JP2013032244A5 - - Google Patents

Download PDF

Info

Publication number
JP2013032244A5
JP2013032244A5 JP2011169255A JP2011169255A JP2013032244A5 JP 2013032244 A5 JP2013032244 A5 JP 2013032244A5 JP 2011169255 A JP2011169255 A JP 2011169255A JP 2011169255 A JP2011169255 A JP 2011169255A JP 2013032244 A5 JP2013032244 A5 JP 2013032244A5
Authority
JP
Japan
Prior art keywords
metal
mixed powder
manganese nitride
composite material
sealed state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011169255A
Other languages
Japanese (ja)
Other versions
JP2013032244A (en
JP5935258B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011169255A priority Critical patent/JP5935258B2/en
Priority claimed from JP2011169255A external-priority patent/JP5935258B2/en
Priority to PCT/JP2012/069570 priority patent/WO2013018823A1/en
Publication of JP2013032244A publication Critical patent/JP2013032244A/en
Publication of JP2013032244A5 publication Critical patent/JP2013032244A5/ja
Application granted granted Critical
Publication of JP5935258B2 publication Critical patent/JP5935258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

特開平10-8164号公報(例えば段落[0021]、[0022]、[0037])Japanese Patent Laid-Open No. 10-8164 (for example, paragraphs [0021], [0022], [0037]) 国際公開番号WO2006/011590International Publication Number WO2006 / 011590 国際公開番号WO2008/081647International Publication Number WO2008 / 081647 国際公開番号WO2008/111285International Publication Number WO2008 / 111285

また、混合粉が密封状態において加熱される態様には、放射、対流、伝導、誘導のいずれかによって熱を加えるもののほか、外部から任意のエネルギーを供給することに応じて熱が生じるものも含む。例えば、電流を流しジュール熱を生成させることにより、混合粉自体を自己発熱させるものも加熱の一態様である。本発明の各態様においては、従来の高圧浸透法などと異なり、混合粉が、粉体のまま密封状態におかれて加熱されることにより焼結される。このため、金属の融点より低い温度で複合化できる。その上、金属が溶融するような温度において熱膨張抑制剤が酸素を含んだ大気に触れることは防止される。したがって、金属相となる単体金属または金属合金の材料は、融点が低いものには限定されない。さらに、金属相は、複合化後に必ずしもマトリックス金属相となっていることを要さず、連続金属相であっても、また、連続金属相でなくともよい。このため、本発明の各態様においては、上記の高圧浸透法の場合に融点が高く採用し難くい金属材料を採用することが可能となり、熱膨張抑制剤と金属相との互いの混合比率に対する許容範囲も拡がる。さらには、溶浸のための予熱工程が不要であることから、本発明の各態様においては、熱膨張抑制剤の選択範囲も拡大する。また、加熱する部分を混合粉が装填された焼結型に限定することにより、昇温・冷却をより効率的に行え、特に冷却時間を短縮できる。すなわち、本発明の各態様においては、特許文献4に記載された高圧浸透法に比べ、より広い温度範囲、より広い熱膨張範囲、より高い精度、より自由度の大きな形状・サイズという、少なくともいずれかの点において実用性が高められた熱膨張可変金属複合材料を提供することが可能となる。
Further, the mode in which the mixed powder is heated in a hermetically sealed state includes not only one that applies heat by radiation, convection, conduction, or induction, but also one that generates heat in response to supplying arbitrary energy from the outside. . For example, one that heats the mixed powder itself by causing current to flow and generating Joule heat is also an aspect of heating. In each aspect of the present invention, unlike the conventional high-pressure infiltration method, the mixed powder is sintered by being heated in a sealed state as a powder. For this reason, it can be compounded at a temperature lower than the melting point of the metal. In addition, the thermal expansion inhibitor is prevented from touching the oxygen-containing atmosphere at a temperature at which the metal melts. Therefore, the material of the single metal or metal alloy that becomes the metal phase is not limited to one having a low melting point. Further, the metal phase does not necessarily need to be a matrix metal phase after the composite, and may be a continuous metal phase or not a continuous metal phase. For this reason, in each aspect of the present invention, it is possible to employ a metal material that has a high melting point and is difficult to employ in the case of the high-pressure infiltration method described above, with respect to the mixing ratio of the thermal expansion inhibitor and the metal phase. The allowable range is also expanded. Furthermore, since the preheating process for infiltration is unnecessary, in each aspect of this invention, the selection range of a thermal expansion inhibitor is also expanded. Further, a portion heated by mixed powder is limited to sintered loaded more efficiently lines give a heating and cooling can shorten the cooling time especially. That is, in each aspect of the present invention, compared to the high-pressure infiltration method described in Patent Document 4, at least one of a wider temperature range, a wider thermal expansion range, higher accuracy, and a more flexible shape / size. In this respect, it is possible to provide a thermal expansion variable metal composite material with improved practicality.

