JP5398790B2 - Optical line characteristic measurement system and optical line characteristic measurement method - Google Patents

Optical line characteristic measurement system and optical line characteristic measurement method Download PDF

Info

Publication number
JP5398790B2
JP5398790B2 JP2011155962A JP2011155962A JP5398790B2 JP 5398790 B2 JP5398790 B2 JP 5398790B2 JP 2011155962 A JP2011155962 A JP 2011155962A JP 2011155962 A JP2011155962 A JP 2011155962A JP 5398790 B2 JP5398790 B2 JP 5398790B2
Authority
JP
Japan
Prior art keywords
light
optical
optical line
random code
wavelength filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011155962A
Other languages
Japanese (ja)
Other versions
JP2013021664A (en
Inventor
達幸 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2011155962A priority Critical patent/JP5398790B2/en
Publication of JP2013021664A publication Critical patent/JP2013021664A/en
Application granted granted Critical
Publication of JP5398790B2 publication Critical patent/JP5398790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、OTDR(Optical Time−Domain Reflectometer)を用いた光線路特性測定システム及び光線路特性測定方法に関する。   The present invention relates to an optical line characteristic measuring system and an optical line characteristic measuring method using an OTDR (Optical Time-Domain Reflectometer).

光アクセスネットワークの現場では、多種多様な方式が用いられており、代表的なものにはPON(Passive Optical Network)やCATVの光アクセスネットワークがある。特にPONを採用した光アクセスネットワークでは、OLT(Optical Line Terminal)とONU(Optical Network Unit)とで1対N(Nは正数)の構成を採っており、あるユーザの光ファイバ線路に不具合が発生した場合であっても他の正常なユーザの通信を阻害するわけにはいかないため、OLT側からの信号を停止することはできない。   A wide variety of systems are used in the field of optical access networks, and representative examples include PON (Passive Optical Network) and CATV optical access networks. In particular, in an optical access network employing PON, an OLT (Optical Line Terminal) and ONU (Optical Network Unit) have a 1-to-N configuration (N is a positive number), and there is a problem with an optical fiber line of a certain user. Even if it occurs, the signal from the OLT cannot be stopped because communication with other normal users cannot be inhibited.

OLT側からの信号光が光線路中に存在している状況でOTDR試験を行うケースがある。こうしたケースでは、OLT側からの信号光が背景光となってOTDR試験に影響を及ぼすため、OTDR内部に、信号光をカットしかつOTDR信号を透過する特性をもった波長フィルタを搭載し、OTDR測定を行う。   There is a case where the OTDR test is performed in a situation where signal light from the OLT side exists in the optical line. In such a case, since the signal light from the OLT side becomes background light and affects the OTDR test, a wavelength filter having a characteristic of cutting the signal light and transmitting the OTDR signal is mounted inside the OTDR. Measure.

一方で、OTDR測定を行うための装置が提案されている(例えば、特許文献1乃至3参照。)。特許文献1のOTDRは、相関符号で変調された試験光を被測定光ファイバに入射し、後方散乱光である戻り光を受光する。このときに、試験光のパルス幅を被測定光ファイバの伝送路中の光増幅器の過渡応答の利得飽和時間より短くすることによって、信号光の伝送特性が劣化することを防ぐ。
特許文献2のOTDRは、擬似ランダム符号で変調した試験光を被測定光ファイバに入射し、その後方散乱光である戻り光を受光する。
特許文献3のOTDRは、2種のゴーレー符号を用いて変調した試験光を被測定光ファイバに入射し、その後方散乱光である戻り光を受光する。
On the other hand, an apparatus for performing OTDR measurement has been proposed (see, for example, Patent Documents 1 to 3). The OTDR of Patent Document 1 makes test light modulated with a correlation code incident on an optical fiber to be measured and receives return light as backscattered light. At this time, by making the pulse width of the test light shorter than the gain saturation time of the transient response of the optical amplifier in the transmission line of the optical fiber to be measured, the signal light transmission characteristic is prevented from deteriorating.
The OTDR of Patent Document 2 makes test light modulated with a pseudo-random code incident on an optical fiber to be measured and receives return light that is backscattered light.
In the OTDR of Patent Document 3, test light modulated using two types of Golay codes is incident on an optical fiber to be measured, and return light that is backscattered light is received.

