is also a flat rectangular tube having a rectangular cross section, and electrodes (lower electrodes are meshed) on a pair of upper and lower flat surfaces. It may be provided.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・紫外線照射装置
W ・・・ワーク
S ・・・ワークの搬送方向
2 ・・・紫外線ランプ
A ・・・紫外線照射範囲
3 ・・・ケーシング
3x ・・・循環案内面
31 ・・・開口部
32a・・・カバー部
32b・・・カバー部
4 ・・・ガス供給機構
R ・・・循環方向
41 ・・・第1の供給部
42 ・・・第2の供給部
DESCRIPTION OF SYMBOLS 100 ... Ultraviolet irradiation apparatus W ... Work S ... Work conveyance direction 2 ... Ultraviolet lamp A ... Ultraviolet irradiation range 3 ... Casing 3x ... Circulation guide surface 31 ... Opening Part 32a ... Cover part 32b ... Cover part 4 ... Gas supply mechanism R ... Circulation direction 41 ... First supply part 42 ... Second supply part

Claims (10)

ワークに紫外線を照射する紫外線ランプと、
前記紫外線ランプを収容し、前記ワークに対向して開口する開口部を有するケーシングと、
前記ケーシング内にガスを供給するガス供給機構とを備え、
前記ケーシングの内面又は内部空間に、前記ガス供給機構により供給されたガスを前記紫外線ランプの周囲を一方向に循環させるための循環案内面が設けられていることを特徴とする紫外線照射装置。
An ultraviolet lamp that irradiates the workpiece with ultraviolet rays,
A casing that houses the ultraviolet lamp and has an opening that faces the workpiece;
A gas supply mechanism for supplying gas into the casing;
An ultraviolet irradiation apparatus, wherein a circulation guide surface for circulating the gas supplied by the gas supply mechanism in one direction around the ultraviolet lamp is provided on an inner surface or an internal space of the casing.
前記ガス供給機構によるガス供給方向に沿った仮想線と、当該仮想線及び前記ケーシングの内面又は前記循環案内面の交点における接線とのなす角度が鋭角である請求項1記載の紫外線照射装置。   The ultraviolet irradiation apparatus according to claim 1, wherein an angle formed by a virtual line along a gas supply direction by the gas supply mechanism and a tangent line at the intersection of the virtual line and the inner surface of the casing or the circulation guide surface is an acute angle. 前記ガス供給機構が、前記ケーシング内に形成されるガスの循環方向と同一方向に前記ガスを供給するものである請求項1又は2記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 1 or 2, wherein the gas supply mechanism supplies the gas in the same direction as a circulation direction of the gas formed in the casing. 前記循環案内面における前記ケーシングの長手方向に垂直な断面が、概略部分円形状、概略部分長円形状、概略部分楕円形状又は角部が円弧状をなす概略部分矩形状である請求項1乃至3の何れかに記載の紫外線照射装置。   The cross section perpendicular to the longitudinal direction of the casing on the circulation guide surface is a substantially partial circle shape, a substantially partial oval shape, a substantially partial elliptical shape, or a substantially partial rectangular shape with corners forming an arc shape. The ultraviolet irradiation device according to any one of the above. 前記紫外線ランプが、長尺円筒形状をなすものであり、
前記ケーシングが、前記紫外線ランプを収容する長尺筒形状をなすとともに、前記紫外線ランプの長手方向に沿った開口部を有するものである請求項1乃至4の何れかに記載の紫外線照射装置。
The ultraviolet lamp has a long cylindrical shape,
The ultraviolet irradiation device according to any one of claims 1 to 4, wherein the casing has a long cylindrical shape that accommodates the ultraviolet lamp and has an opening along a longitudinal direction of the ultraviolet lamp.
前記ガス供給機構が、前記ケーシングの長手方向略全体に亘って、前記ケーシング内にガスを供給するものである請求項5記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 5, wherein the gas supply mechanism supplies gas into the casing over substantially the entire longitudinal direction of the casing. 前記ガス供給機構が、前記ケーシングの上部において、前記ケーシング内に形成されるガスの循環方向と同一方向にガスを供給する第1の供給部と、前記ケーシングの開口部において、前記第1の供給部により供給されたガスの循環方向と同一方向にガスを供給する第2の供給部とを有する請求項1乃至5の何れかに記載の紫外線照射装置。   In the upper part of the casing, the gas supply mechanism supplies a gas in the same direction as a gas circulation direction formed in the casing, and the first supply in the opening of the casing. The ultraviolet irradiation device according to claim 1, further comprising a second supply unit that supplies gas in the same direction as a circulation direction of the gas supplied by the unit. 前記ガス供給機構により供給されたガスの循環方向が、前記ワークの搬送方向に沿った方向である請求項1乃至7の何れかに記載の紫外線照射装置。   The ultraviolet irradiation device according to claim 1, wherein a circulation direction of the gas supplied by the gas supply mechanism is a direction along a conveyance direction of the workpiece. 前記ケーシングの開口部が、前記紫外線ランプの紫外線照射範囲を遮らないように形成されており、当該開口部から前記ワーク側に延設されて、前記紫外線ランプの紫外線照射範囲を遮らないように前記ワークを覆うカバー部を有する請求項1乃至8の何れかに記載の紫外線照射装置。   The opening of the casing is formed so as not to block the ultraviolet irradiation range of the ultraviolet lamp, and extends from the opening to the workpiece side so as not to block the ultraviolet irradiation range of the ultraviolet lamp. The ultraviolet irradiation device according to claim 1, further comprising a cover portion that covers the workpiece. 前記ガスが、不活性ガス又はプロセスガスである請求項1乃至9の何れかに記載の紫外線照射装置。   The ultraviolet irradiation apparatus according to claim 1, wherein the gas is an inert gas or a process gas.
JP2012142734A 2011-06-27 2012-06-26 Ultraviolet light radiation apparatus Pending JP2013033948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142734A JP2013033948A (en) 2011-06-27 2012-06-26 Ultraviolet light radiation apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011142320 2011-06-27
JP2011142320 2011-06-27
JP2012142734A JP2013033948A (en) 2011-06-27 2012-06-26 Ultraviolet light radiation apparatus