[5−3−1 通電焼結]
上記の手順で製造された粉末状のマンガン窒化物熱膨張抑制剤を、金属相となる単体金属または合金の粉末に対し所定の比率で混合し攪拌して混合粉を準備する(S102)。次に、その混合粉を例えばグラファイト製の焼結型に収容し、例えば、真空槽などの内部における真空雰囲気の空間に配置することにより、混合粉を密閉状態とする(S104)。そして、混合粉を加熱し焼結を実施する(S110)。
[5-3-1 Current sintering]
Been powdered manganese nitride thermal expansion inhibitor produced by the above procedure, to the powder of single metal or alloy as the metallic phase are mixed at a predetermined ratio to prepare a stirred solution mixed powder (S102). Next, the mixed powder is accommodated in a sintered mold made of graphite, for example, and placed in a vacuum atmosphere space inside a vacuum chamber or the like, for example, so that the mixed powder is sealed (S104). Then, the mixed powder is heated and sintered (S110).

焼結工程(S110)では、例えば、温度300℃〜650℃の温度において、圧力10MPa〜60MPaの圧力を加える(S112)。そして、例えば、焼結型として、中央に内径10mm〜20mmの円筒状収容部を有するドーナツ状のダイと、そのダイの円筒状の収容部に外部から内挿されて円筒軸にそって円筒状収容部の空間を圧縮するパンチとを組み合わせたグラファイト製のものを利用した場合、250A〜750A程度のパルス電流を通電時20ミリ秒〜60ミリ秒、休止時4ミリ秒〜10ミリ秒を1サイクルとする条件で断続させながら流すことにより、混合粉と焼結型とのいずれかまたは両方にジュール熱を生成させる(S114)。その状態を2分〜60分保持することにより、焼結型の内部において金属複合材料の複合化が進行する。なお、電流の通電条件は、使用する材料や作製される金属複合材料における熱膨張抑制剤や金属相の組成やこれらの混合比率、焼結型のサイズ等により事前に決定しておく。こうして、例えば金属相の材質により融点や電気抵抗率が変化し、また、焼結型のサイズによって電流密度が変化することに適合する条件を見出しておく。なお、通電条件によっては、いわゆる放電プラズマ焼結法と呼ばれる種類の通電焼結法が実現している場合もある。
In the sintering step (S110), for example, a pressure of 10 MPa to 60 MPa is applied at a temperature of 300 ° C. to 650 ° C. (S112). And, for example, as a sintered mold, a donut-shaped die having a cylindrical housing portion with an inner diameter of 10 mm to 20 mm in the center, and a cylindrical shape inserted along the cylindrical shaft of the die from the outside into the cylindrical housing portion. When a graphite product combined with a punch that compresses the space of the housing portion is used, a pulse current of about 250 A to 750 A is applied for 20 milliseconds to 60 milliseconds when energized, and 4 milliseconds to 10 milliseconds when resting is 1 By flowing while intermittently flowing under the condition of the cycle, Joule heat is generated in either or both of the mixed powder and the sintered mold (S114). By maintaining this state for 2 to 60 minutes, the composite of the metal composite material proceeds inside the sintered mold. The current application conditions are determined in advance according to the material used, the composition of the thermal expansion inhibitor and the metal phase in the metal composite material to be produced, the mixing ratio thereof, the size of the sintered mold, and the like. In this way, for example, a condition suitable for changing the melting point and the electric resistivity depending on the material of the metal phase and changing the current density depending on the size of the sintered mold is found. Depending on the energization conditions, there is a case where a so-called electric plasma sintering method called a discharge plasma sintering method is realized.