特開2004−32420号公報Japanese Patent Laid-Open No. 2004-32420 特開平9−26376号公報Japanese Patent Laid-Open No. 9-26376 特開平4−54429号公報JP-A-4-54429

光アクセスネットワークでは多数の測定機会があるため、OTDRを多く配備する必要があり、OTDRに求められる低コスト化の要求は大きくなっている。しかし、OTDR内部に搭載されている波長フィルタは、それ自体が高額である上に搭載時のコストもかかるため、OTDRのコスト低下を妨げる問題があった。さらに、波長フィルタを搭載すると、OTDRの小型化が困難になる問題があった。   Since there are many measurement opportunities in an optical access network, it is necessary to deploy many OTDRs, and the demand for cost reduction required for OTDRs is increasing. However, the wavelength filter mounted inside the OTDR is expensive and has a problem of mounting costs, which hinders the cost reduction of the OTDR. Furthermore, when the wavelength filter is mounted, there is a problem that it is difficult to reduce the size of the OTDR.

一方で、OTDRの解像度を高めるためには微弱な信号を検出する必要があるため、高い増幅率で増幅しなければならない。このため、波長フィルタを用いずに増幅すると、背景光によって機器が飽和してしまい、正常に測定することが困難になる問題があった。   On the other hand, since it is necessary to detect a weak signal in order to increase the resolution of OTDR, it must be amplified with a high amplification factor. For this reason, when amplification is performed without using a wavelength filter, there is a problem that the apparatus is saturated by the background light and it is difficult to perform normal measurement.

特許文献1では、試験光のパワーを低くしても信号対雑音比が劣化しないように相関符号で変調する旨の記載はあるが、波長の異なる戻り光と信号光とは波長フィルタを用いて分離している。
特許文献2では、雑音レベルの内からでも戻り光を見出すためにランダム符号で変調する旨の記載はあるが、インサービス時のOTDR測定や戻り光と信号光との分離については考慮されていない。
特許文献3では、ダイナミックレンジを改良するためにゴーレー符号を用いて変調する旨の記載はあるが、インサービス時のOTDR測定や戻り光と信号光との分離については考慮されていない。
In Patent Document 1, there is a description that modulation is performed with a correlation code so that the signal-to-noise ratio does not deteriorate even when the power of the test light is lowered. However, the return light and the signal light having different wavelengths are wavelength filters. It is separated.
In Patent Document 2, there is a description that modulation is performed with a random code in order to find the return light even from the noise level, but OTDR measurement at the time of in-service and separation of the return light and the signal light are not considered. .
In Patent Document 3, there is a description that modulation is performed using a Golay code in order to improve the dynamic range, but OTDR measurement at the time of in-service and separation of return light and signal light are not considered.

これら特許文献1乃至3に記載されているように、従来は、波長の異なる戻り光と信号光とを分離する手段としては波長フィルタが用いられており、波長の異なる戻り光と信号光とを波長フィルタを用いずに分離する手段は提案されていない。このため、仮に特許文献1乃至3に記載された発明を組み合わせたとしても、波長フィルタを搭載することによって戻り光と信号光とを分離する発明しか構成することはできず、波長フィルタを搭載することによる問題を解決することはできなかった。   As described in Patent Documents 1 to 3, conventionally, a wavelength filter is used as means for separating the return light and the signal light having different wavelengths, and the return light and the signal light having different wavelengths are separated from each other. No means has been proposed for separation without using a wavelength filter. For this reason, even if the inventions described in Patent Documents 1 to 3 are combined, only the invention for separating the return light and the signal light by mounting the wavelength filter can be configured, and the wavelength filter is mounted. Could not solve the problem.

そこで、本発明は、波長フィルタを用いることなく、背景光のある条件下でOTDR測定を正常に行うことを目的とする。   Therefore, an object of the present invention is to normally perform OTDR measurement under conditions with background light without using a wavelength filter.

本願発明の光線路特性測定システムは、1本の光線路(91)が光カプラ(92)によって複数の光線路(93_1〜93_N)に分岐されたPONと、前記1本の光線路及び前記複数の光線路の端部に配置され、前記PONで伝送される信号光を通過させて前記信号光以外の光を反射する波長フィルタ(94_1〜94_N、95)と、前記1本の光線路及び前記複数の光線路の端部のいずれかに配置され、前記波長フィルタの反射波長の光をランダム符号で変調した試験光を前記光カプラに向けて入射し、前記試験光が前記波長フィルタ又は前記光線路で反射又は散乱された戻り光を、前記波長フィルタを介さずに受光して、コンデンサ(17)を用いて電気信号から前記ランダム符号による交流成分を抽出して背景光成分をカットした後に、前記ランダム符号との相関処理を行うOTDR(101)と、を備える。 The optical line characteristic measuring system of the present invention includes a PON in which one optical line (91) is branched into a plurality of optical lines (93_1 to 93_N) by an optical coupler (92), the one optical line and the plurality of optical lines. A wavelength filter (94_1 to 94_N, 95) that is disposed at an end of the optical line and transmits signal light transmitted by the PON and reflects light other than the signal light, the one optical line, and the optical line A test light that is arranged at one of the ends of a plurality of optical lines and that modulates light having a reflected wavelength of the wavelength filter with a random code is incident on the optical coupler, and the test light is incident on the wavelength filter or the light beam. the reflected or scattered return light road, by receiving without passing through the wavelength filter was cut background light component by extracting the AC component due to the random code from the electric signal by using a capacitor (17) To comprise, as OTDR (101) for performing correlation processing between the random code.

