JP2013027369A - Hydroponic plant cultivation device and hydroponic plant cultivation method - Google Patents

Hydroponic plant cultivation device and hydroponic plant cultivation method Download PDF

Info

Publication number
JP2013027369A
JP2013027369A JP2011166829A JP2011166829A JP2013027369A JP 2013027369 A JP2013027369 A JP 2013027369A JP 2011166829 A JP2011166829 A JP 2011166829A JP 2011166829 A JP2011166829 A JP 2011166829A JP 2013027369 A JP2013027369 A JP 2013027369A
Authority
JP
Japan
Prior art keywords
nutrient solution
plant
illumination
supply mechanism
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011166829A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011166829A priority Critical patent/JP2013027369A/en
Publication of JP2013027369A publication Critical patent/JP2013027369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydroponic plant cultivation device which completely controls intermittent supply of culture solution and irradiation of artificial light to take predetermined timing for them so as to easily obtain desired conditions for cultivating plants to sufficiently enhance the quality and the commercial value of the plants: and to provide a hydroponic plant cultivation method.SOLUTION: The hydroponic plant cultivation device includes: a flow channel array structure to which gutter-like culture solution flow channels each having a gentle flow channel gradient are set up in parallel; a culture solution supply mechanism which circularly supplies culture solution to each of the culture solution flow channels; a panel where the plants disposed on the respective culture solution flow channels to be cultured are held or housed; a light which is set up above the panel to irradiate artificial light to the plants; and a timer which switches on/off the culture solution supply mechanism and the light. The hydroponic plant cultivation device switches on/off the culture solution supply mechanism and the light independently by the timer so as to control the supply of the culture solution by the culture solution supply mechanism and the irradiation of the artificial light by the lighting at a predetermined timing to enable intermittent supply of the culture solution.

Description

本発明は、農業分野において使用されている水耕用植物栽培装置の改良に係わるもので、特に、人工光を照射して栽培する完全制御型の植物栽培工場に使用して好適な水耕用植物栽培装置及び水耕用植物栽培方法に関する。   The present invention relates to an improvement of a hydroponic plant cultivating apparatus used in the agricultural field, and is particularly suitable for use in a fully-controlled plant cultivation plant that is cultivated by irradiation with artificial light. The present invention relates to a plant cultivation apparatus and a hydroponics plant cultivation method.

従来、水耕用植物栽培装置として種々のものが提案使用されているが、最近最も広く使用されているのは、NFT方式の植物栽培装置である。このNFT方式の植物栽培装置は、湛水式のため養液の使用量が多くなりがちで、その取扱いや処理が面倒になって、養液の供給量を野菜等の植物の栽培条件や品質が最適となるように調整することが極めて困難であった。そこで、このような不具合を解決するために、特許文献1に示す水耕用植物栽培装置が提案された。この水耕用植物栽培装置は、雨樋を傾斜状態で複数本並列に並べた流路部と、この流路部を支持する脚部と、雨樋に養液を供給する給水部と、雨樋から養液を排出させる排水部と、雨樋の上部に載置されて植物を植栽する穴を有する板状の栽培パネルと、栽培パネルの上方に配置された照明等を備え、雨樋内に養液を供給しつつ照明の人工光を栽培パネルに照射するようにしたものである。   Conventionally, various types of hydroponics plant cultivation devices have been proposed and used, but the most widely used recently is an NFT-type plant cultivation device. Since this NFT type plant cultivation device is flooded, the amount of nutrient solution used tends to be large, and its handling and processing becomes cumbersome, and the amount of nutrient solution supplied depends on the cultivation conditions and quality of plants such as vegetables. It was extremely difficult to adjust so as to be optimal. Then, in order to solve such a malfunction, the plant cultivation apparatus for hydroponics shown in patent document 1 was proposed. This hydroponic plant cultivating apparatus includes a channel section in which a plurality of gutters are arranged in parallel in an inclined state, a leg section that supports the channel section, a water supply section that supplies nutrient solution to the gutter, a rain A drainage unit that drains the nutrient solution from the paddy, a plate-shaped cultivation panel that is placed on the top of the raindrop and has holes for planting plants, and a lighting that is arranged above the cultivation panel. The cultivation panel is irradiated with artificial artificial light while supplying the nutrient solution inside.

特開2006−197843号公報JP 2006-197843 A

しかしながら、このような完全制御型の人工光による水耕用植物栽培装置にあっては、一般的に植物を栽培する養液給水装置が湛水型(NFT方式)のため、養液の交換が不可能であったり、また、養液が交換可能であったとしても湛水量が多いためその交換作業自体が面倒となって、流路部内に養液を連続して供給しているのが実情である。そのため、養液の流路部内における供給(流通)を制御することが困難で、植物に対して過剰な栄養供給となり植物が無駄に成長してしまう等、植物の品質や商品価値を十分に高めることが難しい。   However, in such a fully-cultivated plant cultivation apparatus for hydroponics using artificial light, the nutrient solution supply apparatus for cultivating plants is generally a submerged type (NFT method), so that the nutrient solution can be replaced. Even if the nutrient solution is not replaceable, the amount of flooding is so large that the replacement work itself becomes cumbersome and the nutrient solution is continuously supplied into the flow path. It is. Therefore, it is difficult to control the supply (distribution) of the nutrient solution in the flow path section, and the quality and commercial value of the plant are sufficiently increased, such as excessive nutrient supply to the plant and the plant growing unnecessarily. It is difficult.

本発明は、このような事情に鑑みてなされたもので、その目的は、養液の断続供給と人工光の照射に所定のタイミングが得られるように完全制御することにより、所望の植物栽培条件を簡単に得ることができて、植物の品質や商品価値を十分に高めることが可能な水耕用植物栽培装置及び水耕用植物栽培方法を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to achieve desired plant cultivation conditions by completely controlling so as to obtain a predetermined timing for intermittent supply of nutrient solution and irradiation of artificial light. It is to provide a hydroponic plant cultivating apparatus and a hydroponic plant cultivating method capable of easily obtaining the above and sufficiently enhancing the quality and commercial value of the plant.