[6−5 放電プラズマ焼結法の技術的利点]
上述した各実施例においては、各組合せの熱膨張抑制剤は、変質することなく各単体金属または合金の金属相と複合化された。図23に、その一例をX線回折実験結果として示す。このX線回折実験結果では、CuのKα1輝線により、実施例1の金属複合材料の回折パターンを取得した。比較のため、実施例1の金属複合材料をなす金属相(Al)と熱膨張抑制剤(MnZn0.45Sn0.55N)がそれぞれ単独で示す回折パターンのピーク位置を、それぞれ記号にて明示している。図23のように、実施例1の金属複合材料の示す回折ピークは、金属相のAlのものか、熱膨張抑制剤のMnZn0.45Sn0.55Nのものかのいずれかのもののみであることが確認された。このように、放電プラズマ焼結法により複合化された実施例1の金属複合材料においては、熱膨張抑制剤が変質することなく、アルミニウムと複合化されたことを確認した。この結果は、放電プラズマ焼結法の技術的利点、つまり融点に比べて低温で、かつ、短時間の加熱により複合化が完了したため、と本願の発明者は考えている。
[6-5 Technical advantages of spark plasma sintering]
In the embodiments described above, the thermal expansion inhibitor of the combination is complexed with the metal phase of the alteration to be a Ku each single metal or alloy. FIG. 23 shows an example of the result as an X-ray diffraction experiment result. As a result of the X-ray diffraction experiment, a diffraction pattern of the metal composite material of Example 1 was obtained by Cu Kα1 emission line. For comparison, the peak positions of the diffraction patterns independently represented by the metal phase (Al) and the thermal expansion inhibitor (Mn 3 Zn 0.45 Sn 0.55 N) constituting the metal composite material of Example 1 are represented by symbols. It is specified in. As shown in FIG. 23, the diffraction peak of the metal composite material of Example 1 is either that of Al in the metal phase or that of Mn 3 Zn 0.45 Sn 0.55 N as the thermal expansion inhibitor. It was confirmed that it was only a thing. Thus, in the metal composite material of Example 1 compounded by the discharge plasma sintering method, it was confirmed that the thermal expansion inhibitor was compounded with aluminum without alteration. The inventor of the present application considers that this result is due to the technical advantage of the discharge plasma sintering method, that is, the composite is completed by heating at a temperature lower than the melting point and in a short time.

[6−7 実施例に対する評価]
以上の各実施例により、本実施形態の所期目的のいくつかが実際に確認された。各実施例に対する評価を前掲の表2に示している。また前掲の表3には各実施例に採用した金属の線膨張係数も併記している。さらに熱膨張抑制剤のみの性質は、前掲の表4も参照されたい。
[6-7 Evaluation of Examples]
The respective embodiments described above, some of the intended purpose of the present embodiment was actually confirmed. The evaluation for each example is shown in Table 2 above. Table 3 also shows the coefficient of linear expansion of the metal employed in each example. For the properties of only the thermal expansion inhibitor, see Table 4 above.