本願発明の光線路特性測定システムは、ランダム符号で変調された試験光を用いるため、OTDRにおいて、波長フィルタを用いて背景光を除去することなく、戻り光の受光信号から背景光による信号を除去することができる。これにより、本願発明の光線路特性測定システムは、波長フィルタを用いることなく、背景光のある条件下でOTDR測定を正常に行うことができる。   Since the optical line characteristic measurement system of the present invention uses test light modulated with a random code, in OTDR, the background light is removed from the received light signal of the return light without removing the background light using a wavelength filter. can do. Thereby, the optical line characteristic measuring system of this invention can perform an OTDR measurement normally on conditions with background light, without using a wavelength filter.

本願発明の光線路特性測定システムでは、前記OTDRは、前記1本の光線路の端部から前記複数の光線路の端部までの光線路を光が伝搬するのに要する時間以上の所定時間にわたる符号長を有するランダム符号で前記試験光を変調してもよい。
本発明により、戻り光の波形を、あるオフセットレベルを中心に周期的な波形にすることができる。これにより、戻り光を電気信号に変換後、AC結合することによって、背景光を除去することができる。
In the optical line characteristic measuring system according to the present invention, the OTDR extends over a predetermined time longer than the time required for light to propagate through the optical line from the end of the one optical line to the ends of the plurality of optical lines. The test light may be modulated with a random code having a code length.
According to the present invention, the waveform of the return light can be made a periodic waveform around a certain offset level. Thus, the background light can be removed by AC coupling after converting the return light into an electrical signal.

本願発明の光線路特性測定方法は、1本の光線路(91)が光カプラ(92)によって複数の光線路(93_1〜93_N)に分岐されたPONの前記1本の光線路及び前記複数の光線路の端部のいずれかから前記光カプラに向けて、前記1本の光線路及び前記複数の光線路の端部に配置された波長フィルタ(94_1〜94_N、95)の反射波長の光をランダム符号で変調した試験光を入射する試験光入射手順と、前記試験光が前記波長フィルタ又は前記光線路で反射又は散乱された戻り光を、前記波長フィルタを介さずに受光して電気信号に変換する受光手順と、コンデンサ(17)を用いて前記電気信号から前記ランダム符号による交流成分を抽出して背景光成分をカットする周期信号抽出手順と、前記ランダム符号と前記周期信号との相関処理を行う相関処理手順と、を順に有する。 In the optical line characteristic measuring method of the present invention, one optical line (91) of the PON branched into a plurality of optical lines (93_1 to 93_N) by an optical coupler (92) and the plurality of optical lines (91) Light having a wavelength reflected by the wavelength filters (94_1 to 94_N, 95) disposed at the ends of the one optical line and the plurality of optical lines is directed from one of the ends of the optical line toward the optical coupler. A test light incident procedure for entering test light modulated with a random code, and return light reflected or scattered by the test light at the wavelength filter or the optical line without passing through the wavelength filter to be converted into an electrical signal. a light receiving procedure for converting the periodic signal extraction procedure for cutting a background light component to extract the AC component due to the random code from said electrical signal using a capacitor (17), said random code and the periodic signal It has a correlation processing procedure for performing correlation processing, in sequence.

本願発明の光線路特性測定方法は、試験光入射手順においてランダム符号で変調された試験光を用いるため、受光手順において波長フィルタを用いて背景光を除去することなく、周期信号抽出手順及び相関処理手順において戻り光の受光信号から背景光による信号を除去することができる。これにより、本願発明の光線路特性測定方法は、波長フィルタを用いることなく、背景光のある条件下でOTDR測定を正常に行うことができる。   Since the optical line characteristic measuring method of the present invention uses test light modulated with a random code in the test light incident procedure, the periodic signal extraction procedure and correlation processing are performed without removing background light using a wavelength filter in the light receiving procedure. In the procedure, the signal due to the background light can be removed from the light reception signal of the return light. Thereby, the optical line characteristic measuring method of this invention can perform an OTDR measurement normally on conditions with background light, without using a wavelength filter.

