WO2020040019A1 - Optical fiber loss measurement device and optical fiber loss measurement method - Google Patents

Optical fiber loss measurement device and optical fiber loss measurement method Download PDF

Info

Publication number
WO2020040019A1
WO2020040019A1 PCT/JP2019/031969 JP2019031969W WO2020040019A1 WO 2020040019 A1 WO2020040019 A1 WO 2020040019A1 JP 2019031969 W JP2019031969 W JP 2019031969W WO 2020040019 A1 WO2020040019 A1 WO 2020040019A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
measured
mode
brillouin
Prior art date
Application number
PCT/JP2019/031969
Other languages
French (fr)
Japanese (ja)
Inventor
友和 小田
央 高橋
邦弘 戸毛
真鍋 哲也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/269,151 priority Critical patent/US11402295B2/en
Publication of WO2020040019A1 publication Critical patent/WO2020040019A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/39Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected from both sides of the fiber or waveguide end-face

Definitions

  • the present invention relates to an optical fiber loss measuring device and an optical fiber loss measuring method, and more particularly, to an optical fiber loss measuring device that non-destructively measures loss experienced by each propagation mode propagating in an optical fiber. And a method for measuring an optical fiber loss.
  • the loss difference between modes generally occurs in a device such as an EDFA (Erbium Doped Optical Fiber Amplifier) or a mode multiplexer / demultiplexer, or at a connection point of an optical fiber. That is, it is necessary to measure the loss for each mode in the longitudinal direction of the optical fiber.
  • EDFA Erbium Doped Optical Fiber Amplifier
  • mode multiplexer / demultiplexer or at a connection point of an optical fiber. That is, it is necessary to measure the loss for each mode in the longitudinal direction of the optical fiber.
  • the reason that the loss received for each mode is different is that the shape of the electric field distribution in the cross section of the optical fiber is different.
  • Electric field distribution shows different shapes in the optical fiber cross-section for each mode, roughly divided into strength and axisymmetric mode (LP 0j mode), there are two types of non-axisymmetric mode (LP ij mode).
  • LP ij mode in addition to the shape of the propagation mode, there is also an angle pattern of the axis of the optical fiber cross section.
  • the loss differs for each rotation angle of the mode (Non-Patent Document 1). Therefore, in these modes, it is necessary to change the rotation of the mode, such as by rotating the phase plate, and acquire the loss received at that time.
  • OTDR Optical Time Domain Reflectometry
  • Non-Patent Document 2 Loss measurement is performed using Rayleigh scattering generated in an optical fiber.
  • information is obtained as a mixture of multiple modes, and a pure loss for each mode is obtained. I can't get it.
  • the loss measurement method using the backscattered light generated in the optical fiber has a problem that the influence of the occurrence of a plurality of modes cannot be excluded and the loss for each mode cannot be correctly evaluated.
  • the OTDR is mainly used to measure the loss for each mode.
  • a Brillouin using stimulated Brillouin scattering is used as a method for evaluating the propagation characteristics for each mode in an optical fiber in which a plurality of modes propagate.
  • a gain analysis method (BOTDA: Brillouin ⁇ Optical ⁇ Time ⁇ Domain ⁇ Analysis) (Non-Patent Document 3) has been proposed.
  • BOTDA is to observe the propagation characteristics of each mode in the longitudinal direction of the optical fiber by utilizing the fact that only a specific mode can be generated in the optical fiber by controlling the frequency difference between the pump light and the probe light incident on the optical fiber. Can be.
  • the FMF and MMF several modes propagating, varying the polarization of the LP 11 mode, simultaneously change the electric field distribution.
  • these modes involve changes such as the electric field distribution rotating in the azimuthal direction of the optical fiber cross section during propagation, the use of such modes for both pump light and probe light changes the state of overlap in the longitudinal direction. The problem of doing so also arises.
  • the loss for each mode and each mode rotation is determined from the generated gain. Can not be measured.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an optical fiber in which a plurality of modes propagate, an optical fiber capable of accurately measuring a loss of a predetermined mode at each position of the optical fiber.
  • An object of the present invention is to provide a fiber loss measuring device.
  • the optical fiber loss measuring device described in one embodiment transmits light of a first frequency in a predetermined mode to an optical fiber to be measured that propagates a plurality of modes.
  • a light incidence unit that enters as pump light, and that emits, as probe light, light of a second frequency lower than the first frequency by a frequency corresponding to the Brillouin frequency shift of the predetermined mode as probe light;
  • Brillouin gain acquisition means for measuring the intensity of the light output from the optical fiber and acquiring the Brillouin gain in the longitudinal direction of the optical fiber to be measured by the BOTDA (Brillouin Optical Time Domain Analysis) method; The magnitude of the Brillouin gain at each position in the longitudinal direction is compared.
  • the probe light By measuring the loss of the optical fiber to be measured in the predetermined mode, and a means for measuring the loss of the optical fiber, the probe light, regardless of the mode of the pump light, the The electric field distribution in the section of the optical fiber to be measured is axially symmetric.
  • the loss measuring method of the optical fiber described in another embodiment with respect to the optical fiber to be measured that propagates a plurality of modes, the light of the first frequency of the predetermined mode is incident as pump light, A light incidence step in which light having a second frequency lower than the first frequency by a frequency corresponding to the Brillouin frequency shift of the predetermined mode is made incident as probe light, and the intensity of light output from the optical fiber to be measured is Measuring and obtaining a Brillouin gain in a longitudinal direction of the optical fiber to be measured by a BOTDA (Brillouin Optical Time Domain Analysis) method; and obtaining the Brillouin gain in the longitudinal direction of the optical fiber to be measured in advance.
  • BOTDA Bitillouin Optical Time Domain Analysis
  • the mode is one in which the electric field distribution in the cross section of the fiber is axially symmetric.
  • FIG. 4 is a diagram illustrating pump light and probe light at point A and their interaction.
  • FIG. 5 is a diagram illustrating pump light and probe light at point B and their interaction. It is a figure showing an example of an optical fiber loss measuring device concerning a 2nd embodiment.
  • the optical fiber loss measuring apparatus receives pump light in a predetermined mode from one of the optical fibers and probe light in a mode in which the electric field distribution in the cross section of the optical fiber is axially symmetric from one or the other.
  • the loss in a predetermined mode in the optical fiber is measured in the longitudinal direction in a distributed manner. Is what you can do.
  • FIG. 1 is a diagram showing an example of the optical fiber loss measuring device according to the first embodiment.
  • the optical fiber loss measuring device according to the present embodiment shown in FIG. 1 is connected to a laser beam generating unit 11, a branch element 12 having an input side connected to the laser beam generating unit 11, and one of two branches of the branch element 12.
  • Pulse generator 13 and frequency control means 14 connected to the other, mode demultiplexing means 15 connected to pulse generator 13, optical circulator 17 connected to mode demultiplexing means 15, optical circulator 17
  • the optical fiber f to be measured and the photoelectric conversion means 18 having one end connected to the A / D conversion means 19, the data extraction means 20, and the gain analysis means 21 connected in series to the photoelectric conversion means 18;
  • a configuration including an axially symmetric mode conversion means 16 provided between the frequency control means 14 and the other end of the optical fiber f to be measured is shown.
  • the light output from the laser light generating means 11 for generating coherent light is split into two by the splitting element 12.
  • One of the two branched lights is a pump light p1, which is pulsed by a pulse generator 13 and then converted from a fundamental mode to a higher-order propagation mode corresponding to the optical fiber f to be measured by a mode branching means 15. Is incident on the optical fiber f to be measured.
  • the mode demultiplexing unit 15 can use a phase plate, a PLC, a spatial light modulator, or the like, and converts the mode of the pump light p1 into a propagation mode in which a loss is to be obtained.
  • the mode demultiplexing means 15 can convert the pump light p1 into an axially symmetric mode or a non-axially symmetric mode, and make it incident on the optical fiber f to be measured via the optical circulator 17.
  • the mode demultiplexing unit 15 evaluates the loss characteristics of each mode rotation state in the cross-sectional direction (optical fiber cross-sectional direction) of the optical fiber f to be measured when the pump light p1 is converted into a non-axially symmetric mode.
  • a non-axisymmetric mode rotation mechanism for rotating the electric field distribution in the cross section direction of the optical fiber may be provided.
  • the frequency control means 14 provides the probe light p2, which is the other of the branched lights, about 10 times corresponding to the Brillouin frequency shift corresponding to the mode combination of the pump light and the probe light incident on the optical fiber f to be measured. A frequency difference of about 11 GHz is provided.
  • This frequency control means 14 uses two lasers having different frequencies (wavelengths) even when controlled by an external modulator such as an SSB modulator made of LiNb 3 and controls the optical frequency difference between the two lasers. May be.
  • the Brillouin frequency shift amount in the mode of the pump light can be used.
  • the frequency of the probe light can be set to a frequency lower than the frequency of the pump light by a frequency corresponding to a Brillouin frequency shift in a predetermined mode.
  • the ⁇ ⁇ axis symmetric mode conversion means 16 converts the probe light p2 to which the frequency difference has been imparted into the axis symmetric propagation mode, and enters the optical fiber f to be measured from the opposite direction to the pump light p1.
  • the axial symmetric mode conversion means 16 may have the same configuration as that of the mode demultiplexing means 15, and when the fundamental mode among the axial symmetric modes is used, the SMF and the FMF may be directly connected.
  • the optical circulator collides with the pump light p1 and the probe light p2 at each position in the longitudinal direction of the optical fiber f to be measured.
  • Brillouin gain occurs in the probe light output toward 17.
  • the probe light having received the Brillouin gain is shown as Brillouin scattered light s.
  • the optical circulator 17 sends the probe light p2 (Brillouin scattered light s) amplified by the pump light p1 to the photoelectric conversion means 18.
  • the photoelectric conversion unit 18 converts the amplified light intensity of the probe light p2 (Brillouin scattered light s) into an electric signal, converts the signal into digital data by the A / D conversion unit 19, and then converts the signal intensity of the light by the data extraction unit 20. Is extracted, and the gain is analyzed by the gain analysis means 21 from the extracted data.
  • the Brillouin gain in the longitudinal direction of the optical fiber f to be measured is obtained from the intensity of light output from one end of the optical fiber f to be measured by the BOTDA (Brillouin Optical Time Domain Analysis) method. Specifically, first, the signal intensity of the probe light extracted by the data extracting means 20 when the pump light is not incident is acquired as the reference intensity. Thereafter, the signal intensity extracted by the data extracting means 20 when the pump light and the probe light are incident is acquired. Further, the Brillouin gain can be obtained by calculating the amount of increase in the signal intensity from the reference intensity when the pump light and the probe light are incident. By this measurement, by comparing the magnitudes of the Brillouin gains at each position in the longitudinal direction of the measured optical fiber, it is possible to measure the loss in a predetermined mode at each position in the longitudinal direction of the measured optical fiber.
  • BOTDA Bitillouin Optical Time Domain Analysis
  • n i is the effective refractive index of the mode
