JP2013024425A - Burner - Google Patents

Burner Download PDF

Info

Publication number
JP2013024425A
JP2013024425A JP2011155998A JP2011155998A JP2013024425A JP 2013024425 A JP2013024425 A JP 2013024425A JP 2011155998 A JP2011155998 A JP 2011155998A JP 2011155998 A JP2011155998 A JP 2011155998A JP 2013024425 A JP2013024425 A JP 2013024425A
Authority
JP
Japan
Prior art keywords
burner
outer peripheral
cooling water
water pipe
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011155998A
Other languages
Japanese (ja)
Other versions
JP5959811B2 (en
Inventor
Makoto Takeda
誠 竹田
Kengo Muroya
健吾 室矢
Masanori Santo
正徳 山藤
Akio Ueda
昭雄 植田
Manabu Ugatsuka
学 宇賀塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK filed Critical Electric Power Development Co Ltd
Priority to JP2011155998A priority Critical patent/JP5959811B2/en
Publication of JP2013024425A publication Critical patent/JP2013024425A/en
Application granted granted Critical
Publication of JP5959811B2 publication Critical patent/JP5959811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a burner which prevents the burner from being thermally damaged and achieves stable gasification operation by suppressing thermal elongation and deformation of a cooling water pipe.SOLUTION: In the burner, which includes: a cylindrical fuel nozzle 5 for jetting pulverized coal 3 conveyed by carrier gas and a cylindrical oxidant supply pipe 7 disposed coaxially with the cylindrical fuel nozzle 5, a groove 13 for mounting a cooling water pipe 9 rolling along an outer peripheral wall is formed on the other outer peripheral wall enclosing either of the cylindrical fuel nozzle 5 or cylindrical oxidant supply pipe 7.

Description

本発明はバーナに係り、特に、石炭等の固体原料及び酸化剤ガスをガス化炉内に供給するバーナの構造に関する。   The present invention relates to a burner, and more particularly to a structure of a burner that supplies a solid material such as coal and an oxidizing gas into a gasifier.

石炭をガス化する方法としては、高温に保持されたガス化炉内に固体燃料の微粉炭と酸化剤ガスをバーナから供給し、燃料中の可燃分を燃焼させることで一酸化炭素及び水素を生じさせ、灰分を有害成分の含まないスラグに変換して回収する気流層石炭ガス化法が知られている。この方法によれば、燃料ガスが高い効率で得られるとともに、環境保全性も優れ、しかも適用可能な原料種が多いため、石炭ガス化複合発電システムや石炭ガス化燃料電池複合発電システム等の次世代火力発電システム、石炭液化用、化学原料用等に用いる水素製造システムへの利用が期待されている。   As a method of gasifying coal, solid fuel pulverized coal and oxidant gas are supplied from a burner into a gasification furnace maintained at a high temperature, and carbon monoxide and hydrogen are produced by burning combustible components in the fuel. There is known an air-bed coal gasification method in which ash is generated and converted into slag containing no harmful components and recovered. According to this method, fuel gas can be obtained with high efficiency, environmental conservation is excellent, and there are many applicable raw material types. Therefore, there are many types of coal gasification combined power generation systems, coal gasification combined fuel cell combined power generation systems, etc. It is expected to be used in a hydrogen production system used for generation thermal power generation systems, coal liquefaction, chemical raw materials and the like.

この種のガス化プラントに使用されるガス化炉には、微粉炭を噴射するためのバーナが設けられている。このバーナは一般に炉外から炉壁の貫通孔を通じて挿入され、その先端部が炉内に突き出た状態で取り付けられている。   A gasification furnace used in this type of gasification plant is provided with a burner for injecting pulverized coal. This burner is generally inserted from the outside of the furnace through a through hole in the furnace wall, and is attached with its tip protruding into the furnace.

ところで、炉内へ挿入されたバーナの先端部は、灰の溶融温度以上の高温に曝されるだけでなく、溶融状態のスラグの付着、剥離等によって大きな熱負荷を受けることがある。このようにバーナの先端部が大きな熱負荷を受けた場合、熱疲労による割れや硫化腐食による減肉等が発生し、バーナの寿命が著しく低下する。そのため、この種のバーナは、燃料ノズルの外周を円筒状の酸化剤供給管で包囲するとともに、その酸化剤供給管の外周を冷却水が流れる冷却水管でさらに包囲するようにした多重管構造が一般に採用されている。   By the way, the tip of the burner inserted into the furnace is not only exposed to a high temperature equal to or higher than the melting temperature of ash, but may be subjected to a large heat load due to adhesion, separation, etc. of molten slag. Thus, when the tip of the burner is subjected to a large heat load, cracks due to thermal fatigue, thinning due to sulfide corrosion, etc. occur, and the life of the burner is significantly reduced. For this reason, this type of burner has a multi-tube structure in which the outer periphery of the fuel nozzle is surrounded by a cylindrical oxidant supply pipe and the outer periphery of the oxidant supply pipe is further surrounded by a cooling water pipe through which cooling water flows. Generally adopted.

また、これとは別に、円筒状の酸化剤供給管の少なくとも炉内に露出する外周部分を小径の冷却水管で螺旋状に巻き回したバーナ構造が開示されている(特許文献1参照。)。すなわち、冷却水管を流れる冷却水は比較的少ない水量で冷却水管の内面に対して均等かつ十分な流速を確保できるため、バーナの先端部分を効率良く冷却することができる。また、バーナは、炉内の熱の影響を受けて長手方向にある程度伸び変形するが、特許文献1の構造によれば、冷却水管の冷却効果によって熱伸び変形が抑制されるだけでなく、炉外に設けられたシールエキスパンション構造によって熱伸び変形が吸収されるようになっている。   Separately, a burner structure is disclosed in which at least an outer peripheral portion of a cylindrical oxidant supply pipe exposed in the furnace is spirally wound with a small-diameter cooling water pipe (see Patent Document 1). That is, since the cooling water flowing through the cooling water pipe can ensure a uniform and sufficient flow velocity with respect to the inner surface of the cooling water pipe with a relatively small amount of water, the tip portion of the burner can be efficiently cooled. Further, the burner is stretched and deformed to some extent in the longitudinal direction under the influence of heat in the furnace. However, according to the structure of Patent Document 1, not only the heat elongation deformation is suppressed by the cooling effect of the cooling water pipe, but also the furnace The thermal expansion deformation is absorbed by the seal expansion structure provided outside.