かかる目的を達成すべく、本発明のうち請求項1に記載の水耕用植物栽培装置は、弱い流路勾配を持ち雨樋状に形成された複数の養液流路が並列状態で配置された流路列構造体と、前記各養液流路のそれぞれの上流端から供給された養液を当該養液流路を流下させてその下流端から回収し該回収した養液を再び養液流路の上流端に供給して循環させる養液給水機構と、前記各養液流路の上部に配置されて栽培する植物が保持もしくは収容されるパネルと、該パネルの上方に配置されて前記植物に人工光を照射させる照明と、前記養液給水機構と照明をオンオフさせるタイマと、を備え、前記養液給水機構と照明を前記タイマでそれぞれ独立してオンオフさせることにより、前記養液給水機構による養液の供給と前記照明による人工光の照射を所定のタイミングで制御し、前記各養液流路に養液を断続供給可能に構成したことを特徴とする。   In order to achieve this object, the hydroponic plant cultivating apparatus according to claim 1 of the present invention includes a plurality of nutrient solution channels formed in a rain gutter shape having a weak channel gradient and arranged in parallel. And the nutrient solution supplied from the upstream end of each of the nutrient solution channels is caused to flow down the nutrient solution channel and recovered from the downstream end, and the collected nutrient solution is again fed to the nutrient solution. A nutrient water supply mechanism that supplies and circulates to the upstream end of the flow path, a panel that is arranged on the top of each nutrient liquid flow path to hold or house plants to be cultivated, and is disposed above the panel and is An illumination for irradiating the plant with artificial light; and the nutrient solution water supply mechanism and a timer for turning on and off the illumination, and the nutrient solution water supply mechanism and the illumination are turned on and off independently by the timer. Supply of nutrient solution by mechanism and irradiation of artificial light by the illumination Controlled at a constant timing, characterized in that said intermittently supplied can configure nutrient solution into each nutrient solution flow path.

また、請求項2に記載の水耕用植物栽培方法は、弱い流路勾配を持ち雨樋状に形成された複数の養液流路が並列状態で配置された流路列構造体の各養液流路に、養液給水機構により、その上流端から供給した養液を各養液流路を流下させてその下流端から回収し該回収した養液を再び養液流路の上流端に供給して循環させると共に、前記各養液流路の上部に配置されて栽培する植物が保持もしくは収容されるパネル上方に前記植物に人工光を照射させる照明を配置し、該照明と前記養液給水機構をタイマでそれぞれ独立してオンオフさせることにより、前記養液給水機構による養液の供給と前記照明による人工光の照射を所定の相互に関連するタイミングで制御し、前記各養液流路に養液を断続供給することを特徴とする。   Moreover, the plant cultivation method for hydroponics according to claim 2 is characterized in that each nourishment of a channel array structure in which a plurality of nutrient solution channels formed in a rain gutter shape having a weak channel gradient are arranged in parallel. The nutrient solution supplied from the upstream end of the nutrient solution to the solution channel is caused to flow down each nutrient solution channel and collected from the downstream end, and the collected nutrient solution is returned to the upstream end of the nutrient solution channel. Supply and circulate, arrange | position the illumination which irradiates the artificial light to the said plant above the panel by which the plant arrange | positioned and hold | maintained or accommodated in the upper part of each said nutrient solution flow path, and this illumination and said nutrient solution By turning on and off the water supply mechanism independently with a timer, the supply of the nutrient solution by the nutrient solution supply mechanism and the irradiation of the artificial light by the illumination are controlled at a predetermined interrelated timing, It is characterized in that the nutrient solution is supplied intermittently.

本発明の水耕用植物栽培装置及び水耕用植物栽培方法によれば、雨樋状の養液流路内に養液を供給する養液給水機構と植物に人工光を照射する照明をタイマでそれぞれ独立してオンオフさせることにより、養液給水機構による養液の供給と照明による人工光の照射を所定のタイミングで制御し養液を断続供給可能に構成しているため、雨樋状の養液流路内への養液の断続供給(流通)と植物への人工光の照射を完全制御することができて、例えば植物への過剰な栄養供給を抑制できる等、所望の植物栽培条件を簡単に得ることができて、植物の品質や商品価値を十分に高めることができる。   According to the hydroponic plant cultivation apparatus and hydroponic plant cultivation method of the present invention, the nutrient solution water supply mechanism for supplying the nutrient solution into the raindrop-shaped nutrient solution channel and the illumination for irradiating the plant with artificial light are timers. In each case, the supply of nutrient solution by the nutrient solution supply mechanism and the irradiation of artificial light by illumination are controlled at a predetermined timing so that the nutrient solution can be intermittently supplied. Desired plant cultivation conditions such as intermittent supply (distribution) of nutrient solution into the nutrient solution channel and irradiation of artificial light to the plant can be completely controlled, for example, excessive nutrient supply to the plant can be suppressed. Can be easily obtained, and the quality and commercial value of the plant can be sufficiently enhanced.

また、タイマにより、養液給水機構による養液の供給もしくは停止と、照明の点灯もしくは消灯を完全重複もしくは一部重複させる等、所望に制御することができるため、人工光の照射と養液の断続供給を効果的に行うことができて、例えば植物の乾物重量割合を増したり、糖度を濃縮させたり、あるいは植物にストレスを好適に作用させて側枝や花雷を早く誘導できる等、植物の品質と商品価値を一層高めることができる。   In addition, the timer can be controlled as desired, such as supplying or stopping the nutrient solution by the nutrient solution supply mechanism, and turning on or off the lighting completely or partially overlapping. The intermittent supply can be effectively performed, for example, increasing the dry matter weight ratio of the plant, concentrating the sugar content, or suitably applying stress to the plant to induce side branches and torpedoes quickly. Quality and product value can be further increased.