Publications (1)

Publication Number Publication Date
JP2013033948A true JP2013033948A (en) 2013-02-14

Family

ID=47394897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142734A Pending JP2013033948A (en) 2011-06-27 2012-06-26 Ultraviolet light radiation apparatus

Country Status (4)

Country Link
JP (1) JP2013033948A (en)
KR (1) KR20130007464A (en)
CN (1) CN102847691A (en)
TW (1) TW201300177A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436850B (en) * 2013-06-27 2015-09-16 苏州求是真空电子有限公司 A kind of ultraviolet supplementary unit of reaction magnetocontrol sputtering plated film
JP6586827B2 (en) * 2015-08-31 2019-10-09 ウシオ電機株式会社 UV treatment equipment
JP6600566B2 (en) * 2016-01-19 2019-10-30 東京応化工業株式会社 Ultraviolet irradiation apparatus and ultraviolet irradiation method
TWI825353B (en) * 2019-10-07 2023-12-11 日商牛尾電機股份有限公司 UV irradiation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300451A (en) * 2000-04-25 2001-10-30 Hoya Schott Kk Ultraviolet irradiation device
US6676762B2 (en) * 2001-01-15 2004-01-13 Board Of Trustees Of Michigan State University Method for cleaning a finished and polished surface of a metal automotive wheel
JP4569636B2 (en) * 2008-01-22 2010-10-27 ウシオ電機株式会社 Excimer discharge lamp
JP5092808B2 (en) * 2008-03-06 2012-12-05 ウシオ電機株式会社 Ultraviolet irradiation unit and ultraviolet irradiation treatment device
JP2009268974A (en) * 2008-05-08 2009-11-19 Toppan Printing Co Ltd Ultraviolet irradiation method and ultraviolet irradiation apparatus
JP5083184B2 (en) * 2008-11-26 2012-11-28 ウシオ電機株式会社 Excimer lamp device

Also Published As

Publication number Publication date
TW201300177A (en) 2013-01-01
KR20130007464A (en) 2013-01-18
CN102847691A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP4337547B2 (en) Ultraviolet light cleaning device and ultraviolet lamp for ultraviolet light cleaning device
US9616469B2 (en) Light projection device
JP2013033948A (en) Ultraviolet light radiation apparatus
JP2009268974A (en) Ultraviolet irradiation method and ultraviolet irradiation apparatus
CN103128080B (en) Light irradiation device
KR101553735B1 (en) Light irradiation apparatus
JP2009238519A (en) Plasma processing device and plasma processing method
JP2001185089A (en) Excimer irradiation device
JP2001300451A (en) Ultraviolet irradiation device
JP2009202138A (en) Ultraviolet irradiation apparatus
JP4883133B2 (en) UV light cleaning equipment
JP2009262046A (en) Ultraviolet radiation processing apparatus
JP2013158706A (en) Water purification apparatus
TW543072B (en) Substrate treatment device using a dielectric barrier discharge lamp
JP2018176032A (en) Light irradiation device
JP6508433B2 (en) UV processing unit
JP5783472B2 (en) Ashing equipment
JP2005129733A (en) Method and device for improving quality of surface
JP2015103545A (en) Light source device, and desmear treatment device
JP6123649B2 (en) Ashing apparatus and workpiece holding structure
JP6984206B2 (en) Light irradiation device
JP6459578B2 (en) Optical processing apparatus and optical processing method
JP2014139874A (en) Light irradiation device
KR20050122993A (en) Cleanning device using eximer ultraviolet lay
JP2014193450A (en) Light radiation device