JP2013024814A - Multiwavelength simultaneous measurement otdr and multiwavelength simultaneous otdr measuring method - Google Patents

Multiwavelength simultaneous measurement otdr and multiwavelength simultaneous otdr measuring method Download PDF

Info

Publication number
JP2013024814A
JP2013024814A JP2011162475A JP2011162475A JP2013024814A JP 2013024814 A JP2013024814 A JP 2013024814A JP 2011162475 A JP2011162475 A JP 2011162475A JP 2011162475 A JP2011162475 A JP 2011162475A JP 2013024814 A JP2013024814 A JP 2013024814A
Authority
JP
Japan
Prior art keywords
light
procedure
random code
wavelength
otdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011162475A
Other languages
Japanese (ja)
Other versions
JP5419935B2 (en
Inventor
Tatsuyuki Maki
達幸 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2011162475A priority Critical patent/JP5419935B2/en
Publication of JP2013024814A publication Critical patent/JP2013024814A/en
Application granted granted Critical
Publication of JP5419935B2 publication Critical patent/JP5419935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable shortening of measurement time and enhancement of work efficiency by separating backscattered light of each wavelength without using a wavelength filter and by simultaneously conducting multiwavelength optical pulse testing.SOLUTION: A multiwavelength simultaneous measurement OTDR relating to the invention comprises: a random code generator 11 for generating two or more mutually-different random codes; multiple light sources 13_1 to 13_N with different wavelengths; a multiplexer 21 for multiplexing test light from the light sources; an optical coupler 14 for outputting the multiplexed light to a measured optical fiber 93 and receiving input of backscattered light from the measured optical fiber 93; an optical receiver 16 for receiving the backscattered light; a DC cut circuit 17 for cutting a direct-current component; an AD conversion circuit 19 for converting an alternate-current component into a digital signal; and a correlator 20 for calculating a correlation between the digital signal and each of the random codes.

Description

本発明は、OTDR(Optical Time−Domain Reflectometer)測定を複数波長同時に行うための多波長同時測定OTDR及び多波長同時OTDR測定方法に関する。   The present invention relates to a multi-wavelength simultaneous measurement OTDR and a multi-wavelength simultaneous OTDR measurement method for simultaneously performing OTDR (Optical Time-Domain Reflectometer) measurement for a plurality of wavelengths.

光ネットワークを実現するために敷設される光ファイバにおいて、光ファイバの導入の際は、複数の波長によりOTDR測定を行い、工事完了状態の把握を行っている。1310nm、1550nm、1625nmなどの複数の波長で測定を行うことにより、光ファイバの曲げによる損失をより詳細に把握できるとともに、各波長での光ファイバのロスを正確に把握することができる。   In an optical fiber laid to realize an optical network, when an optical fiber is introduced, OTDR measurement is performed with a plurality of wavelengths to grasp a construction completion state. By measuring at a plurality of wavelengths such as 1310 nm, 1550 nm, and 1625 nm, loss due to bending of the optical fiber can be grasped in more detail, and loss of the optical fiber at each wavelength can be accurately grasped.

一方で、OTDR測定を行うための装置が提案されている(例えば、特許文献1乃至3参照。)。特許文献1のOTDRは、相関符号で変調された試験光を被測定光ファイバに入射し、後方散乱光を受光する。このときに、試験光のパルス幅を被測定光ファイバの伝送路中の光増幅器の過渡応答の利得飽和時間よりも短くすることによって、信号光の伝送特性が劣化することを防ぐ。
特許文献2のOTDRは、擬似ランダム符号で変調した試験光を被測定光ファイバに入射し、その後方散乱光を受光する。
特許文献3のOTDRは、2種のゴーレー符号を用いて変調した試験光を被測定光ファイバに入射し、その後方散乱光を受光する。
On the other hand, an apparatus for performing OTDR measurement has been proposed (see, for example, Patent Documents 1 to 3). The OTDR of Patent Document 1 makes test light modulated with a correlation code incident on an optical fiber to be measured and receives backscattered light. At this time, by making the pulse width of the test light shorter than the gain saturation time of the transient response of the optical amplifier in the transmission line of the optical fiber to be measured, the signal light transmission characteristic is prevented from deteriorating.
In the OTDR of Patent Document 2, test light modulated with a pseudo-random code is incident on an optical fiber to be measured and the backscattered light is received.
In the OTDR of Patent Document 3, test light modulated using two types of Golay codes is incident on an optical fiber to be measured, and backscattered light is received.

特開2004−32420号公報Japanese Patent Laid-Open No. 2004-32420 特開平9−26376号公報Japanese Patent Laid-Open No. 9-26376 特開平4−54429号公報JP-A-4-54429

複数の波長について同時にOTDR測定を行おうとすると、光源を複数備え、波長フィルタで各波長の信号を分離し、各波長の後方散乱光を受光する必要がある。そのため、複数の波長についてOTDR試験を行う場合は、各波長について順に測定を行っていた。各波長について順に測定を行うと、ある波長での測定時間が1分程度かかった場合、3波長測定するためには3分かかることになる。   To perform OTDR measurement for a plurality of wavelengths at the same time, it is necessary to provide a plurality of light sources, separate the signals of each wavelength with a wavelength filter, and receive backscattered light of each wavelength. Therefore, when performing the OTDR test for a plurality of wavelengths, the measurement is performed for each wavelength in order. When measurement is performed for each wavelength in order, if measurement time at a certain wavelength takes about 1 minute, it takes 3 minutes to measure three wavelengths.