本発明に係わる水耕用植物栽培装置の一例を示す基本構成図The basic block diagram which shows an example of the plant cultivation apparatus for hydroponics concerning this invention 同その要部の縦断面図Longitudinal sectional view of the main part 同養液給水機構と照明の動作の一例を示すタイミングチャートTiming chart showing an example of operation of the nutrient solution water supply mechanism and illumination

以下、本発明を実施するための形態を図面に基づいて詳細に説明する。
図1〜図3は、本発明に係わる水耕用植物栽培装置の一実施形態を示している。図1に示すように、水耕用植物栽培装置1(以下、栽培装置1という)は、複数(図では3本)の養液流路3を有する流路列構造体2と、この流路列構造体2の上部(養液流路3の上部)に配置されたパネル4と、このパネル4の上方に所定間隔を有して配置された照明5と、前記養液流路3の上流端3aと下流端3b間に接続配置された養液給水機構6と、この養液給水機構6や照明5を制御するタイマ装置7等を備えている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
1-3 has shown one Embodiment of the plant cultivation apparatus for hydroponics concerning this invention. As shown in FIG. 1, a hydroponic plant cultivation apparatus 1 (hereinafter referred to as a cultivation apparatus 1) includes a flow path array structure 2 having a plurality (three in the figure) of nutrient solution flow paths 3 and the flow paths. A panel 4 arranged at the upper part of the row structure 2 (upper part of the nutrient solution flow path 3), an illumination 5 arranged above the panel 4 with a predetermined interval, and an upstream of the nutrient solution flow path 3 A nutrient solution supply mechanism 6 connected between the end 3a and the downstream end 3b, a timer device 7 for controlling the nutrient solution supply mechanism 6 and the illumination 5 are provided.

前記流路列構造体2は、枠組み構造の脚部2aを有し、この脚部2aの上部に弱い勾配α(図2参照)により傾斜状態で前記養液流路3が配置されている。この養液流路3は、脚部2a上に固定状態で配置され、断面半円弧形状の雨樋形状に形成され、その上流端3aから供給された養液8が傾斜に沿って所定の速度で流下してその下流端3bから排水されるようになっている。   The flow path array structure 2 has a leg portion 2a having a frame structure, and the nutrient solution flow path 3 is arranged in an inclined state with a weak gradient α (see FIG. 2) on the leg portion 2a. This nutrient solution flow path 3 is arranged in a fixed state on the leg 2a, is formed in a rain gutter shape having a semicircular cross section, and the nutrient solution 8 supplied from its upstream end 3a has a predetermined speed along the inclination. And then drained from the downstream end 3b.

前記パネル4は、適宜の材質で所定の厚さを有する平面視長方形状(もしくは正方形状)の板体で形成され、前記養液流路3の間隔及び後述する筒状体9の形状や植物の種類等に対応して二次元的に規則的間隔で複数個(図では9個)の穴4aが形成されている。この穴4aは、パネル4の表裏面に例えばストレートに貫通した貫通穴で形成されており、このパネルの各穴4aには、カップ形状の筒状体9がそれぞれ着脱可能に挿入されている。   The panel 4 is formed of a plate material having a predetermined thickness and made of an appropriate material and having a rectangular shape (or square shape) in plan view. The panel 4 has an interval between the nutrient solution flow paths 3 and a shape of a cylindrical body 9 and a plant described later. A plurality (9 in the figure) of holes 4a are formed at regular intervals two-dimensionally corresponding to the types of the holes. The holes 4a are formed, for example, as straight through holes on the front and back surfaces of the panel 4, and cup-shaped tubular bodies 9 are detachably inserted into the holes 4a of the panel, respectively.

また、前記筒状体9の外周面の底部9a側の対向位置には、図2に示すように、養液8の流通(吸排水)経路を形成する一組もしくは複数組の適宜形状の開口10が設けられている。なお、養液8の流通経路としては、筒状体9の側面に設けられる開口10に限らず、筒状体9の底部9aの一部(もしくは全部)に開口10を設けることで構成することもできる。この底部9aに開口10を設ける構成においては、栽培植物が例えば小松菜、野沢菜、ミズナ、チンゲンサイ等の大型野菜の場合は、所定の大きさまで育成された苗を筒状体9内に定植するようにしたり、あるいは小型野菜の場合は、栽培植物の種を播種した発泡ウレタン等を筒状体9内の底部に配置するようにすれば良い。この筒状体9としては、本出願人が出願して登録された特許第4507444号公報に開示されている筒状体を使用することが好ましい。   Further, as shown in FIG. 2, one or a plurality of sets of appropriately shaped openings that form a flow path (absorption / drainage) of the nutrient solution 8 are provided at the opposing positions on the bottom 9 a side of the outer peripheral surface of the cylindrical body 9. 10 is provided. The distribution path of the nutrient solution 8 is not limited to the opening 10 provided on the side surface of the cylindrical body 9, and is configured by providing the opening 10 in a part (or all) of the bottom 9 a of the cylindrical body 9. You can also. In the configuration in which the opening 10 is provided in the bottom portion 9a, when the cultivated plant is a large vegetable such as Komatsuna, Nozawana, Mizuna, Chingensai, etc., the seedlings grown to a predetermined size are planted in the cylindrical body 9 In the case of small vegetables, foamed urethane or the like seeded with cultivated plant seeds may be disposed at the bottom of the cylindrical body 9. As this cylindrical body 9, it is preferable to use the cylindrical body disclosed in Japanese Patent No. 4507444, filed and registered by the present applicant.

前記照明5は、例えば高圧ナトリウムランプあるいは植物の栽培に適した所定色の発光ダイオード(LED)等により形成され、その照明光(人工光)が下方のパネル4に向けて照射されるようになっている。この照明5には、タイマ装置7の後述する第2タイマ7bが接続され、この第2タイマ7bでオンオフ制御(点灯もしくは消灯)されるようになっている。   The illumination 5 is formed of, for example, a high-pressure sodium lamp or a light emitting diode (LED) of a predetermined color suitable for plant cultivation, and the illumination light (artificial light) is emitted toward the lower panel 4. ing. A second timer 7b, which will be described later, of the timer device 7 is connected to the illumination 5, and the second timer 7b is on / off controlled (lit or extinguished).

前記養液給水機構6は、給水口11aを有して前記養液流路3の上流端3aの上方に配置された給水管11と、養液流路3の下流端3bの下方に配置された排水タンク12と、この排水タンク12と前記給水管11との間に接続されたポンプ13(図1参照)等を有している。そして、ポンプ13がオンして作動することにより、養液流路3の上流端3aに養液8が供給されると共に、養液流路3内を流下して排水タンク12内に回収された養液8が汲み上げられて再び給水管11に供給されるようになっている。   The nutrient solution water supply mechanism 6 has a water supply port 11 a and is disposed below the water supply pipe 11 disposed above the upstream end 3 a of the nutrient solution channel 3 and the downstream end 3 b of the nutrient solution channel 3. A drainage tank 12 and a pump 13 (see FIG. 1) connected between the drainage tank 12 and the water supply pipe 11. When the pump 13 is turned on and operated, the nutrient solution 8 is supplied to the upstream end 3a of the nutrient solution flow path 3 and flows down in the nutrient solution flow path 3 and is collected in the drainage tank 12. The nutrient solution 8 is pumped up and supplied to the water supply pipe 11 again.