  • lambda the wavelength
  • the Brillouin frequency shift is different depending on the propagating mode, and the Brillouin spectrum information at an arbitrary position in each obtained mode has a peak for each mode.
  • the optical fiber loss measuring device of the present embodiment utilizes the fact that the Brillouin gain (Brillouin spectrum information) at an arbitrary position has a peak for each mode. For that matter, when considering FMF propagating in two modes for simplicity, if the pump light, each of the probe light has amplitudes in both LP 01 and LP 11 modes, the following [1] [3] has three spectral peaks.
  • v 01-01 (interaction between pump light and probe light components between LP 01 )
  • v 01-11 (interaction between the probe light component of the pump light component and LP 11 of LP 01, and the interaction between the probe light component of the pump light component and LP 01 of LP 11)
  • v 11-11 (interaction between pump light and probe light components between LP 11 )
  • the Brillouin gain G B generated in the optical fiber when set in Brillouin frequency corresponding to the mode propagating in the frequency difference between the pump light and the probe light (x, y) is represented by the following formula (2).
  • x and y are coordinates in the cross section of the optical fiber
  • a ij (x, y) is the intensity distribution of the acoustic mode
  • Ep (x, y) and E s (x, y) are the pump lights, respectively.
  • the intensity distribution of the probe light since the intensity distribution of the acoustic mode is excited by the interaction between the pump light and the probe light, it can be regarded as the same as the overlap of the electric field distribution.
  • the Brillouin gain changes according to the overlap of the electric field distributions of the pump light and the probe light.
  • the electric field distribution of the pump light and the probe light both changes in the longitudinal direction of the optical fiber, the overlapping relationship changes and the generated gain also changes, so that the loss for each mode can be obtained from the gain amount. Can not.
  • the state of the electric field distribution such as the fundamental mode in the probe light is A symmetric mode is selected, and Brillouin gain is generated between the probe light and the pump light, which is a non-axisymmetric mode in which the electric field distribution can be changed.
  • the pump light may select an axially symmetric mode.
  • FIG. 2 is a diagram illustrating the pump light and the probe light at the point A and their interaction.
  • (a) is the shape of the electric field intensity distribution of the probe light at the point A in the optical fiber cross section
  • (b) is the shape of the electric field intensity distribution of the pump light at the point A in the optical fiber cross section
  • (c) is (D) shows the shape of the electric field intensity distribution in the cross section of the optical fiber of the Brillouin gain at the point A
  • FIG. 2 regions where the intensity of the probe light and the intensity of the pump light are present are indicated by oblique lines and black, respectively, and for simplicity, the cross section of the optical fiber in the axially symmetric mode is described as a rectangular shape. However, in the case of an axially symmetric mode, the cross section of the optical fiber is actually circular.
  • the intensities Ep and Er of the pump light and the probe light shown in FIGS. 2A and 2B can be expressed by equations (3) and (4).
  • the acquired Brillouin gain G has the state shown in FIG. 2 (d), that is, the relationship shown in equation (5).
  • the Brillouin gain occurs in a region corresponding to the overlap with the intensity distribution of the probe light in the cross-sectional direction of the optical fiber.
  • FIG. 3 is a diagram illustrating pump light and probe light at a certain point B and their interaction.
  • 3A shows the shape of the electric field intensity distribution of the probe light at the point B in the cross section of the optical fiber
  • FIG. 3B shows the shape of the electric field intensity distribution of the pump light at the point B in the cross section of the optical fiber
  • FIG. The shape of the electric field intensity distribution at the point B in the cross section of the optical fiber, and the shape of the electric field intensity distribution at the point B in the cross section of the Brillouin gain optical fiber are shown. Also in FIG.
  • the intensities Ep and Er of the pump light and the probe light shown in FIGS. 3A and 3B can be expressed by the equations (6) and (7).
  • the electric field intensity distribution in the sectional direction of the probe light at the point B is the same as the point A because the electric field distribution is in a mode in which the state of the electric field distribution is axially symmetric.
  • the Brillouin gain G has the state shown in FIG. 3D, that is, the relationship shown in Expression (8).
  • the pump light and the probe light interact like point B, although the rotation state (interaction part in the optical fiber cross section) is different.
  • the optical fiber loss measuring apparatus by using the mode in which the state of the electric field distribution in the probe light is axially symmetric, even when the shape of the electric field distribution of the pump light changes due to propagation or the like, the same.
  • the Brillouin gain can be obtained under the following conditions. That is, it is possible to generate Brillouin gain without depending on the shape of the electric field distribution of the pump light.
  • a polarization modulation means for changing the polarization state of the probe light p2 is provided between the frequency control means 14 and the axially symmetric mode conversion means 16, so that the gain is increased. What is necessary is just to perform the process which averages the Brillouin gain of several polarization states in the analysis means 21.
  • a wave plate can be used as the polarization modulation means.
  • the state of the axially symmetric electric field distribution refers to a mode such as LP 01 , LP 02 , and LP 03 in which the electric field distribution does not change even when rotated in the azimuthal direction of the cross section of the optical fiber.
  • the frequency difference between the pump light and the probe light incident on the optical fiber to be measured is set to a Brillouin frequency shift acting between different modes as shown in the above [2]. Thereby, it is possible to make the conditions of the overlap of the pump light and the probe light the same in the longitudinal direction of the optical fiber.
  • g B is a Brillouin gain coefficient
  • I P and I S are integral values of the pump light and the probe light in the optical fiber cross-sectional area, respectively.
  • the coordinates of the pump light incident point are 0, the coordinates of the probe light incident point are L, the loss coefficient of the optical fiber is ⁇ , and the Brillouin gain generated at the point z 1 is observed at the pump light incident point.
  • the observed Brillouin gain can be expressed by equation (10).
  • the loss distribution from a point z 1 can be acquired by calculating the following equation (12).
  • ln indicates a natural logarithm.
  • the measuring method in the optical fiber loss measuring device of the present embodiment includes the following four steps.
  • First step Set the frequency difference between pump light and probe light.
  • the frequency difference is set so as to correspond to a Brillouin frequency shift corresponding to a combination of the modes of the pump light and the probe light incident on the optical fiber f to be measured.
  • Second step The mode of the pump light is converted into a mode whose loss is to be measured, and the mode of the probe light is converted into a mode in which the electric field distribution is axially symmetric in the optical fiber cross section.
  • Third step The pump light and the probe light converted in the second step are incident on the optical fiber.
  • the optical fiber loss measuring device of the present embodiment even when the probe light is rotated in the azimuthal direction in the cross section of the measured optical fiber such as LP 01 , LP 02 , LP 03 , the axis in which the electric field distribution does not change.
  • the electric field distribution of the pump light which is a non-axisymmetric mode, at an arbitrary position in the length direction of the optical fiber to be measured by converting into a symmetrical mode and entering the optical fiber to be measured to generate Brillouin gain. It is possible to non-destructively measure the loss received by the pump light even when the value changes. This makes it possible to judge the quality of the connection point, device, and the like in the transmission path of the optical fiber to be measured.
  • FIG. 4 is a diagram illustrating an example of an optical fiber loss measuring device according to the second embodiment.
  • the pump light p1 is incident on one side of the optical fiber f to be measured and the probe light p2 is incident on the other side.
  • the pump light p1 and the probe light p2 enter the optical fiber f to be measured from the same end.
  • the pump light p1 and the probe light p2 are incident as pulses at different timings, and the pump light p1 or the probe light p2 is reflected by an optical reflector provided on the end face opposite to the incident end of the optical fiber to be measured.
  • the two lights interact, and the intensity of the light output from the same end as the incident end is measured.
  • the other configuration is the same as that of the first embodiment, and the description is omitted.
  • the optical fiber loss measuring device includes a pulse generator 13a, such that the light output from the laser light generating means 11 and divided into two by the branching element 12 is pulsed at a predetermined timing. 13b and timing control means 22a and 22b are provided. The two lights pulsed at a predetermined timing by the pulse generators 13a and 13b and the timing control means 22a and 22b are processed by the mode demultiplexing means 15, the frequency control means 14 and the axially symmetric mode conversion means 16, respectively. The light is multiplexed by the multiplexing element 23, and is input from one end of the optical fiber f to be measured by the optical circulator 17 as the pump light p1 and the probe light p2.
  • the pulse generators 13a and 13b and the timing control means 22a and 22b operate so that the pump light p1 and the probe light p2 are incident on the measured optical fiber f with an incident time difference corresponding to each position of the measured optical fiber f.
  • the two lights are pulsed with the timing shifted.
  • an optical reflector 24 is provided at the other end of the optical fiber under test f opposite to the end connected to the optical circulator 17. I have. Since the pump light p1 and the probe light p2 incident from one end of the optical fiber f to be measured are incident at different timings, the light reflector 24 reflects the light incident first. The reflected light has its traveling direction reversed, and as a result of the two lights propagating oppositely in the measured optical fiber f, they collide with each other and cause an interaction that causes a Brillouin gain.
  • each mode of the optical fiber f to be measured can be determined. Loss can be measured.
  • the optical fiber loss measuring device of the present embodiment in order to obtain a loss distribution from the generated Brillouin gain, it is necessary to perform one measurement while changing the time difference of incidence. Specifically, acquiring the gain generated at one end of the optical fiber f to be measured, repeating the acquisition of the gain again by shifting the collision position by slightly changing the incident time difference, and finally obtaining the optical fiber to be measured By obtaining the Brillouin gain up to the other end of f, the loss distribution is obtained from the Brillouin gain at each position of the fiber.
  • one measurement of the gain results in a state in which the optical fiber to be measured contains one pump light p1 and one probe light p2. Since the output timing is different between the pulse of the probe light p2 (Brillouin scattered light s) on which the Brillouin gain is superimposed and the pulse of the pump light p1 that has returned after reflection, the Brillouin is adjusted by adjusting the measurement timing of the output light. It is possible to measure the gain.
  • the configuration of the optical fiber loss measuring device of the embodiment described above is an example, and similarly, an optical frequency difference corresponding to a frequency (wavelength) shift is given between the pump light and the probe light to excite an arbitrary propagation mode. Any means can be used as long as it is a device configuration capable of extracting the amplified probe light in the time domain. Also, in a general SMF, since the configuration of the optical fiber loss measuring device of the present embodiment can be applied by shortening the incident wavelength, the optical fiber to be measured has a condition in which multiple modes propagate. Should be fine.