特開平10−281414号公報Japanese Patent Laid-Open No. 10-281414

しかしながら、特許文献1では、酸化剤供給管の外周に巻き回した冷却水管の熱伸び変形について配慮がされていないため、冷却水管が高温に曝されて熱負荷の変動を受けた場合、酸化剤供給管に対して長手方向に熱伸び変形を起こすおそれがある。   However, in patent document 1, since consideration is not given to the thermal expansion deformation of the cooling water pipe wound around the outer periphery of the oxidant supply pipe, when the cooling water pipe is exposed to a high temperature and subjected to fluctuations in heat load, the oxidant There is a risk of causing thermal elongation deformation in the longitudinal direction with respect to the supply pipe.

この冷却水管は、酸化剤供給管の先端側へ向けて、炉外から炉壁を貫通させて冷却水供給管を延在させた後、この冷却水供給管と連通された冷却水管が酸化剤供給管の先端側から螺旋状に外周面に巻き回されている。このため、冷却水管を螺旋状に流れる冷却水の冷却効果により酸化剤供給管の熱伸び変形は抑制されるが、酸化剤供給管に巻き回された冷却水管は、酸化剤供給管の長手方向に何ら拘束されないため、熱伸び変形を起こし易くなっている。例えば、炉内温度の変動や溶融スラグの付着、剥離の繰り返し等によってバーナの先端部が受ける熱負荷が変動した場合、冷却水管はバーナの長手方向に熱伸び変形を起こし、その結果、高温の炉内側に突き出てしまい、冷却不足となったバーナの先端部を熱損傷させるおそれがある。   The cooling water pipe extends from the outside of the furnace through the furnace wall toward the front end side of the oxidant supply pipe, extends the cooling water supply pipe, and then the cooling water pipe communicated with the cooling water supply pipe It is wound around the outer peripheral surface spirally from the tip end side of the supply pipe. For this reason, the thermal expansion deformation of the oxidant supply pipe is suppressed by the cooling effect of the cooling water flowing spirally through the cooling water pipe, but the cooling water pipe wound around the oxidant supply pipe is in the longitudinal direction of the oxidant supply pipe. Therefore, it is easy to cause thermal elongation deformation. For example, when the heat load applied to the tip of the burner fluctuates due to fluctuations in furnace temperature, adhesion of molten slag, repeated peeling, etc., the cooling water pipe undergoes thermal elongation deformation in the longitudinal direction of the burner, resulting in a high temperature The tip of the burner that protrudes into the furnace and becomes insufficiently cooled may be thermally damaged.

また、このように熱伸び変形した冷却水管によってバーナからの噴流が偏向された場合、バーナの先端部に溶融スラグが付着し易くなり、その付着した溶融スラグが成長することでガス化炉の安定操業に支障をきたすおそれがある。また、冷却水管は、酸化剤供給管の外周面と螺旋状で接触しており、冷却水管とバーナとの接触面積が十分に確保できないことから、冷却効率の点で改善の余地がある。   In addition, when the jet flow from the burner is deflected by the cooling water pipe deformed in this way, the molten slag is likely to adhere to the tip of the burner, and the adhered molten slag grows to stabilize the gasifier. There is a risk of hindering operations. Further, the cooling water pipe is in spiral contact with the outer peripheral surface of the oxidant supply pipe, and a sufficient contact area between the cooling water pipe and the burner cannot be secured, so there is room for improvement in terms of cooling efficiency.

本発明は、冷却水管の熱伸び変形を抑制することでバーナ先端部の熱損傷を防止し、安定したガス化操業を行うことができるバーナを提供することを課題とする。   An object of the present invention is to provide a burner capable of preventing thermal damage at the tip of the burner by suppressing the thermal elongation deformation of the cooling water pipe and performing a stable gasification operation.

上記課題を解決するため、本発明のバーナは、搬送気体により搬送される粉体燃料を噴出する円筒状の燃料ノズルと、この燃料ノズルと同軸に設けられた円筒状の酸化剤供給管とを備え、燃料ノズル又は酸化剤供給管の一方を包囲する他方の外周壁に、該外周壁に沿って巻き回す冷却水管を装着する溝が形成されてなることを特徴とする。   In order to solve the above problems, a burner according to the present invention comprises a cylindrical fuel nozzle that ejects a pulverized fuel conveyed by a carrier gas, and a cylindrical oxidant supply pipe that is provided coaxially with the fuel nozzle. And a groove for mounting a cooling water pipe wound around the outer peripheral wall is formed in the other outer peripheral wall surrounding one of the fuel nozzle and the oxidant supply pipe.

これによれば、冷却水管は、溝に装着された状態で巻き回されるため、バーナの長手方向の熱伸び変形が溝によって拘束される。そのため、炉内温度の変動等によってバーナの先端部が受ける熱負荷が変動した場合でも、冷却水管が外周壁に対して炉内側へ突き出ることがなく、バーナの先端部を炉内の高熱負荷から保護することができる。また、冷却水管の熱伸び変形が拘束されることによってバーナからの噴流の偏向が抑制されるため、バーナの先端部に溶融スラグが付着して成長するのを防ぐことができ、ガス化炉の安定操業が可能となる。さらに、溝を形成することで冷却水管と外周壁との接触面積を増やすことができ、しかも溝のフィン効果により伝熱が促進されるため、バーナの冷却効率を高めることができる。   According to this, since the cooling water pipe is wound in a state of being mounted in the groove, the thermal expansion deformation in the longitudinal direction of the burner is restrained by the groove. Therefore, even when the thermal load received by the tip of the burner fluctuates due to fluctuations in the furnace temperature, etc., the cooling water pipe does not protrude into the furnace against the outer peripheral wall, and the tip of the burner is removed from the high heat load in the furnace. Can be protected. In addition, since the deflection of the jet flow from the burner is restrained by restraining the thermal expansion deformation of the cooling water pipe, it is possible to prevent the molten slag from adhering to and growing on the tip of the burner. Stable operation is possible. Furthermore, by forming the groove, the contact area between the cooling water pipe and the outer peripheral wall can be increased, and heat transfer is promoted by the fin effect of the groove, so that the cooling efficiency of the burner can be increased.