前記タイマ装置7は、前記養液給水機構6のポンプ13に接続された第1タイマ7aと、前記照明5に接続された第2タイマ7bを有している。なお、第1タイマ7a及び第2タイマ7bは、図示しない所定の電源(ポンプ駆動用電源と照明用電源)に接続されている。そして、タイマ装置7の各タイマ7a、7bにより、ポンプ13と照明5がオンオフされ、養液給水機構6により養液8が供給もしくは停止(遮断)されたり、照明5が点灯もしくは消灯されるようになっている。なお、タイマ装置7としては、ポンプ13と照明5を後述するタイミングでオンオフ制御可能な別体型もしくは一体型の適宜のタイマが使用される。   The timer device 7 includes a first timer 7 a connected to the pump 13 of the nutrient solution supply mechanism 6 and a second timer 7 b connected to the illumination 5. The first timer 7a and the second timer 7b are connected to predetermined power sources (pump drive power source and illumination power source) not shown. The pump 13 and the illumination 5 are turned on and off by the timers 7a and 7b of the timer device 7, and the nutrient solution 8 is supplied or stopped (shut off) by the nutrient solution supply mechanism 6, or the illumination 5 is turned on or off. It has become. As the timer device 7, a separate or integral appropriate timer capable of on / off control of the pump 13 and the illumination 5 at a timing described later is used.

次に、このように構成された栽培装置1の動作を、図3に示すタイミングチャート等を参照して説明する。先ず、前記栽培装置1の養液流路3として、建築用規格の硬質ポリ塩化ビニル製で幅114mmの雨樋を使用し、これを7本並列に並べて、前記勾配αが3%程度の弱い勾配となるように脚部2aに固定した。また、筒状体9としては、直径が30〜70mmの範囲で外周面がテーパ形状のものを使用すると共に、照明5は高圧ナトリウムランプでほぼ300μmolm−2−1を保つようにした。さらに、養液8としては、サラダ菜用の標準園試処方とし、その電気伝導度は2.5mS/cmで、そのpHは5.5〜6.5とした。 Next, operation | movement of the cultivation apparatus 1 comprised in this way is demonstrated with reference to the timing chart etc. which are shown in FIG. First, as the nutrient solution flow path 3 of the cultivation apparatus 1, rain gutters made of hard polyvinyl chloride of standard for construction and having a width of 114 mm are used, and these are arranged in parallel, and the gradient α is weak at about 3%. It fixed to the leg part 2a so that it might become a gradient. Further, as the cylindrical body 9, a cylindrical body having a diameter of 30 to 70 mm and an outer peripheral surface being tapered was used, and the illumination 5 was maintained at approximately 300 μmol −2 s −1 with a high-pressure sodium lamp. Furthermore, as nutrient solution 8, it was set as the standard garden trial prescription for salad vegetables, the electrical conductivity was 2.5 mS / cm, and the pH was 5.5-6.5.

そして、このような条件下で、栽培植物として大型野菜であるチンゲンサイをサンプルとし、その種を苗箱に播種し、発芽後に7日間育成し、さらに苗圃に移動して7日間育成した苗を、前記栽培装置1の筒状体9に定植し、この定植後約15日で収穫した。この実験を、図3に示す実施例1(a)、実施例2(b)、実施例3(c)についてそれぞれ行った。   And under such conditions, a sample of chingensai, which is a large vegetable as a cultivated plant, is seeded in a seedling box, grown for 7 days after germination, and further transferred to a seedling field and grown for 7 days. The plant was planted on the cylindrical body 9 of the cultivation apparatus 1 and harvested about 15 days after the planting. This experiment was performed for Example 1 (a), Example 2 (b), and Example 3 (c) shown in FIG.

先ず、照明5がオンオフ制御(点灯・消灯)され、ポンプ13が照明の点灯や消灯に関係なく連続してオン(作動)して、養液8が断続することなく連続供給される従来例(比較例)として、人工光の照射時間を1日24時間のうち12時間毎にオンオフさせ、前記植物(チンゲンサイ)を20株栽培した。その結果、収穫時の1日の生体重量は平均120g程度で、出荷に適当な大きさとなった。   First, the illumination 5 is controlled to be turned on / off (turned on / off), and the pump 13 is continuously turned on (operated) regardless of whether the illumination is turned on or off, and the nutrient solution 8 is continuously supplied without being intermittently ( As a comparative example), the artificial light irradiation time was turned on and off every 12 hours out of 24 hours a day, and 20 plants (Tingensai) were cultivated. As a result, the daily living weight at the time of harvesting was about 120 g on average, which was appropriate for shipping.

これに対し、図3(a)に示す実施例1は、照明5が点灯中の時間T1中にポンプ13をオンさせて養液8を供給し、照明5が消灯中の時間T2には、養液8の供給を停止するようにしたものである。すなわち、12時間の人工光の照射と同期させて養液8の供給を行い、12時間の消灯時(暗時)には、養液8の供給を停止する。この暗時における養液8の停止の理由は、葉緑素における光合成の際には根部より水の供給が要求されるが、光合成が行われていない暗時には水はそれほど必要でないためである。この実施例1の実験によれば、収穫時の生体重量は前記比較例に比べてやや減少する傾向を持つが、その差は大きくないことが確認された。つまり、養液8を断続供給してもしなくても、収穫された生体重量差は10%程度の範囲内にとどまり、必ずしも有意の差ではなくバラツキの範囲内と言える。この実施例1の場合は、ポンプ13の使用電力は、比較例に比べて当然ながら節約できることになる。   On the other hand, in Example 1 shown in FIG. 3A, the nutrient solution 8 is supplied by turning on the pump 13 during the time T1 when the illumination 5 is turned on, and at the time T2 when the illumination 5 is turned off The supply of the nutrient solution 8 is stopped. That is, the nutrient solution 8 is supplied in synchronization with the irradiation of the artificial light for 12 hours, and the supply of the nutrient solution 8 is stopped when the light is extinguished (dark) for 12 hours. The reason for stopping the nutrient solution 8 in the dark is that water is required from the root during photosynthesis in chlorophyll, but water is not so necessary in the dark when photosynthesis is not performed. According to the experiment of Example 1, it was confirmed that the living weight at the time of harvesting has a tendency to decrease slightly compared with the comparative example, but the difference is not large. That is, even if the nutrient solution 8 is not supplied intermittently, the harvested living body weight difference remains within a range of about 10%, and it can be said that it is not necessarily a significant difference but within a variation range. In the case of the first embodiment, the electric power used by the pump 13 can naturally be saved as compared with the comparative example.