心線の数が少ない場合は問題とならないが、多心構造の光ファイバを測定する場合など、現場によっては1000心の光ファイバのOTDR測定を行わなければならない場合もある。この場合、単純計算で3000分、すなわち実質約2日程度をOTDR測定に費やさなくてはならない問題がある。   Although there is no problem when the number of cores is small, there are cases where it is necessary to perform OTDR measurement of an optical fiber with 1000 cores depending on the site, such as when measuring an optical fiber having a multi-core structure. In this case, there is a problem that 3000 minutes, that is, approximately about 2 days, must be spent for the OTDR measurement by simple calculation.

特許文献1では、試験光のパワーを低くしても信号対雑音比が劣化しないように相関符号で変調する旨の記載はあるが、後方散乱光と波長の異なる信号光との分離には波長フィルタを用いている。
特許文献2では、雑音レベルの内からでも後方散乱光を見出すためにランダム符号で変調する旨の記載はあるが、後方散乱光と波長の異なる光との分離については考慮されていない。
特許文献3では、ダイナミックレンジを改良するためにゴーレー符号を用いて変調する旨の記載はあるが、後方散乱光と波長の異なる光との分離については考慮されていない。
In Patent Document 1, there is a description that modulation is performed with a correlation code so that the signal-to-noise ratio is not deteriorated even if the power of the test light is lowered. However, in order to separate backscattered light from signal light having a different wavelength, A filter is used.
In Patent Document 2, there is a description that modulation is performed with a random code in order to find backscattered light even from within a noise level, but separation of backscattered light from light having a different wavelength is not considered.
In Patent Document 3, there is a description that modulation is performed using a Golay code in order to improve the dynamic range, but separation of backscattered light and light having different wavelengths is not considered.

これら特許文献1乃至3に記載されているように、従来は、波長の異なる信号を分離するためには波長フィルタを用いており、複数の波長を波長フィルタを用いずに分離する手段は提案されていない。このため、仮に特許文献1乃至3に記載された発明を組み合わせたとしても、波長フィルタを用いて複数の波長を分離する発明しか構成することはできない。波長フィルタを用いて複数の波長を分離しようとすると、各波長の波長フィルタを搭載する必要があるため、装置の製造コストが上がってしまう問題がある。   As described in Patent Documents 1 to 3, conventionally, a wavelength filter is used to separate signals having different wavelengths, and means for separating a plurality of wavelengths without using a wavelength filter has been proposed. Not. For this reason, even if the inventions described in Patent Documents 1 to 3 are combined, only an invention that separates a plurality of wavelengths using a wavelength filter can be configured. If it is going to separate a plurality of wavelengths using a wavelength filter, since it is necessary to mount a wavelength filter of each wavelength, there is a problem that the manufacturing cost of the device increases.

そこで、本発明は、波長フィルタを用いずに各波長の後方散乱光を分離し、複数波長の光パルス試験を同時に行うことにより測定時間を短縮することを可能とし、工事の効率化を図ることを可能にすることを目的とする。   Therefore, the present invention makes it possible to reduce the measurement time by separating the backscattered light of each wavelength without using a wavelength filter and simultaneously performing the optical pulse test of a plurality of wavelengths, thereby improving the efficiency of the construction. It aims to make possible.

本発明に係る多波長同時測定OTDRは、互いに異なる2以上のランダム符号を発生させるランダム符号発生器(11)と、前記ランダム符号発生器からのランダム符号が入力され、波長ごとに異なるランダム符合で変調された試験光を出力する、波長の異なる複数の光源(13_1〜13_N)と、前記複数の光源からの前記試験光を合波する合波器(21)と、前記合波器からの合波光を被測定光ファイバに出力し、前記被測定光ファイバからの後方散乱光が入力される光カプラ(14)と、前記光カプラから入力された前記後方散乱光を受光して電気信号に変換する受光器(16)と、前記受光器からの電気信号に含まれる直流成分をカットする直流カット回路(17)と、前記直流カット回路からのアナログ信号をデジタル信号に変換するAD変換回路(19)と、前記AD変換回路からのデジタル信号と前記ランダム符号発生器からの各ランダム符号との相関演算を行う相関器(20)と、を備える。   The multi-wavelength simultaneous measurement OTDR according to the present invention includes a random code generator (11) for generating two or more different random codes, and a random code from the random code generator, and a random code different for each wavelength. A plurality of light sources (13_1 to 13_N) having different wavelengths for outputting modulated test light, a combiner (21) for combining the test light from the plurality of light sources, and a combiner from the combiner. Wave light is output to the optical fiber to be measured, an optical coupler (14) to which backscattered light from the optical fiber to be measured is input, and the backscattered light input from the optical coupler is received and converted into an electrical signal A photoreceiver (16), a DC cut circuit (17) that cuts a DC component contained in an electrical signal from the photoreceiver, and an analog signal from the DC cut circuit is converted into a digital signal. Includes an AD conversion circuit (19) for the, a correlator (20) for performing a correlation operation between each random code from the digital signal and the random code generator from the AD conversion circuit.