本願発明の光線路特性測定方法では、前記試験光入射手順において、前記1本の光線路の端部から前記複数の光線路の端部までの光線路を光が伝搬するのに要する時間以上の所定時間にわたる符号長を有するランダム符号で前記試験光を変調してもよい。
本発明により、戻り光の波形を、あるオフセットレベルを中心に周期的な波形にすることができる。これにより、戻り光を電気信号に変換後、AC結合することによって、背景光を除去することができる。
In the optical line characteristic measuring method of the present invention, in the test light incident procedure, the time required for light to propagate through the optical line from the end of the one optical line to the ends of the plurality of optical lines is longer than the time required for the light to propagate. The test light may be modulated with a random code having a code length over a predetermined time.
According to the present invention, the waveform of the return light can be made a periodic waveform around a certain offset level. Thus, the background light can be removed by AC coupling after converting the return light into an electrical signal.

本発明によれば、本願発明の光線路特性測定システム及び光線路特性測定方法は、波長フィルタを用いることなく、背景光のある条件下でOTDR測定を正常に行うことができる。   According to the present invention, the optical line characteristic measurement system and the optical line characteristic measurement method of the present invention can normally perform OTDR measurement under conditions with background light without using a wavelength filter.

本実施形態に係る光線路特性測定システムの一例を示す。An example of the optical-line characteristic measurement system which concerns on this embodiment is shown. 本実施形態に係るOTDRの一例を示す。An example of OTDR which concerns on this embodiment is shown. ランダム符号で変調された試験光の一例を示す。An example of test light modulated with a random code is shown. 被測定光ファイバの特性の一例を示す。An example of the characteristics of the optical fiber to be measured is shown. 受光器16から出力される電気信号の一例を示す。An example of the electrical signal output from the light receiver 16 is shown. 相関器20からの出力波形の一例を示す。An example of an output waveform from the correlator 20 is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

図1に、本実施形態に係る光線路特性測定システムの一例を示す。本実施形態に係る光線路特性測定システムは、PONと、波長フィルタ94_1〜94_Nと、波長フィルタ95と、OTDR101と、を備える。PONは、1本の光線路91が光カプラ92によって複数の光線路93_1〜93_Nに分岐されている。これにより、OLT96と複数のONU97_1〜97_Nとの間で通信を行う。波長フィルタ94_1〜94_N及び波長フィルタ95は、光線路91及び光線路93_1〜93_Nの端部に配置され、PONで伝送される信号光Sを通過させて信号光S以外の光を反射する。 FIG. 1 shows an example of an optical line characteristic measurement system according to this embodiment. The optical line characteristic measurement system according to the present embodiment includes a PON, wavelength filters 94_1 to 94_N, a wavelength filter 95, and an OTDR 101. In the PON, one optical line 91 is branched by an optical coupler 92 into a plurality of optical lines 93_1 to 93_N. Thereby, communication is performed between the OLT 96 and the plurality of ONUs 97_1 to 97_N. Wavelength filter 94_1~94_N and wavelength filter 95 is arranged at an end portion of the optical path 91 and optical lines 93_1~93_N, by passing the signal light S C transmitted by the PON reflects the signal light S C other light .

OTDR101は、光線路91及び光線路93_1〜93_Nの端部のいずれかに配置され、波長フィルタ94_1〜94_N、95の反射波長の光をランダム符号で変調した試験光を光カプラ92に向けて入射する。そして、試験光が波長フィルタ94_1〜94_N、95又は光線路91、93_1〜93_Nで反射又は散乱された戻り光を、波長フィルタを介さずに受光してランダム符号との相関処理を行う。例えば、OTDR101は、光線路93_3に接続される。   The OTDR 101 is disposed at either one of the optical line 91 and the ends of the optical lines 93_1 to 93_N, and enters test light obtained by modulating the light having the reflected wavelengths of the wavelength filters 94_1 to 94_N and 95 with a random code toward the optical coupler 92. To do. Then, the return light reflected or scattered by the wavelength filters 94_1 to 94_N and 95 or the optical lines 91 and 93_1 to 93_N is received without passing through the wavelength filter, and correlation processing with the random code is performed. For example, the OTDR 101 is connected to the optical line 93_3.

図2に、本実施形態に係るOTDRの一例を示す。OTDRは、ランダム符号発生器11と、電流制御器12と、光源13と、光カプラ14と、ポート15と、受光器16と、コンデンサ17と、増幅器18と、A/Dコンバータ19と、相関器20と、を備える。本実施形態では、ポート15が光線路93_3に接続され、波長フィルタ95、光カプラ92、光線路93_3及び光線路91を含む被測定光ファイバの光ファイバ特性を測定する場合について説明する。   FIG. 2 shows an example of the OTDR according to the present embodiment. The OTDR is correlated with a random code generator 11, a current controller 12, a light source 13, an optical coupler 14, a port 15, a light receiver 16, a capacitor 17, an amplifier 18, and an A / D converter 19. And a container 20. In the present embodiment, a case where the port 15 is connected to the optical line 93_3 and the optical fiber characteristics of the optical fiber to be measured including the wavelength filter 95, the optical coupler 92, the optical line 93_3, and the optical line 91 will be described.