また、図3(b)に示す実施例2は、12時間の照明5の点灯時間内に、実施例1に比べて養液供給の時間を2時間だけ後にずらせて、照明5の点灯時間と一部重複させると共に、養液供給の時間T3を10時間としたものである。この実施例2の実験によれば、収穫された植物は前記比較例に比べて成長が遅れたため、生体重量は平均して約10%減少した。しかし、乾物重量で比較すると、減少は生体重量の場合より少なく、比較例の乾物重量と比較して半分の5%程度の減少にとどまった。   In addition, in Example 2 shown in FIG. 3B, within the lighting time of the illumination 5 for 12 hours, the time for supplying the nutrient solution is shifted by 2 hours compared to the first example, and the lighting time of the lighting 5 While partially overlapping, the nutrient solution supply time T3 is 10 hours. According to the experiment of Example 2, the harvested plant was delayed in growth as compared with the comparative example, so that the living weight was reduced by about 10% on average. However, when compared in terms of dry matter weight, the decrease was less than in the case of living body weight, and it was only about a 5% decrease compared to the dry matter weight of the comparative example.

この5%の差は、それぞれの測定値のバラツキを考慮した場合、それらの平均した値の5%は有意であると言える。つまり、実施例2の場合、植物はそれぞれ緻密に成長したことになり、これは水分過剰にならずに成長できたことを示している。また、食味についても、良好な結果を得ることができた。   The difference of 5% can be said that 5% of the average value is significant when variation of each measurement value is taken into consideration. In other words, in the case of Example 2, the plants grew densely, indicating that they were able to grow without excessive water. Moreover, the favorable result was able to be obtained also about the taste.

さらに、図3(c)に示す実施例3は、養液供給の時間T4を照明5の点灯と完全に重複させ、照明5の点灯開始から2時間後に養液供給を開始すると共に、照明5の消灯と同時に養液供給を停止させて、養液供給の時間T4を10時間としたものである。この実施例3の実験によれば、収穫時の平均重量は誤差ばらつきの範囲で実施例2とほぼ同じであった。すなわち、植物にとって水を必要とするのは主に光合成時であって、暗時の給水はあまり影響しないことが判る。この実施例3は、実施例2のポンプ13の消費電力の節約をさらに進めたものであって、この実施例3から従来のような養液の連続供給は必ずしも必要でないことが判明した。   Furthermore, in Example 3 shown in FIG. 3C, the nutrient solution supply time T4 is completely overlapped with the lighting of the illumination 5, and the nutrient solution supply is started 2 hours after the illumination 5 is started. The nutrient solution supply is stopped at the same time as the light is turned off, and the nutrient solution supply time T4 is set to 10 hours. According to the experiment of Example 3, the average weight at the time of harvesting was almost the same as Example 2 in the range of error variation. That is, it is understood that water is necessary for plants mainly during photosynthesis, and water supply in the dark does not affect much. This Example 3 further promotes the saving of power consumption of the pump 13 of Example 2, and it has been found from this Example 3 that the continuous supply of nutrient solution as in the prior art is not always necessary.

これらの実施例1〜3の実験結果から、間歇給水は露地栽培や土耕、ハウス温室栽培では公知であるものの、水耕栽培では間歇給水が行われておらず、養液流路3に勾配αを持たせ、各タイマ7a、7bにより照明5とポンプ13をそれぞれ独立してオンオフ制御可能な前記栽培装置1に適用して間歇給水を行うことで、多様な種類の植物を水耕栽培できる等、水耕栽培の分野において大きな効果が期待できることが証明されたことになる。   From the experimental results of these Examples 1 to 3, intermittent water supply is well known in open field cultivation, soil cultivation, and greenhouse greenhouse cultivation, but intermittent water supply is not performed in hydroponics, and the gradient to the nutrient solution flow path 3 It is possible to hydroponically cultivate various types of plants by providing α and applying intermittent water supply to the cultivation apparatus 1 that can independently control the illumination 5 and the pump 13 by the timers 7a and 7b. Thus, it has been proved that a great effect can be expected in the field of hydroponics.

以上のことから、点灯時間の長さは基本的に光合成による成長を決定するが、一方で新しく設定した養液供給の時間との関係が初めて知られるようになった。つまり、照明5の点灯時間と重複する部分の養液供給の時間の長さ、あるいは照明5の点灯時間中の養液供給の停止時間の長さは、植物の品質に影響するのである。   From the above, the length of the lighting time basically determines the growth by photosynthesis, but on the other hand, the relationship with the newly set nutrient solution supply time is first known. That is, the length of the nutrient solution supply time that overlaps the lighting time of the lighting 5 or the length of the nutrient solution supply stop time during the lighting time of the lighting 5 affects the quality of the plant.

また、照明5の点灯タイミングと養液供給のタイミングとの関係については、相互に時間帯が重複する程度によって、また栽培植物によって、さらに収穫物の要求特性によっても異なり、それぞれの植物について決定する必要があることが判明した。このような関係があることは、前記実験によって初めて得られたものであり、養液供給時間が点灯時間に比較してどのくらい重複するかまたは重複しないかは、栽培する植物毎に実験によって決定しておくことが好ましい。   Moreover, about the relationship between the lighting timing of the illumination 5 and the timing of nutrient solution supply, it depends on the degree of time zone overlap with each other, depends on the cultivated plant, and also on the required characteristics of the harvest, and is determined for each plant. It turns out that there is a need. This relationship is obtained for the first time by the above-mentioned experiment, and how much the nutrient solution supply time overlaps or does not overlap compared to the lighting time is determined by experiment for each plant to be cultivated. It is preferable to keep it.

