WO2017038715A1 - Alloy material - Google Patents

Alloy material Download PDF

Info

Publication number
WO2017038715A1
WO2017038715A1 PCT/JP2016/075067 JP2016075067W WO2017038715A1 WO 2017038715 A1 WO2017038715 A1 WO 2017038715A1 JP 2016075067 W JP2016075067 W JP 2016075067W WO 2017038715 A1 WO2017038715 A1 WO 2017038715A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
phase
atm
camgsi
calcium
Prior art date
Application number
PCT/JP2016/075067
Other languages
French (fr)
Japanese (ja)
Inventor
召田雅実
倉持豪人
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2017038715A1 publication Critical patent/WO2017038715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Definitions

  • the present invention relates to an alloy material and a manufacturing method thereof. More specifically, the present invention relates to an alloy material containing calcium, magnesium and silicon and a thermoelectric conversion element using the same.
  • thermoelectric conversion elements are known as elements capable of mutual conversion between thermal energy and electrical energy.
  • This thermoelectric conversion element is composed of two types of p-type and n-type thermoelectric conversion materials (thermoelectric materials), and these two types of thermoelectric materials are electrically connected in series, and are thermally parallel. The configuration is arranged.
  • thermoelectric conversion element when a voltage is applied between both terminals, movement of holes and movement of electrons occur, and a temperature difference occurs between both surfaces (Peltier effect). Moreover, if this thermoelectric conversion element gives a temperature difference between both surfaces, a hole movement and an electron movement will also occur, and an electromotive force will be generated between both terminals (Seebeck effect).
  • Bi 2 Te 3 has been mainly put to practical use as a thermoelectric material constituting a thermoelectric conversion element, and Se is generally added when forming an n-type thermoelectric material with a Bi—Te-based material.
  • the elements Bi, Te and Se constituting these thermoelectric materials are highly toxic, there is a risk of environmental pollution. Therefore, a thermoelectric material having a low environmental load, that is, having no toxicity is desired.
  • Bi-Te materials are mainly used at about 100 ° C. and are not suitable for use in automobile exhaust heat. Furthermore, lightweight and resource-rich materials are desired for use in automotive waste heat recovery.
  • Mg 2 Si is known as a non-toxic and high-performance n-type medium temperature thermoelectric material (see, for example, Patent Document 1). Although a mixture of Mg 2 Si and CaMgSi has been proposed as a p-type thermoelectric material using a homologous element (see, for example, Patent Document 2), the Seebeck coefficient at 400 ° C. is as small as 60 ⁇ V / K or less and can be used practically. Thermoelectric properties are not obtained. Further, Mg and Ca are volatile at low temperatures, and it is difficult to easily obtain a material having a Ca—Mg—Si composition with a specified composition. Furthermore, it has not been clarified which crystal phase is present to improve the thermoelectric characteristics.
  • An object of the present invention is to easily provide a p-type thermoelectric material that is lightweight and has high thermoelectric properties.
  • thermoelectric material having a high Seebeck coefficient can be produced by optimizing the composition of Mg—Ca—Si, and the present invention has been completed.
  • the present invention resides in the following [1] to [12].
  • An alloy having magnesium, calcium and silicon as constituent elements, and the atomic ratio of the elements constituting the alloy is 0 atm% when the contents of magnesium, calcium and silicon are Mg, Ca and Si, respectively.
  • an oxygen content in the alloy is 10 atm% or less.
  • the present invention is an alloy having magnesium, calcium and silicon as constituent elements, and the atomic ratio of the elements constituting the alloy is 0 atm when the contents of magnesium, calcium and silicon are Mg, Ca and Si, respectively. % ⁇ Mg / (Mg + Ca + Si) ⁇ 50 atm% 10 atm% ⁇ Ca / (Mg + Ca + Si) ⁇ 70 atm% 20 atm% ⁇ Si / (Mg + Ca + Si) ⁇ 60 atm% And the oxygen content in the alloy is 10 atm% or less.
  • the alloy here may be any shape such as a bulk shape represented by a melt, a molded body, a sintered body, a powder shape, and a film shape.
  • a method such as a melt or hot pressing
  • a sintered body obtained by hot pressing is preferable because the composition and crystal phase in the bulk body become more uniform and exhibit stable performance.
  • the present invention relates to an alloy having magnesium, calcium and silicon as constituent elements, and when the atomic ratio of the elements constituting the alloy is Mg, Ca and Si, respectively.
  • the magnesium content is 50 atm% or more, it is difficult to produce a dense material because the alloy composition is not stable.
  • the magnesium content is preferably 10 atm% or more, More preferably, it is 20 atm% or more.
  • the calcium content is preferably 30 atm% or more.
  • the ratio of crystal phases of disilicide calcium containing alloy (CaSi 2) or calcium silicide (CaSi) is reduced, an alloy of the present invention exhibit more significantly semiconductor characteristics.
  • the Ca / Si atomic weight ratio of the alloy of the present invention is preferably larger than 1. As a result, the ratio of the Ca 7 Mg 7.25 Si 14 crystal phase contained in the alloy decreases, and the alloy of the present invention exhibits a higher Seebeck coefficient.
  • the silicon content is less than 20 atm%, magnesium or calcium is easily isolated, oxidized, and oxygen is more easily contained, so that bulk properties cannot be maintained.
  • the silicon content is more than 60 atm%, calcium disilicide (CaSi 2 ) or calcium silicide (CaSi) in the material increases, so that the semiconductor is changed to the conductor and the thermoelectric characteristics are lost. More preferably, it is 30 atm% or less. It is possible to suppress the formation of Ca 7 Mg 7.25 Si 14 in doing so.
  • the amount of metals other than magnesium, calcium and silicon is preferably small from the viewpoint of ease of synthesis, preferably less than 10 atm%, more preferably less than 5 atm%, more preferably 1 atm based on the total amount of magnesium, calcium and silicon. More preferably, it is less than%.
  • the present invention is characterized in that the oxygen content in the alloy is 10 atm% or less.
  • the oxygen content in the alloy is more than 10 atm%, the oxidation of the material tends to proceed.
  • calcium easily reacts with moisture, becomes calcium hydroxide, and the volume expands, so that even if a bulk is produced, cracking occurs.
  • the oxygen content in the alloy is more preferably 7 atm% or less, and still more preferably 5 atm% or less.
  • the oxygen content in the alloy refers to the ratio of oxygen in the total amount of metal elements and oxygen in the alloy.
  • the property of the present invention is preferably a bulk body.
  • the thermoelectric conversion method generates electricity when a temperature difference occurs at both ends of the element, but the element needs to have a certain thickness in order for the temperature difference to appear more conspicuously. Therefore, a bulk body is preferable to a powder or film.
  • the bulk body is a structure having a thickness of 0.100 mm or more.
  • the thickness in the structure means the length of the thinnest part in the structure.
  • Examples of the structure include a lump, a melt, and a sintered body.
  • the bulk body is preferably as dense as possible depending on the application. By densifying the bulk body, it is possible to reduce open pores in the bulk body, suppress deterioration of the element due to oxidation or the like, and improve mechanical strength. However, a lower density may be preferable.
  • the density of the alloy of the present invention is preferably 2.1 g / cm 3 or less, more preferably 2.0 g / cm 3 or less, more preferably 1.6 g / cm 3 or less. As a result, the weight can be reduced and it can be used more effectively in automobile applications. Usually, the density of the alloy of the present invention is 1.2 g / cm 3 or more.
  • the alloy of the present invention preferably contains at least one crystal phase of the group consisting of a CaMgSi phase, a CaMg 2 phase, a Ca 2 Si phase, and a Ca 5 Si 3 phase. Thereby, the alloy of this invention shows a higher thermoelectric conversion characteristic.
  • the alloy of the present invention further preferably includes a CaMgSi phase and at least one of a CaMg 2 phase or a Ca 5 Si 3 phase, and more preferably includes a CaMgSi phase and a Ca 5 Si 3 phase. Thereby, the alloy of the present invention exhibits a higher Seebeck coefficient.
  • the CaMgSi phase exhibits semiconductor characteristics, and an alloy containing this phase further improves the thermoelectric characteristics of the Seebeck coefficient portion.
  • the alloy of the present invention has at least one of the above crystal phases.
  • a diffraction peak detected in an X-ray diffraction measurement (hereinafter referred to as “XRD”) using Cu as a radiation source is represented by JCPDS (Joint Committe for Powder Standards) card data corresponding to each crystal phase. It can be confirmed by referring.
  • XRD X-ray diffraction measurement
  • JCPDS Joint Committe for Powder Standards
  • the CaMgSi phase is preferably the main phase.
  • the alloy of the present invention exhibits a higher Seebeck coefficient.
  • the CaMgSi phase is the main phase.
  • a diffraction peak due to the CaMgSi phase can be confirmed, and the diffraction peak indicating the maximum intensity in the diffraction peak group is a peak due to the CaMgSi phase.
  • the diffraction angle of the diffraction peak due to the (211) plane is preferably shifted to the low angle side.
  • the shift amount is preferably shifted to the low angle side by 0.05 ° or more, more preferably 0.1 ° or more, further preferably 0.2 ° or more, and further preferably 0.3 ° or more.
  • the Ca 7 Mg 7.25 Si 14 phase exhibits conductive properties, and an alloy containing this in a low content exhibits a higher Seebeck coefficient.
  • the fact that the alloy of the present invention contains the Ca 7 Mg 7.25 Si 14 phase at a low content is the ratio of the maximum diffraction peak intensity of the Ca 7 Mg 7.25 Si 14 phase to the maximum peak intensity in the XRD pattern of the alloy.
  • the Mg 2 Si phase exhibits n-type semiconductor characteristics, and an alloy containing this at a low content exhibits p-type semiconductor characteristics and higher thermoelectric characteristics.
  • the Mg 2 Si phase of the present invention in the XRD pattern of the alloy, can be expressed relative to the maximum peak intensity, the ratio of the maximum diffraction peak intensity of Mg 2 Si phase.
  • the peak intensity is preferably 10% or less, more preferably 1% or less, and still more preferably no (111) phase peak is detected.
  • the diffraction peak attributed to either phase It may not be possible to judge.
  • the alloy of the present invention preferably has a resistance value at 400 ° C. of 0.1 ⁇ cm or less, more preferably 0.05 ⁇ cm or less.
  • the alloy of the present invention exhibits p-type semiconductor characteristics and exhibits physical properties such as a thermal expansion coefficient close to that of Mg 2 Si.
  • thermoelectric conversion element that is stably driven can be manufactured.
  • Bonding method may be joined to the bulk of the Mg 2 Si and the present invention directly, in order to reduce the stress generated, but may also comprise a metal layer, that joins the close physical properties materials, simple In addition, direct bonding is also preferable in that a pn junction is possible.
  • the present invention can be used as a sputtering target by producing a bulk body.
  • a sputtering target since it has high thermoelectric properties, it has a certain conductivity and allows DC sputtering as well as RF sputtering.
  • a Ca—Mg—Si thin film having a specified composition can be produced.
  • the production method of the present invention includes a step of synthesizing an alloy from magnesium, calcium and silicon, a step of pulverizing the alloy according to circumstances to obtain an alloy powder having an oxygen content of 10 atm% or less, And a hot press treatment at a temperature of 1 ° C. to 1100 ° C.
  • magnesium, calcium and silicon when the atomic ratio of elements is magnesium, calcium and silicon, respectively, Mg, Ca and Si, depending on the melting method, for example, when using the arc melting method, 0atm% ⁇ Mg / (Mg + Ca + Si) ⁇ 70atm%, taking into account that magnesium and calcium volatilize 10 atm% ⁇ Ca / (Mg + Ca + Si) ⁇ 70 atm% 9 atm% ⁇ Si / (Mg + Ca + Si) ⁇ 60 atm% Need to be mixed so that 10 atm% ⁇ Mg / (Mg + Ca + Si) ⁇ 70 atm% 10 atm% ⁇ Ca / (Mg + Ca + Si) ⁇ 50 atm% 9 atm% ⁇ Si / (Mg + Ca + Si) ⁇ 50 atm% It is preferable to mix so that 0 atm% ⁇ Mg / (Mg + Ca + Si) ⁇ 50 atm% 10 atm% ⁇ Ca / (Mg + Ca + Si)
  • raw materials may be added so as to have the above-described composition after synthesis, it is preferable to synthesize after including all the raw materials having the above-described composition. It is desirable that the amount of oxygen contained in the raw material is as small as possible. Specifically, it is preferably 10 atm% or less, and more preferably 5 atm% or less.
  • the synthesis method is not particularly limited, but a synthesis method in which oxygen is not contained as much as possible is preferable.
  • an arc melting method which is an apparatus that uses as little oxygen-containing equipment as possible in a container or the like, is preferable.
  • the vapor pressures at the melting points of calcium (melting point: about 800 ° C.) and magnesium (melting point: about 650 ° C.) are as high as 0.87 Torr and 2.2 Torr, respectively. It is difficult to make.
  • the arc melting method can raise the temperature to the melting temperature in a few seconds, volatilization of each additive component during the treatment can be suppressed.
  • the amount of current depends on the input amount of raw material, and the current value is preferably 15 A or more per gram, more preferably 20 A or more. Also, if the raw material contains more calcium than silicon, an alloy or oxide film is formed on the surface during arc melting, so the current amount is insufficient at a current value of 10 A or less per gram of raw material, and the film melts. As a result, it is difficult to obtain a homogeneous alloy. In particular, calcium precipitates without being alloyed, and calcium is oxidized after synthesis, so that it becomes easy to contain a large amount of oxygen.
  • the upper limit is preferably 100 A or less per gram.
  • magnesium and calcium are instantly volatilized, making it difficult to produce a specified alloy.
  • the raw materials are preferably mixed uniformly during arc melting. By doing so, the synthesized alloy becomes more uniform. Furthermore, a specified element may be added for fine adjustment to the specified composition.
  • the calcium silicide-based material synthesized in this way has a composition within the scope of the present invention, and the oxygen content is 10 atm% or less.
  • the obtained alloy material is pulverized into powder form if necessary.
  • the pulverization operation is preferably performed in an inert gas atmosphere so as not to increase the oxygen content after the synthesis of the alloy. By doing so, oxidation of the powder surface can be prevented and the amount of oxygen contained can be kept low.
  • the alloy powder is used for firing, it is preferable to remove certain coarse particles. By doing so, it becomes possible to prevent cracking of the sintered body due to coarse grains.
  • the particle size to be removed is preferably 300 ⁇ m or more, more preferably 150 ⁇ m or more.
  • the hot press method is a device that advances sintering by applying temperature while pressing powder. By uniaxial pressing during heating, it assists diffusion during firing, and when the diffusion coefficient is low or the particle size of metals, etc. This is a firing method that makes it possible to sinter materials that are difficult to sinter, such as when there is a large sinter.
  • baking is performed by a hot press method, but the density is improved as compared with the prior art, and a bulk body of 1.3 g / cm 3 or more, further 1.8 g / cm 3 or more can be obtained.
  • the firing temperature in the hot press treatment is 600 ° C. or higher and 1100 ° C. or lower, preferably 600 ° C. or higher and 900 ° C. or lower, more preferably 700 ° C. or higher and 1000 ° C. or lower, and still more preferably 700 ° C. or higher and 800 ° C. or lower.
  • sintering does not proceed and the density is improved only to the same extent as the density of the molded body.
  • the melting point is close, so the alloy may be melted.
  • the pressure during firing is preferably 10 MPa or more and 100 MPa or less. This is because the density of the bulk body is improved, and even a generally used carbon mold can be used.
  • the sintering atmosphere is preferably performed in an inert gas atmosphere such as nitrogen or argon containing no oxygen or in a vacuum.
  • the alloy subjected to hot pressing in the firing step in the production method of the present invention preferably includes at least a Ca 5 Si 3 phase, and may include a CaMgSi phase and a Ca 5 Si 3 phase. Further preferred. Thereby, the alloy finally obtained contains a CaMgSi phase as a main phase.
  • the alloy subjected to hot pressing in the firing step in the production method of the present invention preferably contains at least a CaMgSi phase, and more preferably contains a CaMgSi phase and a CaMg 2 phase.
  • the finally obtained alloy contains the CaMgSi phase as the main phase, and further, since there are few phases containing Si, the generation of the Ca 7 Mg 7.25 Si 14 phase and the CaSi 2 phase is suppressed. It becomes possible. Furthermore, since CaMg 2 tends to dissolve, it tends to generate lattice distortion of the CaMgSi phase.
  • the alloy subjected to hot pressing in the firing step in the production method of the present invention preferably includes at least one of a CaMgSi phase and a CaMg 2 phase or a Ca 5 Si 3 phase, and more preferably Includes a CaMgSi phase and a Ca 5 Si 3 phase, more preferably a CaMgSi phase, a CaMg 2 phase, and a Ca 5 Si 3 phase.
  • the alloy finally obtained has a suitable performance as a thermoelectric conversion element.
  • the alloy subjected to the hot press treatment in the firing step in the production method of the present invention does not contain an Mg phase.
  • the bulk body of the present invention may be processed into a predetermined dimension.
  • the processing method is not particularly limited, and a surface grinding method, a rotary grinding method, a cylindrical grinding method, or the like can be used. Since it reacts with water, care must be taken when handling water or grinding fluid during processing.
  • the bulk body of the present invention can also be used as a sputtering target. In that case, it may be fixed (bonded) to a flat or cylindrical support with an adhesive such as a solder material, if necessary.
  • the material of the support is not particularly limited as long as it has a high thermal conductivity and can support the molded product, but a metal such as Cu, SUS or Ti is preferable because of its high thermal conductivity and high strength.
  • a flat plate-shaped support is used for a flat plate-shaped molded product, and a cylindrical support is used for a cylindrical molded product.
  • the adhesive (bonding material) for adhering the molded product and the support is not particularly limited as long as it has sufficient adhesive strength to support, but a conductive resin, a tin solder material or an indium solder material is used. I can do it. Indium solder is preferable because it has high conductivity and thermal conductivity, and is soft and easily deformed. The reason is that the heat of the target surface can be efficiently cooled, the stress between the polycrystalline body and the support generated by thermal expansion can be absorbed, and the bulk body can be prevented from cracking.
  • the sputtering target of the present invention can produce a thin film having a predetermined ratio of magnesium, calcium and silicon by sputtering.
  • composition, purity Quantification was performed using an ICP-MS (inductively coupled plasma mass spectrometry) apparatus.
  • the composition ratio was calculated as the ratio of each element to the total amount of calcium, magnesium and silicon.
  • the purity was defined as the ratio (atm%) of the total amount of calcium, magnesium and silicon in all the detected metal elements.
  • Oxygen content The measurement object is pyrolyzed, the oxygen content is measured by a thermal conductivity method using an oxygen / nitrogen / hydrogen analyzer (manufactured by Leco), and the ratio to the total amount of calcium, magnesium and silicon in the alloy (atm%) ).
  • Bulk density The bulk density of the bulk body was calculated by measuring dimensions and weight.
  • the measured object was processed into a required shape, and the Seebeck coefficient was measured from room temperature to 600 ° C. according to JIS R 1650-1 using a thermoelectric property evaluation apparatus (manufactured by ULVAC: ZEM-3). The measurement atmosphere was carried out under reduced pressure He.
  • X-ray diffraction measurement A normal powder X-ray diffractometer (device name: Ultimate III, manufactured by Rigaku Corporation) was used for normal measurement. The conditions for XRD measurement are as follows.
  • the measured object was processed into a necessary shape, and the resistivity from room temperature to 600 ° C. was measured using a thermoelectric property evaluation apparatus (manufactured by ULVAC: ZEM-3). The measurement atmosphere was carried out under reduced pressure He.
  • Hot press treatment was performed using the prepared powder under the following conditions. Hot press temperature: 800 ° C Atmosphere: Vacuum (50 Pa) Holding time 1 hour Pressure: 50 MPa Mold material: Carbon (Material: IG-11) Mold sintered body Size: 40 mm x 12 mm The measured Seebeck coefficient in Example 1 was 85 ⁇ V / K.
  • Table 2 shows the oxygen content and bulk density of the obtained bulk material. In Comparative Examples 1 and 3, cracks occurred and a bulk body could not be obtained.
  • thermoelectric element When the bulk Seebeck coefficient of Comparative Example 2 was measured, the value was as low as 3 ⁇ V / K, and it was confirmed that the material was difficult to use as a thermoelectric element.
  • Table 2 shows the oxygen content and bulk density of the alloys of Examples 1 to 5 and Comparative Examples 1 to 3
  • Table 3 shows the Seebeck coefficient at 400 ° C.
  • Table 4 shows the crystal phase contained in the alloy (melt).
  • Table 5 shows the crystal phases contained in the alloy (sintered body).
  • composition ratio and oxygen content of the alloy powders of Examples 6 to 11 are shown in Table 1, the oxygen content and bulk density of the alloy in Table 2, the Seebeck coefficient at 400 ° C. in Table 3, and the alloy (melt) content.
  • Table 4 shows the crystal phase to be processed
  • Table 5 shows the crystal phase contained in the alloy (sintered body)
  • Table 6 shows the resistance value
  • Table 7 shows the analysis result of the XRD pattern.