本実施形態に係る光線路特性測定方法は、試験光入射手順と、受光手順と、周期信号抽出手順と、相関処理手順と、を順に有する。   The optical line characteristic measuring method according to the present embodiment includes a test light incident procedure, a light receiving procedure, a periodic signal extraction procedure, and a correlation processing procedure in this order.

試験光入射手順では、光線路93_3のONU97_3側の端部から光カプラ92に向けて、試験光を入射する。具体的には、ランダム符号発生器11は、ランダム符号を発生する。ランダム符号は、例えばM系列符号である。電流制御器12は、ランダム符号発生器11からのランダム符号に合わせて光源13へ供給する電流を変化させる。光源13は、例えばLD(Laser Diode)であり、波長フィルタ94_1〜94_N、95の反射波長である1.65μmの光を発生させる。また光源13は、電流制御器12からの電流に応じた出力強度で光を発生させて出射する。これにより、ランダム符号で変調した試験光を光源13から出射させることができる。光カプラ14は、試験光をポート15に導く。これにより、試験光が光線路93_3に入射される。図3に、ランダム符号で変調された試験光の一例を示す。   In the test light incident procedure, test light is incident from the end on the ONU 97_3 side of the optical line 93_3 toward the optical coupler 92. Specifically, the random code generator 11 generates a random code. The random code is, for example, an M sequence code. The current controller 12 changes the current supplied to the light source 13 in accordance with the random code from the random code generator 11. The light source 13 is, for example, an LD (Laser Diode), and generates 1.65 μm light that is a reflection wavelength of the wavelength filters 94_1 to 94_N and 95. The light source 13 generates light with an output intensity corresponding to the current from the current controller 12 and emits it. Thereby, the test light modulated by the random code can be emitted from the light source 13. The optical coupler 14 guides the test light to the port 15. Thereby, the test light enters the optical line 93_3. FIG. 3 shows an example of test light modulated with a random code.

ここで、本実施形態では、光源13は、光線路91のOLT96側の端部から光線路93_3のONU97_3側の端部までの光線路を光が伝搬するのに要する時間以上の所定時間にわたり連続して試験光を出力する。この光線路91のOLT96側の端部は波長フィルタ95であってもよく、光線路93_3のONU97_3側の端部は波長フィルタ94_3であってもよい。   Here, in the present embodiment, the light source 13 continues for a predetermined time that is longer than the time required for light to propagate through the optical line from the OLT 96 end of the optical line 91 to the ONU 97_3 end of the optical line 93_3. And output test light. The end of the optical line 91 on the OLT 96 side may be a wavelength filter 95, and the end of the optical line 93_3 on the ONU 97_3 side may be a wavelength filter 94_3.

この場合、ランダム符号発生器11は、当該所定時間にわたる符号長を有するランダム符号を有する。例えば、ランダム符号の符号長Nは、パルス幅Pwと被測定光ファイバ長Lfiberと光ファイバ中の光の伝搬速度vを用いて次式で表される。
N>(2/v)・(Lfiber/Pw)
ただし、Nは2−1を満たす。
このため、本実施形態において被測定光ファイバ長Lfiberが500mであり、ランダム符号の1bitのパルス幅Pwが10nsecである場合、符号長Nは511bit以上となる。
In this case, the random code generator 11 has a random code having a code length over the predetermined time. For example, the code length N of the random code is expressed by the following equation using the pulse width Pw, the measured optical fiber length L fiber, and the propagation velocity v of light in the optical fiber.
N> (2 / v) · (L fiber / Pw)
However, N satisfies 2 n −1.
Therefore, in this embodiment, when the optical fiber length L fiber to be measured is 500 m and the 1-bit pulse width Pw of the random code is 10 nsec, the code length N is 511 bits or more.

また、本実施形態では、ランダム符号発生器11が当該所定時間にわたる符号長を有するランダム符号を4回連続して発生させ、光源13が当該所定時間の4倍の時間にわたり連続して試験光を出力する。   Further, in this embodiment, the random code generator 11 continuously generates a random code having a code length over the predetermined time four times, and the light source 13 continuously outputs test light over a time four times the predetermined time. Output.