Claims (14)

少なくともある温度範囲で負の熱膨張を示す、Mn−Zn−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Zn−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されており、
前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであ
熱膨張制御金属複合材料。
Mn—Zn—Sn—N-based reverse perovskite-type manganese nitride or Mn—Zn—Ge—N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a composition that forms a metal phase By placing and heating a mixed powder obtained by mixing a single metal or a metal alloy powder in a sealed state, the metal phase and the reverse perovskite manganese nitride are combined by sintering ,
The elemental metal or metal alloy, copper, brass, iron, der Ru thermal expansion control metal composite to include as at least a part of the ingredient, at least one single metal or metal alloy selected from the group consisting of titanium.
前記逆ペロフスカイト型マンガン窒化物が、
組成式(1):Mn3+y 1−(x+y) N (0<x<1、0≦y<1)
の組成式により表されるものである、ただし、金属元素MにはZnを含み、MにはGe、Snの少なくとも1種を含み、Mnの一部は他の元素に置き換わっていてもよく、窒素Nの一部が水素H、ホウ素B、炭素C、酸素Oと置き換わっていてもよく、さらに、MにはGa、Zn、Cu以外の元素を含んでいてもよく、MにはGe、Sn以外の元素を含んでいてもよい
請求項1に記載の金属複合材料。
The reverse perovskite-type manganese nitride is
Composition formula (1): Mn 3 + y M 1 1- (x + y) M 2 x N (0 <x <1, 0 ≦ y <1)
Provided that the metal element M 1 contains Zn, M 2 contains at least one of Ge and Sn, and a part of Mn may be replaced by another element. well, part of the nitrogen N is hydrogen H, boron B, carbon C, may be replaced by oxygen O, further, the M 1 Ga, Zn, may contain an element other than Cu, the M 2 The metal composite material according to claim 1, which may contain an element other than Ge and Sn.
前記逆ペロフスカイト型マンガン窒化物が、
Mn4−x−yZnSn1−z(ただし、0.45≦x≦0.75、0.25≦y≦0.55、0≦z≦0.05)
の組成式により表されるものである
請求項2に記載の金属複合材料。
The reverse perovskite-type manganese nitride is
Mn 4−x−y Zn x Sn y N 1−z X z (where 0.45 ≦ x ≦ 0.75, 0.25 ≦ y ≦ 0.55, 0 ≦ z ≦ 0.05)
The metal composite material according to claim 2, represented by a composition formula:
少なくともある温度範囲で負の熱膨張を示す、Mn−Cu−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Cu−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されており、
前記単体金属または金属合金が、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであ
熱膨張制御金属複合材料。
Mn-Cu-Sn-N-based reverse perovskite-type manganese nitride or Mn-Cu-Ge-N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a metal phase composition By placing and heating a mixed powder obtained by mixing a single metal or a metal alloy powder in a sealed state, the metal phase and the reverse perovskite manganese nitride are combined by sintering ,
The elemental metal or metal alloy, brass, iron, der Ru thermal expansion control metal composite to include as at least a part of the ingredient, at least one single metal or metal alloy selected from the group consisting of titanium.
少なくともある温度範囲で負の熱膨張を示す、Mn−Ga−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Ga−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを混合した混合粉を密閉状態に配置して加熱することにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが焼結により複合化されており,
前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであ
熱膨張制御金属複合材料。
Mn-Ga-Sn-N-based reverse perovskite-type manganese nitride or Mn-Ga-Ge-N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a composition that forms a metal phase The mixed powder obtained by mixing the powder of the single metal or metal alloy in a hermetically sealed state is heated, whereby the metal phase and the reverse perovskite manganese nitride are combined by sintering .
The elemental metal or metal alloy, copper, brass, iron, der Ru thermal expansion control metal composite to include as at least a part of the ingredient, at least one single metal or metal alloy selected from the group consisting of titanium.