このように、前記栽培装置1によれば、雨樋状の養液流路3内に養液8を循環供給させる養液給水機構6と植物に人工光を照射する照明5を、第1タイマ7aと第2タイマ7bによりそれぞれ独立してオンオフさせることにより、養液給水機構6による養液8の供給と照明5による人工光の照射を所定のタイミングで制御するため、雨樋状の養液流路3内への養液8の断続供給(流通)と植物への人工光の照射を完全制御することができ、例えば植物への過剰な栄養供給を抑制できる等、所望の植物栽培条件を簡単に得ることができて、植物の品質や商品価値を十分に高めることができる。   As described above, according to the cultivation apparatus 1, the nutrient water supply mechanism 6 that circulates and supplies the nutrient solution 8 into the raindrop-shaped nutrient solution flow path 3 and the illumination 5 that irradiates the plant with artificial light are provided with the first timer. 7a and the second timer 7b are turned on and off independently to control the supply of the nutrient solution 8 by the nutrient solution supply mechanism 6 and the irradiation of the artificial light by the illumination 5 at a predetermined timing. It is possible to completely control the intermittent supply (distribution) of the nutrient solution 8 into the flow path 3 and the irradiation of artificial light to the plant, for example, to suppress excessive nutrient supply to the plant. It is easy to obtain and can sufficiently enhance the quality and commercial value of plants.

特に、タイマ7a、7bにより、養液給水機構6による養液8の供給もしくは停止と、照明5の点灯もしくは消灯を完全重複もしくは一部重複させる等、所望に制御することができるため、人工光の照射と養液8の断続供給を効果的に行うことができて、例えば植物の乾物重量割合を増したり、糖度を濃縮させたり、あるいは植物にストレスを好適に作用させて側枝や花雷を早く誘導できる等、植物の品質と商品価値を一層高めることができる。   In particular, since the timers 7a and 7b can be controlled as desired, such as supplying or stopping the supply of the nutrient solution 8 by the nutrient solution supply mechanism 6 and turning on or off the illumination 5 completely or partially, the artificial light. Irradiation and intermittent supply of the nutrient solution 8 can be effectively performed, for example, increasing the dry matter weight ratio of the plant, concentrating the sugar content, or suitably applying stress to the plant to remove side branches and torpedoes. Plant quality and commercial value can be further enhanced by being able to guide them quickly.

また、従来の湛水型の場合において、養液の供給を停止する場合は、最低でも1トン以上の水量を断続させる必要があり、装置や仕掛けが大がかりとなり、切り替えにも時間がかかり、しかも水が完全に切れる状態とすることが困難であったが、前記栽培装置1の場合は、勾配αを有する雨樋状の養液流路3を使用すると共に、タイマ7aによりポンプ13をオンオフして養液8の供給・停止を簡単に実現できることから、養液流路3に流す養液8の総液量を例えば数十リットルと量を少なくできると共に、養液流路8の勾配αのため水切りも自動的に終わらせることができる。   In addition, in the case of the conventional flooding type, when the supply of nutrient solution is stopped, it is necessary to intermittently supply a water amount of 1 ton or more at a minimum. Although it was difficult to make the water completely drained, in the case of the cultivation device 1, the raindrop-shaped nutrient solution flow path 3 having the gradient α is used, and the pump 13 is turned on and off by the timer 7a. Since the supply / stop of the nutrient solution 8 can be easily realized, the total amount of the nutrient solution 8 flowing through the nutrient solution channel 3 can be reduced to, for example, several tens of liters, and the gradient α of the nutrient solution channel 8 can be reduced. Therefore, draining can be finished automatically.

また、各タイマ7a、7bにより養液8の供給を制御する際に、養液8を無駄に循環させる必要がないため、養液流路3内における養液8の流量を一層少なくすることができる。特に、養液流路3として断面半円弧形状を採用しその最深部3cに細い流路が形成されているため、栽培装置1で使用される養液8の量自体をより一層少なくすることができると共に、養液8の供給もしくは停止時に、養液8と植物の根部との接触を素早くかつ確実に行うことができて、養液8の供給・停止時の待ち時間を少なくすることもできる。   In addition, when the supply of the nutrient solution 8 is controlled by the timers 7a and 7b, it is not necessary to circulate the nutrient solution 8 unnecessarily, so that the flow rate of the nutrient solution 8 in the nutrient solution flow path 3 can be further reduced. it can. In particular, since the cross-sectional semicircular arc shape is adopted as the nutrient solution channel 3 and a thin channel is formed in the deepest part 3c, the amount of the nutrient solution 8 used in the cultivation apparatus 1 can be further reduced. In addition, when the nutrient solution 8 is supplied or stopped, the nutrient solution 8 can be brought into contact with the root of the plant quickly and reliably, and the waiting time when the nutrient solution 8 is supplied or stopped can be reduced. .

また、養液8の断続供給により、養液8の絶対流量を少なくできるため、ポンプ13を計画的にオンオフ制御することで、湛水型等に比較して容易かつ短時間で植物の根部への養液8の供給と停止(水切り)とを繰り返すことができる。また、全体の養液量自体も湛水型やその他の従来方式に比べてはるかに少なくて済むため、養液循環用のポンプ13を小型とすることができて、ポンプ13自体のコストダウンやその消費電力の低減化等を図ることができる。   In addition, since the absolute flow rate of the nutrient solution 8 can be reduced by intermittent supply of the nutrient solution 8, the pump 13 can be controlled on and off systematically to the root of the plant easily and in a short time compared to a flooded type or the like. The supply and stop (draining) of the nutrient solution 8 can be repeated. Further, since the total amount of the nutrient solution itself is much smaller than that of the submerged type or other conventional methods, the nutrient solution circulation pump 13 can be reduced in size, and the cost of the pump 13 itself can be reduced. The power consumption can be reduced.

さらに、従来の水耕用植物栽培装置においては、静止水中か流動水中のいずれの場合であっても、植物の根部は常時養液中に浸漬されており、その結果過剰の養液が供給されがちで、収穫物はいわゆる「水ぶくれ」の状態となって生体重量は増加するが、品質は必ずしも優れるわけではない。これに対して、前記栽培装置1の場合は、収穫直前ではなくとも植物成長中に、所定の時間帯を区切って養液8を断続して供給していることから、「水ぶくれ」等が防止されて、植物の品質の一層の向上を図ることができる。   Moreover, in conventional hydroponic plant cultivation equipment, the root of the plant is always immersed in the nutrient solution, whether in still water or fluidized water, and as a result, excess nutrient solution is supplied. The harvest tends to be in a so-called “blister” state, and the weight of the living body increases, but the quality is not necessarily excellent. On the other hand, in the case of the cultivating apparatus 1, since the nutrient solution 8 is intermittently supplied during plant growth, even before planting, even when it is not just before harvesting, “blister” is prevented. As a result, the quality of the plant can be further improved.