本発明に係る多波長同時測定OTDRは、複数の光源(13_1〜13_N)と、合波器(21)と、光カプラ(14)と、受光器(16)と、AD変換回路(19)と、を備えるため、複数波長の光パルス試験を行うことができる。本発明に係る多波長同時測定OTDRは、さらに、ランダム符号発生器(11)と、直流カット回路(17)と、相関器(20)と、を備えるため、波長フィルタを用いずに各波長の後方散乱光強度を観測することができる。このため、本発明に係る多波長同時測定OTDRは、波長フィルタを用いずに各波長の後方散乱光を分離し、複数波長の光パルス試験を同時に行うことにより測定時間を短縮することを可能とし、工事の効率化を図ることの可能にすることができる。   The multi-wavelength simultaneous measurement OTDR according to the present invention includes a plurality of light sources (13_1 to 13_N), a multiplexer (21), an optical coupler (14), a light receiver (16), and an AD converter circuit (19). Therefore, an optical pulse test with a plurality of wavelengths can be performed. The multi-wavelength simultaneous measurement OTDR according to the present invention further includes a random code generator (11), a DC cut circuit (17), and a correlator (20). The backscattered light intensity can be observed. For this reason, the multi-wavelength simultaneous measurement OTDR according to the present invention makes it possible to reduce the measurement time by separating the backscattered light of each wavelength without using a wavelength filter and simultaneously performing the optical pulse test of a plurality of wavelengths. It is possible to improve the efficiency of construction.

本発明に係る多波長同時測定OTDRでは、前記合波器は、WDM(Wavelength Division Multiplexers)であってもよい。
本発明により、合波器における結合損失を低減することができる。
In the multi-wavelength simultaneous measurement OTDR according to the present invention, the multiplexer may be a WDM (Wavelength Division Multiplexers).
According to the present invention, the coupling loss in the multiplexer can be reduced.

本発明に係る多波長同時OTDR測定方法は、互いに異なる2以上のランダム符号を発生させるランダム符号発生手順と、前記ランダム符号発生手順で発生させたランダム符号が入力され、波長の異なる複数の光がそれぞれ異なるランダム符合で変調された試験光を出力する試験光出力手順と、前記試験光出力手順で出力した試験光を合波する合波手順と、前記合波手順で合波した合波光を前記被測定光ファイバに出力し、前記被測定光ファイバからの後方散乱光を受光して電気信号に変換する受光手順と、前記受光手順で変換した電気信号に含まれる直流成分をカットする直流カット手順と、前記直流カット手順で直流成分をカットした後の交流成分をデジタル信号に変換するAD変換手順と、前記AD変換手順で変換したデジタル信号と前記ランダム符号発生手順で発生させた各ランダム符号との相関演算を行う相関処理手順と、を順に有する。   In the multi-wavelength simultaneous OTDR measurement method according to the present invention, a random code generation procedure for generating two or more different random codes and a random code generated by the random code generation procedure are input, and a plurality of lights having different wavelengths are input. Test light output procedure for outputting test light modulated with different random codes, multiplexing procedure for combining test light output in the test light output procedure, and multiplexed light combined in the multiplexing procedure A light receiving procedure for outputting to the optical fiber to be measured, receiving backscattered light from the optical fiber to be measured and converting it into an electrical signal, and a DC cut procedure for cutting a DC component included in the electrical signal converted by the light receiving procedure And an AD conversion procedure for converting an AC component after cutting a DC component by the DC cut procedure into a digital signal, and a digital signal converted by the AD conversion procedure, A serial correlation procedure performing correlation operation between each random code which is generated by the random code generator steps, in this order.

本発明に係る多波長同時OTDR測定方法は、試験光出力手順と、合波手順と、受光手順と、AD変換手順と、を有するため、複数波長の光パルス試験を行うことができる。本発明に係る多波長同時OTDR測定方法は、さらに、ランダム符号発生手順と、直流カット手順と、相関処理手順と、を有するため、波長フィルタを用いずに各波長の後方散乱光強度を観測することができる。このため、本発明に係る多波長同時OTDR測定方法は、波長フィルタを用いずに各波長の後方散乱光を分離し、複数波長の光パルス試験を同時に行うことにより測定時間を短縮することを可能とし、工事の効率化を図ることの可能にすることができる。   Since the multi-wavelength simultaneous OTDR measurement method according to the present invention includes a test light output procedure, a multiplexing procedure, a light receiving procedure, and an AD conversion procedure, a multi-wavelength optical pulse test can be performed. Since the multi-wavelength simultaneous OTDR measurement method according to the present invention further includes a random code generation procedure, a direct current cut procedure, and a correlation processing procedure, the backscattered light intensity of each wavelength is observed without using a wavelength filter. be able to. For this reason, the multi-wavelength simultaneous OTDR measurement method according to the present invention can reduce the measurement time by separating the backscattered light of each wavelength without using a wavelength filter and simultaneously performing the optical pulse test of multiple wavelengths. It is possible to improve the efficiency of construction.