Abstract

Provided is an optical fiber loss measurement device capable of accurately measuring loss for a prescribed mode at various positions on an optical fiber through which a plurality of modes can propagate. This optical fiber loss measurement device comprises a means for inputting pump light of a prescribed mode and a first frequency into one end of an optical fiber for measurement through which a plurality of modes can propagate and inputting probe light of a second frequency having a Brillouin frequency shift applied thereto into the other end, a Brillouin gain acquisition means for measuring the intensity of the light output from the one end and using BOTDA to acquire Brillouin gains in the longitudinal direction of the optical fiber for measurement, and a means for measuring the loss in the optical fiber for measurement for the prescribed mode by comparing the sizes of the Brillouin gains at various positions in the longitudinal direction of the optical fiber for measurement. The mode of the probe light is such that the electric field distribution at a cross section of the optical fiber for measurement is axisymmetric.

Description

光ファイバの損失測定装置および光ファイバの損失測定方法Optical fiber loss measuring device and optical fiber loss measuring method
 本発明は、光ファイバの損失測定装置および光ファイバの損失測定方法に関し、詳細には、光ファイバ中を伝搬する各伝搬モードが受ける損失を長手方向に非破壊で測定する光ファイバの損失測定装置および光ファイバの損失測定方法に関する。 The present invention relates to an optical fiber loss measuring device and an optical fiber loss measuring method, and more particularly, to an optical fiber loss measuring device that non-destructively measures loss experienced by each propagation mode propagating in an optical fiber. And a method for measuring an optical fiber loss.
 近年、伝送トラフィックの急激な増加に伴い、現在の伝送路で用いられているSMF(Single mode fiber)に代わって複数の伝搬モードが利用できるFMF(Few mode fiber)やMMF(Multi mode fiber)が更なる大容量化を可能にするものとして大きな注目を集めている。これらの光ファイバでは、伝搬中に複数のモードに結合するクロストークが発生するため、受信側において信号処理によりクロストークの補償を行うことでモード多重通信を実現している。 2. Description of the Related Art In recent years, with a rapid increase in transmission traffic, an FMF (Few mode fiber) or an MMF (Multi mode fiber) that can use a plurality of propagation modes instead of an SMF (Single mode fiber) used in a current transmission path has been developed. It has attracted great attention as a device capable of further increasing the capacity. In these optical fibers, crosstalk coupling into a plurality of modes occurs during propagation. Therefore, mode multiplex communication is realized by performing crosstalk compensation by signal processing on the receiving side.
 一方で、モード毎に受ける損失が異なることによりモード間損失差が発生すると、クロストークを補償できない。そのため、伝送路においてモード間の損失差を小さくする必要がある。モード間の損失差は一般に、EDFA(Erbium Doped optical Fiber Amplifier)やモード合分波器といったデバイスや、光ファイバの接続点で発生する。すなわち、光ファイバ長手方向でモード毎の損失を測定する必要がある。 On the other hand, if a loss difference between modes occurs due to different losses received for each mode, crosstalk cannot be compensated. Therefore, it is necessary to reduce the loss difference between modes in the transmission path. The loss difference between modes generally occurs in a device such as an EDFA (Erbium Doped Optical Fiber Amplifier) or a mode multiplexer / demultiplexer, or at a connection point of an optical fiber. That is, it is necessary to measure the loss for each mode in the longitudinal direction of the optical fiber.
 モード毎に受ける損失が異なる要因としては、光ファイバ断面における電界分布の形状が異なることがあげられる。電界分布はモード毎に光ファイバ断面で異なる形状を示し、大きく分けると、強度が軸対称のモード(LP0jモード)と、非軸対称のモード(LPijモード)の2種類がある。非軸対称のLPijモードについては、伝搬モードの形状に加えて、光ファイバ断面の軸の角度パターンも存在する。このとき、非軸対称のモードについては、同じモードであってもモードの回転角毎に損失が異なる(非特許文献1)。したがって、これらのモードでは位相板を回転させるなどモードの回転を変化させて、その時に受ける損失を取得する必要がある。 The reason that the loss received for each mode is different is that the shape of the electric field distribution in the cross section of the optical fiber is different. Electric field distribution shows different shapes in the optical fiber cross-section for each mode, roughly divided into strength and axisymmetric mode (LP 0j mode), there are two types of non-axisymmetric mode (LP ij mode). For the non-axisymmetric LP ij mode, in addition to the shape of the propagation mode, there is also an angle pattern of the axis of the optical fiber cross section. At this time, for the non-axisymmetric mode, even if the mode is the same, the loss differs for each rotation angle of the mode (Non-Patent Document 1). Therefore, in these modes, it is necessary to change the rotation of the mode, such as by rotating the phase plate, and acquire the loss received at that time.
 これまで光ファイバ長手方向で損失を測定するものとしてOTDR(Optical Time Domain Reflectometry)が提案されている(非特許文献2)。しかしながらOTDRでは、光ファイバ中で発生するレイリー散乱を用いて損失測定を行うが、この散乱過程において複数のモードが発生するため、複数モードが混ざった情報として得られ、純粋なモード毎の損失が得られない。例えば、LP11モードの損失を取得する際に、LP11モードよりも一般的に損失が小さいLP01モードと混ざった場合、LP11モードの損失が実際よりも小さく測定される。このように光ファイバ中で発生する後方散乱光を利用した損失測定法では、複数モードの発生の影響を排除できず、モード毎の損失を正しく評価できない問題がある。 Until now, OTDR (Optical Time Domain Reflectometry) has been proposed as a device for measuring loss in the longitudinal direction of an optical fiber (Non-Patent Document 2). However, in OTDR, loss measurement is performed using Rayleigh scattering generated in an optical fiber. However, since multiple modes are generated in this scattering process, information is obtained as a mixture of multiple modes, and a pure loss for each mode is obtained. I can't get it. For example, when acquiring the loss of LP 11 mode, if the general loss was mixed with a small LP 01 mode than LP 11 mode, the loss of LP 11 mode are measured actually smaller than. As described above, the loss measurement method using the backscattered light generated in the optical fiber has a problem that the influence of the occurrence of a plurality of modes cannot be excluded and the loss for each mode cannot be correctly evaluated.
 このように従来は、モード毎の損失を測定するのはOTDRが主流であったが、複数モードが伝搬する光ファイバにおいてモード毎に伝搬特性を評価する手法としては、誘導ブリルアン散乱を用いたブリルアン利得解析法(BOTDA:Brillouin Optical Time Domain Analysis)(非特許文献3)が提案されている。BOTDAでは、光ファイバに入射するポンプ光とプローブ光の周波数差の制御により、光ファイバ中で特定のモードのみを発生できることを利用して、光ファイバ長手方向におけるモード毎の伝搬特性を観測することができる。 As described above, conventionally, the OTDR is mainly used to measure the loss for each mode. However, as a method for evaluating the propagation characteristics for each mode in an optical fiber in which a plurality of modes propagate, a Brillouin using stimulated Brillouin scattering is used. A gain analysis method (BOTDA: Brillouin \ Optical \ Time \ Domain \ Analysis) (Non-Patent Document 3) has been proposed. BOTDA is to observe the propagation characteristics of each mode in the longitudinal direction of the optical fiber by utilizing the fact that only a specific mode can be generated in the optical fiber by controlling the frequency difference between the pump light and the probe light incident on the optical fiber. Can be.
 しかしながら、BOTDAを利用してモード毎の損失を測定した場合は、光ファイバ中で発生するブリルアン利得は、モードの損失だけでなく、モードの偏波状態やポンプ光・プローブ光の電界分布の重なりによって発生量が変化する特性のため、結果としてモード毎の損失を正しく測定できない。この点、これまでのSMFでは基本モードであるLP01モードのみの利用であるため、ポンプ光・プローブ光の電界分布の重なりは常に同一であり、また偏波状態については、偏波スクランブラ等を用いて発生する利得量を偏波無依存化してきた(非特許文献4)。 However, when the loss for each mode is measured using BOTDA, the Brillouin gain generated in the optical fiber is not only the loss of the mode, but also the polarization state of the mode and the overlap of the electric field distribution of pump light and probe light. As a result, the loss of each mode cannot be measured correctly. In this regard, since heretofore is the use of LP 01 mode only the fundamental mode in the SMF, the overlapping of the electric field distribution of the pump light and the probe light is always the same, and for the polarization state, the polarization scrambler etc. Has been used to make the amount of gain generated polarization independent (Non-Patent Document 4).
 一方で、複数モードが伝搬するFMFやMMFでは、LP11モードの偏波を変化させると、電界分布も同時に変化する。また、これらのモードは伝搬時に電界分布が光ファイバ断面の方位角方向に回転する等の変化を伴うため、ポンプ光・プローブ光共にこのようなモードを利用すると、長手方向で重なりの状態が変化するという問題も発生する。 On the other hand, the FMF and MMF several modes propagating, varying the polarization of the LP 11 mode, simultaneously change the electric field distribution. In addition, since these modes involve changes such as the electric field distribution rotating in the azimuthal direction of the optical fiber cross section during propagation, the use of such modes for both pump light and probe light changes the state of overlap in the longitudinal direction. The problem of doing so also arises.
 このように複数モードが伝搬する光ファイバにおいて、モード毎の伝搬特性を評価が可能なBOTDAを利用してモード毎の損失を測定しようとしても、発生した利得量からモード毎およびモード回転毎の損失を測定することができない。 Thus, in an optical fiber in which a plurality of modes propagate, even if an attempt is made to measure the loss for each mode using BOTDA, which can evaluate the propagation characteristics for each mode, the loss for each mode and each mode rotation is determined from the generated gain. Can not be measured.
 本発明は、上記従来の問題に鑑みなされたものであって、本発明の課題は、複数モードが伝搬する光ファイバにおいて、光ファイバの各位置における所定のモードの損失を正確に測定可能な光ファイバの損失測定装置を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an optical fiber in which a plurality of modes propagate, an optical fiber capable of accurately measuring a loss of a predetermined mode at each position of the optical fiber. An object of the present invention is to provide a fiber loss measuring device.
 上記の課題を解決するために、一実施形態に記載された光ファイバの損失測定装置は、複数のモードを伝搬する被測定対象光ファイバに対して、所定のモードの第1の周波数の光をポンプ光として入射すると共に、前記第1の周波数から前記所定のモードのブリルアン周波数シフトに相当する周波数だけ低い第2の周波数の光をプローブ光として入射する光入射手段と、前記被測定対象光ファイバから出力される光の強度を測定して、BOTDA(Brillouin Optical Time Domain Analysis)法により前記被測定対象光ファイバの長手方向におけるブリルアン利得を取得するブリルアン利得取得手段と、前記被測定対象光ファイバの長手方向の各位置における前記ブリルアン利得同士の大きさを比較することにより、前記被測定対象光ファイバの前記所定のモードにおける損失を測定する手段とを備えた光ファイバの損失測定装置であって、前記プローブ光は、前記ポンプ光のモードにかかわらず、前記被測定対象光ファイバの断面における電界分布が軸対称となるモードであることを特徴とする。 In order to solve the above-described problem, the optical fiber loss measuring device described in one embodiment transmits light of a first frequency in a predetermined mode to an optical fiber to be measured that propagates a plurality of modes. A light incidence unit that enters as pump light, and that emits, as probe light, light of a second frequency lower than the first frequency by a frequency corresponding to the Brillouin frequency shift of the predetermined mode as probe light; Brillouin gain acquisition means for measuring the intensity of the light output from the optical fiber and acquiring the Brillouin gain in the longitudinal direction of the optical fiber to be measured by the BOTDA (Brillouin Optical Time Domain Analysis) method; The magnitude of the Brillouin gain at each position in the longitudinal direction is compared. By measuring the loss of the optical fiber to be measured in the predetermined mode, and a means for measuring the loss of the optical fiber, the probe light, regardless of the mode of the pump light, the The electric field distribution in the section of the optical fiber to be measured is axially symmetric.