Abstract

The purpose of the present invention is to easily provide a p-type thermoelectric material that is light with high thermoelectric characteristics. Provided is an alloy having magnesium, calcium and silicon as constituent elements, characterized in that the atomic ratio of the elements constituting the alloy are, when the magnesium, calcium and silicon content are each set as Mg, Ca, and Si, 0 atm%≦Mg/(Mg+Ca+Si)<50 atm% 10 atm% ≦Ca/(Mg+Ca+Si)≦70 atm% 20 atm%≦Si/(Mg+Ca+Si)≦60 atm%, and the oxygen content in the alloy is 10 atm% or less.

Description

合金材料Alloy material
 本発明は合金材料及びその製造方法に関する。さらに詳しくは、カルシウム、マグネシウム、シリコンを含む合金材料及びそれを用いた熱電変換素子に関する。 The present invention relates to an alloy material and a manufacturing method thereof. More specifically, the present invention relates to an alloy material containing calcium, magnesium and silicon and a thermoelectric conversion element using the same.
 熱エネルギーと電気エネルギーとの相互変換が可能な素子として熱電変換素子が知られている。この熱電変換素子は、p型及びn型の二種類の熱電変換材料(熱電材料)を用いて構成されており、この二種類の熱電材料を電気的に直列に接続し、熱的に並列に配置した構成とされている。この熱電変換素子は、両端子間に電圧を印加すれば、正孔の移動及び電子の移動が起こり、両面間に温度差が発生する(ペルチェ効果)。また、この熱電変換素子は、両面間に温度差を与えれば、やはり正孔の移動及び電子の移動が起こり、両端子間に起電力が発生する(ゼーベック効果)。このため、ペルチェ効果を利用したパーソナルコンピュータのCPU、冷蔵庫、カーエアコン等の冷却用の素子としての検討、ゼーベック効果を利用したごみ焼却炉等から生ずる廃熱を利用した発電装置用の素子としての検討が進められている。特に、自動車のエンジンの廃熱量は無視できないほど多量であるため、エンジンの廃熱を利用して発電することも考えられており、その温度域は数百度と言われている。 Thermoelectric conversion elements are known as elements capable of mutual conversion between thermal energy and electrical energy. This thermoelectric conversion element is composed of two types of p-type and n-type thermoelectric conversion materials (thermoelectric materials), and these two types of thermoelectric materials are electrically connected in series, and are thermally parallel. The configuration is arranged. In this thermoelectric conversion element, when a voltage is applied between both terminals, movement of holes and movement of electrons occur, and a temperature difference occurs between both surfaces (Peltier effect). Moreover, if this thermoelectric conversion element gives a temperature difference between both surfaces, a hole movement and an electron movement will also occur, and an electromotive force will be generated between both terminals (Seebeck effect). For this reason, as a device for cooling a personal computer CPU, refrigerator, car air conditioner, etc. using the Peltier effect, as an element for a power generation device using waste heat generated from a waste incinerator using the Seebeck effect, etc. Consideration is ongoing. In particular, since the amount of waste heat of an automobile engine is so large that it cannot be ignored, it is considered to generate power using the waste heat of the engine, and the temperature range is said to be several hundred degrees.
 従来、熱電変換素子を構成する熱電材料として、BiTeが主に実用化されており、Bi-Te系の材料でn型の熱電材料を形成する際には一般にSeが添加される。しかし、これらの熱電材料を構成する元素のBi、Te及びSeは毒性が強いため、環境汚染のおそれがある。そのため、環境負荷の少ない、即ち毒性を有しない熱電材料が望まれている。また、Bi-Te系の材料は100℃程度での利用が主であり、自動車の排熱利用に対しては適していない。さらには、自動車の廃熱回収に使用するには軽量で資源的に豊富な材料が望まれている。 Conventionally, Bi 2 Te 3 has been mainly put to practical use as a thermoelectric material constituting a thermoelectric conversion element, and Se is generally added when forming an n-type thermoelectric material with a Bi—Te-based material. However, since the elements Bi, Te and Se constituting these thermoelectric materials are highly toxic, there is a risk of environmental pollution. Therefore, a thermoelectric material having a low environmental load, that is, having no toxicity is desired. Bi-Te materials are mainly used at about 100 ° C. and are not suitable for use in automobile exhaust heat. Furthermore, lightweight and resource-rich materials are desired for use in automotive waste heat recovery.
 無毒で高性能のn型の中温用熱電材料としてMgSiが知られている(例えば、特許文献1参照)。同族元素を用いたp型の熱電材料としてMgSiとCaMgSiの混合物が提案されているが(例えば、特許文献2参照)、400℃におけるゼーベック係数は60μV/K以下と小さく、実用に耐えうる熱電特性を得られていない。また、MgやCaは低温で揮発しやすく、容易に指定の組成のCa-Mg-Si組成の材料を得ることが困難であった。さらには、どの結晶相が存在することで熱電特性が向上するか明らかになっていなかった。 Mg 2 Si is known as a non-toxic and high-performance n-type medium temperature thermoelectric material (see, for example, Patent Document 1). Although a mixture of Mg 2 Si and CaMgSi has been proposed as a p-type thermoelectric material using a homologous element (see, for example, Patent Document 2), the Seebeck coefficient at 400 ° C. is as small as 60 μV / K or less and can be used practically. Thermoelectric properties are not obtained. Further, Mg and Ca are volatile at low temperatures, and it is difficult to easily obtain a material having a Ca—Mg—Si composition with a specified composition. Furthermore, it has not been clarified which crystal phase is present to improve the thermoelectric characteristics.
日本国特開2002-368291号公報Japanese Unexamined Patent Publication No. 2002-368291 日本国特開2008-147261号公報Japanese Unexamined Patent Publication No. 2008-147261
 本発明の目的は、軽量でかつ熱電特性の高いp型の熱電材料を容易に提供することにある。 An object of the present invention is to easily provide a p-type thermoelectric material that is lightweight and has high thermoelectric properties.
 このような背景に鑑み、本発明者らは鋭意検討を重ねた。その結果、Mg-Ca-Siの組成を最適化する事で高いゼーベック係数を持つ熱電材料を作製できることを見出し、本発明を完成するに至った。 In view of such a background, the present inventors made extensive studies. As a result, it has been found that a thermoelectric material having a high Seebeck coefficient can be produced by optimizing the composition of Mg—Ca—Si, and the present invention has been completed.
 すなわち、本発明は以下の[1]乃至[12]に存する。
[1] 構成元素としてマグネシウム、カルシウム及びシリコンを有する合金であって、当該合金を構成する元素の原子比が、マグネシウム、カルシウム及びシリコンの含有量をそれぞれMg、Ca及びSiとしたときに
  0atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦70atm%
 20atm%≦Si/(Mg+Ca+Si)≦60atm%
であり、当該合金中の含有酸素量が10atm%以下であることを特徴とする合金。
[2] CaMgSi相、CaMg相、CaSi相、CaSi相からなる群の少なくとも一つの結晶相を含む上記[1]に記載の合金。
[3] CaMgSi相と、CaMg相又はCaSi相の少なくともいずれかを含む上記[1]又は[2]に記載の合金。
[4] CaMgSi相とCaSi相を含む上記[1]乃至[3]いずれかに記載の合金。
[5] CaMgSi相を主相として含み、CaMgSi相(211)面に起因する回折ピークの回折角が低角側に0.05°以上シフトしている上記[1]乃至[4]いずれかに記載の合金。
[6] かさ密度が1.2g/cm以上2.1g/cm以下である上記[1]乃至[5]いずれかに記載の合金。
[7] 半導体特性としてp型を示すことを特徴とする上記[1]乃至[6]いずれかに記載の合金。
[8] マグネシウム、カルシウム及びシリコンから合金を合成する工程と、前記合金を600℃~1100℃でホットプレス処理する工程とを含む上記[1]乃至[7]いずれかに記載の合金の製造方法。
[9] ホットプレス工程において、少なくともCaSi相を含む合金をホットプレス処理する上記[8]に記載の製造方法。
[10] ホットプレス工程において、CaMgSi相とCaMg相を含む合金をホットプレス処理する上記[8]又は[9]に記載の製造方法。
[11] 上記[7]に記載の合金とn型半導体とを接合させる構造を有する熱電変換素子。
[12] n型半導体の主相がMgSiであることを特徴とする上記[11]に記載の熱電変換素子。
That is, the present invention resides in the following [1] to [12].
[1] An alloy having magnesium, calcium and silicon as constituent elements, and the atomic ratio of the elements constituting the alloy is 0 atm% when the contents of magnesium, calcium and silicon are Mg, Ca and Si, respectively. ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
And an oxygen content in the alloy is 10 atm% or less.
[2] The alloy according to [1], including at least one crystal phase of the group consisting of a CaMgSi phase, a CaMg 2 phase, a Ca 2 Si phase, and a Ca 5 Si 3 phase.
[3] The alloy according to [1] or [2], including a CaMgSi phase and at least one of a CaMg 2 phase or a Ca 5 Si 3 phase.
[4] The alloy according to any one of [1] to [3], including a CaMgSi phase and a Ca 5 Si 3 phase.
[5] The above [1] to [4], in which the CaMgSi phase is included as a main phase, and the diffraction angle of the diffraction peak caused by the CaMgSi phase (211) plane is shifted to the low angle side by 0.05 ° or more. The described alloy.
[6] The alloy according to any one of [1] to [5], wherein the bulk density is 1.2 g / cm 3 or more and 2.1 g / cm 3 or less.
[7] The alloy according to any one of [1] to [6], wherein the semiconductor property is p-type.
[8] The method for producing an alloy according to any one of the above [1] to [7], comprising a step of synthesizing an alloy from magnesium, calcium and silicon and a step of hot pressing the alloy at 600 ° C to 1100 ° C. .
[9] The manufacturing method according to [8], wherein an alloy including at least a Ca 5 Si 3 phase is hot pressed in the hot pressing step.
[10] The production method according to [8] or [9] above, wherein in the hot pressing step, an alloy containing a CaMgSi phase and a CaMg 2 phase is hot pressed.
[11] A thermoelectric conversion element having a structure in which the alloy according to [7] is bonded to an n-type semiconductor.
[12] The thermoelectric conversion element according to the above [11], wherein the main phase of the n-type semiconductor is Mg 2 Si.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments.
 本発明は、構成元素としてマグネシウム、カルシウム及びシリコンを有する合金であって、当該合金を構成する元素の原子比が、マグネシウム、カルシウム及びシリコンの含有量をそれぞれMg、Ca及びSiとしたときに
  0atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦70atm%
 20atm%≦Si/(Mg+Ca+Si)≦60atm%
であり、当該合金中の含有酸素量が10atm%以下であることを特徴とする合金に関するものである。
The present invention is an alloy having magnesium, calcium and silicon as constituent elements, and the atomic ratio of the elements constituting the alloy is 0 atm when the contents of magnesium, calcium and silicon are Mg, Ca and Si, respectively. % ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
And the oxygen content in the alloy is 10 atm% or less.
 ここでの合金とは溶融体、成型体、焼結体等に代表されるバルク体形状、粉末形状、膜形状などその形状を問わない。後述の製法において、アーク溶解により得られる合金を溶融体、ホットプレス等の方法で焼結した合金を焼結体と読み替えることができる。特に、バルク体における組成、結晶相がより均一になり、安定した性能を発揮するため、ホットプレスにより得られる焼結体が好ましい。 The alloy here may be any shape such as a bulk shape represented by a melt, a molded body, a sintered body, a powder shape, and a film shape. In the production method described later, an alloy obtained by sintering an alloy obtained by arc melting by a method such as a melt or hot pressing can be read as a sintered body. In particular, a sintered body obtained by hot pressing is preferable because the composition and crystal phase in the bulk body become more uniform and exhibit stable performance.