本発明によれば、波長フィルタを用いずに各波長の後方散乱光を分離し、複数波長の光パルス試験を同時に行うことにより測定時間を短縮することを可能とし、工事の効率化を図ることができる。   According to the present invention, it is possible to reduce the measurement time by separating the backscattered light of each wavelength without using a wavelength filter and simultaneously performing the optical pulse test of a plurality of wavelengths, thereby improving the efficiency of construction. Can do.

本実施形態に係る多波長同時測定OTDRの一例を示す。An example of the multi-wavelength simultaneous measurement OTDR according to the present embodiment is shown. ランダム符号で変調された試験光の一例を示す。An example of test light modulated with a random code is shown. 被測定光ファイバの特性の一例を示す。An example of the characteristics of the optical fiber to be measured is shown. 受光器16から出力される電気信号の一例を示す。An example of the electrical signal output from the light receiver 16 is shown. ランダム符号C_1〜C_Nうちのある符号の相関演算を行う相関器20からの出力波形の一例を示す。An example of an output waveform from the correlator 20 that performs correlation calculation of a certain code among the random codes C_1 to C_N is shown. 本実施形態に係る多波長同時測定OTDRの使用形態の一例を示す。An example of usage of the multi-wavelength simultaneous measurement OTDR according to the present embodiment is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

図1に、本実施形態に係る多波長同時測定OTDRの一例を示す。多波長同時測定OTDRは、ランダム符号発生器11と、変調器12_1〜12_Nと、光源13_1〜13_Nと、合波器21と、光カプラ14と、ポート15と、受光器16と、直流カット回路17と、増幅器18と、AD変換回路19と、相関器20と、を備える。   FIG. 1 shows an example of the multi-wavelength simultaneous measurement OTDR according to the present embodiment. The multi-wavelength simultaneous measurement OTDR includes a random code generator 11, modulators 12_1 to 12_N, light sources 13_1 to 13_N, a multiplexer 21, an optical coupler 14, a port 15, a light receiver 16, and a DC cut circuit. 17, an amplifier 18, an AD conversion circuit 19, and a correlator 20.

本実施形態に係る多波長同時OTDR測定方法は、ランダム符号発生手順と、試験光出力手順と、合波手順と、受光手順と、直流カット手順と、AD変換手順と、相関処理手順と、を順に有する。   The multi-wavelength simultaneous OTDR measurement method according to the present embodiment includes a random code generation procedure, a test light output procedure, a multiplexing procedure, a light receiving procedure, a DC cut procedure, an AD conversion procedure, and a correlation processing procedure. Have in order.

ランダム符号発生手順では、ランダム符号発生器11は、試験光の波長ごとに互いに異なる2以上のランダム符号C_1〜C_Nを同時に発生させる。ランダム符号C_1〜C_Nは、例えばM系列符号である。   In the random code generation procedure, the random code generator 11 simultaneously generates two or more different random codes C_1 to C_N for each wavelength of the test light. The random codes C_1 to C_N are M-sequence codes, for example.

試験光出力手順では、多波長同時測定OTDRは試験光L_1〜L_Nを同時に出力する。例えば、変調器12_1〜12_Nは、例えば電流制御回路であり、ランダム符号発生器11からのランダム符号C_1〜C_Nに合わせて、光源13_1〜13_Nからの出力光を同時に変調する。光源13_1〜13_Nは、例えばLD(Laser Diode)であり、光源13_1〜13_Nの各波長は異なる。光源13_1〜13_Nは、ランダム符号C_1〜C_Nが入力され、ランダム符号C_1〜C_Nで変調された試験光L_1〜L_Nを出力する。図3に、ランダム符号で変調された試験光の一例を示す。 The test light output procedure, multiwavelength simultaneous measurement OTDR outputs a test light L T _1~L T _N simultaneously. For example, the modulators 12_1 to 12_N are current control circuits, for example, and simultaneously modulate the output light from the light sources 13_1 to 13_N according to the random codes C_1 to C_N from the random code generator 11. The light sources 13_1 to 13_N are, for example, LDs (Laser Diodes), and the wavelengths of the light sources 13_1 to 13_N are different. Source 13_1~13_N a random code C_1~C_N, and outputs the modulated test light L T _1~L T _N random code C_1~C_N. FIG. 3 shows an example of test light modulated with a random code.