 他の実施形態に記載された光ファイバの損失測定方法は、複数のモードを伝搬する被測定対象光ファイバに対して、所定のモードの第1の周波数の光をポンプ光として入射すると共に、前記第1の周波数から前記所定のモードのブリルアン周波数シフトに相当する周波数だけ低い第2の周波数の光をプローブ光として入射する光入射ステップと、前記被測定対象光ファイバから出力される光の強度を測定して、BOTDA(Brillouin Optical Time Domain Analysis)法により前記被測定対象光ファイバの長手方向におけるブリルアン利得を取得するブリルアン利得取得ステップと、前前記被測定対象光ファイバの長手方向の各位置における前記ブリルアン利得同士の大きさを比較することにより、前記被測定対象光ファイバの前記所定のモードにおける損失を測定するステップとを備えた光ファイバの損失測定方法であって、前記プローブ光は、前記ポンプ光のモードにかかわらず、前記被測定対象光ファイバの断面における電界分布が軸対称となるモードであることを特徴とする。 The loss measuring method of the optical fiber described in another embodiment, with respect to the optical fiber to be measured that propagates a plurality of modes, the light of the first frequency of the predetermined mode is incident as pump light, A light incidence step in which light having a second frequency lower than the first frequency by a frequency corresponding to the Brillouin frequency shift of the predetermined mode is made incident as probe light, and the intensity of light output from the optical fiber to be measured is Measuring and obtaining a Brillouin gain in a longitudinal direction of the optical fiber to be measured by a BOTDA (Brillouin Optical Time Domain Analysis) method; and obtaining the Brillouin gain in the longitudinal direction of the optical fiber to be measured in advance. By comparing the magnitude of Brillouin gains Measuring the loss of the optical fiber under test in the predetermined mode, wherein the probe light is the light under test irrespective of the mode of the pump light. The mode is one in which the electric field distribution in the cross section of the fiber is axially symmetric.
第1の実施形態に係る光ファイバの損失測定装置の一例を示す図である。It is a figure showing an example of an optical fiber loss measuring device concerning a 1st embodiment. 地点Aにおけるポンプ光およびプローブ光とそれらの相互作用を説明する図である。FIG. 4 is a diagram illustrating pump light and probe light at point A and their interaction. 地点Bにおけるポンプ光およびプローブ光とそれらの相互作用を説明する図である。FIG. 5 is a diagram illustrating pump light and probe light at point B and their interaction. 第2の実施形態に係る光ファイバの損失測定装置の一例を示す図である。It is a figure showing an example of an optical fiber loss measuring device concerning a 2nd embodiment.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本実施形態の光ファイバの損失測定装置は、光ファイバの一方から所定のモードのポンプ光を入射すると共に、光ファイバの断面における電界分布が軸対称となるモードのプローブ光を一方または他方から入射することによって発生したブリルアン利得を取得し、光ファイバの長手方向の各位置におけるブリルアン利得同士の大きさを比較することで、光ファイバ中の所定のモードにおける損失を長手方向で分布的に測定することができるものである。 The optical fiber loss measuring apparatus according to the present embodiment receives pump light in a predetermined mode from one of the optical fibers and probe light in a mode in which the electric field distribution in the cross section of the optical fiber is axially symmetric from one or the other. By obtaining the Brillouin gain generated by doing, and comparing the magnitude of the Brillouin gain at each position in the longitudinal direction of the optical fiber, the loss in a predetermined mode in the optical fiber is measured in the longitudinal direction in a distributed manner. Is what you can do.
[第1の実施形態]
 図1は第1の実施形態に係る光ファイバの損失測定装置の一例を示す図である。図1に示す本実施形態の光ファイバの損失測定装置は、レーザ光発生手段11と、レーザ光発生手段11に入力側が接続された分岐素子12と、分岐素子12で2分岐された一方と接続されたパルス生成器13および他方と接続された周波数制御手段14と、パルス生成器13に接続されたモード分波手段15と、モード分波手段15に接続された光サーキュレータ17と、光サーキュレータ17に一端が接続された被測定対象光ファイバfおよび光電変換手段18と、光電変換手段18に対して直列に接続されたA/D変換手段19、データ抽出手段20、および利得解析手段21と、周波数制御手段14と被測定対象光ファイバfの他端との間に設けられた軸対称モード変換手段16とを備えた構成が示されている。
[First Embodiment]
FIG. 1 is a diagram showing an example of the optical fiber loss measuring device according to the first embodiment. The optical fiber loss measuring device according to the present embodiment shown in FIG. 1 is connected to a laser beam generating unit 11, a branch element 12 having an input side connected to the laser beam generating unit 11, and one of two branches of the branch element 12. Pulse generator 13 and frequency control means 14 connected to the other, mode demultiplexing means 15 connected to pulse generator 13, optical circulator 17 connected to mode demultiplexing means 15, optical circulator 17 The optical fiber f to be measured and the photoelectric conversion means 18 having one end connected to the A / D conversion means 19, the data extraction means 20, and the gain analysis means 21 connected in series to the photoelectric conversion means 18; A configuration including an axially symmetric mode conversion means 16 provided between the frequency control means 14 and the other end of the optical fiber f to be measured is shown.
 本実施形態の光ファイバの損失測定装置において、コヒーレントな光を発生させるレーザ光発生手段11から出力された光を分岐素子12によって2分岐する。2分岐された光の一方はポンプ光p1とし、パルス生成器13によってパルス化したのちにモード分波手段15で基本モードから被測定対象光ファイバfに対応した高次の伝搬モードに変換した後、被測定対象光ファイバfに入射される。 In the optical fiber loss measuring device of the present embodiment, the light output from the laser light generating means 11 for generating coherent light is split into two by the splitting element 12. One of the two branched lights is a pump light p1, which is pulsed by a pulse generator 13 and then converted from a fundamental mode to a higher-order propagation mode corresponding to the optical fiber f to be measured by a mode branching means 15. Is incident on the optical fiber f to be measured.
 モード分波手段15は、位相板やPLC、空間光変調器等を用いることができ、ポンプ光p1のモードを損失を求めたい伝搬モードに変換する。モード分波手段15は、ポンプ光p1を軸対称モードまたは非軸対称モードに変換して光サーキュレータ17を介して被測定対象光ファイバfに入射することができる。 The mode demultiplexing unit 15 can use a phase plate, a PLC, a spatial light modulator, or the like, and converts the mode of the pump light p1 into a propagation mode in which a loss is to be obtained. The mode demultiplexing means 15 can convert the pump light p1 into an axially symmetric mode or a non-axially symmetric mode, and make it incident on the optical fiber f to be measured via the optical circulator 17.
 モード分波手段15は、ポンプ光p1を非軸対称モードに変換する場合に、被測定対象光ファイバfの断面方向(光ファイバ断面方向)におけるモードの回転状態毎の損失特性を評価することを可能とするために、光ファイバ断面方向における電界分布を回転させる非軸対称モード回転機構を有していてもよい。 The mode demultiplexing unit 15 evaluates the loss characteristics of each mode rotation state in the cross-sectional direction (optical fiber cross-sectional direction) of the optical fiber f to be measured when the pump light p1 is converted into a non-axially symmetric mode. To make it possible, a non-axisymmetric mode rotation mechanism for rotating the electric field distribution in the cross section direction of the optical fiber may be provided.
 周波数制御手段14は、分岐された光の他方であるプローブ光p2に対して、被測定対象光ファイバfに入射するポンプ光・プローブ光のモードの組み合わせに対応したブリルアン周波数シフトに相当する約10~11GHz程度の周波数差を付与する。この周波数制御手段14は、LiNb3で構成されたSSB変調器等の外部変調器で制御しても、周波数(波長)の異なるレーザを2台用い、2台のレーザ間の光周波数差を制御してもよい。ポンプ光・プローブ光のモードの組み合わせに対応したブリルアン周波数シフトは、ポンプ光のモードにおけるブリルアン周波数シフト量を用いることができる。具体的には、ポンプ光の周波数から所定のモードのブリルアン周波数シフトに相当する周波数だけ低い周波数にプローブ光の周波数を設定することができる。 The frequency control means 14 provides the probe light p2, which is the other of the branched lights, about 10 times corresponding to the Brillouin frequency shift corresponding to the mode combination of the pump light and the probe light incident on the optical fiber f to be measured. A frequency difference of about 11 GHz is provided. This frequency control means 14 uses two lasers having different frequencies (wavelengths) even when controlled by an external modulator such as an SSB modulator made of LiNb 3 and controls the optical frequency difference between the two lasers. May be. As the Brillouin frequency shift corresponding to the combination of the modes of the pump light and the probe light, the Brillouin frequency shift amount in the mode of the pump light can be used. Specifically, the frequency of the probe light can be set to a frequency lower than the frequency of the pump light by a frequency corresponding to a Brillouin frequency shift in a predetermined mode.
 軸対称モード変換手段16は、周波数差が付与されたプローブ光p2を、軸対称の伝搬モードに変換し、ポンプ光p1と逆方向から被測定対象光ファイバfに入射する。この軸対称モード変換手段16としては、モード分波手段15と同じ構成を用いてもよく、また、軸対称モードのうち基本モードを利用する場合はSMFとFMFを直接接続する形でもよい。 The 対 称 axis symmetric mode conversion means 16 converts the probe light p2 to which the frequency difference has been imparted into the axis symmetric propagation mode, and enters the optical fiber f to be measured from the opposite direction to the pump light p1. The axial symmetric mode conversion means 16 may have the same configuration as that of the mode demultiplexing means 15, and when the fundamental mode among the axial symmetric modes is used, the SMF and the FMF may be directly connected.
 被測定対象光ファイバfの両端からポンプ光p1とプローブ光p2とがそれぞれ入射されると、被測定対象光ファイバfの長手方向の各位置ではポンプ光p1とプローブ光p2の衝突により、光サーキュレータ17に向けて出力されるプローブ光においてブリルアン利得が発生する。図1では、このブリルアン利得を受けたプローブ光はブリルアン散乱光sとして示している。 When the pump light p1 and the probe light p2 are incident from both ends of the optical fiber f to be measured, respectively, the optical circulator collides with the pump light p1 and the probe light p2 at each position in the longitudinal direction of the optical fiber f to be measured. Brillouin gain occurs in the probe light output toward 17. In FIG. 1, the probe light having received the Brillouin gain is shown as Brillouin scattered light s.
 光サーキュレータ17は、ポンプ光p1によって増幅されたプローブ光p2(ブリルアン散乱光s)を光電変換手段18に送る。光電変換手段18では増幅されたプローブ光p2(ブリルアン散乱光s)の光強度を電気信号に変換し、A/D変換手段19でデジタルデータに変換した後、データ抽出手段20で光の信号強度のデータを抽出し、この抽出したデータから利得解析手段21で利得を解析する。 The optical circulator 17 sends the probe light p2 (Brillouin scattered light s) amplified by the pump light p1 to the photoelectric conversion means 18. The photoelectric conversion unit 18 converts the amplified light intensity of the probe light p2 (Brillouin scattered light s) into an electric signal, converts the signal into digital data by the A / D conversion unit 19, and then converts the signal intensity of the light by the data extraction unit 20. Is extracted, and the gain is analyzed by the gain analysis means 21 from the extracted data.