この場合において、溝は、外周壁に沿って螺旋状に形成されるものとする。また、溝は、冷却水管の巻き回しが開始される外周壁の先端側から形成されるものとする。このようにすれば、バーナの先端部を冷却水管で効率的に冷却できるため、先端部の熱損傷を防ぐことができる。   In this case, the groove is formed in a spiral shape along the outer peripheral wall. Moreover, a groove shall be formed from the front end side of the outer peripheral wall where winding of a cooling water pipe is started. If it does in this way, since the tip part of a burner can be efficiently cooled with a cooling water pipe, thermal damage of the tip part can be prevented.

また、溝は、冷却水管の半径以上の溝深さを有していることが好ましい。このようにすれば、冷却水管と外周壁との接触面積を最大限確保することができ、かつ、溝のフィン効果を高めることができるため、バーナの冷却効率をより高めることができる。   Moreover, it is preferable that the groove | channel has the groove depth more than the radius of a cooling water pipe. In this way, the maximum contact area between the cooling water pipe and the outer peripheral wall can be ensured, and the fin effect of the groove can be increased, so that the cooling efficiency of the burner can be further increased.

また、燃料ノズルの先端部と酸化剤供給管の先端部において、一方の外周面と他方の内周面との間に形成される環状の流路は、この流路から噴出される気体が、一方の外周面の軸芯方向に向かうように形成されているものとする。このようにすれば、搬送気体により炉内に噴出された微粉炭と酸化剤ガスとの接触効率が高められ、微粉炭と酸化剤ガスが効率よく反応するため、ガス化効率を向上させることができる。   In addition, in the tip of the fuel nozzle and the tip of the oxidant supply pipe, the annular channel formed between one outer peripheral surface and the other inner peripheral surface is a gas ejected from this channel, Suppose that it forms so that it may go to the axial center direction of one outer peripheral surface. In this way, the contact efficiency between the pulverized coal ejected into the furnace by the carrier gas and the oxidant gas is increased, and the pulverized coal and the oxidant gas react efficiently, thereby improving the gasification efficiency. it can.

また、バーナと炉壁の貫通孔との間に間隙がある場合には、外周壁の先端側から巻き回される冷却水管は、少なくとも最初の1周が周方向で2重に重なって巻き回されてなることが好ましい。このように、冷却水管を2重で巻き回すことにより、バーナと炉壁の貫通孔との間の間隙を小さくすることができるため、この間隙を起点とするスラグの付着、成長を防ぐことができる。よって、バーナの先端側の冷却効率を高めることができ、バーナの先端部の熱損傷を確実に防ぐことができる。ここで、2重に巻き回された冷却水管の内巻き管と外巻き管との間、及び、内巻き管と外周壁との間は、それぞれ溶接固定されてなるものとする。このようにすれば、バーナの長手方向における内巻き管と外巻き管の自由な移動を規制できるため、バーナを熱損傷から防ぐことができる。   In addition, when there is a gap between the burner and the through hole in the furnace wall, the cooling water pipe wound from the front end side of the outer peripheral wall is wound with at least the first round being overlapped in the circumferential direction. It is preferable to be made. Thus, by winding the cooling water pipe twice, the gap between the burner and the through hole in the furnace wall can be reduced, thereby preventing the slag from adhering and growing from this gap. it can. Therefore, the cooling efficiency on the tip side of the burner can be increased, and thermal damage to the tip portion of the burner can be reliably prevented. Here, the inner winding tube and the outer winding tube of the cooling water pipe wound twice and the inner winding tube and the outer peripheral wall are welded and fixed, respectively. In this way, since the free movement of the inner and outer tubes in the longitudinal direction of the burner can be restricted, the burner can be prevented from being damaged by heat.

また、燃料ノズルと酸化剤供給管の一方の外周面と他方の内周面との間に円筒状の隔壁が設けられ、隔壁の内周面と一方の外周面との間に酸化剤ガスが通流する空間が形成され、隔壁の外周面と他方の内周面との間に酸素を有しない気体が通流する空間が形成されてなるものとする。このようにすれば、気体を噴出させることで、バーナの先端部を効果的に冷却することができるため、先端部の温度変動を低く抑えることができる。また、気体によるブロー効果によってバーナの先端部への溶融スラグの付着、成長を抑制できるため、バーナの先端部の熱損傷等を防ぐことができる。さらに、炉内に噴出された酸化剤ガスの外側に酸素を含まない気体を噴出することで、気体による筒状の幕が形成されるため、炉内において可燃性ガスと酸化剤ガスとの接触を抑制することができる。その結果、バーナの先端部の近傍で、可燃性ガスと酸化剤ガスが反応することによる高温場の発生を防ぐことができるため、バーナの先端部の熱損傷を防ぐことができる。ここで、酸素を含有しない気体には、窒素や水蒸気或いはガス化炉で発生する生成ガスの一部等を用いることができる。   A cylindrical partition wall is provided between one outer peripheral surface of the fuel nozzle and the oxidant supply pipe and the other inner peripheral surface, and an oxidant gas flows between the inner peripheral surface of the partition wall and the one outer peripheral surface. A space through which a gas that does not contain oxygen flows is formed between the outer peripheral surface of the partition wall and the other inner peripheral surface. By doing so, the tip portion of the burner can be effectively cooled by ejecting the gas, so that the temperature fluctuation of the tip portion can be kept low. Moreover, since the adhesion and growth of the molten slag to the tip portion of the burner can be suppressed by the blowing effect by the gas, thermal damage or the like of the tip portion of the burner can be prevented. Furthermore, since a cylindrical curtain made of gas is formed by ejecting a gas not containing oxygen to the outside of the oxidant gas ejected into the furnace, contact between the combustible gas and the oxidant gas in the furnace Can be suppressed. As a result, since the generation of a high temperature field due to the reaction of the combustible gas and the oxidant gas in the vicinity of the tip of the burner can be prevented, thermal damage to the tip of the burner can be prevented. Here, as the gas not containing oxygen, nitrogen, water vapor, a part of the generated gas generated in the gasification furnace, or the like can be used.

本発明によれば、炉内の熱負荷が変動した場合でも、冷却水管の熱伸び変形を抑制することができる。また、本発明によれば、バーナの冷却効率が高められるため、バーナ先端部の熱損傷を防ぐことができ、安定したガス化操業を行うことができる。   According to the present invention, even when the heat load in the furnace fluctuates, the thermal expansion deformation of the cooling water pipe can be suppressed. Moreover, according to the present invention, since the cooling efficiency of the burner is increased, thermal damage to the burner tip can be prevented, and a stable gasification operation can be performed.