 本発明は、構成元素としてマグネシウム、カルシウム及びシリコンを有する合金に関するものであり、当該合金を構成する元素の原子比が、マグネシウム、カルシウム及びシリコンの含有量をそれぞれMg、Ca及びSiとしたときに
  0atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦70atm%
 20atm%≦Si/(Mg+Ca+Si)≦60atm%
であることを特徴とし、
 10atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦50atm%
 20atm%≦Si/(Mg+Ca+Si)≦50atm%
であることが好ましい。
The present invention relates to an alloy having magnesium, calcium and silicon as constituent elements, and when the atomic ratio of the elements constituting the alloy is Mg, Ca and Si, respectively. 0 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
It is characterized by
10 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 50 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 50 atm%
It is preferable that
 さらに好ましくは
 20atm%≦Mg/(Mg+Ca+Si)<50atm%
 30atm%≦Ca/(Mg+Ca+Si)≦50atm%
 16atm%≦Si/(Mg+Ca+Si)≦33atm%
であり、さらに好ましくは
 20atm%≦Mg/(Mg+Ca+Si)<50atm%
 30atm%≦Ca/(Mg+Ca+Si)≦50atm%
 20atm%≦Si/(Mg+Ca+Si)≦30atm%
である。
More preferably, 20 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
30 atm% ≦ Ca / (Mg + Ca + Si) ≦ 50 atm%
16 atm% ≦ Si / (Mg + Ca + Si) ≦ 33 atm%
More preferably, 20 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
30 atm% ≦ Ca / (Mg + Ca + Si) ≦ 50 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 30 atm%
It is.
 マグネシウムの含有量が50atm%以上となる場合、合金組成が安定しないために、緻密な材料を作製することが困難である。マグネシウムを一定量含有させることで、部分的に熱電特性が良好なMgCaSi相を生成することで熱電特性を向上させることが可能となるため、マグネシウムの含有量は10atm%以上であることが好ましく、20atm%以上であることがさらに好ましい。 When the magnesium content is 50 atm% or more, it is difficult to produce a dense material because the alloy composition is not stable. By containing a certain amount of magnesium, it is possible to improve the thermoelectric characteristics by partially generating a MgCaSi phase with good thermoelectric characteristics, so the magnesium content is preferably 10 atm% or more, More preferably, it is 20 atm% or more.
 また、カルシウムが70atm%より多く存在すると、カルシウムが単離し酸化しやすくなるため、バルクを形成する際に悪影響を与える。一方、カルシウムの含有量は30atm%以上であることが好ましい。これにより、合金が含む二珪化カルシウム(CaSi)や珪化カルシウム(CaSi)の結晶相の比率が低下し、本発明の合金がより顕著に半導体特性を示す。 In addition, when calcium is present in an amount of more than 70 atm%, calcium is easily isolated and oxidized, which adversely affects the formation of a bulk. On the other hand, the calcium content is preferably 30 atm% or more. Thus, the ratio of crystal phases of disilicide calcium containing alloy (CaSi 2) or calcium silicide (CaSi) is reduced, an alloy of the present invention exhibit more significantly semiconductor characteristics.
 本発明の合金のCa/Si原子量比は1より大きいことが好ましい。これにより合金が含むCaMg7.25Si14結晶相の比率が低下し、本発明の合金がより高いゼーベック係数を示す。 The Ca / Si atomic weight ratio of the alloy of the present invention is preferably larger than 1. As a result, the ratio of the Ca 7 Mg 7.25 Si 14 crystal phase contained in the alloy decreases, and the alloy of the present invention exhibits a higher Seebeck coefficient.
 また、シリコンの含有量が20atm%未満の場合、マグネシウムもしくはカルシウムが単離しやすくなり、酸化され、酸素がより含有しやすくなることで、バルクの性状を維持できなくなる。また、シリコンの含有量が60atm%よりも多くなると、材料中の二珪化カルシウム(CaSi)や珪化カルシウム(CaSi)が増加することで、半導体から導電体へ変化し、熱電特性を失う。さらに好ましくは30atm%以下である。そうすることでCaMg7.25Si14の生成を抑制することができる。 Further, when the silicon content is less than 20 atm%, magnesium or calcium is easily isolated, oxidized, and oxygen is more easily contained, so that bulk properties cannot be maintained. Further, when the silicon content is more than 60 atm%, calcium disilicide (CaSi 2 ) or calcium silicide (CaSi) in the material increases, so that the semiconductor is changed to the conductor and the thermoelectric characteristics are lost. More preferably, it is 30 atm% or less. It is possible to suppress the formation of Ca 7 Mg 7.25 Si 14 in doing so.
 マグネシウム、カルシウム及びシリコン以外の金属は合成の容易さの観点から、少ないことが好ましく、マグネシウム、カルシウム及びシリコンの合計量に対して10atm%未満であることが好ましく、5atm%未満がより好ましく、1atm%未満であることが更に好ましい。 The amount of metals other than magnesium, calcium and silicon is preferably small from the viewpoint of ease of synthesis, preferably less than 10 atm%, more preferably less than 5 atm%, more preferably 1 atm based on the total amount of magnesium, calcium and silicon. More preferably, it is less than%.
 また、本発明は、合金中の含有酸素量が10atm%以下であることを特徴とする。合金中の含有酸素量が10atm%より多い場合、材料の酸化が進行しやすくなる。特にカルシウムは容易に水分と反応し、水酸化カルシウムとなり体積が膨張するため、バルクを作製しても割れを生じてしまう。また、熱電特性の優れたCa-Mg-Si相等が形成しにくくなり、熱電特性も悪化する。合金中の含有酸素量は、7atm%以下がより好ましく、5atm%以下であることが更に好ましい。なお、合金中の含有酸素量とは合金中に含まれる金属元素の総量と酸素の総和における酸素の割合を指すものである。 Further, the present invention is characterized in that the oxygen content in the alloy is 10 atm% or less. When the oxygen content in the alloy is more than 10 atm%, the oxidation of the material tends to proceed. In particular, calcium easily reacts with moisture, becomes calcium hydroxide, and the volume expands, so that even if a bulk is produced, cracking occurs. Further, it becomes difficult to form a Ca—Mg—Si phase or the like having excellent thermoelectric characteristics, and the thermoelectric characteristics are also deteriorated. The oxygen content in the alloy is more preferably 7 atm% or less, and still more preferably 5 atm% or less. The oxygen content in the alloy refers to the ratio of oxygen in the total amount of metal elements and oxygen in the alloy.
 本発明の性状はバルク体である事が好ましい。熱電変換法は素子の両端に温度差が発生する際に電気を発生するが、より温度差が顕著に現れるためには素子に一定の厚みが必要となること、電気を流すためには緻密体である必要がある事から、粉末状や膜であるよりもバルク体である事が好ましい。 The property of the present invention is preferably a bulk body. The thermoelectric conversion method generates electricity when a temperature difference occurs at both ends of the element, but the element needs to have a certain thickness in order for the temperature difference to appear more conspicuously. Therefore, a bulk body is preferable to a powder or film.
 ここでバルク体とは厚さが0.100mm以上の構造体である。ここで構造体における厚さとは当該構造体において最も薄い部分の長さをいう。構造体として塊状体、溶融体、焼結体を例示することができる。 Here, the bulk body is a structure having a thickness of 0.100 mm or more. Here, the thickness in the structure means the length of the thinnest part in the structure. Examples of the structure include a lump, a melt, and a sintered body.
 バルク体は、用途次第であるが、なるべく緻密であることが好ましい。バルク体を緻密にすることで、バルク体の開気孔を低減し、酸化などによる素子の劣化を抑制すると共に、機械強度を向上することが可能となる。ただし、その密度は低い方が好ましい場合もある。 The bulk body is preferably as dense as possible depending on the application. By densifying the bulk body, it is possible to reduce open pores in the bulk body, suppress deterioration of the element due to oxidation or the like, and improve mechanical strength. However, a lower density may be preferable.
 本発明の合金の密度は、好ましくは2.1g/cm以下、さらに好ましくは2.0g/cm以下、より好ましくは1.6g/cm以下である。これにより軽量化し、自動車用途などにおいてより有効に活用することが可能となる。通常、本発明の合金の密度は、1.2g/cm以上である。 The density of the alloy of the present invention is preferably 2.1 g / cm 3 or less, more preferably 2.0 g / cm 3 or less, more preferably 1.6 g / cm 3 or less. As a result, the weight can be reduced and it can be used more effectively in automobile applications. Usually, the density of the alloy of the present invention is 1.2 g / cm 3 or more.
 本発明の合金は、CaMgSi相、CaMg相、CaSi相、CaSi相からなる群の少なくとも一つの結晶相を含むことが好ましい。これにより、本発明の合金がより高い熱電変換特性を示す。 The alloy of the present invention preferably contains at least one crystal phase of the group consisting of a CaMgSi phase, a CaMg 2 phase, a Ca 2 Si phase, and a Ca 5 Si 3 phase. Thereby, the alloy of this invention shows a higher thermoelectric conversion characteristic.
 本発明の合金は、さらに好ましくはCaMgSi相と、CaMg相又はCaSi相の少なくともいずれかを含み、またさらに好ましくはCaMgSi相とCaSi相を含む。これにより、本発明の合金がより高いゼーベック係数を示す。 The alloy of the present invention further preferably includes a CaMgSi phase and at least one of a CaMg 2 phase or a Ca 5 Si 3 phase, and more preferably includes a CaMgSi phase and a Ca 5 Si 3 phase. Thereby, the alloy of the present invention exhibits a higher Seebeck coefficient.
 CaMgSi相らは半導体特性を示し、これを含む合金は、ゼーベック係数部分の熱電特性をより向上する。 The CaMgSi phase exhibits semiconductor characteristics, and an alloy containing this phase further improves the thermoelectric characteristics of the Seebeck coefficient portion.
 本発明の合金が上記の結晶相の少なくともいずれかを有することは、X線回折測定により確認することができる。例えば、Cuを線源とするX線回折測定(以下、「XRD」という。)において検出される回折ピークを、それぞれの結晶相に対応するJCPDS(Joint Committee for Powder Diffraction Standards)のカードのデータと参照することで確認可能である。複数の結晶相が存在する場合、ピークが重複しない同定される結晶相が存在すること、もしくは回折角2θ=20°~80°の走査範囲において、3か所以上で結晶方位が同定される場合、その結晶相があると判断した。 It can be confirmed by X-ray diffraction measurement that the alloy of the present invention has at least one of the above crystal phases. For example, a diffraction peak detected in an X-ray diffraction measurement (hereinafter referred to as “XRD”) using Cu as a radiation source is represented by JCPDS (Joint Committe for Powder Standards) card data corresponding to each crystal phase. It can be confirmed by referring. When there are multiple crystal phases, there are crystal phases that do not have overlapping peaks, or crystal orientations are identified at three or more locations in the scanning range of diffraction angle 2θ = 20 ° to 80 ° The crystal phase was judged to be present.
 本発明の合金がCaMgSi相を含む場合、CaMgSi相が主相であることが好ましい。これにより、本発明の合金がより高いゼーベック係数を示す。ここでCaMgSi相が主相であるとは、合金のXRDパターンにおいて、CaMgSi相に起因する回折ピークが確認でき、なおかつ、その回折ピーク群における最大強度を示す回折ピークがCaMgSi相に起因するピークであることを示す。例えば、XRD測定においてJCPDSカードを用いて結晶相の同定を行う場合、カードNo.CaMgSi:01-089-1917における(211)面、回折角2θ=33.218°における回折ピークを、CaMgSiの最大強度を示す回折ピークとする。 When the alloy of the present invention includes a CaMgSi phase, the CaMgSi phase is preferably the main phase. Thereby, the alloy of the present invention exhibits a higher Seebeck coefficient. Here, the CaMgSi phase is the main phase. In the XRD pattern of the alloy, a diffraction peak due to the CaMgSi phase can be confirmed, and the diffraction peak indicating the maximum intensity in the diffraction peak group is a peak due to the CaMgSi phase. Indicates that there is. For example, when identifying a crystal phase using a JCPDS card in XRD measurement, the card no. The diffraction peak at the (211) plane and the diffraction angle 2θ = 33.218 ° in CaMgSi: 01-089-1917 is a diffraction peak indicating the maximum intensity of CaMgSi.