特に、植物の光合成作用について養液8や植物の成長時間に無駄がない条件で各タイマ7a、7bによりポンプ13や照明5をオンオフ制御することができるため、植物の所定の収穫サイクルに対して効率的な早い成長が可能になると共に、植物の水ポテンシャルを養液8の断続供給によって調節することができることから、植物の風味や含有栄養素の量等を調整することも可能となる。   In particular, since the pump 13 and the illumination 5 can be controlled on and off by the timers 7a and 7b under the condition that the nutrient solution 8 and the growth time of the plant are not wasted for the photosynthetic action of the plant, for the predetermined harvest cycle of the plant Since efficient and rapid growth is possible, the water potential of the plant can be adjusted by intermittent supply of the nutrient solution 8, so that the flavor of the plant, the amount of nutrients contained, and the like can be adjusted.

また、養液8の供給時間を調整できるため、照明5の点灯時間とのタイミング等の相互関係、例えば点灯時間(もしくは消灯時間)と養液8の供給時間を完全あるいは部分的に重複させたり、全く重複させない等の関係を、栽培する植物に応じて設定することができて、各種植物の水耕栽培に適用することができる。   Further, since the supply time of the nutrient solution 8 can be adjusted, the correlation with the lighting time of the illumination 5 and the like, for example, the lighting time (or the turn-off time) and the supply time of the nutrient solution 8 are completely or partially overlapped. The relationship of not overlapping at all can be set according to the plant to be cultivated, and can be applied to hydroponics of various plants.

なお、前記実施形態においては、栽培装置1のタイマ装置7が第1タイマ7aと第2タイマ7bを有する構成としたが、本発明はこの構成に限定されず、例えば栽培台が広くて複数の照明用タイマ群と複数の養液用タイマ群が存在する量産型の植物工場等においては、前記タイマ装置を、工場全体として複数の照明用タイマ群と複数の養液用タイマ群とからなる複数用途のタイマ装置としたり、これらを複数設ける構成とすることも可能である。また、前記実施形態における、パネル4の穴4aの数や養液流路3の本数、給水管11の構成、養液8の供給時間帯の長さや照明5の点灯とのタイミング等は一例であって、本発明に係わる各発明と同等の作用効果が得られる適宜の構成を採用することができる。   In addition, in the said embodiment, although the timer apparatus 7 of the cultivation apparatus 1 was set as the structure which has the 1st timer 7a and the 2nd timer 7b, this invention is not limited to this structure, for example, a cultivation stand is wide and it is several. In a mass production type plant factory or the like in which an illumination timer group and a plurality of nutrient solution timer groups exist, the timer device includes a plurality of illumination timer groups and a plurality of nutrient solution timer groups as a whole. It is also possible to use a timer device for the purpose or to provide a plurality of these. Moreover, in the said embodiment, the number of the holes 4a of the panel 4, the number of the nutrient solution flow path 3, the structure of the water supply pipe 11, the length of the supply time zone of the nutrient solution 8, the timing of lighting 5 etc. are examples. Thus, it is possible to adopt an appropriate configuration that provides the same operational effects as the inventions according to the present invention.

本発明は、パネルに筒状体を着脱可能に挿入して栽培する栽培装置に限らず、例えば筒状体を使用することなくパネルの穴に、各種植物の種を播種した発泡ウレタン等を直接挿入して栽培する各種形態の栽培装置及び栽培方法にも利用できる。   The present invention is not limited to a cultivation apparatus for cultivating by detachably inserting a cylindrical body into a panel, for example, directly using urethane foam or the like seeded with various plant seeds in a hole in the panel without using a cylindrical body. It can utilize also for the cultivation apparatus and cultivation method of various forms which insert and grow.

1・・・・・・・・・・水耕用植物栽培装置
2・・・・・・・・・・流路列構造体
2a・・・・・・・・・脚部
3・・・・・・・・・・養液流路
3a・・・・・・・・・上流端
3b・・・・・・・・・下流端
3c・・・・・・・・・最深部
4・・・・・・・・・・パネル
4a・・・・・・・・・穴
5・・・・・・・・・・照明
6・・・・・・・・・・養液給水機構
7・・・・・・・・・・タイマ装置
7a・・・・・・・・・第1タイマ
7b・・・・・・・・・第2タイマ
8・・・・・・・・・・養液
9・・・・・・・・・・筒状体
9a・・・・・・・・・底部
10・・・・・・・・・開口
11・・・・・・・・・給水管
11a・・・・・・・・給水口
12・・・・・・・・・排水タンク
13・・・・・・・・・ポンプ
α・・・・・・・・・・勾配
DESCRIPTION OF SYMBOLS 1 ..... Plant cultivation apparatus for hydroponics 2 ..... Channel structure 2a ...... Leg part 3 .... ··· Nutrient fluid flow path 3a ········ Upstream end 3b ······· Downstream end 3c ································ ········· Panel 4a ········································ Lighting 6 ·························································・ ・ ・ ・ ・ ・ ・ Timer device 7a ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ First timer 7b ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Second timer 8 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Nutrient solution 9 ・············································· 9 ... Water supply port 12 ... Drain tank 13 ... Pump α ... ...... gradient

Claims (2)