本発明が適用されるバーナの第1の実施形態の構成を示す図である。It is a figure which shows the structure of 1st Embodiment of the burner to which this invention is applied. 本発明が適用されるバーナの第2の実施形態の構成を示す図である。It is a figure which shows the structure of 2nd Embodiment of the burner to which this invention is applied. 本発明が適用されるバーナの第3の実施形態の構成を示す図である。It is a figure which shows the structure of 3rd Embodiment of the burner to which this invention is applied. 本発明が適用されるバーナの第4の実施形態の構成を示す図である。It is a figure which shows the structure of 4th Embodiment of the burner to which this invention is applied.

(第1の実施形態)
以下、本発明を適用してなるバーナの第1の実施形態について、図1を参照して説明する。本実施形態のバーナは、微粉炭をガス化するガス化炉の炉壁に設けられるものとして説明するが、燃料と酸化剤ガスを噴出するガス化用バーナであれば、この例に限られるものではない。
(First embodiment)
Hereinafter, a first embodiment of a burner to which the present invention is applied will be described with reference to FIG. Although the burner of this embodiment is described as being provided on the furnace wall of a gasification furnace that gasifies pulverized coal, the burner is limited to this example as long as it is a gasification burner that ejects fuel and oxidant gas. is not.

本実施形態のバーナ1は、図示しないガス化装置の炉壁の貫通孔に挿入され、先端側を炉壁から炉内側に突き出した状態で炉壁に装着されている。このバーナは、図1に示すように、窒素ガス等の搬送用ガスに同伴して搬送される微粉炭3を中心部から噴出する円筒状の燃料ノズル5と、燃料ノズル5と同軸で外周を包囲して設けられる円筒状の酸化剤供給管7と、酸化剤供給管7の外周面に取り付けられる小径の冷却水管9を備えて構成される。燃料ノズル5の外周面と酸化剤供給管7の内周面との間には、酸素や空気等の酸化剤ガス11が通流する円環状の流路が形成されている。   The burner 1 of the present embodiment is inserted into a through-hole of a furnace wall of a gasifier (not shown), and is attached to the furnace wall in a state in which the tip side protrudes from the furnace wall to the inside of the furnace. As shown in FIG. 1, this burner has a cylindrical fuel nozzle 5 that ejects pulverized coal 3 that is carried along with a carrier gas such as nitrogen gas from the center, and a coaxial outer periphery of the fuel nozzle 5. A cylindrical oxidant supply pipe 7 provided in an enclosed manner and a small-diameter cooling water pipe 9 attached to the outer peripheral surface of the oxidant supply pipe 7 are configured. An annular channel is formed between the outer peripheral surface of the fuel nozzle 5 and the inner peripheral surface of the oxidant supply pipe 7 through which an oxidant gas 11 such as oxygen or air flows.

酸化剤供給管7の外周面には、冷却水管9が装着される溝13が長手方向で螺旋状に形成されている。溝13は、溝断面が半円状に形成され、断面円形の冷却水管9が溝内に嵌合するようになっている。冷却水管9は、炉外から炉壁を貫通させて炉内の酸化剤供給管7の先端側へ向けて冷却水供給管15を延在させた後、この冷却水供給管15を屈曲させて酸化剤供給管7の先端側から溝13に装着され、溝13に沿って酸化剤供給管7を取り囲むように螺旋状に巻き回して配置される。これにより、炉外側から冷却水供給管15を経由して供給された冷却水17は、酸化剤供給管7に巻き回された冷却水管9を螺旋状に通過し、炉外側に戻される。   On the outer peripheral surface of the oxidant supply pipe 7, a groove 13 in which the cooling water pipe 9 is mounted is formed in a spiral shape in the longitudinal direction. The groove 13 has a semicircular cross section, and a cooling water pipe 9 having a circular cross section is fitted into the groove. The cooling water pipe 9 extends from the outside of the furnace through the furnace wall and extends the cooling water supply pipe 15 toward the tip side of the oxidant supply pipe 7 in the furnace, and then bends the cooling water supply pipe 15. The oxidant supply pipe 7 is attached to the groove 13 from the front end side, and is wound around the groove 13 so as to surround the oxidant supply pipe 7 in a spiral shape. Thereby, the cooling water 17 supplied from the outside of the furnace via the cooling water supply pipe 15 passes through the cooling water pipe 9 wound around the oxidant supply pipe 7 in a spiral shape, and is returned to the outside of the furnace.

本実施形態によれば、冷却水管9は、溝13に沿って巻き回されるため、バーナ1の長手方向の熱伸び変形が溝13によってある程度拘束される。そのため、炉内温度の変動や溶融スラグの付着、剥離の繰り返し等によってバーナ1の先端部が炉内から受ける熱負荷が変動した場合でも、冷却水管9が酸化剤供給管7に対して独立して変形し、高温の炉内へ突き出ることがない。よって、バーナ1の先端部を炉内の高熱負荷から確実に保護することができる。また、冷却水管9の熱伸び変形が長手方向で拘束されるため、バーナ1からの噴流が偏向することがない。このため、バーナ1の先端部に溶融スラグが付着して成長するのを防ぐことができ、ガス化炉の安定操業が可能となる。さらに、溝13は、冷却水管9の形状に合わせて形成されるため、冷却水管9と酸化剤供給管7の外周壁との接触面積が最大限確保され、しかも溝13のフィン効果により伝熱が促進されるため、バーナ1の冷却効率を高めることができる。   According to this embodiment, since the cooling water pipe 9 is wound along the groove 13, the thermal elongation deformation in the longitudinal direction of the burner 1 is restrained to some extent by the groove 13. Therefore, even when the thermal load received from the inside of the furnace by the tip of the burner 1 fluctuates due to fluctuations in furnace temperature, adhesion of molten slag, repeated peeling, etc., the cooling water pipe 9 is independent of the oxidant supply pipe 7. Will not be deformed and protrude into the high-temperature furnace. Therefore, the front-end | tip part of the burner 1 can be reliably protected from the high heat load in a furnace. Further, since the thermal expansion deformation of the cooling water pipe 9 is restricted in the longitudinal direction, the jet flow from the burner 1 is not deflected. For this reason, it can prevent that molten slag adheres to the front-end | tip part of the burner 1, and grows, and the stable operation of a gasification furnace is attained. Furthermore, since the groove 13 is formed in accordance with the shape of the cooling water pipe 9, the maximum contact area between the cooling water pipe 9 and the outer peripheral wall of the oxidant supply pipe 7 is ensured, and heat transfer is performed by the fin effect of the groove 13. Therefore, the cooling efficiency of the burner 1 can be increased.