 本発明の合金が含むCaMgSi相は、その(211)面に起因する回折ピークの回折角が低角側にシフトしていることが好ましい。そのシフト量は低角側へ0.05°以上シフトしていることが好ましく、より好ましくは0.1°以上、さらに好ましくは0.2°以上、さらに好ましくは0.3°以上である。これにより、CaMgSi相に対し他の相、特にCaMgが固溶することでピークシフトを起こし、格子が(211)面に垂直な方向に広がることで、歪を発生させ、ゼーベック係数を向上させているものと推測される。 In the CaMgSi phase contained in the alloy of the present invention, the diffraction angle of the diffraction peak due to the (211) plane is preferably shifted to the low angle side. The shift amount is preferably shifted to the low angle side by 0.05 ° or more, more preferably 0.1 ° or more, further preferably 0.2 ° or more, and further preferably 0.3 ° or more. Thus, causing a peak shift by other phases to CaMgSi phase, especially CaMg 2 forms a solid solution, the lattice is (211) that extends in a direction perpendicular to the surface, to generate a distortion, improve the Seebeck coefficient It is presumed that
 一方、CaMg7.25Si14相は導電特性を示し、これを低含有量で含む合金はより高いゼーベック係数を示す。本発明の合金がCaMg7.25Si14相を低含有量で含むことは、合金のXRDパターンにおいて、最大ピーク強度に対する、CaMg7.25Si14相の最大回折ピーク強度の比で表すことができる。本発明の合金は、具体的には2θ=20°~80°をX線回折装置にてスキャンした際の最大ピーク強度に対し、CaMg7.25Si14の(221)相(カードNo.01-088-1551)のピーク強度が50%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは3%未満である。 On the other hand, the Ca 7 Mg 7.25 Si 14 phase exhibits conductive properties, and an alloy containing this in a low content exhibits a higher Seebeck coefficient. The fact that the alloy of the present invention contains the Ca 7 Mg 7.25 Si 14 phase at a low content is the ratio of the maximum diffraction peak intensity of the Ca 7 Mg 7.25 Si 14 phase to the maximum peak intensity in the XRD pattern of the alloy. Can be expressed as Specifically, the alloy of the present invention has a (221) phase (Card No.) of Ca 7 Mg 7.25 Si 14 with respect to the maximum peak intensity when scanning 2θ = 20 ° to 80 ° with an X-ray diffractometer. .01-088-1551) is preferably 50% or less, more preferably 10% or less, and even more preferably less than 3%.
 また、MgSi相はn型半導体特性を示し、これを低含有量で含む合金はp型半導体特性、そしてより高い熱電特性示す。本発明の合金がMgSi相を低含有量で含むことは、合金のXRDパターンにおいて、最大ピーク強度に対する、MgSi相の最大回折ピーク強度の比で表すことができる。本発明の合金は、具体的には2θ=20°~80°をX線回折装置にてスキャンした際の最大ピーク強度に対するMgSiの(111)相(カードNo.01-071-9591)のピーク強度が、10%以下、さらには1%以下であることが好ましく、(111)相のピークが検出されないことがまたさらに好ましい。 Further, the Mg 2 Si phase exhibits n-type semiconductor characteristics, and an alloy containing this at a low content exhibits p-type semiconductor characteristics and higher thermoelectric characteristics. Include low-content alloy the Mg 2 Si phase of the present invention, in the XRD pattern of the alloy, can be expressed relative to the maximum peak intensity, the ratio of the maximum diffraction peak intensity of Mg 2 Si phase. Specifically, the alloy of the present invention has a (111) phase of Mg 2 Si (card No. 01-071-9591) with respect to the maximum peak intensity when scanning 2θ = 20 ° to 80 ° with an X-ray diffractometer. The peak intensity is preferably 10% or less, more preferably 1% or less, and still more preferably no (111) phase peak is detected.
 ここで、MgSi相の存在の判別方法として、まずMgSi単独で同定される回折ピークが確認できない場合、合金中にMgSi相が存在しないと判断する。 Here, as a method for determining the presence of the Mg 2 Si phase, first, when a diffraction peak identified by Mg 2 Si alone cannot be confirmed, it is determined that the Mg 2 Si phase does not exist in the alloy.
 また、MgSi(111)面のピーク位置(2θ=24.257°)と、CaMgSi(102)面のピーク位置(2θ=24.533°)が近いため、どちらの相に帰属する回折ピークか判断できない場合がある。この場合、合金における2θ=24.25°±0.3°の回折ピークにおける強度を、MgSi(111)面と、CaMgSi(102)面、それぞれの寄与分として換算を行い、MgSi(111)面の回折ピーク強度寄与分を、MgSi(111)面の回折ピーク強度と見なして判断を行った。具体的には、JCPDSカードに記載されているCaMgSi相の(211)面の回折ピーク強度と、CaMgSiの(102)面の回折ピーク強度の比(0.037)を元に、MgSi相の寄与分(I(MgSi))を下記の計算により算出した
    I(MgSi)(%)=(合金の(24.25°±0.3°)の
     最大ピーク強度 - CaMgSi(211)面ピーク強度 
     × 0.037) / CaMgSi(211)面ピーク強度
 本発明の合金は、好ましくは400℃における抵抗値が0.1Ωcm以下であり、さらに好ましくは0.05Ωcm以下である。
Further, since the peak position (2θ = 2.257 °) of the Mg 2 Si (111) plane is close to the peak position (2θ = 24.533 °) of the CaMgSi (102) plane, the diffraction peak attributed to either phase It may not be possible to judge. In this case, the intensity at the diffraction peak of 2θ = 24.25 ° ± 0.3 ° in the alloy is converted as the respective contributions of the Mg 2 Si (111) surface and the CaMgSi (102) surface, and Mg 2 Si Judgment was made by regarding the diffraction peak intensity contribution of the (111) plane as the diffraction peak intensity of the Mg 2 Si (111) plane. Specifically, based on the ratio (0.037) of the diffraction peak intensity of the (211) plane of the CaMgSi phase described in the JCPDS card and the diffraction peak intensity of the (102) plane of CaMgSi, the Mg 2 Si phase (I (Mg 2 Si)) was calculated by the following calculation: I (Mg 2 Si) (%) = (maximum peak intensity of alloy (24.25 ° ± 0.3 °) −CaMgSi (211) ) Area peak intensity
× 0.037) / CaMgSi (211) plane peak strength The alloy of the present invention preferably has a resistance value at 400 ° C. of 0.1 Ωcm or less, more preferably 0.05 Ωcm or less.
 また、本発明の合金は、p型半導体特性を示し、MgSiに近い熱膨張率等の物性を示す。 Further, the alloy of the present invention exhibits p-type semiconductor characteristics and exhibits physical properties such as a thermal expansion coefficient close to that of Mg 2 Si.
 更に、n型半導体にMgSiを主相とする材料を用い、p型半導体として本発明の材料を用いると、安定的に駆動する熱電変換素子を作製することが可能となる。接合方法は、MgSiと本発明のバルクを直接接合してもよいし、応力発生を軽減するために、金属層を含んでも構わないが、物性の近い材料を接合していること、簡便にp-n接合を可能とする点でも直接接合することが好ましい。 Furthermore, when a material having Mg 2 Si as a main phase is used for the n-type semiconductor and the material of the present invention is used for the p-type semiconductor, a thermoelectric conversion element that is stably driven can be manufactured. Bonding method may be joined to the bulk of the Mg 2 Si and the present invention directly, in order to reduce the stress generated, but may also comprise a metal layer, that joins the close physical properties materials, simple In addition, direct bonding is also preferable in that a pn junction is possible.
 本発明は、バルク体を作製することで、スパッタリングターゲットとして利用することも可能となる。とくに高い熱電特性を持つことから、一定の導電率もあり、RFスパッタリングのみならずDCスパッタリングも可能となる。このようなスパッタリングターゲットを用いることで指定組成のCa-Mg-Si薄膜を作製することも可能である。 The present invention can be used as a sputtering target by producing a bulk body. In particular, since it has high thermoelectric properties, it has a certain conductivity and allows DC sputtering as well as RF sputtering. By using such a sputtering target, a Ca—Mg—Si thin film having a specified composition can be produced.
 次に、本発明の製造方法について説明する。ここでは製造方法の一例を示すが、必ずしもその方法による必要はない。 Next, the manufacturing method of the present invention will be described. Although an example of the manufacturing method is shown here, it is not always necessary to use that method.
 本発明の製造方法は、マグネシウム、カルシウム及びシリコンから合金を合成する工程と、場合に応じて前記合金を粉砕して含有酸素量が10atm%以下の合金粉末とする工程と、前記合金粉末を600℃~1100℃でホットプレス処理する工程とを含んでなる。 The production method of the present invention includes a step of synthesizing an alloy from magnesium, calcium and silicon, a step of pulverizing the alloy according to circumstances to obtain an alloy powder having an oxygen content of 10 atm% or less, And a hot press treatment at a temperature of 1 ° C. to 1100 ° C.
 まず、マグネシウム、カルシウム及びシリコンを、元素の原子比がマグネシウム、カルシウム及びシリコンの含有量をそれぞれMg、Ca及びSiとしたときに、溶解方法にもよるが、例えばアーク溶解法を利用する場合、マグネシウムやカルシウムが揮発することも念頭に入れて
  0atm%≦Mg/(Mg+Ca+Si)<70atm%
 10atm%≦Ca/(Mg+Ca+Si)≦70atm%
 9atm%≦Si/(Mg+Ca+Si)≦60atm%
となるように混合する必要があり、
 10atm%≦Mg/(Mg+Ca+Si)<70atm%
 10atm%≦Ca/(Mg+Ca+Si)≦50atm%
 9atm%≦Si/(Mg+Ca+Si)≦50atm%
となるように混合することが好ましく、
  0atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦70atm%
 20atm%≦Si/(Mg+Ca+Si)≦60atm%
となるように混合することがさらに好ましく、
 10atm%≦Mg/(Mg+Ca+Si)<50atm%
 10atm%≦Ca/(Mg+Ca+Si)≦50atm%
 20atm%≦Si/(Mg+Ca+Si)≦50atm%
となるように混合することがより好ましく、
 50atm%≦Mg/(Mg+Ca+Si)<70atm%
 20atm%≦Ca/(Mg+Ca+Si)≦40atm%
 9atm%≦Si/(Mg+Ca+Si)≦30atm%
となるように混合することがまたさらに好ましい。
First, magnesium, calcium and silicon, when the atomic ratio of elements is magnesium, calcium and silicon, respectively, Mg, Ca and Si, depending on the melting method, for example, when using the arc melting method, 0atm% ≦ Mg / (Mg + Ca + Si) <70atm%, taking into account that magnesium and calcium volatilize
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
9 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
Need to be mixed so that
10 atm% ≦ Mg / (Mg + Ca + Si) <70 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 50 atm%
9 atm% ≦ Si / (Mg + Ca + Si) ≦ 50 atm%
It is preferable to mix so that
0 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
It is more preferable to mix so that
10 atm% ≦ Mg / (Mg + Ca + Si) <50 atm%
10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 50 atm%
20 atm% ≦ Si / (Mg + Ca + Si) ≦ 50 atm%
It is more preferable to mix so that
50 atm% ≦ Mg / (Mg + Ca + Si) <70 atm%
20 atm% ≦ Ca / (Mg + Ca + Si) ≦ 40 atm%
9 atm% ≦ Si / (Mg + Ca + Si) ≦ 30 atm%
It is still more preferable to mix so that it may become.
 合成後に上述した組成となるように原料を添加しても構わないが、上述した組成の原料をすべて含んだ上で合成することが好ましい。原料中の含有酸素量は極力少ないことが望ましく、具体的には10atm%以下であることが好ましく、5atm%以下であることがより好ましい。 Although raw materials may be added so as to have the above-described composition after synthesis, it is preferable to synthesize after including all the raw materials having the above-described composition. It is desirable that the amount of oxygen contained in the raw material is as small as possible. Specifically, it is preferably 10 atm% or less, and more preferably 5 atm% or less.