 ブリルアン利得の解析は、BOTDA(Brillouin Optical Time Domain Analysis)法により、被測定対象光ファイバfの一端から出力される光の強度から被測定対象光ファイバfの長手方向におけるブリルアン利得を取得する。具体的には、まず、ポンプ光を入射しない場合にデータ抽出手段20で抽出されるプローブ光の信号強度を参照強度として取得する。その後、ポンプ光とプローブ光を入射した場合にデータ抽出手段20で抽出される信号強度を取得する。さらに、ポンプ光とプローブ光を入射した場合の信号強度について参照強度からの増加量を算出することによって、ブリルアン利得が取得できる。この測定により、被測定光ファイバ長手方向の各位置におけるブリルアン利得同士の大きさを比較することで、被測定光ファイバ長手方向の各位置における所定のモードにおける損失の測定が可能である。 In the analysis of the Brillouin gain, the Brillouin gain in the longitudinal direction of the optical fiber f to be measured is obtained from the intensity of light output from one end of the optical fiber f to be measured by the BOTDA (Brillouin Optical Time Domain Analysis) method. Specifically, first, the signal intensity of the probe light extracted by the data extracting means 20 when the pump light is not incident is acquired as the reference intensity. Thereafter, the signal intensity extracted by the data extracting means 20 when the pump light and the probe light are incident is acquired. Further, the Brillouin gain can be obtained by calculating the amount of increase in the signal intensity from the reference intensity when the pump light and the probe light are incident. By this measurement, by comparing the magnitudes of the Brillouin gains at each position in the longitudinal direction of the measured optical fiber, it is possible to measure the loss in a predetermined mode at each position in the longitudinal direction of the measured optical fiber.
(ブリルアン利得)
 ここで被測定対象光ファイバfにおいて発生するブリルアン利得について説明する。一例としてFMFにおける誘導ブリルアン散乱現象を考えると、任意のモードにおけるブリルアン周波数シフトνbは、式(1)で与えられる。
(Brillouin gain)
Here, the Brillouin gain generated in the optical fiber f to be measured will be described. Considering the stimulated Brillouin scattering phenomenon in FMF as an example, the Brillouin frequency shift ν b in an arbitrary mode is given by Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、niは当該モードの実効屈折率、Vaは音響波の実効速度、λは波長である。 In the formula (1), n i is the effective refractive index of the mode, the V a effective speed of the acoustic wave, lambda is the wavelength.
 式(1)によれば、FMFにおいては、伝搬するモードによりブリルアン周波数シフトが異なることを意味しており、得られる各モードにおける任意の位置でのブリルアンスペクトル情報が、モード毎にピークを有することが判る。本実施形態の光ファイバの損失測定装置では任意の位置でのブリルアン利得(ブリルアンスペクトル情報)がモード毎にピークを有することを利用するものである。さらに言えば、簡単のために2つのモードで伝搬するFMFを考えた場合、ポンプ光、プローブ光の各々がLP01およびLP11モードの双方で振幅を有する場合には、以下の[1]から[3]の3つのスペクトルピークを有する。
[1]v01-01(LP01同士のポンプ光、プローブ光成分間の相互作用)
[2]v01-11(LP01のポンプ光成分とLP11のプローブ光成分間の相互作用、およびLP11のポンプ光成分とLP01のプローブ光成分間の相互作用)
[3]v11-11(LP11同士のポンプ光、プローブ光成分間の相互作用)
According to equation (1), in the FMF, it means that the Brillouin frequency shift is different depending on the propagating mode, and the Brillouin spectrum information at an arbitrary position in each obtained mode has a peak for each mode. I understand. The optical fiber loss measuring device of the present embodiment utilizes the fact that the Brillouin gain (Brillouin spectrum information) at an arbitrary position has a peak for each mode. For that matter, when considering FMF propagating in two modes for simplicity, if the pump light, each of the probe light has amplitudes in both LP 01 and LP 11 modes, the following [1] [3] has three spectral peaks.
[1] v 01-01 (interaction between pump light and probe light components between LP 01 )
[2] v 01-11 (interaction between the probe light component of the pump light component and LP 11 of LP 01, and the interaction between the probe light component of the pump light component and LP 01 of LP 11)
[3] v 11-11 (interaction between pump light and probe light components between LP 11 )
 ここで、ポンプ光とプローブ光間の周波数差を伝搬するモードに対応するブリルアン周波数に設定した際に光ファイバ中で発生するブリルアン利得GB(x,y)は次式(2)となる。 Here, the Brillouin gain G B generated in the optical fiber when set in Brillouin frequency corresponding to the mode propagating in the frequency difference between the pump light and the probe light (x, y) is represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上式(2)において、x,yは光ファイバ断面における座標、Aij(x,y)は音響モードの強度分布、Ep(x,y)、Es(x,y)はそれぞれポンプ光・プローブ光の強度分布である。この式(2)において、音響モードの強度分布はポンプ光・プローブ光の相互作用によって励振されることから、電界分布の重なりと同一のものとしてみなすことが可能である。 In the above equation (2), x and y are coordinates in the cross section of the optical fiber, A ij (x, y) is the intensity distribution of the acoustic mode, and Ep (x, y) and E s (x, y) are the pump lights, respectively. The intensity distribution of the probe light. In the equation (2), since the intensity distribution of the acoustic mode is excited by the interaction between the pump light and the probe light, it can be regarded as the same as the overlap of the electric field distribution.
 一方で、ブリルアン利得はポンプ光・プローブ光の電界分布の重なりに応じて変化する。つまり、光ファイバ長手方向で、ポンプ光・プローブ光の電界分布が共に変化した場合は、重なりの関係が変化し、発生する利得も変わることから、利得量からモード毎の損失を取得することができない。 On the other hand, the Brillouin gain changes according to the overlap of the electric field distributions of the pump light and the probe light. In other words, when the electric field distribution of the pump light and the probe light both changes in the longitudinal direction of the optical fiber, the overlapping relationship changes and the generated gain also changes, so that the loss for each mode can be obtained from the gain amount. Can not.
 本実施形態の光ファイバの損失測定装置では、ポンプ光・プローブ光の電界分布の重なりの状態変化による利得発生量の変化を排除するため、プローブ光において基本モードのような電界分布の状態が軸対称であるモードを選択し、このプローブ光と電界分布が変化しうる非軸対称モードであるポンプ光との間でブリルアン利得を発生させる。なお、本構成は一例であり、ポンプ光は軸対称のモードを選択してもよい。 In the optical fiber loss measuring apparatus according to the present embodiment, in order to eliminate the change in the amount of gain generation due to the change in the state of overlap between the electric field distributions of the pump light and the probe light, the state of the electric field distribution such as the fundamental mode in the probe light is A symmetric mode is selected, and Brillouin gain is generated between the probe light and the pump light, which is a non-axisymmetric mode in which the electric field distribution can be changed. Note that this configuration is an example, and the pump light may select an axially symmetric mode.
 図2は、地点Aにおけるポンプ光およびプローブ光とそれらの相互作用を説明する図である。図2において、(a)は地点Aでのプローブ光の光ファイバ断面における電界強度分布の形状、(b)は地点Aでのポンプ光の光ファイバ断面における電界強度分布の形状、(c)は地点Aでの相互作用の光ファイバ断面における電界強度分布の形状、(d)は地点Aでのブリルアン利得の光ファイバ断面における電界強度分布の形状をそれぞれ示している。図2ではプローブ光およびポンプ光の強度がある領域をそれぞれ斜線および黒塗りで示しており、簡単のため、軸対称のモードの光ファイバ断面の形状を矩形のものとして説明している。しかしながら、実際には軸対称のモードの場合、光ファイバ断面の形状は円形となる。 FIG. 2 is a diagram illustrating the pump light and the probe light at the point A and their interaction. In FIG. 2, (a) is the shape of the electric field intensity distribution of the probe light at the point A in the optical fiber cross section, (b) is the shape of the electric field intensity distribution of the pump light at the point A in the optical fiber cross section, and (c) is (D) shows the shape of the electric field intensity distribution in the cross section of the optical fiber of the Brillouin gain at the point A, and FIG. In FIG. 2, regions where the intensity of the probe light and the intensity of the pump light are present are indicated by oblique lines and black, respectively, and for simplicity, the cross section of the optical fiber in the axially symmetric mode is described as a rectangular shape. However, in the case of an axially symmetric mode, the cross section of the optical fiber is actually circular.
 ここで、図2(a)、(b)に示すポンプ光およびプローブ光の強度Ep、Erは式(3)、(4)で示すことができる。 Here, the intensities Ep and Er of the pump light and the probe light shown in FIGS. 2A and 2B can be expressed by equations (3) and (4).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このとき、ポンプ光とプローブ光とは図2(c)に示すように相互作用するので、取得ブリルアン利得Gは図2(d)に示す状態、すなわち式(5)に示す関係となる。 At this time, since the pump light and the probe light interact as shown in FIG. 2 (c), the acquired Brillouin gain G has the state shown in FIG. 2 (d), that is, the relationship shown in equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)によれば、ブリルアン利得は光ファイバの断面方向におけるプローブ光の強度分布との重なりに対応した領域で発生していることが分かる。 According to equation (5), it can be seen that the Brillouin gain occurs in a region corresponding to the overlap with the intensity distribution of the probe light in the cross-sectional direction of the optical fiber.
 ここで、地点Aとは長手方向において異なる地点Bにおける利得を考える。図3は、ある地点Bにおけるポンプ光およびプローブ光とそれらの相互作用を説明する図である。図3において、(a)は地点Bでのプローブ光の光ファイバ断面における電界強度分布の形状、(b)は地点Bでのポンプ光の光ファイバ断面における電界強度分布の形状、(c)は地点Bでの相互作用の光ファイバ断面における電界強度分布の形状、(d)は地点Bでのブリルアン利得の光ファイバ断面における電界強度分布の形状をそれぞれ示している。図3でもプローブ光およびポンプ光の強度がある領域をそれぞれ斜線および黒塗りで示しており、簡単のため、軸対称のモードの光ファイバ断面の形状を矩形のものとして説明している。しかしながら、実際には軸対称のモードの場合、光ファイバ断面の形状は円形となる。 Here, consider the gain at point B, which is different from point A in the longitudinal direction. FIG. 3 is a diagram illustrating pump light and probe light at a certain point B and their interaction. 3A shows the shape of the electric field intensity distribution of the probe light at the point B in the cross section of the optical fiber, FIG. 3B shows the shape of the electric field intensity distribution of the pump light at the point B in the cross section of the optical fiber, and FIG. The shape of the electric field intensity distribution at the point B in the cross section of the optical fiber, and the shape of the electric field intensity distribution at the point B in the cross section of the Brillouin gain optical fiber are shown. Also in FIG. 3, regions where the intensity of the probe light and the intensity of the pump light are present are shown by hatching and black, respectively, and for simplicity, the cross section of the optical fiber in the axially symmetric mode is described as a rectangular shape. However, in the case of an axially symmetric mode, the cross section of the optical fiber is actually circular.
 ここで、図3(a)、(b)に示すポンプ光およびプローブ光の強度Ep、Erは式(6)、(7)で示すことができる。 Here, the intensities Ep and Er of the pump light and the probe light shown in FIGS. 3A and 3B can be expressed by the equations (6) and (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