合波手順では、合波器21は、光源13_1〜13_Nからの試験光L_1〜L_Nを合波する。合波器21は、WDM(Wavelength Division Multiplexers)であることが好ましい。これにより、合波器21における結合損失を減少させることができる。光カプラ14は、合波光をポート15に導く。ポート15は、被測定光ファイバ93と接続可能であり、光カプラ14からの合波光を被測定光ファイバ93に出力する。これにより、合波光Lが被測定光ファイバ93に入射される。 The combined procedure, multiplexer 21 multiplexes the test light L T _1~L T _N from the light source 13_1 to 13_n. The multiplexer 21 is preferably a WDM (Wavelength Division Multiplexers). Thereby, the coupling loss in the multiplexer 21 can be reduced. The optical coupler 14 guides the combined light to the port 15. The port 15 can be connected to the optical fiber 93 to be measured, and outputs the combined light from the optical coupler 14 to the optical fiber 93 to be measured. Thus, the multiplexed light L M is incident on the measured optical fiber 93.

ここで、試験光出力手順において、光源13_1〜13_Nは、被測定光ファイバ93を光が伝搬するのに要する時間以上の所定時間にわたり連続して試験光を出力する。   Here, in the test light output procedure, the light sources 13_1 to 13_N continuously output the test light for a predetermined time that is longer than the time required for light to propagate through the optical fiber 93 to be measured.

この場合、ランダム符号発生器11は、当該所定時間にわたる符号長を有するランダム符号を有する。例えば、ランダム符号の符号長Nは、パルス幅Pwと被測定光ファイバ長Lfiberと光ファイバ中の光の伝搬速度vを用いて次式で表される。
N>(2/v)・(Lfiber/Pw)
ただし、Nは2−1を満たす。
このため、本実施形態において被測定光ファイバ長Lfiberが500mであり、ランダム符号の1bitのパルス幅Pwが10nsecである場合、符号長Nは511bit以上となる。
In this case, the random code generator 11 has a random code having a code length over the predetermined time. For example, the code length N of the random code is expressed by the following equation using the pulse width Pw, the measured optical fiber length L fiber, and the propagation velocity v of light in the optical fiber.
N> (2 / v) · (L fiber / Pw)
However, N satisfies 2 n −1.
Therefore, in this embodiment, when the optical fiber length L fiber to be measured is 500 m and the 1-bit pulse width Pw of the random code is 10 nsec, the code length N is 511 bits or more.

また、本実施形態では、ランダム符号発生器11が当該所定時間にわたる符号長を有するランダム符号を4回連続して発生させ、光源13_1〜13_Nが当該所定時間の4倍の時間にわたり連続して試験光を出力する。   In this embodiment, the random code generator 11 continuously generates a random code having a code length over the predetermined time four times, and the light sources 13_1 to 13_N continuously test over four times the predetermined time. Output light.

受光手順では、多波長同時測定OTDRは以下のように動作する。
ポート15は、被測定光ファイバ93からの後方散乱光Lが入力される。光カプラ14は、ポート15からの後方散乱光Lを受光器16に導く。受光器16は、光カプラ14から入力された後方散乱光Lを受光して電気信号に変換する。
In the light receiving procedure, the multi-wavelength simultaneous measurement OTDR operates as follows.
Port 15, is back-scattered light L B from the measured optical fiber 93 is inputted. The optical coupler 14 guides the backscattered light L B from the port 15 to the light receiver 16. Light receiver 16 is converted into an electric signal by receiving backscattered light L B inputted from the optical coupler 14.

ここで、被測定光ファイバからは、ランダム符号C_1〜C_Nに応じた後方散乱光Lが受光器16で受光される。ランダム符号により変調された後方散乱光Lはあるレベルを中心に変調された信号となる。被測定光ファイバ93が図3で示すような光ファイバ特性を有する場合、受光器16から出力される電気信号は図4のようになる。 Here, the optical fiber to be measured, backscattering light L B corresponding to the random code C_1~C_N is received by the photodetector 16. Backscattered light modulated by random code L B becomes level center modulated signal with. When the measured optical fiber 93 has optical fiber characteristics as shown in FIG. 3, the electrical signal output from the light receiver 16 is as shown in FIG.

直流カット手順では、直流カット回路17は、受光器16からの電気信号に含まれる直流成分をカットする。直流カット回路17は、例えばコンデンサであり、受光器16からの電気信号をAC結合させる。   In the DC cut procedure, the DC cut circuit 17 cuts the DC component included in the electrical signal from the light receiver 16. The DC cut circuit 17 is a capacitor, for example, and AC-couples the electrical signal from the light receiver 16.

AD変換手順では、AD変換回路19は、直流カット回路17からのアナログ信号をデジタル信号に変換する。   In the AD conversion procedure, the AD conversion circuit 19 converts the analog signal from the DC cut circuit 17 into a digital signal.