 また、合成方法は特に限定されないが、極力酸素を含有させないような合成方法が好ましく、そのためには容器などに酸素を含有する機材をなるべく使用しない装置であるアーク溶解法が好ましい。特にカルシウム(融点約800℃)、マグネシウム(融点約650℃)の融点における蒸気圧がそれぞれ0.87Torr、2.2Torrと高いため、加熱に時間のかかる通常の溶解炉では上述の組成の材料を作製することは難しい。それに対し、アーク溶解法は数秒で溶融温度まで昇温可能であるため、処理中における各添加成分の揮発を抑制することが可能である。更に溶解条件として、低い放電パワーで長時間溶融するよりも、高いパワーで短時間処理する事が好ましい。その電流量は原料の投入量により左右され、電流値で1g当たり15A以上が好ましく、更に好ましくは20A以上である。また、原料中にカルシウムがシリコンよりも多く含まれると、アーク溶解時に表面に合金、もしくは酸化物被膜を形成するため、1gの原料当たり10A以下の電流値では電流量が不足し、被膜を溶融できず、結果として均質な合金を得ることが難しい。特にカルシウムが合金化せず析出し、合成後カルシウムが酸化するために酸素を多く含有しやすくなる。上限としては、1g当たり、100A以下であることが好ましい。100Aを超える電流を与えると、瞬時にマグネシウム、カルシウムが揮発し、指定の合金を作製することが難しい。アーク溶解時において原料は均一に混合されていることが好ましい。そうすることで合成された合金もより均一なものとなる。更に指定組成に微調整するために指定元素を追加しても構わない。このようにして合成された珪化カルシウム系材料は本発明の範囲内の組成を持ち、含有酸素量が10atm%以下となる。 In addition, the synthesis method is not particularly limited, but a synthesis method in which oxygen is not contained as much as possible is preferable. For this purpose, an arc melting method, which is an apparatus that uses as little oxygen-containing equipment as possible in a container or the like, is preferable. In particular, the vapor pressures at the melting points of calcium (melting point: about 800 ° C.) and magnesium (melting point: about 650 ° C.) are as high as 0.87 Torr and 2.2 Torr, respectively. It is difficult to make. On the other hand, since the arc melting method can raise the temperature to the melting temperature in a few seconds, volatilization of each additive component during the treatment can be suppressed. Further, as a melting condition, it is preferable to perform the treatment at a high power for a short time rather than melting at a low discharge power for a long time. The amount of current depends on the input amount of raw material, and the current value is preferably 15 A or more per gram, more preferably 20 A or more. Also, if the raw material contains more calcium than silicon, an alloy or oxide film is formed on the surface during arc melting, so the current amount is insufficient at a current value of 10 A or less per gram of raw material, and the film melts. As a result, it is difficult to obtain a homogeneous alloy. In particular, calcium precipitates without being alloyed, and calcium is oxidized after synthesis, so that it becomes easy to contain a large amount of oxygen. The upper limit is preferably 100 A or less per gram. When a current exceeding 100 A is applied, magnesium and calcium are instantly volatilized, making it difficult to produce a specified alloy. The raw materials are preferably mixed uniformly during arc melting. By doing so, the synthesized alloy becomes more uniform. Furthermore, a specified element may be added for fine adjustment to the specified composition. The calcium silicide-based material synthesized in this way has a composition within the scope of the present invention, and the oxygen content is 10 atm% or less.
 次に、必要に応じて得られた合金材料を粉砕して粉末状とする。合金中の含有酸素量を10atm%以下とするため、合金の合成後から含有酸素量を増加させないように、粉砕作業は不活性ガス雰囲気で行うことが好ましい。そうすることで粉末表面の酸化を防ぎ、含有酸素量を低く抑えることができるからである。またその合金粉末を焼成に用いる場合において、一定の粗粒を除去しておくことが好ましい。そうすることで粗粒に起因する焼結体の割れを防止することが可能となる。除去すべき粒径は300μm以上であることが好ましく、より好ましくは150μm以上である。 Next, the obtained alloy material is pulverized into powder form if necessary. In order that the oxygen content in the alloy is 10 atm% or less, the pulverization operation is preferably performed in an inert gas atmosphere so as not to increase the oxygen content after the synthesis of the alloy. By doing so, oxidation of the powder surface can be prevented and the amount of oxygen contained can be kept low. When the alloy powder is used for firing, it is preferable to remove certain coarse particles. By doing so, it becomes possible to prevent cracking of the sintered body due to coarse grains. The particle size to be removed is preferably 300 μm or more, more preferably 150 μm or more.
 次に、合金粉末を600℃~1100℃、好ましくは600~900℃でホットプレス処理する。ホットプレス法は粉末を加圧しながら温度を与えることで焼結を進める装置であり、加熱時に一軸加圧を行なうことで焼成時の拡散を補助し、拡散係数が低い場合や、金属など粒子径が大きい場合など焼結しにくい材料を焼結できるようにする焼成法である。ホットプレス法により焼成を行なうことで組成にもよるが従来よりも密度が向上し、1.3g/cm以上、さらには1.8g/cm以上のバルク体を得ることが可能となる。 Next, the alloy powder is hot pressed at 600 to 1100 ° C., preferably 600 to 900 ° C. The hot press method is a device that advances sintering by applying temperature while pressing powder. By uniaxial pressing during heating, it assists diffusion during firing, and when the diffusion coefficient is low or the particle size of metals, etc. This is a firing method that makes it possible to sinter materials that are difficult to sinter, such as when there is a large sinter. Depending on the composition, baking is performed by a hot press method, but the density is improved as compared with the prior art, and a bulk body of 1.3 g / cm 3 or more, further 1.8 g / cm 3 or more can be obtained.
 ホットプレス処理における焼成温度は600℃以上1100℃以下、好ましくは600℃以上900℃以下であり、さらに好ましくは、700℃以上1000℃以下、またさらに好ましくは700℃以上800℃以下で焼成する。600℃より低い温度では焼結が進まず密度が成形体密度と同程度にしか向上しない。また、1100℃よりも高い温度にて焼成を行なうと融点が近いために、合金が溶融する可能性がある。 The firing temperature in the hot press treatment is 600 ° C. or higher and 1100 ° C. or lower, preferably 600 ° C. or higher and 900 ° C. or lower, more preferably 700 ° C. or higher and 1000 ° C. or lower, and still more preferably 700 ° C. or higher and 800 ° C. or lower. At temperatures lower than 600 ° C., sintering does not proceed and the density is improved only to the same extent as the density of the molded body. Further, if firing is performed at a temperature higher than 1100 ° C., the melting point is close, so the alloy may be melted.
 焼成時の圧力は10MPa以上100MPa以下である事が好ましい。バルク体の密度を向上させ、一般的に用いられるカーボン製の金型でも使用に耐えうるからである。焼結の雰囲気は酸素を含まない窒素やアルゴンなどの不活性ガス雰囲気や真空中で行なう事が好ましい。 The pressure during firing is preferably 10 MPa or more and 100 MPa or less. This is because the density of the bulk body is improved, and even a generally used carbon mold can be used. The sintering atmosphere is preferably performed in an inert gas atmosphere such as nitrogen or argon containing no oxygen or in a vacuum.
 本発明の製造方法における焼成工程においてホットプレス処理に供する合金、すなわち、合成工程において得られる合金は、少なくともCaSi相を含むことが好ましく、CaMgSi相とCaSi相を含むことがさらに好ましい。これにより、最終的に得られる合金がCaMgSi相を主相として含む。 The alloy subjected to hot pressing in the firing step in the production method of the present invention, that is, the alloy obtained in the synthesis step preferably includes at least a Ca 5 Si 3 phase, and may include a CaMgSi phase and a Ca 5 Si 3 phase. Further preferred. Thereby, the alloy finally obtained contains a CaMgSi phase as a main phase.
 本発明の製造方法における焼成工程においてホットプレス処理に供する合金、すなわち、合成工程において得られる合金は、少なくともCaMgSi相を含むことが好ましく、CaMgSi相とCaMg相を含むことがさらに好ましい。これにより、最終的に得られる合金(焼結体)がCaMgSi相を主相として含み、更にSiを含む相が少ないためにCaMg7.25Si14相、CaSi相の発生を抑制することが可能となる。さらにCaMgは固溶しやすいため、CaMgSi相の格子歪を発生しやすい。 The alloy subjected to hot pressing in the firing step in the production method of the present invention, that is, the alloy obtained in the synthesis step preferably contains at least a CaMgSi phase, and more preferably contains a CaMgSi phase and a CaMg 2 phase. As a result, the finally obtained alloy (sintered body) contains the CaMgSi phase as the main phase, and further, since there are few phases containing Si, the generation of the Ca 7 Mg 7.25 Si 14 phase and the CaSi 2 phase is suppressed. It becomes possible. Furthermore, since CaMg 2 tends to dissolve, it tends to generate lattice distortion of the CaMgSi phase.
 本発明の製造方法における焼成工程においてホットプレス処理に供する合金、すなわち、合成工程において得られる合金は、好ましくはCaMgSi相と、CaMg相又はCaSi相の少なくともいずれかを含み、さらに好ましくはCaMgSi相、及びCaSi相を含み、より好ましくはCaMgSi相、CaMg相、及びCaSi相む。これにより、最終的に得られる合金が熱電変換素子として好適な性能を有する。 The alloy subjected to hot pressing in the firing step in the production method of the present invention, that is, the alloy obtained in the synthesis step preferably includes at least one of a CaMgSi phase and a CaMg 2 phase or a Ca 5 Si 3 phase, and more preferably Includes a CaMgSi phase and a Ca 5 Si 3 phase, more preferably a CaMgSi phase, a CaMg 2 phase, and a Ca 5 Si 3 phase. Thereby, the alloy finally obtained has a suitable performance as a thermoelectric conversion element.
 また、本発明の製造方法における焼成工程においてホットプレス処理に供する合金はMg相を含まないことが好ましい。 Moreover, it is preferable that the alloy subjected to the hot press treatment in the firing step in the production method of the present invention does not contain an Mg phase.
 本発明のバルク体は、所定の寸法に加工してもよい。加工方法は特に限定しないが、平面研削法、ロータリー研削法または円筒研削法等を用いることができる。水と反応するために加工時の水あるいは研削液の取扱いには注意を要する。 The bulk body of the present invention may be processed into a predetermined dimension. The processing method is not particularly limited, and a surface grinding method, a rotary grinding method, a cylindrical grinding method, or the like can be used. Since it reacts with water, care must be taken when handling water or grinding fluid during processing.
 また、本発明のバルク体は、スパッタリングターゲットとして利用することも可能である。その際は必要に応じて平板状または円筒状の支持体にハンダ材等の接着剤により固定(ボンディング)しても良い。支持体の材質は、熱伝導率が高く成型物を支持できる強度があれば特に限定されないが、熱伝導率が高く強度が高いことからCu、SUSまたはTiなどの金属が好ましい。支持体の形状は平板形状の成形物には平板形状の支持体を用い、円筒形状の成形物には円筒形状の支持体を用いる。成形物と支持体を接着する接着材(ボンディング材)は、支持するために十分な接着強度があれば特に限定されないが、導電性の樹脂、スズ系ハンダ材またはインジウム系のハンダ材を使用することが出来る。導電性、熱伝導性が高く、かつ柔らかく変形しやすいことからインジウムハンダが好ましい。その理由は、ターゲット表面の熱を効率的に冷却でき、熱膨張により発生した多結晶体と支持体の間の応力を吸収しバルク体の割れを防止することができるためである。 The bulk body of the present invention can also be used as a sputtering target. In that case, it may be fixed (bonded) to a flat or cylindrical support with an adhesive such as a solder material, if necessary. The material of the support is not particularly limited as long as it has a high thermal conductivity and can support the molded product, but a metal such as Cu, SUS or Ti is preferable because of its high thermal conductivity and high strength. As the shape of the support, a flat plate-shaped support is used for a flat plate-shaped molded product, and a cylindrical support is used for a cylindrical molded product. The adhesive (bonding material) for adhering the molded product and the support is not particularly limited as long as it has sufficient adhesive strength to support, but a conductive resin, a tin solder material or an indium solder material is used. I can do it. Indium solder is preferable because it has high conductivity and thermal conductivity, and is soft and easily deformed. The reason is that the heat of the target surface can be efficiently cooled, the stress between the polycrystalline body and the support generated by thermal expansion can be absorbed, and the bulk body can be prevented from cracking.