本実施形態の溝13は、断面方向から見たときに、隣り合う溝13同士の間隔が一定となるように形成されているが、これに限定されるものではなく、例えば炉内側の長手方向の所定領域の溝間隔を比較的短くし、炉外側の溝間隔を比較的長くなるように設定したり、炉内側から炉外側に向かって溝間隔が順次長くなるように設定することも可能である。   The groove 13 of the present embodiment is formed so that the interval between adjacent grooves 13 is constant when viewed from the cross-sectional direction, but is not limited to this, for example, the longitudinal direction inside the furnace It is also possible to set the groove interval of the predetermined region to be relatively short and to set the groove interval on the outside of the furnace to be relatively long, or to sequentially increase the groove interval from the inside of the furnace to the outside of the furnace. is there.

また、本実施形態の溝13は、冷却水管9の半径程度の溝深さに設定されているが、少なくとも冷却水管9の半径以上の溝深さに設定されていることが好ましい。このように設定することで、冷却水管9と酸化剤供給管7の外周壁との接触面積が最大限確保され、かつ、溝13のフィン効果を高めることができるため、バーナ1の冷却効率を高めることができ、熱損傷をより確実に防ぐことができる。   Moreover, although the groove | channel 13 of this embodiment is set to the groove depth about the radius of the cooling water pipe 9, it is preferable to be set to the groove depth more than the radius of the cooling water pipe 9 at least. By setting in this way, the maximum contact area between the cooling water pipe 9 and the outer peripheral wall of the oxidant supply pipe 7 can be ensured, and the fin effect of the groove 13 can be enhanced. It can be increased and thermal damage can be prevented more reliably.

(第2の実施形態)
次に、本発明を適用してなるバーナの第2の実施形態について、図2を参照して説明する。本実施形態では、第1の実施形態と異なる構成について説明し、第1の実施形態と同一の構成については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the burner to which the present invention is applied will be described with reference to FIG. In the present embodiment, a configuration different from that of the first embodiment will be described, and the same configuration as that of the first embodiment will be denoted by the same reference numeral and description thereof will be omitted.

本実施形態のバーナ21は、燃料ノズル5の先端部の外周面と酸化剤供給管7の先端部の内周面との隙間に形成される円環状の空間が燃料ノズル5の軸芯方向に向かって所定の角度をなして形成されている点で、第1の実施形態と相違する。すなわち、燃料ノズル5の先端部の外周面は、先端側に向かって縮径する円錐状の傾斜面23をなして形成され、酸化剤供給管7の先端部の内周面はこの円錐状の傾斜面と一定の間隔を隔てて対向する先窄みの傾斜面25をなして形成される。そのため、酸化剤ガス11は、燃料ノズル5の軸芯方向に向かって筒状に噴出するようになっている。このような構造にすれば、炉内に噴出された微粉炭3と酸化剤ガス11との接触効率が高められるため、微粉炭3と酸化剤ガス11が効率よく反応し、ガス化効率を高めることができる。   In the burner 21 of the present embodiment, an annular space formed in a gap between the outer peripheral surface of the front end portion of the fuel nozzle 5 and the inner peripheral surface of the front end portion of the oxidant supply pipe 7 is in the axial direction of the fuel nozzle 5. This is different from the first embodiment in that it is formed at a predetermined angle. That is, the outer peripheral surface of the tip portion of the fuel nozzle 5 is formed as a conical inclined surface 23 whose diameter decreases toward the tip side, and the inner peripheral surface of the tip portion of the oxidant supply pipe 7 is this conical shape. It is formed by forming a tapered inclined surface 25 facing the inclined surface with a certain distance. Therefore, the oxidant gas 11 is ejected in a cylindrical shape toward the axial direction of the fuel nozzle 5. With such a structure, the contact efficiency between the pulverized coal 3 ejected into the furnace and the oxidant gas 11 is increased, so that the pulverized coal 3 and the oxidant gas 11 efficiently react to increase gasification efficiency. be able to.

また、本実施形態では、酸化剤供給管7の先端部の内周面が傾斜面25となっていることから、その裏側の外周面は、先端側に向かって縮径する円錐状の傾斜面27をなしている。ここで、バーナ21の先端部分に溝13を形成しようとする場合、本実施形態のように、複雑な形状を有する先端部分に完全な溝13を形成することは加工技術的に困難を極める。そのため、図2に示すように、最先端に形成された溝13は、その先端側の約半分が傾斜面27をなして開放された形状となる。このような溝13に装着された冷却水管9aは、バーナ21の長手方向の先端側に対する拘束力が弱くなる。   Further, in this embodiment, since the inner peripheral surface of the tip portion of the oxidant supply pipe 7 is the inclined surface 25, the outer peripheral surface on the back side thereof is a conical inclined surface whose diameter is reduced toward the tip side. 27. Here, when the groove 13 is to be formed at the tip portion of the burner 21, it is extremely difficult to form a complete groove 13 at the tip portion having a complicated shape as in this embodiment. Therefore, as shown in FIG. 2, the groove 13 formed at the foremost end has a shape in which about half of the tip end side is opened with an inclined surface 27. The cooling water pipe 9 a mounted in such a groove 13 has a weak restraining force with respect to the longitudinal end side of the burner 21.

これに対し、本実施形態では、バーナ21の最先端部の冷却水管9aと傾斜面27を溶接固定部29で互いに固定するようにしている。このようにすれば、第1の実施形態のバーナ1と同様、長手方向における冷却水管9の熱伸び変形をある程度拘束できるため、酸化剤供給管7に対して冷却水管9aが独立して変形するのを抑制することができる。これにより、冷却水管9の熱伸び変形を抑制できるため、バーナ21の先端部を炉内の高熱負荷から保護することができ、熱損傷を抑制するとともに安定した操業を実現できる。   On the other hand, in this embodiment, the cooling water pipe 9a and the inclined surface 27 at the most distal end portion of the burner 21 are fixed to each other by the welding fixing portion 29. In this way, as with the burner 1 of the first embodiment, the thermal expansion deformation of the cooling water pipe 9 in the longitudinal direction can be restricted to some extent, so that the cooling water pipe 9a is deformed independently with respect to the oxidant supply pipe 7. Can be suppressed. Thereby, since the heat | fever elongation deformation of the cooling water pipe 9 can be suppressed, the front-end | tip part of the burner 21 can be protected from the high heat load in a furnace, and stable operation can be implement | achieved while suppressing heat damage.