 地点Bにおけるプローブ光の断面方向の電界強度分布は、電界分布の状態が軸対称であるモードであるため、地点Aと同一である。このとき、ポンプ光とプローブ光とは図3(c)に示すように相互作用するので、ブリルアン利得Gは図3(d)に示す状態、すなわち式(8)に示す関係となる。

The electric field intensity distribution in the sectional direction of the probe light at the point B is the same as the point A because the electric field distribution is in a mode in which the state of the electric field distribution is axially symmetric. At this time, since the pump light and the probe light interact as shown in FIG. 3C, the Brillouin gain G has the state shown in FIG. 3D, that is, the relationship shown in Expression (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)によれば、回転状態(光ファイバ断面における相互作用する部位)は異なるものの、地点Bと同様にポンプ光・プローブ光が相互作用する。 According to equation (8), the pump light and the probe light interact like point B, although the rotation state (interaction part in the optical fiber cross section) is different.
 このように本実施形態の光ファイバの損失測定装置では、プローブ光において電界分布の状態が軸対称となるモードを利用することで、伝搬等によりポンプ光の電界分布の形状が変化した場合でも同一の条件でブリルアン利得を取得できる。つまり、ポンプ光の電界分布の形状に依存せずにブリルアン利得を発生させることが可能である。 As described above, in the optical fiber loss measuring apparatus according to the present embodiment, by using the mode in which the state of the electric field distribution in the probe light is axially symmetric, even when the shape of the electric field distribution of the pump light changes due to propagation or the like, the same. The Brillouin gain can be obtained under the following conditions. That is, it is possible to generate Brillouin gain without depending on the shape of the electric field distribution of the pump light.
 また、プローブ光の電界分布が軸対称であるため、偏波スクランブラを適用し利得量の平均化を行うことで、ブリルアン利得の偏波依存性を解消することが可能である。具体的には、図1の光ファイバの損失測定装置において、周波数制御手段14と軸対称モード変換手段16との間にプローブ光p2の偏波状態を変化させる偏波変調手段を設けて、利得解析手段21において複数の偏波状態のブリルアン利得を平均化する処理を行えばよい。偏波変調手段としては例えば波長板を用いることができる。偏波変調手段においてプローブ光p2の偏波状態を変化させたときに、利得解析手段21において、複数に変化した偏波状態のブリルアン利得を取得し、取得したブリルアン利得を平均化する。 Also, since the electric field distribution of the probe light is axially symmetric, the polarization dependence of the Brillouin gain can be eliminated by applying a polarization scrambler and averaging the gain. Specifically, in the optical fiber loss measuring device shown in FIG. 1, a polarization modulation means for changing the polarization state of the probe light p2 is provided between the frequency control means 14 and the axially symmetric mode conversion means 16, so that the gain is increased. What is necessary is just to perform the process which averages the Brillouin gain of several polarization states in the analysis means 21. For example, a wave plate can be used as the polarization modulation means. When the polarization state of the probe light p2 is changed by the polarization modulation unit, the gain analysis unit 21 obtains the Brillouin gains of the plurality of changed polarization states, and averages the obtained Brillouin gains.
 なお、軸対称の電界分布の状態とは、LP01、LP02、LP03のような光ファイバ断面の方位角方向に回転した場合でも電界分布が変化しないモードのことをさす。また、被測定光ファイバに入射するポンプ光・プローブ光の周波数差は、上記[2]に示すように、異なるモード間で作用するブリルアン周波数シフトに設定する。これにより、光ファイバ長手方向においてポンプ光・プローブ光の重なりの条件を同一にすることが可能である。 The state of the axially symmetric electric field distribution refers to a mode such as LP 01 , LP 02 , and LP 03 in which the electric field distribution does not change even when rotated in the azimuthal direction of the cross section of the optical fiber. Further, the frequency difference between the pump light and the probe light incident on the optical fiber to be measured is set to a Brillouin frequency shift acting between different modes as shown in the above [2]. Thereby, it is possible to make the conditions of the overlap of the pump light and the probe light the same in the longitudinal direction of the optical fiber.
(被測定対象光ファイバfにおけるモード毎の損失)
 次に、被測定対象光ファイバfの長手方向の各位置におけるモード毎の損失について説明する。一例としてFMFにおけるモード毎の損失の測定について考えると、重なりの状態を長手方向で同一にした場合、光ファイバのz地点で発生するブリルアン利得は以下の式(9)で表すことができる。
(Loss for each mode in the optical fiber f to be measured)
Next, the loss for each mode at each position in the longitudinal direction of the optical fiber f to be measured will be described. As an example, considering the loss measurement for each mode in the FMF, when the overlapping state is the same in the longitudinal direction, the Brillouin gain generated at the z point of the optical fiber can be expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)において、gBはブリルアン利得係数であり、IP、ISはそれぞれポンプ光・プローブ光の光ファイバ断面領域での積分値である。 In equation (9), g B is a Brillouin gain coefficient, and I P and I S are integral values of the pump light and the probe light in the optical fiber cross-sectional area, respectively.
 ここで、ポンプ光入射地点の座標を0、プローブ光入射地点の座標をL、光ファイバの損失係数をαとし、z1地点で発生したブリルアン利得をポンプ光入射地点で観測する場合を考えると、観測されるブリルアン利得は式(10)で表すことができる。 Here, consider the case where the coordinates of the pump light incident point are 0, the coordinates of the probe light incident point are L, the loss coefficient of the optical fiber is α, and the Brillouin gain generated at the point z 1 is observed at the pump light incident point. , The observed Brillouin gain can be expressed by equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 同様に、z2地点におけるブリルアン利得は式(11)で表すことができる。 Similarly, the Brillouin gain at the point z 2 can be expressed by equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、ある地点z1からの損失分布は、下記式(12)を演算することにより取得可能である。下記式(12)においてlnは自然対数を示す。 Here, the loss distribution from a point z 1 can be acquired by calculating the following equation (12). In the following equation (12), ln indicates a natural logarithm.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 以上より、誘導ブリルアン散乱光の特性を解析すれば、ある地点z1を基準にしたFMFのモード毎の損失を測定することができる。 Thus, by analyzing the characteristics of the stimulated Brillouin scattered light, it is possible to measure the loss of the specific mode of FMF with a certain point z 1 in the reference.
 本実施形態の光ファイバの損失測定装置における測定方法は以下の4つの段階を含む。 測定 The measuring method in the optical fiber loss measuring device of the present embodiment includes the following four steps.
 第1段階:ポンプ光とプローブ光の周波数差を設定する。周波数差は、被測定対象光ファイバfに入射するポンプ光とプローブ光のモードの組み合わせに対応したブリルアン周波数シフトに相当するように設定する。 First step: Set the frequency difference between pump light and probe light. The frequency difference is set so as to correspond to a Brillouin frequency shift corresponding to a combination of the modes of the pump light and the probe light incident on the optical fiber f to be measured.
 第2段階:ポンプ光のモードを損失を測定しようとするモードに変換し、プローブ光のモードを光ファイバ断面において電界分布が軸対称となるモードに変換する。 (2) Second step: The mode of the pump light is converted into a mode whose loss is to be measured, and the mode of the probe light is converted into a mode in which the electric field distribution is axially symmetric in the optical fiber cross section.
 第3段階:第2段階で変換したポンプ光とプローブ光を光ファイバに入射する。 Third step: The pump light and the probe light converted in the second step are incident on the optical fiber.
 第4段階:プローブ光の出力からブリルアン利得を取得し、損失を算出する。 Fourth stage: Brillouin gain is obtained from the output of the probe light, and the loss is calculated.
 本実施形態の光ファイバの損失測定装置によれば、プローブ光をLP01、LP02、LP03のような被測定対象光ファイバの断面における方位角方向に回転した場合でも電界分布が変化しない軸対称のモードに変換し、被測定対象光ファイバへ入射してブリルアン利得を発生させることで、被測定対象光ファイバの長さ方向の任意の位置において非軸対称のモードであるポンプ光の電界分布が変化した場合であっても、ポンプ光が受ける損失を非破壊で測定することが可能である。これにより被測定対象光ファイバの伝送路中における接続点やデバイス等の良否判定が可能である。 According to the optical fiber loss measuring device of the present embodiment, even when the probe light is rotated in the azimuthal direction in the cross section of the measured optical fiber such as LP 01 , LP 02 , LP 03 , the axis in which the electric field distribution does not change. The electric field distribution of the pump light, which is a non-axisymmetric mode, at an arbitrary position in the length direction of the optical fiber to be measured by converting into a symmetrical mode and entering the optical fiber to be measured to generate Brillouin gain. It is possible to non-destructively measure the loss received by the pump light even when the value changes. This makes it possible to judge the quality of the connection point, device, and the like in the transmission path of the optical fiber to be measured.