 本発明のスパッタリングターゲットは、スパッタ法により所定のマグネシウム、カルシウム、シリコン比率の薄膜を作製することが可能である。 The sputtering target of the present invention can produce a thin film having a predetermined ratio of magnesium, calcium and silicon by sputtering.
実施例6のゼーベック係数-測定温度のプロットであるIt is a plot of Seebeck coefficient-measurement temperature of Example 6.
 以下、実施例をもって説明するが、本発明はこれに限定されるものではない。
(組成、純度)
 ICP-MS(誘導結合プラズマ質量分析)装置により定量した。組成比はカルシウム、マグネシウム、シリコンの合計量に対する各元素の比率として算出した。純度は検出された全金属元素中のカルシウム、マグネシウム、シリコンを合計した量が占める割合(atm%)とした。
(含有酸素量)
 測定物を熱分解させ、酸素・窒素・水素分析装置(Leco社製)を用いて酸素量を熱伝導度法により測定し、合金中のカルシウム、マグネシウム、シリコンを合計した量に対する割合(atm%)とした。
(かさ密度)
 バルク体のかさ密度は寸法と重量を測定し算出した。
(ゼーベック係数)
 測定物を必要な形状に加工し、熱電特性評価装置(アルバック製:ZEM-3)を用いてJIS R 1650-1に準じて室温から600℃までのゼーベック係数の測定を行った。測定雰囲気は減圧He下で実施した。
(X線回折測定)
 通常の測定は一般的な粉末X線回折装置(装置名:UltimaIII、リガク社製)を用いた。XRD測定の条件は以下のとおりである。
      線源    : CuKα線(λ=0.15418nm)
      測定モード : 2θ/θスキャン
      測定間隔  : 0.01°
      発散スリット: 0.5deg
      散乱スリット: 0.5deg
      受光スリット: 0.3mm
      計測時間  : 1.0秒
      測定範囲  : 2θ=20°~80°
同定する結晶相は下記のJCPDSカードを用いて同定した。
CaMgSi:01-089-1917
CaMg7.25Si14:01-088-1551
CaMg:01-072-5708
MgSi:01-071-9591
CaSi:01-070-7854、01-082-1714
CaSi:01-089-4856
CaSi:01-071-4840
CaSi:01-087-0894
Mg:01-089-4856
Ga14Si19:01-087-0861
(抵抗率)
 測定物を必要な形状に加工し、熱電特性評価装置(アルバック製:ZEM-3)を用いて、室温から600℃までの抵抗率の測定を行った。測定雰囲気は減圧He下で実施した。
Examples will be described below, but the present invention is not limited thereto.
(Composition, purity)
Quantification was performed using an ICP-MS (inductively coupled plasma mass spectrometry) apparatus. The composition ratio was calculated as the ratio of each element to the total amount of calcium, magnesium and silicon. The purity was defined as the ratio (atm%) of the total amount of calcium, magnesium and silicon in all the detected metal elements.
(Oxygen content)
The measurement object is pyrolyzed, the oxygen content is measured by a thermal conductivity method using an oxygen / nitrogen / hydrogen analyzer (manufactured by Leco), and the ratio to the total amount of calcium, magnesium and silicon in the alloy (atm%) ).
(Bulk density)
The bulk density of the bulk body was calculated by measuring dimensions and weight.
(Seebeck coefficient)
The measured object was processed into a required shape, and the Seebeck coefficient was measured from room temperature to 600 ° C. according to JIS R 1650-1 using a thermoelectric property evaluation apparatus (manufactured by ULVAC: ZEM-3). The measurement atmosphere was carried out under reduced pressure He.
(X-ray diffraction measurement)
A normal powder X-ray diffractometer (device name: Ultimate III, manufactured by Rigaku Corporation) was used for normal measurement. The conditions for XRD measurement are as follows.
Radiation source: CuKα ray (λ = 0.15418 nm)
Measurement mode: 2θ / θ scan Measurement interval: 0.01 °
Divergence slit: 0.5 deg
Scattering slit: 0.5 deg
Receiving slit: 0.3mm
Measurement time: 1.0 seconds Measurement range: 2θ = 20 ° -80 °
The crystal phase to be identified was identified using the following JCPDS card.
CaMgSi: 01-089-1917
Ca 7 Mg 7.25 Si 14 : 01-088-1551
CaMg 2 : 01-072-5708
Mg 2 Si: 01-071-9591
Ca 5 Si 3 : 01-070-7854, 01-082-1714
Ca 2 Si: 01-089-4856
CaSi 2 : 01-071-4840
CaSi: 01-087-0894
Mg: 01-089-4856
Ga 14 Si 19 : 01-087-0861
(Resistivity)
The measured object was processed into a necessary shape, and the resistivity from room temperature to 600 ° C. was measured using a thermoelectric property evaluation apparatus (manufactured by ULVAC: ZEM-3). The measurement atmosphere was carried out under reduced pressure He.
 [実施例1~5、比較例1~3]
 マグネシウム粉末(純度:99.9% フルウチ化学製)、カルシウム(粒径:3~5mm、純度99% フルウチ化学製)、シリコン(粒径:2~5mm、純度:5N 高純度化学研究所製)を合計10gとなるように混合した後に電流200A(比較例1のみ100A)にて3分間アルゴンアーク溶解を実施した。結果として得られた材料を窒素雰囲気中にて乳鉢にて粉砕し、150μm目開きの篩下の粉末を得た。組成比、含有酸素量を確認したところ表1のような結果となった。
[Examples 1 to 5, Comparative Examples 1 to 3]
Magnesium powder (purity: 99.9%, manufactured by Furuuchi Chemical), calcium (particle size: 3-5 mm, purity 99% manufactured by Furuuchi Chemical), silicon (particle size: 2-5 mm, purity: 5N, manufactured by Kojundo Chemical Laboratory) After mixing to a total of 10 g, argon arc melting was performed for 3 minutes at a current of 200 A (comparative example 1 only 100 A). The resulting material was pulverized in a mortar in a nitrogen atmosphere to obtain a powder under a sieve having an opening of 150 μm. When the composition ratio and the oxygen content were confirmed, the results shown in Table 1 were obtained.
 作製した粉末を用いて下記の条件にてホットプレス処理を実施した。
ホットプレス温度:800℃ 
雰囲気:真空(50Pa)保持時間1時間
圧力:50MPa
型材質:カーボン(材質:IG-11)型
焼結体サイズ:40mm×12mm
 実施例1においてゼーベック係数を測定したところ、85μV/Kであった。
Hot press treatment was performed using the prepared powder under the following conditions.
Hot press temperature: 800 ° C
Atmosphere: Vacuum (50 Pa) Holding time 1 hour Pressure: 50 MPa
Mold material: Carbon (Material: IG-11) Mold sintered body Size: 40 mm x 12 mm
The measured Seebeck coefficient in Example 1 was 85 μV / K.
 得られたバルク体の含有酸素量とかさ密度を表2に示す。なお、比較例1、3については割れを生じ、バルク体を得ることができなかった。 Table 2 shows the oxygen content and bulk density of the obtained bulk material. In Comparative Examples 1 and 3, cracks occurred and a bulk body could not be obtained.
 比較例2のバルクのゼーベック係数を測定したところ3μV/Kと低い数値となり、熱電素子として利用するためには困難な材料であることを確認した。 When the bulk Seebeck coefficient of Comparative Example 2 was measured, the value was as low as 3 μV / K, and it was confirmed that the material was difficult to use as a thermoelectric element.
 実施例1~5、比較例1~3の合金の酸素含有量、かさ密度を表2に、400℃におけるゼーベック係数を表3に、合金(溶融体)の含有する結晶相を表4に、合金(焼結体)の含有する結晶相を表5に示す。 Table 2 shows the oxygen content and bulk density of the alloys of Examples 1 to 5 and Comparative Examples 1 to 3, Table 3 shows the Seebeck coefficient at 400 ° C., and Table 4 shows the crystal phase contained in the alloy (melt). Table 5 shows the crystal phases contained in the alloy (sintered body).
 [実施例6~11]
 合金粉末の組成を表1の組成比とし、ホットプレスを800℃としたこと以外は実施例1~5と同様の方法で合金を作製した。
[Examples 6 to 11]
Alloys were produced in the same manner as in Examples 1 to 5 except that the composition of the alloy powder was the composition ratio shown in Table 1 and the hot press was set to 800 ° C.
 実施例6~11の合金粉末の組成比、含有酸素量を表1に、合金の酸素含有量、かさ密度を表2に、400℃におけるゼーベック係数を表3に、合金(溶融体)の含有する結晶相を表4に、合金(焼結体)の含有する結晶相を表5に、抵抗値を表6に、XRDパターンの解析結果を表7に示す。 The composition ratio and oxygen content of the alloy powders of Examples 6 to 11 are shown in Table 1, the oxygen content and bulk density of the alloy in Table 2, the Seebeck coefficient at 400 ° C. in Table 3, and the alloy (melt) content. Table 4 shows the crystal phase to be processed, Table 5 shows the crystal phase contained in the alloy (sintered body), Table 6 shows the resistance value, and Table 7 shows the analysis result of the XRD pattern.
 表4、5における◎は、例えばCaMgSiに◎が記載されている場合、合金のXRDパターンにおいてCaMgSi相に起因する回折ピークが確認でき、なおかつ、その回折ピーク群における最大強度を示す回折ピークがCaMgSi相であることを示す。同様に○は、例えばCaMgSiに○が記載されている場合、合金のXRDパターンにおいてCaMgSi相に起因する回折ピークが確認できることを示す。 In Tables 4 and 5, for example, when ◎ is described in CaMgSi, a diffraction peak due to the CaMgSi phase can be confirmed in the XRD pattern of the alloy, and the diffraction peak indicating the maximum intensity in the diffraction peak group is CaMgSi. Indicates a phase. Similarly, ◯ indicates that, for example, when ◯ is described in CaMgSi, a diffraction peak due to the CaMgSi phase can be confirmed in the XRD pattern of the alloy.
 表4において、同一実施例において◎が二つついている例があるが、これはCaMgSiとCaSiの最大ピーク強度が同一の回折角で存在し、明確に強度比を分けることができないため、記している。最大ピーク強度以外のピークにより、上記の二つの相が存在していることを確認できた。 In Table 4, there are examples where two ◎ are attached in the same example, but this is because the maximum peak intensities of CaMgSi and Ca 5 Si 3 exist at the same diffraction angle, and the intensity ratio cannot be clearly divided. It is written. From the peaks other than the maximum peak intensity, it was confirmed that the above two phases were present.
 また、表4においてCaMg7.25Si14は○をつけていないが、表7のピーク強度比は1より大きな値を示している。これは、ピークは確認できないが、該当する回折角におけるXRD強度から機械的に計算されたものである。 In Table 4, Ca 7 Mg 7.25 Si 14 is not marked with a circle, but the peak intensity ratio in Table 7 shows a value larger than 1. This cannot be confirmed, but is mechanically calculated from the XRD intensity at the corresponding diffraction angle.
 また実施例6のゼーベック係数-測定温度のプロットを掲載する。 Also, the plot of Seebeck coefficient and measurement temperature of Example 6 is posted.
 (比較例4)
 アーク溶解電流を50Aとした以外は実施例3と同様の条件にてアーク溶解を実施したが原料が溶解せず、原料であるマグネシウム、カルシウム、シリコンのピークが主に得られ、合金は得られなかった。
(Comparative Example 4)
Arc melting was performed under the same conditions as in Example 3 except that the arc melting current was set to 50 A, but the raw materials did not melt, and the peaks of magnesium, calcium, and silicon as raw materials were mainly obtained, and the alloy was obtained. There wasn't.
 (比較例5)
 アーク溶解電流を500Aとし、合計の重量を3gとした以外は実施例3と同様の条件にてアーク溶解を実施したところ、原料が揮発し、回収することができなかった。
(Comparative Example 5)
When arc melting was performed under the same conditions as in Example 3 except that the arc melting current was 500 A and the total weight was 3 g, the raw material was volatilized and could not be recovered.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2015年8月28日に出願された日本特許出願2015-169147号、の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2015-169147 filed on August 28, 2015 are cited here as disclosure of the specification of the present invention. Incorporate.