(第3の実施形態)
次に、本発明を適用してなるバーナの第3の実施形態について、図3を参照して説明する。本実施形態では第2の実施形態と異なる構成について説明し、第2の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
(Third embodiment)
Next, a third embodiment of the burner to which the present invention is applied will be described with reference to FIG. In this embodiment, a configuration different from that of the second embodiment will be described, and the same components as those of the second embodiment will be denoted by the same reference numerals and description thereof will be omitted.

本実施形態のバーナ31は、酸化剤供給管7の先端側から巻き回される冷却水管9が最初の1周で周方向に拡径するように2重に重なって巻き回され、2重の冷却水管9を構成する内巻き管33と外巻き管35が溶接固定部37で互いに固定されている点で、第2の実施形態と相違する。   The burner 31 of this embodiment is wound in a double manner so that the cooling water pipe 9 wound from the front end side of the oxidant supply pipe 7 is expanded in the circumferential direction in the first round. The inner winding pipe 33 and the outer winding pipe 35 constituting the cooling water pipe 9 are different from those of the second embodiment in that they are fixed to each other by a welding fixing portion 37.

本実施形態は、バーナ31と炉壁の貫通孔との間に間隙がある場合、この間隙を起点とするスラグの付着、成長を防止するために効果的である。すなわち、バーナ31の外周部に間隙が存在すると、この間隙では流れが停滞するため、スラグの付着、成長を起こし易くなる。この点、本実施形態のように、バーナ31の最先端部から冷却水管9を2重に巻き回すことで、バーナ31と貫通孔との間の間隙を小さくすることができる。これにより、間隙を起点とするスラグの付着、成長を防ぐことができ、バーナ31の先端側の冷却効率を高めることができるため、バーナ31の先端部の熱損傷を確実に防ぐことができる。また、内巻き管33は傾斜面27と溶接固定部29で互いに固定され、外巻き管35は内巻き管33と溶接固定部37で互いに固定されているため、バーナ31の長手方向における内巻き管33と外巻き管35の熱伸び変形をある程度拘束することができる。これにより、内巻き管33と外巻き管35が高温の炉内へ突き出ることがないため、バーナ31の先端部を炉内の高熱負荷から保護することができ、熱損傷を抑制するとともに安定した操業を実現できる。   In the present embodiment, when there is a gap between the burner 31 and the through hole of the furnace wall, this embodiment is effective for preventing the adhesion and growth of slag starting from this gap. That is, if there is a gap in the outer peripheral portion of the burner 31, the flow stagnates in this gap, so that it is easy for slag to adhere and grow. In this regard, as in this embodiment, the gap between the burner 31 and the through hole can be reduced by winding the cooling water pipe 9 twice from the most distal portion of the burner 31. Thereby, adhesion and growth of the slag starting from the gap can be prevented, and the cooling efficiency on the tip side of the burner 31 can be increased, so that thermal damage to the tip portion of the burner 31 can be reliably prevented. Further, since the inner winding tube 33 is fixed to each other by the inclined surface 27 and the welding fixing portion 29, and the outer winding tube 35 is fixed to each other by the inner winding tube 33 and the welding fixing portion 37, the inner winding in the longitudinal direction of the burner 31 is obtained. The thermal elongation deformation of the tube 33 and the outer winding tube 35 can be restricted to some extent. Thereby, since the inner winding tube 33 and the outer winding tube 35 do not protrude into the high-temperature furnace, the tip portion of the burner 31 can be protected from a high heat load in the furnace, and the thermal damage is suppressed and stabilized. Operation can be realized.

なお、冷却水管9を2重に重ねて巻き回すのは、本実施形態のように最初の1周に限られるものではなく、複数周に渡って螺旋状に重ねて巻き回すのが、バーナ31と炉壁の貫通孔との間の間隙を小さくする上で好ましいが、その場合は、各周で内巻き管33と外巻き管35を溶接固定部37で固定する必要がある。   It is to be noted that the winding of the cooling water pipe 9 in a doubled manner is not limited to the first round as in the present embodiment, but the burner 31 is wound in a spiral manner over a plurality of rounds. In this case, it is necessary to fix the inner winding tube 33 and the outer winding tube 35 with the welding fixing portion 37.

(第4の実施形態)
次に、本発明を適用してなるバーナの第4の実施形態について、図4を参照して説明する。本実施形態では第3の実施形態と異なる構成について説明し、第3の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
(Fourth embodiment)
Next, a fourth embodiment of the burner to which the present invention is applied will be described with reference to FIG. In this embodiment, a configuration different from that of the third embodiment will be described, and the same components as those of the third embodiment will be denoted by the same reference numerals and description thereof will be omitted.

本実施形態のバーナ41は、燃焼ノズル5の外周面と酸化剤供給管7の内周面との間に円筒状の隔壁43を配置し、隔壁43の内周面と燃料ノズル5の外周面との間の空間に酸化剤ガス11が通流する円環状の流路45を形成し、隔壁43の外周面と酸化剤供給管7の内周面との間の空間に酸素を含有しない気体47が通流する円環状の流路49を形成している点で、第3の実施形態と相違する。ここで、気体47とは、酸素を含有しない気体で、例えば、窒素や水蒸気或いはガス化炉で発生する生成ガスの一部等が用いられる。   In the burner 41 of this embodiment, a cylindrical partition wall 43 is disposed between the outer peripheral surface of the combustion nozzle 5 and the inner peripheral surface of the oxidant supply pipe 7, and the inner peripheral surface of the partition wall 43 and the outer peripheral surface of the fuel nozzle 5. An annular flow path 45 through which the oxidant gas 11 flows is formed in the space between and the space between the outer peripheral surface of the partition wall 43 and the inner peripheral surface of the oxidant supply pipe 7 and does not contain oxygen. The third embodiment is different from the third embodiment in that an annular channel 49 through which 47 flows is formed. Here, the gas 47 is a gas that does not contain oxygen. For example, nitrogen, water vapor, or a part of the generated gas generated in the gasification furnace is used.