[第2の実施形態]
 図4は第2の実施形態に係る光ファイバの損失測定装置の一例を示す図である。第1の実施形態の光ファイバの損失測定装置では、被測定対象光ファイバfに対して、一方からポンプ光p1を入射し、他方からプローブ光p2を入射していたが、本実施形態の光ファイバの損失測定装置では、被測定対象光ファイバfに対してポンプ光p1とプローブ光p2とを同じ端部から入射する。ポンプ光p1とプローブ光p2とをそれぞれ異なるタイミングのパルスとして入射し、被測定対象光ファイバの入射端とは反対の端面に設けられた光反射器でポンプ光p1またはプローブ光p2を反射して2つの光を相互作用させ、入射端と同じ端部から出力される光の強度を測定する。その他の構成は第1の実施形態と同じであるので、その説明は省略する。
[Second embodiment]
FIG. 4 is a diagram illustrating an example of an optical fiber loss measuring device according to the second embodiment. In the optical fiber loss measuring apparatus according to the first embodiment, the pump light p1 is incident on one side of the optical fiber f to be measured and the probe light p2 is incident on the other side. In the fiber loss measuring device, the pump light p1 and the probe light p2 enter the optical fiber f to be measured from the same end. The pump light p1 and the probe light p2 are incident as pulses at different timings, and the pump light p1 or the probe light p2 is reflected by an optical reflector provided on the end face opposite to the incident end of the optical fiber to be measured. The two lights interact, and the intensity of the light output from the same end as the incident end is measured. The other configuration is the same as that of the first embodiment, and the description is omitted.
 図4に示す本実施形態の光ファイバの損失測定装置は、レーザ光発生手段11から出力され分岐素子12で2分岐された光がそれぞれ所定のタイミングでパルス化されるようにパルス生成器13a、13bとタイミング制御手段22a、22bとが設けられている。パルス生成器13a、13bおよびタイミング制御手段22a、22bで所定のタイミングのパルスとされた2つの光はモード分波手段15と周波数制御手段14および軸対称モード変換手段16とによりそれぞれ処理された後、合波素子23により合波され光サーキュレータ17によりポンプ光p1、プローブ光p2として被測定対象光ファイバfの一端から入射される。 The optical fiber loss measuring device according to the present embodiment shown in FIG. 4 includes a pulse generator 13a, such that the light output from the laser light generating means 11 and divided into two by the branching element 12 is pulsed at a predetermined timing. 13b and timing control means 22a and 22b are provided. The two lights pulsed at a predetermined timing by the pulse generators 13a and 13b and the timing control means 22a and 22b are processed by the mode demultiplexing means 15, the frequency control means 14 and the axially symmetric mode conversion means 16, respectively. The light is multiplexed by the multiplexing element 23, and is input from one end of the optical fiber f to be measured by the optical circulator 17 as the pump light p1 and the probe light p2.
 パルス生成器13a、13bおよびタイミング制御手段22a、22bは、被測定対象光ファイバfの各位置に応じた入射時間差でポンプ光p1およびプローブ光p2が被測定対象光ファイバfに入射されるように2つの光をタイミングをずらしてパルス化する。 The pulse generators 13a and 13b and the timing control means 22a and 22b operate so that the pump light p1 and the probe light p2 are incident on the measured optical fiber f with an incident time difference corresponding to each position of the measured optical fiber f. The two lights are pulsed with the timing shifted.
 図4に示す本実施形態の光ファイバの損失測定装置において、被測定対象光ファイバfの光サーキュレータ17に接続された端部とは反対側である他端には光反射器24が設けられている。被測定対象光ファイバfの一端から入射されたポンプ光p1とプローブ光p2は異なるタイミングで入射されるので、光反射器24は先に入射された光を反射する。反射した光は、進行方向が反転して、2つの光が被測定対象光ファイバf中で対向伝搬する結果、衝突してブリルアン利得を生じる相互作用をすることとなる。被測定対象光ファイバfの一端から出力されるブリルアン散乱光sには、相互作用により生じたブリルアン利得が重畳されているので、このブリルアン利得を観測することによって被測定対象光ファイバfのモード毎の損失を測定することができる。 In the optical fiber loss measuring device of the present embodiment shown in FIG. 4, an optical reflector 24 is provided at the other end of the optical fiber under test f opposite to the end connected to the optical circulator 17. I have. Since the pump light p1 and the probe light p2 incident from one end of the optical fiber f to be measured are incident at different timings, the light reflector 24 reflects the light incident first. The reflected light has its traveling direction reversed, and as a result of the two lights propagating oppositely in the measured optical fiber f, they collide with each other and cause an interaction that causes a Brillouin gain. Since the Brillouin gain generated by the interaction is superimposed on the Brillouin scattered light s output from one end of the optical fiber f to be measured, by observing this Brillouin gain, each mode of the optical fiber f to be measured can be determined. Loss can be measured.
 本実施形態の光ファイバの損失測定装置では、発生したブリルアン利得から損失分布を取得するためには、1回の測定を入射時間差を変えつつ行う必要がある。具体的には、被測定対象光ファイバfの一端において発生した利得を取得し、入射時間差を少し変えて衝突位置をずらして再度利得を取得することを繰り返し、最終的に、被測定対象光ファイバfの他端までブリルアン利得を取得することでファイバ各位置におけるブリルアン利得から損失分布を取得する。 In the optical fiber loss measuring device of the present embodiment, in order to obtain a loss distribution from the generated Brillouin gain, it is necessary to perform one measurement while changing the time difference of incidence. Specifically, acquiring the gain generated at one end of the optical fiber f to be measured, repeating the acquisition of the gain again by shifting the collision position by slightly changing the incident time difference, and finally obtaining the optical fiber to be measured By obtaining the Brillouin gain up to the other end of f, the loss distribution is obtained from the Brillouin gain at each position of the fiber.
 本実施形態の光ファイバの損失測定装置では、1回の利得の測定では被測定対象光ファイバにポンプ光p1とプローブ光p2とがそれぞれ1個ずつ入っている状態となる。ブリルアン利得が重畳したプローブ光p2(ブリルアン散乱光s)のパルスと反射して戻ってきたポンプ光p1のパルスとは出力されるタイミングが異なることから、出力光の測定タイミングを調整することによりブリルアン利得を測定することが可能である。 In the optical fiber loss measuring device of the present embodiment, one measurement of the gain results in a state in which the optical fiber to be measured contains one pump light p1 and one probe light p2. Since the output timing is different between the pulse of the probe light p2 (Brillouin scattered light s) on which the Brillouin gain is superimposed and the pulse of the pump light p1 that has returned after reflection, the Brillouin is adjusted by adjusting the measurement timing of the output light. It is possible to measure the gain.
 以上説明した実施形態の光ファイバの損失測定装置の構成は一例であり、同様に周波数(波長)シフトに相当する光周波数差をポンプ光とプローブ光間に与え、任意の伝搬モードを励起して増幅されたプローブ光を時間領域で取り出すことのできる装置構成であれば、手段は問わない。また、一般的なSMFにおいても入射する波長を短くすることで、本実施形態の光ファイバの損失測定装置の構成を適用できるため、被測定光ファイバについては、複数モードが伝搬する条件を有するものであればよい。 The configuration of the optical fiber loss measuring device of the embodiment described above is an example, and similarly, an optical frequency difference corresponding to a frequency (wavelength) shift is given between the pump light and the probe light to excite an arbitrary propagation mode. Any means can be used as long as it is a device configuration capable of extracting the amplified probe light in the time domain. Also, in a general SMF, since the configuration of the optical fiber loss measuring device of the present embodiment can be applied by shortening the incident wavelength, the optical fiber to be measured has a condition in which multiple modes propagate. Should be fine.
 11 レーザ光発生手段
 12 分岐素子
 13 パルス生成器
 14 周波数制御手段
 15 モード分波手段
 16 軸対称モード変換手段
 17 光サーキュレータ
 18 光電変換手段
 19 A/D変換手段
 20 データ抽出手段
 21 利得解析手段
 22a、22b タイミング制御手段
 23 合波素子
 24 光反射器
 f  被測定対象光ファイバ
DESCRIPTION OF SYMBOLS 11 Laser light generation means 12 Branch element 13 Pulse generator 14 Frequency control means 15 Mode demultiplexing means 16 Axisymmetric mode conversion means 17 Optical circulator 18 Photoelectric conversion means 19 A / D conversion means 20 Data extraction means 21 Gain analysis means 22a, 22b Timing control means 23 Multiplexing element 24 Optical reflector f Optical fiber to be measured