受光手順では、試験光が波長フィルタ又は光線路で反射又は散乱された戻り光を、波長フィルタを介さずに受光して電気信号に変換する。具体的には、試験光は光カプラ92を通過して光線路91に入射され、波長フィルタ95で反射される。ポート15には、波長フィルタ95、光カプラ92、光線路93_3及び光線路91を含む被測定光ファイバで反射又は散乱された戻り光が入射される。光カプラ14は、戻り光を受光器16に導く。受光器16は、戻り光を受光し、電気信号に変換する。   In the light receiving procedure, the return light reflected or scattered by the test light by the wavelength filter or the optical line is received without passing through the wavelength filter and converted into an electrical signal. Specifically, the test light passes through the optical coupler 92 and enters the optical line 91 and is reflected by the wavelength filter 95. Return light reflected or scattered by the optical fiber under measurement including the wavelength filter 95, the optical coupler 92, the optical line 93_3, and the optical line 91 is incident on the port 15. The optical coupler 14 guides the return light to the light receiver 16. The light receiver 16 receives the return light and converts it into an electrical signal.

被測定光ファイバからは、背景光及び出力したランダム符号に応じた後方散乱光が受光器16で受光される。ランダム符号により変調された後方散乱光はあるレベルを中心に変調された信号となる。一方背景光は通信信号により変調されているが、ビットレートは光源13の変調周波数に比べて非常に高いため、受光器16で電気信号に変換する際にはOTDRの受信帯域に制限されることとなる。このため、被測定光ファイバが図4で示すような光ファイバ特性を有する場合、受光器16から出力される電気信号は図5のようになる。   From the optical fiber to be measured, background light and backscattered light corresponding to the output random code are received by the light receiver 16. The backscattered light modulated by the random code becomes a signal modulated around a certain level. On the other hand, the background light is modulated by the communication signal, but the bit rate is very high compared to the modulation frequency of the light source 13, so that it is limited to the OTDR reception band when converted into an electric signal by the light receiver 16. It becomes. For this reason, when the optical fiber to be measured has optical fiber characteristics as shown in FIG. 4, the electrical signal output from the light receiver 16 is as shown in FIG.

周期信号抽出手順では、電気信号からランダム符号による交流成分を抽出する。具体的には、コンデンサ17を用いて受光器16からの電気信号をAC結合させ、背景光となる信号光Sを除去する。増幅器18は、コンデンサ17からのアナログ信号を増幅する。A/Dコンバータ19は、増幅器18からのアナログ信号をデジタル信号に変換する。 In the periodic signal extraction procedure, an AC component based on a random code is extracted from the electrical signal. Specifically, by AC coupling electrical signals from the light receiver 16 with a capacitor 17, removes the signal light S C as a background light. The amplifier 18 amplifies the analog signal from the capacitor 17. The A / D converter 19 converts the analog signal from the amplifier 18 into a digital signal.

相関処理手順では、ランダム符号と周期信号との相関処理を行う。具体的には、相関器20は、増幅器18からのデジタル信号とランダム符号発生器11からのランダム符号との相関をとる。   In the correlation processing procedure, correlation processing between a random code and a periodic signal is performed. Specifically, the correlator 20 correlates the digital signal from the amplifier 18 and the random code from the random code generator 11.

周期信号抽出手順において、低域の背景光はコンデンサ17によりカットされることとなる。一部の変調された背景光は、ランダム符号により変調された後方散乱光と共にA/Dコンバータ19によりデジタル信号に変換される。しかし、相関処理手順を行うため、デジタル信号とランダム符号発生器11により発生されたランダム符号との相関を取得することにより、ランダム符号により変調された後方散乱光のみを取り出すことができる。この際に、一部の変調された背景光はランダム符号と相関をもたないため、相関を持つ後方散乱光特性のみが抽出されることとなる。このため、背景光が入った環境下であっても、背景光の影響なくOTDR測定を行うことが可能となる。   In the periodic signal extraction procedure, the low-frequency background light is cut by the capacitor 17. A part of the modulated background light is converted into a digital signal by the A / D converter 19 together with the backscattered light modulated by the random code. However, since the correlation processing procedure is performed, by acquiring the correlation between the digital signal and the random code generated by the random code generator 11, only the backscattered light modulated by the random code can be extracted. At this time, since some modulated background light has no correlation with the random code, only the backscattered light characteristic having the correlation is extracted. For this reason, even in an environment containing background light, it is possible to perform OTDR measurement without the influence of background light.

図6に、相関器20からの出力波形の一例を示す。ランダム符号を4回連続して発生させたうちの、最初と最後を除く2回において、図4に示す被測定光ファイバの特性が再現できている。このように、ランダム符号を3回以上連続して発生させた試験光を用いることにより、強い背景光が存在した場合であっても、AC結合した後に信号増幅を行うため、波長フィルタを用いずにインサービス時におけるOTDR試験を行うことが可能となる。   FIG. 6 shows an example of an output waveform from the correlator 20. The characteristics of the optical fiber to be measured shown in FIG. 4 can be reproduced in two times except for the first and last of the four consecutive generations of random codes. In this way, by using test light in which random codes are generated three or more times consecutively, signal amplification is performed after AC coupling even when strong background light is present, so no wavelength filter is used. It is possible to perform an OTDR test at the time of in-service.