Claims (12)

  1.  構成元素としてマグネシウム、カルシウム及びシリコンを有する合金であって、当該合金を構成する元素の原子比が、マグネシウム、カルシウム及びシリコンの含有量をそれぞれMg、Ca及びSiとしたときに
      0atm%≦Mg/(Mg+Ca+Si)<50atm%
     10atm%≦Ca/(Mg+Ca+Si)≦70atm%
     20atm%≦Si/(Mg+Ca+Si)≦60atm%
    であり、当該合金中の含有酸素量が10atm%以下であることを特徴とする合金。
    An alloy having magnesium, calcium and silicon as constituent elements, and the atomic ratio of the elements constituting the alloy is 0 atm% ≦ Mg / when the contents of magnesium, calcium and silicon are Mg, Ca and Si, respectively. (Mg + Ca + Si) <50 atm%
    10 atm% ≦ Ca / (Mg + Ca + Si) ≦ 70 atm%
    20 atm% ≦ Si / (Mg + Ca + Si) ≦ 60 atm%
    And an oxygen content in the alloy is 10 atm% or less.
  2.  CaMgSi相、CaMg相、CaSi相、CaSi相からなる群の少なくとも一つの結晶相を含む請求項1に記載の合金。 The alloy according to claim 1, comprising at least one crystal phase of the group consisting of a CaMgSi phase, a CaMg 2 phase, a Ca 2 Si phase, and a Ca 5 Si 3 phase.
  3.  CaMgSi相と、CaMg相又はCaSi相の少なくともいずれかを含む請求項1又は2に記載の合金。 The alloy according to claim 1, comprising a CaMgSi phase and at least one of a CaMg 2 phase or a Ca 5 Si 3 phase.
  4.  CaMgSi相とCaSi相を含む請求項1乃至3いずれか一項に記載の合金。 Alloy according to any one of claims 1 to 3 comprising a CaMgSi phase and Ca 5 Si 3 phases.
  5.  CaMgSi相を主相として含み、CaMgSi相(211)面に起因する回折ピークの回折角が低角側に0.05°以上シフトしている請求項1乃至4いずれか一項に記載の合金。 The alloy according to any one of claims 1 to 4, which includes a CaMgSi phase as a main phase, and a diffraction angle of a diffraction peak caused by the CaMgSi phase (211) plane is shifted by 0.05 ° or more to the low angle side.
  6.  かさ密度が1.2g/cm以上2.1g/cm以下である請求項1乃至5いずれか一項に記載の合金。 The alloy according to any one of claims 1 to 5, wherein a bulk density is 1.2 g / cm 3 or more and 2.1 g / cm 3 or less.
  7.  半導体特性としてp型を示すことを特徴とする請求項1乃至6いずれか一項に記載の合金。 The alloy according to any one of claims 1 to 6, wherein the alloy exhibits p-type semiconductor characteristics.
  8.  マグネシウム、カルシウム及びシリコンから合金を合成する工程と、前記合金を600℃~1100℃でホットプレス処理する工程とを含む請求項1乃至7いずれか一項に記載の合金の製造方法。 The method for producing an alloy according to any one of claims 1 to 7, comprising a step of synthesizing an alloy from magnesium, calcium and silicon and a step of hot pressing the alloy at 600 ° C to 1100 ° C.
  9.  ホットプレス工程において、少なくともCaSi相を含む合金をホットプレス処理する請求項8に記載の製造方法。 In the hot pressing process, the production method according to claim 8, hot pressing an alloy containing at least Ca 5 Si 3 phases.
  10.  ホットプレス工程において、CaMgSi相とCaMg相を含む合金をホットプレス処理する請求項8又は9に記載の製造方法。 In the hot pressing process, the production method according to claim 8 or 9, hot pressing the alloy containing CaMgSi phase and CaMg 2 phases.
  11.  請求項7に記載の合金とn型半導体とを接合させる構造を有する熱電変換素子。 A thermoelectric conversion element having a structure for joining the alloy according to claim 7 and an n-type semiconductor.
  12.  n型半導体の主相がMgSiであることを特徴とする請求項11に記載の熱電変換素子。 The thermoelectric conversion element according to claim 11, wherein the main phase of the n-type semiconductor is Mg 2 Si.
PCT/JP2016/075067 2015-08-28 2016-08-26 Alloy material WO2017038715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-169147 2015-08-28
JP2015169147 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038715A1 true WO2017038715A1 (en) 2017-03-09