前記密閉状態にある前記混合粉を加圧しながら、該混合粉と該混合粉を内包する導電性の型とのいずれかまたは双方に電流を流す通電焼結法により、前記型または前記混合粉の温度が、前記金属相の融点よりも低い温度に維持されて複合化されている
請求項1〜請求項5のいずれか1項に記載の金属複合材料。
While pressurizing the mixed powder in the hermetically sealed state, the mold or the mixed powder of the mold or the mixed powder is subjected to an electric current sintering method in which an electric current is passed through either or both of the mixed powder and the conductive mold containing the mixed powder. The metal composite material according to any one of claims 1 to 5, wherein the metal composite material is maintained at a temperature lower than a melting point of the metal phase.
前記逆ペロフスカイト型マンガン窒化物の組成、または、前記単体金属または金属合金の組成を、位置に応じて連続的にまたは段階的に変化させることにより、前記金属複合材料の外形を形成するための型の内部に配置して焼結されたものである
請求項1請求項5のいずれか1項に記載の金属複合材料。
A mold for forming the outer shape of the metal composite material by changing the composition of the reverse perovskite-type manganese nitride or the composition of the single metal or metal alloy continuously or stepwise depending on the position. metal composite material according to any one of claims 1 to 5 disposed inside those that are sintered.
少なくともある温度範囲で負の熱膨張を示す、Mn−Zn−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Zn−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
前記混合粉を密閉状態におく工程と、
前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
を含み、前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであり、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
熱膨張制御金属複合材料の製造方法。
Mn—Zn—Sn—N-based reverse perovskite-type manganese nitride or Mn—Zn—Ge—N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a composition that forms a metal phase Preparing a mixed powder obtained by mixing powders of single metal or metal alloy of each other;
Placing the mixed powder in a sealed state;
The mixed powder in the sealed state by an electric current sintering method in which a current is applied to the mixed powder or a conductive mold containing the mixed powder while the mixed powder in the sealed state is pressurized And the single metal or metal alloy includes at least one single metal or metal alloy selected from the group consisting of copper, brass, iron, and titanium as at least a component. A method for producing a thermal expansion control metal composite material, wherein the metal phase and the reverse perovskite manganese nitride are composited.
少なくともある温度範囲で負の熱膨張を示す、Mn−Cu−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Cu−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
前記混合粉を密閉状態におく工程と、
前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
を含み、前記単体金属または金属合金が、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであり、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
熱膨張制御金属複合材料の製造方法。
Mn-Cu-Sn-N-based reverse perovskite-type manganese nitride or Mn-Cu-Ge-N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a metal phase composition Preparing a mixed powder obtained by mixing powders of single metal or metal alloy of each other;
Placing the mixed powder in a sealed state;
The mixed powder in the sealed state by an electric current sintering method in which a current is applied to the mixed powder or a conductive mold containing the mixed powder while the mixed powder in the sealed state is pressurized And the single metal or metal alloy includes at least one single metal or metal alloy selected from the group consisting of brass, iron, and titanium as at least a part of the component, Thereby, the method for producing a thermal expansion control metal composite material in which the metal phase and the reverse perovskite manganese nitride are combined.