なお、本実施形態では、ONU側からOLT側に向けて試験光を入射する例について説明したが、OLT側からONU側に試験光を入射してもよい。この場合、光カプラ92と波長フィルタ95の間にOTDR101を挿入する。   In this embodiment, the example in which the test light is incident from the ONU side toward the OLT side has been described. However, the test light may be incident from the OLT side to the ONU side. In this case, the OTDR 101 is inserted between the optical coupler 92 and the wavelength filter 95.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:ランダム符号発生器
12:電流制御器
13:光源
14:光カプラ
15:ポート
16:受光器
17:コンデンサ
18:増幅器
19:A/Dコンバータ
20:相関器
91、93_1〜93_N:光線路
92:光カプラ
94_1〜94_N、95:波長フィルタ
101:OTDR
96:OLT
97_1〜97_N:ONU
11: Random code generator 12: Current controller 13: Light source 14: Optical coupler 15: Port 16: Light receiver 17: Capacitor 18: Amplifier 19: A / D converter 20: Correlator 91, 93_1 to 93_N: Optical line 92 : Optical couplers 94_1 to 94_N, 95: Wavelength filter 101: OTDR
96: OLT
97_1 to 97_N: ONU

Claims (4)

1本の光線路(91)が光カプラ(92)によって複数の光線路(93_1〜93_N)に分岐されたPON(Passive Optical Network)と、
前記1本の光線路及び前記複数の光線路の端部に配置され、前記PONで伝送される信号光を通過させて前記信号光以外の光を反射する波長フィルタ(94_1〜94_N、95)と、
前記1本の光線路及び前記複数の光線路の端部のいずれかに配置され、前記波長フィルタの反射波長の光をランダム符号で変調した試験光を前記光カプラに向けて入射し、前記試験光が前記波長フィルタ又は前記光線路で反射又は散乱された戻り光を、前記波長フィルタを介さずに受光して、コンデンサ(17)を用いて電気信号から前記ランダム符号による交流成分を抽出して背景光成分をカットした後に、前記ランダム符号との相関処理を行うOTDR(Optical Time−Domain Reflectometer)(101)と、
を備える光線路特性測定システム。
PON (Passive Optical Network) in which one optical line (91) is branched into a plurality of optical lines (93_1 to 93_N) by an optical coupler (92);
Wavelength filters (94_1 to 94_N, 95) that are disposed at end portions of the one optical line and the plurality of optical lines, and pass signal light transmitted by the PON and reflect light other than the signal light. ,
The test light that is arranged at any one of the one optical line and the ends of the plurality of optical lines and that is modulated with a random code of light having a reflected wavelength of the wavelength filter is incident on the optical coupler, and the test light The return light reflected or scattered by the wavelength filter or the optical line is received without passing through the wavelength filter, and the AC component by the random code is extracted from the electrical signal using the capacitor (17). OTDR (Optical Time-Domain Reflectometer) (101) for performing correlation processing with the random code after cutting the background light component ;
An optical line characteristic measuring system comprising:
前記OTDRは、
前記1本の光線路の端部から前記複数の光線路の端部までの光線路を光が伝搬するのに要する時間以上の所定時間にわたる符号長を有するランダム符号で前記試験光を変調する
ことを特徴とする請求項1に記載の光線路特性測定システム。
The OTDR is
Modulating the test light with a random code having a code length over a predetermined time longer than the time required for light to propagate through the optical line from the end of the one optical line to the ends of the plurality of optical lines. The optical line characteristic measuring system according to claim 1.
1本の光線路(91)が光カプラ(92)によって複数の光線路(93_1〜93_N)に分岐されたPONの前記1本の光線路及び前記複数の光線路の端部のいずれかから前記光カプラに向けて、前記1本の光線路及び前記複数の光線路の端部に配置された波長フィルタ(94_1〜94_N、95)の反射波長の光をランダム符号で変調した試験光を入射する試験光入射手順と、
前記試験光が前記波長フィルタ又は前記光線路で反射又は散乱された戻り光を、前記波長フィルタを介さずに受光して電気信号に変換する受光手順と、
コンデンサ(17)を用いて前記電気信号から前記ランダム符号による交流成分を抽出して背景光成分をカットする周期信号抽出手順と、
前記ランダム符号と前記周期信号との相関処理を行う相関処理手順と、
を順に有する光線路特性測定方法。
One optical line (91) of the PON branched into a plurality of optical lines (93_1 to 93_N) by an optical coupler (92) from any one of the one optical line and the ends of the plurality of optical lines To the optical coupler, the test light obtained by modulating the light having the reflected wavelength of the wavelength filters (94_1 to 94_N, 95) arranged at the ends of the one optical line and the plurality of optical lines with a random code is incident. Test light incidence procedure;
A light receiving procedure for receiving the test light reflected or scattered by the wavelength filter or the optical line without passing through the wavelength filter and converting it into an electrical signal;
A periodic signal extraction procedure for extracting an AC component of the random code from the electrical signal using a capacitor (17) to cut a background light component ;
A correlation processing procedure for performing correlation processing between the random code and the periodic signal;
The optical line characteristic measuring method which has these in order.
前記試験光入射手順において、
前記1本の光線路の端部から前記複数の光線路の端部までの光線路を光が伝搬するのに要する時間以上の所定時間にわたる符号長を有するランダム符号で前記試験光を変調する
ことを特徴とする請求項3に記載の光線路特性測定方法。
In the test light incident procedure,
Modulating the test light with a random code having a code length over a predetermined time longer than the time required for light to propagate through the optical line from the end of the one optical line to the ends of the plurality of optical lines. The optical line characteristic measuring method according to claim 3.
JP2011155962A 2011-07-14 2011-07-14 Optical line characteristic measurement system and optical line characteristic measurement method Active JP5398790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155962A JP5398790B2 (en) 2011-07-14 2011-07-14 Optical line characteristic measurement system and optical line characteristic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155962A JP5398790B2 (en) 2011-07-14 2011-07-14 Optical line characteristic measurement system and optical line characteristic measurement method