Family

ID=58187695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075067 WO2017038715A1 (en) 2015-08-28 2016-08-26 Alloy material

Country Status (3)

Country Link
JP (1) JP2017043847A (en)
TW (1) TW201718900A (en)
WO (1) WO2017038715A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680675C1 (en) * 2018-03-21 2019-02-25 Общество с ограниченной ответственностью "Компания РМТ" Thermoelectric micro coolers manufacturing method (options)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204515A (en) * 2011-03-24 2012-10-22 Toyota Industries Corp P-type thermoelectric material and producing method thereof
WO2015121932A1 (en) * 2014-02-13 2015-08-20 株式会社日立製作所 Thermoelectric conversion material and thermoelectric conversion module using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204515A (en) * 2011-03-24 2012-10-22 Toyota Industries Corp P-type thermoelectric material and producing method thereof
WO2015121932A1 (en) * 2014-02-13 2015-08-20 株式会社日立製作所 Thermoelectric conversion material and thermoelectric conversion module using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GROBNER, JOACHIM ET AL.: "Experimental study of ternary Ca-Mg-Si phase equilibria and thermodynamic assessment of Ca-Si and Ca-Mg-Si systems", INTERMETALLICS, vol. 11, no. 10, 2003, pages 1065 - 1074, XP027513208 *
NIWA, YOSUKE ET AL.: "Thermoelectric Properties of Ca-Mg-Si Alloys", MATERIALS TRANSACTIONS, vol. 50, no. 7, 25 June 2009 (2009-06-25), pages 1725 - 1729, XP055367730 *

Also Published As

Publication number Publication date
JP2017043847A (en) 2017-03-02
TW201718900A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
Li et al. Ag-doped SnSe 2 as a promising mid-temperature thermoelectric material
JP7042517B2 (en) Polycrystalline magnesium silicide and its use
CN102099937A (en) Thermoelectric materials and chalcogenide compounds
Hwang et al. Thermoelectric transport properties of interface-controlled p-type bismuth antimony telluride composites by reduced graphene oxide
WO2011148686A1 (en) Method for production of thermoelectric conversion module, and thermoelectric conversion module
Arai et al. Thermoelectric properties of Sb-doped Mg2 (Si0. 95Ge0. 05) synthesized by spark plasma sintering
WO2017038715A1 (en) Alloy material
Lim et al. Oxide Reduction Process for the Synthesis of p-Type Bi x Sb 2− x Te 3 Compounds and Related Thermoelectric Transport Properties
JP7076093B2 (en) Thin film containing strontium and its manufacturing method
CN115667559B (en) Silicide alloy material and element using the same
WO2022054577A1 (en) Thermoelectric material, method for proudcing same, and thermoelectric power generation element
Joo et al. Synthesis and Thermoelectric Properties of Zr x Ti1− x NiSn0. 98Sb0. 02 n-Type Half-Heusler Materials
JP7159635B2 (en) Silicide-based alloy material and element using the same
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP2018019014A (en) Thermoelectric conversion material, and thermoelectric conversion module arranged by use thereof
JP5448942B2 (en) Thermoelectric conversion material
JP2009040649A (en) Clathrate compound and thermoelectric conversion element using the same
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP7449549B2 (en) Thermoelectric element and its manufacturing method
JP2007073640A (en) Clathrate compound and thermoelectric conversion element using same
WO2023171662A1 (en) n-TYPE SEMICONDUCTOR SINTERED BODY, ELECTRIC/ELECTRONIC MEMBER, THERMOELECTRIC GENERATOR, AND METHOD FOR MANUFACTURING n-TYPE SEMICONDUCTOR SINTERED BODY
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
JP2022142131A (en) Silicide alloy material and element including the same
KR101330062B1 (en) Synthesizing method of higher manganese silicides thermoelectric material and higher manganese silicides thermoelectric material synthesized by the method
Sangwan et al. Enhanced power factor and mechanically robust thermoelectric β-FeSi2 material synthesis by a suitable doping approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841747

Country of ref document: EP

Kind code of ref document: A1