弱い流路勾配を持ち雨樋状に形成された複数の養液流路が並列状態で配置された流路列構造体と、前記各養液流路のそれぞれの上流端から供給された養液を当該養液流路を流下させてその下流端から回収し該回収した養液を再び養液流路の上流端に供給して循環させる養液給水機構と、前記各養液流路の上部に配置されて栽培する植物が保持もしくは収容されるパネルと、該パネルの上方に配置されて前記植物に人工光を照射させる照明と、前記養液給水機構と照明をオンオフさせるタイマと、を備え、
前記養液給水機構と照明を前記タイマでそれぞれ独立してオンオフさせることにより、前記養液給水機構による養液の供給と前記照明による人工光の照射を所定のタイミングで制御し、前記各養液流路に養液を断続供給可能に構成したことを特徴とする水耕用植物栽培装置。
A channel array structure in which a plurality of nutrient solution channels formed in the shape of rain gutters having a weak channel gradient are arranged in parallel, and a nutrient solution supplied from each upstream end of each nutrient solution channel A nutrient solution water supply mechanism for flowing down the nutrient solution flow path and collecting it from the downstream end thereof and supplying the collected nutrient solution to the upstream end of the nutrient solution flow path for circulation, and an upper portion of each nutrient solution flow path A panel that holds or accommodates the plant to be cultivated and disposed, an illumination that is disposed above the panel and that irradiates the plant with artificial light, and a nourishing liquid supply mechanism and a timer that turns on and off the illumination. ,
The nutrient solution supply mechanism and the illumination are turned on and off independently by the timer to control the supply of the nutrient solution by the nutrient solution supply mechanism and the irradiation of the artificial light by the illumination at a predetermined timing. A plant cultivation apparatus for hydroponics, characterized in that the nutrient solution can be intermittently supplied to the flow path.
弱い流路勾配を持ち雨樋状に形成された複数の養液流路が並列状態で配置された流路列構造体の各養液流路に、養液給水機構により、その上流端から供給した養液を各養液流路を流下させてその下流端から回収し該回収した養液を再び養液流路の上流端に供給して循環させると共に、前記各養液流路の上部に配置されて栽培する植物が保持もしくは収容されるパネル上方に前記植物に人工光を照射させる照明を配置し、該照明と前記養液給水機構をタイマでそれぞれ独立してオンオフさせることにより、前記養液給水機構による養液の供給と前記照明による人工光の照射を所定の相互に関連するタイミングで制御し、前記各養液流路に養液を断続供給することを特徴とする水耕用植物栽培方法。   Supplied from the upstream end of each nutrient solution channel of the channel array structure with a plurality of nutrient solution channels formed in the shape of rain gutters with a weak channel gradient by the nutrient solution water supply mechanism The nutrient solution is allowed to flow through each nutrient flow channel and collected from the downstream end thereof, and the collected nutrient solution is supplied again to the upstream end of the nutrient solution channel and circulated. An illumination for irradiating the plant with artificial light is arranged above a panel on which the plant to be cultivated is held or accommodated, and the illumination and the nutrient solution supply mechanism are turned on and off independently by a timer, respectively. A hydroponic plant characterized in that supply of nutrient solution by a liquid water supply mechanism and irradiation of artificial light by the illumination are controlled at predetermined interrelated timings, and the nutrient solution is intermittently supplied to each nutrient solution channel. Cultivation method.
JP2011166829A 2011-07-29 2011-07-29 Hydroponic plant cultivation device and hydroponic plant cultivation method Pending JP2013027369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011166829A JP2013027369A (en) 2011-07-29 2011-07-29 Hydroponic plant cultivation device and hydroponic plant cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166829A JP2013027369A (en) 2011-07-29 2011-07-29 Hydroponic plant cultivation device and hydroponic plant cultivation method

Publications (1)

Publication Number Publication Date
JP2013027369A true JP2013027369A (en) 2013-02-07

Family

ID=47785095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166829A Pending JP2013027369A (en) 2011-07-29 2011-07-29 Hydroponic plant cultivation device and hydroponic plant cultivation method

Country Status (1)

Country Link
JP (1) JP2013027369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431129A (en) * 2021-11-29 2022-05-06 福建省中科生物股份有限公司 Vertical flow type cultivation plate
WO2023093176A1 (en) * 2021-11-29 2023-06-01 福建省中科生物股份有限公司 Modular plant hydroponic unit with vertical liquid flow, hydroponic device and hydroponic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132028A (en) * 1993-11-12 1995-05-23 Kyushu Electric Power Co Inc Flat surface type device for germination and seedling growth
JP2006197843A (en) * 2005-01-20 2006-08-03 Yoshihiko Mizushima Hydroponics device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132028A (en) * 1993-11-12 1995-05-23 Kyushu Electric Power Co Inc Flat surface type device for germination and seedling growth
JP2006197843A (en) * 2005-01-20 2006-08-03 Yoshihiko Mizushima Hydroponics device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431129A (en) * 2021-11-29 2022-05-06 福建省中科生物股份有限公司 Vertical flow type cultivation plate
CN114431129B (en) * 2021-11-29 2022-12-23 福建省中科生物股份有限公司 Vertical flow type cultivation plate
WO2023093174A1 (en) * 2021-11-29 2023-06-01 福建省中科生物股份有限公司 Vertical flow type cultivation plate
WO2023093176A1 (en) * 2021-11-29 2023-06-01 福建省中科生物股份有限公司 Modular plant hydroponic unit with vertical liquid flow, hydroponic device and hydroponic system

Similar Documents

Publication Publication Date Title
JP7426913B2 (en) Device for promoting plant growth
AU2020101617A4 (en) A Kind of Plant Seedling Raising Bracket
KR101026265B1 (en) Home hydroponic system co-cultivating plants and small fish
US20170258010A1 (en) Plant cultivation method and facility
KR101423127B1 (en) A hydroponics culture apparatus
KR102471773B1 (en) System for manufacturing of sprout ginseng
AU2016365988A1 (en) Hydroponic culture member and hydroponic culture method
JP6566501B2 (en) Hydroponic system
JP6462867B2 (en) Artificial hydroponics equipment
KR20160026224A (en) Hydroponics-aquarium
KR102051708B1 (en) Hydroponic cultivation apparatus for ginseng
JP2017169519A (en) Method for viticulture and lighting apparatus for viticulture
KR20160101455A (en) Hydroponic cultivating apparatus
US11343984B2 (en) Hydroponic system using seawater and cultivation system for growing seeds and seedlings
KR20140120039A (en) plant cultivation device
JP2013027369A (en) Hydroponic plant cultivation device and hydroponic plant cultivation method
JP2016093170A (en) Hydroponics apparatus
KR101740571B1 (en) Circulation type deep flow technique apparatus for producing seed potatoes and cultivation method using the same
US11582927B1 (en) System and method for rapidly growing a crop
KR100423837B1 (en) A process for producing seed potatoes in large quantities using a method of nutrient culture
RU194725U1 (en) Multi-tier plant growing device
JP6332696B2 (en) How to grow garlic
JP2018201404A (en) Device for the cultivation of heading vegetable
JP2011067172A (en) Water caltrop (trapa japonica) cultivating device
RU2812933C1 (en) Method of growing rubus arcticus plants by hydroponic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160420