相関処理手順では、相関器20は、AD変換回路19からのデジタル信号とランダム符号発生器11からの各ランダム符号との相関演算を行う。ランダム符号により変調された複数波長の後方散乱光LはAD変換回路19によりデジタル信号に変換される。しかし、相関処理手順においてデジタル信号とランダム符号C_1〜C_Nとの相関を取得することにより、各ランダム符号C_1〜C_Nにより変調された各後方散乱光を取り出すことができる。このため、複数波長の後方散乱光が入った環境下であっても、各波長の試験光L_1〜L_Nによって発生した後方散乱光を観測し、各波長のOTDR測定を行うことが可能となる。 In the correlation processing procedure, the correlator 20 performs a correlation operation between the digital signal from the AD conversion circuit 19 and each random code from the random code generator 11. Backscattered light L B of a plurality of wavelengths modulated with random code is converted into a digital signal by the AD converter 19. However, by acquiring the correlation between the digital signal and the random codes C_1 to C_N in the correlation processing procedure, each backscattered light modulated by each random code C_1 to C_N can be extracted. Therefore, even in an environment where the backscattered light is entered with a plurality of wavelengths to observe the back scattered light generated by the test light L T _1~L T _N of each wavelength, be made OTDR measurements at each wavelength It becomes possible.

図5に、ランダム符号C_1〜C_Nのうちのある符号の相関演算を行う相関器20からの出力波形の一例を示す。ランダム符号を4回連続して発生させたうちの、最初と最後を除く2回において、図3に示す被測定光ファイバの特性が再現できている。このように、ランダム符号を3回以上連続して発生させた試験光を用いることにより、複数波長の光パルスを被測定光ファイバ93に同時に入射した場合であっても、AC結合した後に信号増幅を行うため、波長フィルタを用いずに複数波長OTDR試験を行うことが可能となる。   FIG. 5 shows an example of an output waveform from the correlator 20 that performs correlation calculation of a certain code among the random codes C_1 to C_N. The characteristics of the optical fiber to be measured shown in FIG. 3 can be reproduced in two times except for the first and last of the four consecutive generations of random codes. As described above, by using the test light in which the random code is continuously generated three times or more, signal amplification is performed after AC coupling even when optical pulses having a plurality of wavelengths are simultaneously incident on the optical fiber 93 to be measured. Therefore, a multiple wavelength OTDR test can be performed without using a wavelength filter.

図6に、本実施形態に係る多波長同時測定OTDRの使用形態の一例を示す。本実施形態では、多波長同時測定OTDRがPONに接続されている例を示す。PONは、1本の光線路91が光カプラ92によって複数の光線路93_1〜93_Nに分岐されている。これにより、OLT96と複数のONU97_1〜97_Nとの間で通信を行う。波長フィルタ94_1〜94_N及び波長フィルタ95は、光線路91及び光線路93_1〜93_Nの端部に配置され、PONで伝送される信号光Sを通過させて信号光S以外の光を反射する。 FIG. 6 shows an example of a usage pattern of the multi-wavelength simultaneous measurement OTDR according to the present embodiment. In the present embodiment, an example is shown in which a multi-wavelength simultaneous measurement OTDR is connected to a PON. In the PON, one optical line 91 is branched by an optical coupler 92 into a plurality of optical lines 93_1 to 93_N. Thereby, communication is performed between the OLT 96 and the plurality of ONUs 97_1 to 97_N. Wavelength filter 94_1~94_N and wavelength filter 95 is arranged at an end portion of the optical path 91 and optical lines 93_1~93_N, by passing the signal light S C transmitted by the PON reflects the signal light S C other light .

OTDR101は、光線路91及び光線路93_1〜93_Nの端部のいずれかに配置され、波長フィルタ94_1〜94_N、95の反射波長の光をランダム符号で変調した試験光を光カプラ92に向けて入射する。そして、試験光が波長フィルタ94_1〜94_N、95又は光線路91、93_1〜93_Nで反射又は散乱された後方散乱光Lを、波長フィルタを介さずに受光してランダム符号との相関処理を行う。 The OTDR 101 is disposed at either one of the optical line 91 and the ends of the optical lines 93_1 to 93_N, and enters test light obtained by modulating the light having the reflected wavelengths of the wavelength filters 94_1 to 94_N and 95 with a random code toward the optical coupler 92. To do. Then, the test light wavelength filter 94_1~94_N, reflected or scattered backward scattered light L B at 95 or optical line 91,93_1~93_N, performs the correlation process with the random code and receives without passing through the wavelength filter .

例えば、OTDR101は、光線路93_3に接続される。この場合、試験光出力手順において、光源13_1〜13_Nは、被測定光ファイバ93を光が伝搬するのに要する時間以上の所定時間にわたり連続して試験光を出力する。この光線路91の端部は波長フィルタ95であってもよく、光線路93_3の端部は波長フィルタ94_3であってもよい。   For example, the OTDR 101 is connected to the optical line 93_3. In this case, in the test light output procedure, the light sources 13_1 to 13_N continuously output the test light for a predetermined time longer than the time required for light to propagate through the optical fiber 93 to be measured. The end of the optical line 91 may be a wavelength filter 95, and the end of the optical line 93_3 may be a wavelength filter 94_3.