Publications (2)

Publication Number Publication Date
JP2013021664A JP2013021664A (en) 2013-01-31
JP5398790B2 true JP5398790B2 (en) 2014-01-29

Family

ID=47692616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155962A Active JP5398790B2 (en) 2011-07-14 2011-07-14 Optical line characteristic measurement system and optical line characteristic measurement method

Country Status (1)

Country Link
JP (1) JP5398790B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179632A (en) * 1986-02-03 1987-08-06 Advantest Corp Optical fiber tester
JPH04225130A (en) * 1990-12-27 1992-08-14 Anritsu Corp Light transmitting apparatus
JPH0926376A (en) * 1995-07-11 1997-01-28 Advantest Corp Otdr measuring device
JP4160939B2 (en) * 2003-07-28 2008-10-08 アンリツ株式会社 Optical line fault search method
JP2006042063A (en) * 2004-07-28 2006-02-09 Sumitomo Electric Ind Ltd Branched optical line monitoring system and method

Also Published As

Publication number Publication date
JP2013021664A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US8509613B2 (en) Monitoring of optical transmission systems based on cross-correlation operation
US9143228B2 (en) Optical communication devices having optical time domain reflectometers
KR101174223B1 (en) Optical fiber circuit monitoring system and monitoring device included in this system
US8280253B2 (en) Optical telecommunications network terminal, an installation including the terminal, and a method of detecting a break in optical transmission means
CN104202084B (en) A kind of device and method monitoring TDM optical network link failure
EP2193354A1 (en) System and method for optical time domain reflectometry using multi-resolution code sequences
JP5250698B2 (en) Fiber monitoring method in optical network
CN105721048B (en) Compound optical fiber communication line fault monitoring method and system
CN103229433B (en) A kind of optical line terminal, optical time domain reflectometer and signal transmit-receive method and system
WO2020084825A1 (en) Optical pulse testing device and optical pulse testing method
US7099581B2 (en) OTDR arrangement for detecting faults in an optical transmission system on a span by span basis
JP7088611B2 (en) Techniques for high-resolution line monitoring with standardized output and optical communication systems using them
JP6024634B2 (en) Optical line fault detection device and optical line fault detection method
US20120002962A1 (en) Wdm signal light monitoring apparatus, wdm system and wdm signal light monitoring method
JP2020056904A (en) Back-scattered light amplification device, optical pulse test apparatus, back-scattered light amplification method, and optical pulse test method
JP5398790B2 (en) Optical line characteristic measurement system and optical line characteristic measurement method
KR101053057B1 (en) In-service monitoring method and apparatus for optical transmission system
Yuksel et al. Centralised optical monitoring of tree-structured passive optical networks using a Raman-assisted OTDR
JP5419935B2 (en) Multi-wavelength simultaneous OTDR and multi-wavelength simultaneous OTDR measurement method
Takushima et al. In-service OTDR for passive optical networks
Shim et al. Demonstration of correlation-based OTDR for in-service monitoring of 64-split TDM PON
JP6277915B2 (en) Detection apparatus and detection method
Sandstrom et al. High performance, in-service correlation OTDR
JP5564027B2 (en) Light measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250