また、第2の実施形態で説明した燃料ノズル5の先端部と酸化剤供給管7の先端部にそれぞれ形成される傾斜面23,25は、本実施形態の場合、それぞれ燃料ノズル5の先端部の傾斜面25と隔壁43の先端部の傾斜面51に相当し、酸化剤ガス11は、流路45を通流して燃料ノズル5の軸芯方向に向かって筒状に噴出するようになっている。   In addition, the inclined surfaces 23 and 25 formed at the tip of the fuel nozzle 5 and the tip of the oxidant supply pipe 7 described in the second embodiment are respectively the tip of the fuel nozzle 5 in this embodiment. The oxidant gas 11 flows through the flow path 45 and is ejected in a cylindrical shape toward the axial center direction of the fuel nozzle 5. Yes.

このように気体47を噴出させる構造を有することで、気体47の通流と噴出に伴うバーナ41の先端部の冷却効果を得ることができ、先端部の温度変動を抑制することができる。また、気体47の噴出によるブロー効果により、バーナ41の先端部への溶融スラグの付着、成長を抑制することができる。   Thus, by having the structure which ejects the gas 47, the cooling effect of the front-end | tip part of the burner 41 accompanying the flow and ejection of the gas 47 can be acquired, and the temperature fluctuation of a front-end | tip part can be suppressed. In addition, due to the blowing effect caused by the ejection of the gas 47, adhesion and growth of the molten slag to the tip of the burner 41 can be suppressed.

加えて、本実施形態では、酸化剤ガス11が通流する流路45を取り囲むように気体47が通流する流路49を形成しているため、炉内に噴出された酸化剤ガス11の外側には、酸素を含まない気体47の筒状の幕が形成される。このように気体47の幕を形成することにより、炉内で生成された可燃性ガスと酸化剤ガスとの接触を抑制することができるため、可燃性ガスの回収率を向上させることができる。また、バーナ41の先端部の近傍で、可燃性ガスと酸化剤ガスとが反応することによる高温場の発生を防ぐことができるため、バーナ41の先端部の熱損傷を防ぐことができる。   In addition, in this embodiment, since the flow path 49 through which the gas 47 flows is formed so as to surround the flow path 45 through which the oxidant gas 11 flows, the oxidant gas 11 ejected into the furnace A cylindrical curtain of gas 47 that does not contain oxygen is formed on the outside. By forming the curtain of the gas 47 in this way, contact between the combustible gas generated in the furnace and the oxidant gas can be suppressed, so that the recovery rate of the combustible gas can be improved. Moreover, since generation | occurrence | production of the high temperature field by the combustible gas and oxidizing agent gas reacting in the vicinity of the front-end | tip part of the burner 41 can be prevented, the thermal damage of the front-end | tip part of the burner 41 can be prevented.

以上、本発明の実施形態を図面により詳述してきたが、上記実施形態は本発明の例示にしか過ぎないものであり、本発明は上記実施形態の構成にのみ限定されるものではない。本発明の要旨を逸脱しない範囲の設計の変更等があっても、本発明に含まれることは勿論である。   As mentioned above, although embodiment of this invention has been explained in full detail with drawing, the said embodiment is only an illustration of this invention and this invention is not limited only to the structure of the said embodiment. Needless to say, changes in design and the like within the scope of the present invention are included in the present invention.

例えば、上記の実施形態では、燃料ノズル5の外周を同軸の酸化剤供給管7で包囲する例を説明したが、酸化剤供給管7の外周を同軸の燃料ノズル5で包囲するようにしてもよい。この場合、酸化剤供給管7の外周面と燃料ノズル5の内周面との間の空間には、酸化剤ガス11が通流する円環状の流路が形成される。そして、燃料ノズル5の外周面には、溝13が形成される。   For example, in the above embodiment, the example in which the outer periphery of the fuel nozzle 5 is surrounded by the coaxial oxidant supply pipe 7 has been described. However, the outer periphery of the oxidant supply pipe 7 may be surrounded by the coaxial fuel nozzle 5. Good. In this case, an annular flow path through which the oxidant gas 11 flows is formed in the space between the outer peripheral surface of the oxidant supply pipe 7 and the inner peripheral surface of the fuel nozzle 5. A groove 13 is formed on the outer peripheral surface of the fuel nozzle 5.

また、この場合において、酸化剤供給管7の外周面と燃料ノズル5の内周面との間に円筒状の隔壁43を配置するようにしてもよい。この場合、隔壁43の内周面と酸化剤供給管7の外周面との間の空間には酸化剤ガスが通流する円環状の流路が形成され、隔壁43の外周面と燃料ノズル5の内周面との間の空間には酸素を含有しない気体が通流する円環状の流路が形成される。   In this case, a cylindrical partition wall 43 may be disposed between the outer peripheral surface of the oxidant supply pipe 7 and the inner peripheral surface of the fuel nozzle 5. In this case, an annular channel through which the oxidant gas flows is formed in the space between the inner peripheral surface of the partition wall 43 and the outer peripheral surface of the oxidant supply pipe 7, and the outer peripheral surface of the partition wall 43 and the fuel nozzle 5. An annular flow path through which a gas not containing oxygen flows is formed in the space between the inner peripheral surface of the first and second inner surfaces.

1 バーナ
3 微粉炭
5 燃料ノズル
7 酸化剤供給管
9 冷却水管
11 酸化剤ガス
13 溝
15 冷却水供給管
17 冷却水
21,31,41 バーナ
23,25,27 傾斜面
29,37 溶接固定部
33 内巻き管
35 外巻き管
43 隔壁
45,49 流路
47 気体
DESCRIPTION OF SYMBOLS 1 Burner 3 Pulverized coal 5 Fuel nozzle 7 Oxidant supply pipe 9 Cooling water pipe 11 Oxidant gas 13 Groove 15 Cooling water supply pipe 17 Cooling water 21, 31, 41 Burner 23, 25, 27 Inclined surface 29, 37 Weld fixing part 33 Inner winding pipe 35 Outer winding pipe 43 Bulkhead 45, 49 Flow path 47 Gas

Claims (8)