背景光は通信信号により変調されているが、ビットレートは光源13_1〜13_Nの変調周波数に比べて非常に高いため、受光器16で電気信号に変換する際にはOTDRの受信帯域に制限されることとなる。また、低域の背景光は直流カット回路17によりカットされることとなる。   Although the background light is modulated by the communication signal, the bit rate is very high compared to the modulation frequency of the light sources 13_1 to 13_N. Therefore, when the light is converted into an electric signal by the light receiver 16, it is limited to the OTDR reception band. It will be. Further, the low frequency background light is cut by the DC cut circuit 17.

一部の変調された背景光は、ランダム符号により変調された後方散乱光Lと共にAD変換回路19によりデジタル信号に変換される。しかし、背景光はランダム符号C_1〜C_Nと相関をもたないため、相関を持つ後方散乱光特性のみが抽出されることとなる。このため、複数波長の後方散乱光に加えて背景光が入った環境下であっても、各波長の試験光L_1〜L_Nによって発生した後方散乱光を観測し、背景光の影響なくOTDR測定を行うことが可能となる。 Some of the modulated background light is converted into a digital signal by the AD conversion circuit 19 with the modulated backscattered light L B by random code. However, since the background light has no correlation with the random codes C_1 to C_N, only the backscattered light characteristic having the correlation is extracted. Therefore, even in an environment containing the background light in addition to the backscattered light of a plurality of wavelengths to observe the back scattered light generated by the test light L T _1~L T _N of each wavelength, the influence of the background light OTDR measurement can be performed without any problem.

なお、本実施形態では、ONU側からOLT側に向けて試験光を入射する例について説明したが、OLT側からONU側に試験光を入射してもよい。この場合、光カプラ92と波長フィルタ95の間にOTDR101を挿入する。   In this embodiment, the example in which the test light is incident from the ONU side toward the OLT side has been described. However, the test light may be incident from the OLT side to the ONU side. In this case, the OTDR 101 is inserted between the optical coupler 92 and the wavelength filter 95.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:ランダム符号発生器
12_1〜12_N:変調器
13_1〜13_N:光源
14、92:光カプラ
15:ポート
16:受光器
17:直流カット回路
18:増幅器
19:AD変換回路
20:相関器
21:合波器
91、93_1〜93_N:光線路
93:被測定光ファイバ
94_1〜94_N、95:波長フィルタ
96:OLT
97_1〜97_N:ONU
101:OTDR
11: random code generators 12_1 to 12_N: modulators 13_1 to 13_N: light sources 14, 92: optical coupler 15: port 16: light receiver 17: DC cut circuit 18: amplifier 19: AD conversion circuit 20: correlator 21: combination Wavers 91, 93_1 to 93_N: optical line 93: optical fibers to be measured 94_1 to 94_N, 95: wavelength filter 96: OLT
97_1 to 97_N: ONU
101: OTDR

Claims (3)

互いに異なる2以上のランダム符号を発生させるランダム符号発生器(11)と、
前記ランダム符号発生器からのランダム符号が入力され、波長ごとに異なるランダム符合で変調された試験光を出力する、波長の異なる複数の光源(13_1〜13_N)と、
前記複数の光源からの前記試験光を合波する合波器(21)と、
前記合波器からの合波光を被測定光ファイバに出力し、前記被測定光ファイバからの後方散乱光が入力される光カプラ(14)と、
前記光カプラから入力された前記後方散乱光を受光して電気信号に変換する受光器(16)と、
前記受光器からの電気信号に含まれる直流成分をカットする直流カット回路(17)と、
前記直流カット回路からのアナログ信号をデジタル信号に変換するAD変換回路(19)と、
前記AD変換回路からのデジタル信号と前記ランダム符号発生器からの各ランダム符号との相関演算を行う相関器(20)と、
を備える多波長同時測定OTDR(Optical Time−Domain Reflectometer)。
A random code generator (11) for generating two or more different random codes;
A plurality of light sources (13_1 to 13_N) having different wavelengths, which receive a random code from the random code generator and output test light modulated with a different random code for each wavelength;
A multiplexer (21) for multiplexing the test light from the plurality of light sources;
An optical coupler (14) for outputting the combined light from the multiplexer to the optical fiber to be measured and receiving backscattered light from the optical fiber to be measured;
A light receiver (16) that receives the backscattered light input from the optical coupler and converts it into an electrical signal;
A DC cut circuit (17) for cutting a DC component contained in the electrical signal from the light receiver;
An AD conversion circuit (19) for converting an analog signal from the DC cut circuit into a digital signal;
A correlator (20) for performing a correlation operation between the digital signal from the AD conversion circuit and each random code from the random code generator;
Multi-wavelength simultaneous measurement OTDR (Optical Time-Domain Reflectometer).
前記合波器は、WDM(Wavelength Division Multiplexers)であることを特徴とする請求項1に記載の多波長同時測定OTDR。   2. The multi-wavelength simultaneous measurement OTDR according to claim 1, wherein the multiplexer is a WDM (Wavelength Division Multiplexers). 互いに異なる2以上のランダム符号を発生させるランダム符号発生手順と、
前記ランダム符号発生手順で発生させたランダム符号が入力され、波長の異なる複数の光がそれぞれ異なるランダム符合で変調された試験光を出力する試験光出力手順と、
前記試験光出力手順で出力した試験光を合波する合波手順と、
前記合波手順で合波した合波光を前記被測定光ファイバに出力し、前記被測定光ファイバからの後方散乱光を受光して電気信号に変換する受光手順と、
前記受光手順で変換した電気信号に含まれる直流成分をカットする直流カット手順と、
前記直流カット手順で直流成分をカットした後の交流成分をデジタル信号に変換するAD変換手順と、
前記AD変換手順で変換したデジタル信号と前記ランダム符号発生手順で発生させた各ランダム符号との相関演算を行う相関処理手順と、
を順に有する多波長同時OTDR測定方法。
A random code generation procedure for generating two or more different random codes;
A test light output procedure in which a random code generated in the random code generation procedure is input and a plurality of lights having different wavelengths are modulated with different random codes,
A multiplexing procedure for multiplexing the test light output in the test light output procedure;
A light receiving procedure for outputting the combined light combined in the multiplexing procedure to the optical fiber to be measured, receiving backscattered light from the optical fiber to be measured and converting it into an electrical signal;
A DC cut procedure for cutting a DC component contained in the electrical signal converted by the light receiving procedure;
An AD conversion procedure for converting an AC component after cutting the DC component in the DC cut procedure into a digital signal;
A correlation processing procedure for performing a correlation operation between the digital signal converted by the AD conversion procedure and each random code generated by the random code generation procedure;
Multi-wavelength simultaneous OTDR measurement method having
JP2011162475A 2011-07-25 2011-07-25 Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method Active JP5419935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162475A JP5419935B2 (en) 2011-07-25 2011-07-25 Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162475A JP5419935B2 (en) 2011-07-25 2011-07-25 Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method