Claims (7)

  1.  複数のモードを伝搬する被測定対象光ファイバに対して、所定のモードの第1の周波数の光をポンプ光として入射すると共に、前記第1の周波数から前記所定のモードのブリルアン周波数シフトに相当する周波数だけ低い第2の周波数の光をプローブ光として入射する光入射手段と、
     前記被測定対象光ファイバから出力される光の強度を測定して、BOTDA(Brillouin Optical Time Domain Analysis)法により前記被測定対象光ファイバの長手方向におけるブリルアン利得を取得するブリルアン利得取得手段と、
     前記被測定対象光ファイバの長手方向の各位置における前記ブリルアン利得同士の大きさを比較することにより、前記被測定対象光ファイバの前記所定のモードにおける損失を測定する手段とを備えた光ファイバの損失測定装置であって、
     前記プローブ光は、前記ポンプ光のモードにかかわらず、前記被測定対象光ファイバの断面における電界分布が軸対称となるモードであることを特徴とする光ファイバの損失測定装置。
    Light having a first frequency of a predetermined mode is incident as pump light on an optical fiber to be measured that propagates a plurality of modes, and corresponds to a Brillouin frequency shift of the predetermined mode from the first frequency. Light incidence means for entering light of a second frequency lower by the frequency as probe light,
    Brillouin gain acquisition means for measuring the intensity of light output from the measured optical fiber and acquiring Brillouin gain in the longitudinal direction of the measured optical fiber by a BOTDA (Brillouin Optical Time Domain Analysis) method;
    Means for measuring the loss of the measured optical fiber in the predetermined mode by comparing the magnitudes of the Brillouin gains at respective positions in the longitudinal direction of the measured optical fiber. A loss measuring device,
    The optical fiber loss measuring device, wherein the probe light is in a mode in which an electric field distribution in a cross section of the optical fiber to be measured is axially symmetric regardless of a mode of the pump light.
  2.  前記光入射手段は、前記被測定対象光ファイバの一端から前記ポンプ光を入射すると共に、前記被測定対象光ファイバの他端から前記プローブ光を入射し、前記ブリルアン利得取得手段は、前記被測定対象光ファイバの他端から出力される光の強度を測定することを特徴とする請求項1に記載の光ファイバの損失測定装置。 The light incident means receives the pump light from one end of the optical fiber to be measured and the probe light from the other end of the optical fiber to be measured, and the Brillouin gain obtaining means comprises: The optical fiber loss measuring device according to claim 1, wherein the intensity of light output from the other end of the target optical fiber is measured.
  3.  前記被測定対象光ファイバの光入射端に対向する端部に設けられた光反射手段をさらに備え、前記光入射手段は、前記ポンプ光および前記プローブ光をパルス化した後に、前記被測定対象光ファイバの一端から異なるタイミングで入射し、前記ブリルアン利得取得手段は、前記光反射手段で反射されて前記被測定対象光ファイバの一端から出力される光の強度を測定することを特徴とする請求項1に記載の光ファイバの損失測定装置。 The optical fiber further comprises a light reflecting means provided at an end of the optical fiber to be measured opposite to a light incident end, wherein the light incident means pulsates the pump light and the probe light, and then sets the The incident light from one end of the fiber at a different timing, and the Brillouin gain acquisition unit measures the intensity of light reflected from the light reflection unit and output from one end of the optical fiber to be measured. 2. The optical fiber loss measuring device according to 1.
  4.  前記被測定対象光ファイバの他端から入射する前記プローブ光の偏波状態を変化させる偏波変調手段と、偏波状態を変化させたときの前記ブリルアン利得を平均化する平均化演算手段とをさらに備えることを特徴とする請求項1から3のいずれか1項に記載の光ファイバの損失測定装置。 Polarization modulation means for changing the polarization state of the probe light incident from the other end of the optical fiber to be measured, and averaging calculation means for averaging the Brillouin gain when the polarization state is changed. The optical fiber loss measuring device according to any one of claims 1 to 3, further comprising:
  5.  前記ポンプ光の前記所定のモードは、前記被測定対象光ファイバの断面における電界分布が非軸対称となるモードであることを特徴とする請求項1から4のいずれか1項に記載の光ファイバの損失測定装置。 The optical fiber according to any one of claims 1 to 4, wherein the predetermined mode of the pump light is a mode in which an electric field distribution in a cross section of the optical fiber to be measured is non-axially symmetric. Loss measuring device.
  6.  前記被測定対象光ファイバの他端から入射する前記ポンプ光の前記被測定対象光ファイバの断面における電界分布を回転させる非軸対称モード回転機構をさらに備えることを特徴とする請求項1から5のいずれか1項に記載の光ファイバの損失測定装置。 The non-axisymmetric mode rotation mechanism for rotating an electric field distribution of a cross section of the optical fiber under test of the pump light incident from the other end of the optical fiber under test, further comprising: The optical fiber loss measuring device according to claim 1.
  7.  複数のモードを伝搬する被測定対象光ファイバに対して、所定のモードの第1の周波数の光をポンプ光として入射すると共に、前記第1の周波数から前記所定のモードのブリルアン周波数シフトに相当する周波数だけ低い第2の周波数の光をプローブ光として入射する光入射ステップと、
     前記被測定対象光ファイバから出力される光の強度を測定して、BOTDA(Brillouin Optical Time Domain Analysis)法により前記被測定対象光ファイバの長手方向における前記ブリルアン利得を取得するブリルアン利得取得ステップと、
     前記被測定対象光ファイバの長手方向の各位置におけるブリルアン利得同士の大きさを比較することにより、前記被測定対象光ファイバの前記所定のモードにおける損失を測定するステップとを備えた光ファイバの損失測定方法であって、
     前記プローブ光は、前記ポンプ光のモードにかかわらず、前記被測定対象光ファイバの断面における電界分布が軸対称となるモードであることを特徴とする光ファイバの損失測定方法。
    Light having a first frequency of a predetermined mode is incident as pump light on an optical fiber to be measured that propagates a plurality of modes, and corresponds to a Brillouin frequency shift of the predetermined mode from the first frequency. A light incident step in which light of a second frequency lower by the frequency is incident as probe light;
    A Brillouin gain acquiring step of measuring the intensity of light output from the measured optical fiber and acquiring the Brillouin gain in the longitudinal direction of the measured optical fiber by a BOTDA (Brillouin Optical Time Domain Analysis) method;
    Measuring the loss in the predetermined mode of the measured optical fiber by comparing the magnitudes of the Brillouin gains at respective positions in the longitudinal direction of the measured optical fiber. A measuring method,
    An optical fiber loss measuring method, wherein the probe light is a mode in which an electric field distribution in a cross section of the optical fiber to be measured is axially symmetric regardless of a mode of the pump light.
PCT/JP2019/031969 2018-08-22 2019-08-14 Optical fiber loss measurement device and optical fiber loss measurement method WO2020040019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/269,151 US11402295B2 (en) 2018-08-22 2019-08-14 Optical fiber loss measurement device and optical fiber loss measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018155773A JP6927172B2 (en) 2018-08-22 2018-08-22 Optical fiber loss measuring device and optical fiber loss measuring method
JP2018-155773 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020040019A1 true WO2020040019A1 (en) 2020-02-27

Family

ID=69592620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031969 WO2020040019A1 (en) 2018-08-22 2019-08-14 Optical fiber loss measurement device and optical fiber loss measurement method

Country Status (3)

Country Link
US (1) US11402295B2 (en)
JP (1) JP6927172B2 (en)
WO (1) WO2020040019A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029995A1 (en) * 2020-08-07 2022-02-10 日本電信電話株式会社 Electric field distribution fluctuation cycle measuring method and electric field distribution fluctuation cycle measuring device
WO2022038768A1 (en) * 2020-08-21 2022-02-24 日本電信電話株式会社 Multi-mode fiber testing method and multi-mode fiber testing device
US20230144218A1 (en) * 2020-06-03 2023-05-11 Nippon Telegraph And Telephone Corporation Optical fiber evaluation method and optical fiber evaluation apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059864B2 (en) * 2018-08-09 2022-04-26 日本電信電話株式会社 Optical fiber loss measuring device and optical fiber loss measuring method
JP7040391B2 (en) * 2018-10-02 2022-03-23 日本電信電話株式会社 Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
US11788928B2 (en) * 2019-07-11 2023-10-17 Nippon Telegraph And Telephone Corporation Light intensity distribution measurement method and light intensity distribution measurement device
WO2021070319A1 (en) * 2019-10-10 2021-04-15 日本電信電話株式会社 Method for testing optical fiber and device for testing optical fiber
CN114088667B (en) * 2021-12-22 2022-09-20 中国科学院半导体研究所 Wave vector resolution Brillouin spectrum measurement system in low-temperature magnetic field environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097015A1 (en) * 2007-10-15 2009-04-16 Schlumberger Technology Corporation Measuring a characteristic of a multimode optical fiber
JP2015206594A (en) * 2014-04-17 2015-11-19 日本電信電話株式会社 Optical fiber test apparatus and optical fiber test method
JP2018124187A (en) * 2017-02-01 2018-08-09 日本電信電話株式会社 Device and method for nondestructively measuring optical fiber electric field distribution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493555B2 (en) * 2011-04-29 2013-07-23 Corning Incorporated Distributed Brillouin sensing systems and methods using few-mode sensing optical fiber
KR101684784B1 (en) * 2015-05-14 2016-12-09 중앙대학교 산학협력단 Optical fiber sensor using Brillouin scattering based on current modulation
US10294146B2 (en) * 2016-08-31 2019-05-21 Corning Incorporated Single mode optical fibers with Brillouin frequency-shift management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097015A1 (en) * 2007-10-15 2009-04-16 Schlumberger Technology Corporation Measuring a characteristic of a multimode optical fiber
JP2015206594A (en) * 2014-04-17 2015-11-19 日本電信電話株式会社 Optical fiber test apparatus and optical fiber test method
JP2018124187A (en) * 2017-02-01 2018-08-09 日本電信電話株式会社 Device and method for nondestructively measuring optical fiber electric field distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230144218A1 (en) * 2020-06-03 2023-05-11 Nippon Telegraph And Telephone Corporation Optical fiber evaluation method and optical fiber evaluation apparatus
US11879803B2 (en) * 2020-06-03 2024-01-23 Nippon Telegraph And Telephone Corporation Optical fiber evaluation method and optical fiber evaluation apparatus
WO2022029995A1 (en) * 2020-08-07 2022-02-10 日本電信電話株式会社 Electric field distribution fluctuation cycle measuring method and electric field distribution fluctuation cycle measuring device
WO2022038768A1 (en) * 2020-08-21 2022-02-24 日本電信電話株式会社 Multi-mode fiber testing method and multi-mode fiber testing device
JP7380892B2 (en) 2020-08-21 2023-11-15 日本電信電話株式会社 Multi-mode fiber testing method and multi-mode fiber testing equipment

Also Published As

Publication number Publication date
JP2020030106A (en) 2020-02-27
JP6927172B2 (en) 2021-08-25
US20210310897A1 (en) 2021-10-07
US11402295B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020040019A1 (en) Optical fiber loss measurement device and optical fiber loss measurement method
JP6338153B2 (en) Mode coupling ratio distribution measuring method and mode coupling ratio distribution measuring apparatus
JP5105302B2 (en) Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method
JP7322960B2 (en) Optical fiber testing method and optical fiber testing apparatus
US11378489B2 (en) Propagation characteristic analysis device and propagation characteristic analysis method
WO2019194020A1 (en) Environmental characteristic measurement device and environmental characteristic measurement method
JP7040391B2 (en) Backscattered light amplification device, optical pulse test device, backscattered light amplification method, and light pulse test method
JP7188593B2 (en) Light intensity distribution measuring method and light intensity distribution measuring device
JP6769944B2 (en) Mode delay time difference distribution test method and test equipment
JP6683973B2 (en) Mode coupling ratio distribution measuring device and mode coupling ratio distribution measuring method
WO2020071127A1 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP7200932B2 (en) NONLINEARITY MEASUREMENT METHOD AND NONLINEARITY MEASUREMENT DEVICE
JP7059864B2 (en) Optical fiber loss measuring device and optical fiber loss measuring method
JP6748027B2 (en) Optical pulse test apparatus and optical pulse test method
JP5778317B1 (en) Mode-to-mode power ratio measuring method, power-ratio measuring device, and mode-to-mode power ratio measuring system
WO2022029995A1 (en) Electric field distribution fluctuation cycle measuring method and electric field distribution fluctuation cycle measuring device
WO2023053250A1 (en) Device and method for measuring loss and crosstalk produced in optical fiber transmission line
WO2020036218A1 (en) Raman gain efficiency distribution testing method, and raman gain efficiency distribution testing device
US11879803B2 (en) Optical fiber evaluation method and optical fiber evaluation apparatus
JPH0331736A (en) Method and instrument for measuring curvature distribution of optical fiber
JP2022111486A (en) Optical characteristic measuring device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851213

Country of ref document: EP

Kind code of ref document: A1