少なくともある温度範囲で負の熱膨張を示す、Mn−Ga−Sn−N系逆ペロフスカイト型マンガン窒化物またはMn−Ga−Ge−N系逆ペロフスカイト型マンガン窒化物の粉末と、金属相となる組成の単体金属または金属合金の粉末とを互いに混合した混合粉を準備する工程と、
前記混合粉を密閉状態におく工程と、
前記密閉状態にある前記混合粉を加圧しながら、該混合粉に対して、または該混合粉を内包する導電性の型に対して電流を流す通電焼結法により該密閉状態にある該混合粉を加熱する焼結工程と
を含み、前記単体金属または金属合金が、銅、真鍮、鉄、チタンからなる群から選択される少なくとも一の単体金属または金属合金を少なくとも一部の成分として含むものであり、これにより、前記金属相と前記逆ペロフスカイト型マンガン窒化物とが複合化される
熱膨張制御金属複合材料の製造方法。
Mn-Ga-Sn-N-based reverse perovskite-type manganese nitride or Mn-Ga-Ge-N-based reverse perovskite-type manganese nitride powder exhibiting negative thermal expansion at least in a certain temperature range, and a composition that forms a metal phase Preparing a mixed powder obtained by mixing powders of single metal or metal alloy of each other;
Placing the mixed powder in a sealed state;
The mixed powder in the sealed state by an electric current sintering method in which a current is applied to the mixed powder or a conductive mold containing the mixed powder while the mixed powder in the sealed state is pressurized And the single metal or metal alloy includes at least one single metal or metal alloy selected from the group consisting of copper, brass, iron, and titanium as at least a component. A method for producing a thermal expansion control metal composite material, wherein the metal phase and the reverse perovskite manganese nitride are composited.
前記型または前記混合粉の温度を前記金属相の融点よりも低い温度に維持して前記複合化を実行する
請求項8〜請求項10のいずれか1項に記載の金属複合材料の製造方法。
Method for producing a metallic composite material according to any one of claims 8 to claim 10, maintaining the temperature of the mold or the powder mixture to a temperature below the melting point of the metal phase to perform the composite .
前記電流により放電プラズマが形成される
請求項11に記載の金属複合材料の製造方法。
The method for producing a metal composite material according to claim 11 , wherein discharge plasma is formed by the current.
前記密閉状態が、前記金属複合材料の外形を形成するための型または該型を内包し外気から遮断する容器により実現されている
請求項12に記載の金属複合材料の製造方法。
The method for producing a metal composite material according to claim 12 , wherein the sealed state is realized by a mold for forming the outer shape of the metal composite material or a container that encloses the mold and shields it from the outside air.
前記混合粉を密閉状態におく工程が、前記逆ペロフスカイト型マンガン窒化物の組成、または、前記単体金属または金属合金の組成のうちの少なくともいずれかを、位置に応じて連続的にまたは段階的に変化させて、前記粉末を前記金属複合材料の外形を形成するための型の内部に配置する工程を含んでいる
請求項8〜請求項10のいずれか1項に記載の金属複合材料の製造方法。
The step of keeping the mixed powder in a hermetically sealed state is a composition of the inverse perovskite manganese nitride, or at least one of the composition of the single metal or metal alloy, continuously or stepwise depending on the position. The method for producing a metal composite material according to any one of claims 8 to 10 , further comprising a step of changing and arranging the powder in a mold for forming an outer shape of the metal composite material. .
JP2011169255A 2011-08-02 2011-08-02 Thermal expansion control metal composite material and manufacturing method thereof Expired - Fee Related JP5935258B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011169255A JP5935258B2 (en) 2011-08-02 2011-08-02 Thermal expansion control metal composite material and manufacturing method thereof
PCT/JP2012/069570 WO2013018823A1 (en) 2011-08-02 2012-08-01 Metal composite material with controlled thermal expansion and manufacturing process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169255A JP5935258B2 (en) 2011-08-02 2011-08-02 Thermal expansion control metal composite material and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2013032244A JP2013032244A (en) 2013-02-14
JP2013032244A5 true JP2013032244A5 (en) 2014-09-25
JP5935258B2 JP5935258B2 (en) 2016-06-15