Publications (2)

Publication Number Publication Date
JP2013024814A true JP2013024814A (en) 2013-02-04
JP5419935B2 JP5419935B2 (en) 2014-02-19

Family

ID=47783311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162475A Active JP5419935B2 (en) 2011-07-25 2011-07-25 Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method

Country Status (1)

Country Link
JP (1) JP5419935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111860A (en) * 2021-12-03 2022-03-01 北京科技大学 Distributed phi-OTDR sensing method and system based on multi-frequency pulse coding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032420A (en) * 2002-06-26 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> In-service monitoring device for light amplification repeating transmission line
JP2004354077A (en) * 2003-05-27 2004-12-16 Sumitomo Electric Ind Ltd Method of measuring loss of optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032420A (en) * 2002-06-26 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> In-service monitoring device for light amplification repeating transmission line
JP2004354077A (en) * 2003-05-27 2004-12-16 Sumitomo Electric Ind Ltd Method of measuring loss of optical fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013055123; 海老江 邦敬、川瀬 正明: '「WDMアクセスネットワーク用OTDRの検討」' 電子情報通信学会総合大会講演論文集 2007年_通信(2), 20070307, p. 515 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111860A (en) * 2021-12-03 2022-03-01 北京科技大学 Distributed phi-OTDR sensing method and system based on multi-frequency pulse coding

Also Published As

Publication number Publication date
JP5419935B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP3113390B1 (en) Device and method for monitoring optical performance parameter, and optical transmission system
CN104202084B (en) A kind of device and method monitoring TDM optical network link failure
US9960845B2 (en) In-band optical-link monitoring for a WDM network
EP2193354A1 (en) System and method for optical time domain reflectometry using multi-resolution code sequences
EP2337240A1 (en) Multichannel WDM-PON module with integrated OTDR function
CN101159493B (en) Testing optically amplified links with time-division multiplexed test signals
WO2020040019A1 (en) Optical fiber loss measurement device and optical fiber loss measurement method
US11788928B2 (en) Light intensity distribution measurement method and light intensity distribution measurement device
CN102474358B (en) Improvements in reflective optical networks
WO2020071128A1 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
WO2020084825A1 (en) Optical pulse testing device and optical pulse testing method
CN110178320B (en) High resolution line monitoring method and optical communication system using the same
JP5986272B1 (en) Inter-core crosstalk evaluation method and system
WO2022237271A1 (en) Optical fiber measurement system
KR20120135292A (en) Monitoring a system using optical reflectometry
WO2020071127A1 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP6024634B2 (en) Optical line fault detection device and optical line fault detection method
JP5419935B2 (en) Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method
JP3236661B2 (en) Optical pulse tester
EP3190723B1 (en) Optical time domain reflectometer and method thereof for detecting optical fiber
Takushima et al. In-service OTDR for passive optical networks
JP5398790B2 (en) Optical line characteristic measurement system and optical line characteristic measurement method
JP4898555B2 (en) Optical pulse test equipment
JP2018157247A (en) Fault detection device and fault detection method
JP3327416B2 (en) Optical pulse tester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250