Family

ID=47629342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169255A Expired - Fee Related JP5935258B2 (en) 2011-08-02 2011-08-02 Thermal expansion control metal composite material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5935258B2 (en)
WO (1) WO2013018823A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800145B1 (en) * 2013-05-03 2018-11-21 Saint-Gobain Glass France Back contact substrate for a photovoltaic cell or module
CN103450844B (en) * 2013-08-27 2016-04-27 江苏大学 A kind of Negative thermal expansion composite material and preparation method thereof
JP6317123B2 (en) * 2014-02-10 2018-04-25 昭和電工株式会社 Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element
KR101646766B1 (en) * 2014-10-24 2016-08-10 한국수력원자력 주식회사 Prevention method of auto-ignition for passive autocatalytic recombiner
RU2676537C1 (en) * 2017-09-06 2019-01-09 Дмитрий Александрович Серебренников Composite material with invar properties
CN109133939B (en) * 2018-10-09 2021-04-13 上海交通大学 Method for preparing compact and super-large negative thermal expansion block material
CN109133938A (en) * 2018-10-09 2019-01-04 上海交通大学 A kind of regulation method of preparation and its negative expansion behavior of negative thermal expansion material
US11097487B2 (en) 2018-12-21 2021-08-24 Hamilton Sundstrand Corporation Apparatus and method for controlling tolerance of compositions during additive manufacturing
JP6804777B2 (en) * 2019-05-27 2020-12-23 国立大学法人東北大学 Method for manufacturing metal test piece for corrosion resistance evaluation
CN112410623B (en) * 2019-08-21 2022-01-07 天津大学 High-damping aluminum-silicon-based composite material and preparation method thereof
JP7494534B2 (en) 2020-04-02 2024-06-04 トヨタ自動車株式会社 Parts support structure
JP7386142B2 (en) * 2020-08-27 2023-11-24 日本特殊陶業株式会社 holding device
CN113381027B (en) * 2021-02-07 2022-03-04 南京工业大学 Negative expansion material composite cobalt-based perovskite material, preparation method and solid oxide fuel cell
CN115323233A (en) * 2022-08-19 2022-11-11 北京科技大学 High-temperature zero-expansion alloy material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102803B2 (en) * 1991-06-24 1994-12-14 住友石炭鉱業株式会社 Method of manufacturing functionally graded material
CN101023147B (en) * 2004-07-30 2010-05-12 独立行政法人理化学研究所 Thermal expansion inhibitor, zero thermal expansion material, negative thermal expansion material, method for inhibiting thermal expansion, and method for producing thermal expansion inhibitor
JP4332615B2 (en) * 2007-03-12 2009-09-16 太平洋セメント株式会社 Metal-ceramic composite material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2013032244A5 (en)
JP5935258B2 (en) Thermal expansion control metal composite material and manufacturing method thereof
JP5350553B1 (en) Heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance, device for electronics using the heat sink, and heat sink using Cu-diamond based solid phase sintered body with excellent heat resistance Manufacturing method
KR101688528B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
JP2018041777A (en) Metal bond magnet and method for manufacturing the same
Kruszewski et al. Microstructure and thermoelectric properties of bulk cobalt antimonide (CoSb 3) skutterudites obtained by pulse plasma sintering
JP4726452B2 (en) Magnesium-metal compound
KR20200002435A (en) METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL WITH CONTROLLED GRAIN SIZE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
CN115020577A (en) For Mg 3 Sb 2 Interface material of base thermoelectric device and preparation method thereof
JP2021046610A (en) Coating source
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
KR102242915B1 (en) Method for manufacturing a thermoelectric material having a uniform thermal conductive properties
KR20190086931A (en) High entropy alloy and manufacturing method of the same
JP6714044B2 (en) Silicon nitride sintered body manufacturing method, silicon nitride sintered body and heat dissipation substrate using the same
JP6899397B2 (en) Manufacturing method of magnetic material
JP2007012999A (en) Magnetic core manufacturing method
WO2005056496A1 (en) Ceramic sintered compact, method for producing ceramic sintered compact, exothermic element for vapor deposition of metal
CN109103323A (en) A method of Sb is replaced by filling Ga, Te and improves based square cobalt mineral conducting material thermoelectricity performance
JP2008133516A (en) Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor
JP2022511483A (en) Manufacturing method of sintered magnet and sintered magnet
JP6880960B2 (en) Manufacturing method of Mg-based thermoelectric material and performance recovery method of Mg-based thermoelectric material
KR20150074269A (en) Method of manufacturing high-toughness wc-cnt sintered body
JP5760197B2 (en) Hard material with embedded heating element and its manufacturing method
JP2020035781A (en) Manufacturing method of permanent magnet
WO2017038715A1 (en) Alloy material