搬送気体により搬送される粉体燃料を噴出する円筒状の燃料ノズルと、該燃料ノズルと同軸に設けられた円筒状の酸化剤供給管とを備え、
前記燃料ノズル又は前記酸化剤供給管の一方を包囲する他方の外周壁に、該外周壁に沿って巻き回す冷却水管を装着する溝が形成されてなるバーナ。
A cylindrical fuel nozzle that ejects the pulverized fuel transported by the transport gas, and a cylindrical oxidant supply pipe provided coaxially with the fuel nozzle,
A burner in which a groove for mounting a cooling water pipe wound around the outer peripheral wall is formed in the other outer peripheral wall surrounding one of the fuel nozzle or the oxidant supply pipe.
前記溝が前記外周壁に沿って螺旋状に形成されてなる請求項1に記載のバーナ。   The burner according to claim 1, wherein the groove is formed in a spiral shape along the outer peripheral wall. 前記溝は、前記冷却水管の巻き回しが開始される前記外周壁の先端側から形成されてなる請求項1に記載のバーナ。   The burner according to claim 1, wherein the groove is formed from a front end side of the outer peripheral wall where the winding of the cooling water pipe is started. 前記溝は、前記冷却水管の半径以上の溝深さを有してなる請求項1乃至3のいずれかに記載のバーナ。   The burner according to any one of claims 1 to 3, wherein the groove has a groove depth equal to or larger than a radius of the cooling water pipe. 前記燃料ノズルの先端部と前記酸化剤供給管の先端部の一方の外周面と他方の内周面との間に形成される環状の流路は、該流路から噴出される気体が、前記一方の外周面の軸芯方向に向かうように形成されてなる請求項1乃至4のいずれかに記載のバーナ。   The annular flow path formed between one outer peripheral surface and the other inner peripheral surface of the front end portion of the fuel nozzle and the front end portion of the oxidant supply pipe has a gas ejected from the flow path, The burner in any one of Claims 1 thru | or 4 formed so that it may go to the axial center direction of one outer peripheral surface. 搬送気体により搬送される粉体燃料を噴出する円筒状の燃料ノズルと、該燃料ノズルと同軸に設けられた円筒状の酸化剤供給管と、前記燃料ノズル又は前記酸化剤供給管の一方を包囲する他方の外周壁に沿って巻き回される冷却水管とを備え、
前記外周壁には、前記冷却水管が装着される溝が螺旋状に形成されてなり、
前記外周壁の先端側から巻き回される前記冷却水管は、少なくとも最初の1周が周方向で2重に重なって巻き回されてなるバーナ。
A cylindrical fuel nozzle that ejects pulverized fuel conveyed by a carrier gas, a cylindrical oxidant supply pipe that is provided coaxially with the fuel nozzle, and one of the fuel nozzle or the oxidant supply pipe is enclosed. A cooling water pipe wound around the other outer peripheral wall,
In the outer peripheral wall, a groove in which the cooling water pipe is mounted is formed in a spiral shape,
The cooling water pipe wound from the front end side of the outer peripheral wall is a burner in which at least the first round is wound so as to overlap twice in the circumferential direction.
前記外周壁で2重に巻き回される前記冷却水管の内巻き管と外巻き管との間、及び、前記内巻き管と前記外周壁との間が、それぞれ溶接固定されてなる請求項6に記載のバーナ。   The space between the inner and outer winding pipes of the cooling water pipe wound twice on the outer peripheral wall and between the inner winding pipe and the outer peripheral wall are fixed by welding. Burner as described in. 前記燃料ノズルと前記酸化剤供給管の一方の外周面と他方の内周面との間に円筒状の隔壁が設けられ、
前記隔壁の内周面と前記一方の外周面との間に酸化剤ガスが通流する空間が形成され、前記隔壁の外周面と前記他方の内周面との間に酸素を有しない気体が通流する空間が形成されてなる請求項1乃至7のいずれかに記載のバーナ。
A cylindrical partition is provided between one outer peripheral surface and the other inner peripheral surface of the fuel nozzle and the oxidant supply pipe,
A space through which an oxidant gas flows is formed between the inner peripheral surface of the partition wall and the one outer peripheral surface, and a gas having no oxygen is formed between the outer peripheral surface of the partition wall and the other inner peripheral surface. The burner according to any one of claims 1 to 7, wherein a space through which the air flows is formed.
JP2011155998A 2011-07-14 2011-07-14 Burner Active JP5959811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155998A JP5959811B2 (en) 2011-07-14 2011-07-14 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155998A JP5959811B2 (en) 2011-07-14 2011-07-14 Burner

Publications (2)

Publication Number Publication Date
JP2013024425A true JP2013024425A (en) 2013-02-04
JP5959811B2 JP5959811B2 (en) 2016-08-02

Family

ID=47782997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155998A Active JP5959811B2 (en) 2011-07-14 2011-07-14 Burner

Country Status (1)

Country Link
JP (1) JP5959811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126354A (en) * 2012-12-27 2014-07-07 Electric Power Dev Co Ltd Burner
JP2014152988A (en) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd Burner and combustion furnace, and assembling method of burner and repairing method of burner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949415A (en) * 1982-08-12 1984-03-22 テキサコ・デベロツプメント・コ−ポレ−シヨン Burner
JPH0526085B2 (en) * 1983-03-18 1993-04-15 Sheru Intern Risaachi Maachatsupii Bv
JPH0581637B2 (en) * 1989-02-06 1993-11-15 Hitachi Ltd
JPH0670507A (en) * 1992-08-07 1994-03-11 Nippondenso Co Ltd Liquid-cooled electric rotary machine
JPH0742356U (en) * 1993-12-29 1995-08-04 石川島播磨重工業株式会社 Adjustable tip clearance burner for coal gasifier
JPH07322566A (en) * 1994-05-24 1995-12-08 Yaskawa Electric Corp Manufacture of cooling unit
JPH0979094A (en) * 1995-09-14 1997-03-25 Unisia Jecs Corp Flow control valve for recirculating exhaust gas
JPH0988730A (en) * 1995-09-21 1997-03-31 Usui Internatl Ind Co Ltd Egr gas cooling system
JPH10281414A (en) * 1997-04-04 1998-10-23 Mitsubishi Heavy Ind Ltd Burner for gasification furnace
JP2002144190A (en) * 2000-11-14 2002-05-21 Ekoregu:Kk Cooling device for machine tool
JP2005120129A (en) * 2003-10-14 2005-05-12 Mitsubishi Heavy Ind Ltd Burner for coal gasifying furnace and coal gasifying furnace equipped therewith
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949415A (en) * 1982-08-12 1984-03-22 テキサコ・デベロツプメント・コ−ポレ−シヨン Burner
JPH0526085B2 (en) * 1983-03-18 1993-04-15 Sheru Intern Risaachi Maachatsupii Bv
JPH0581637B2 (en) * 1989-02-06 1993-11-15 Hitachi Ltd
JPH0670507A (en) * 1992-08-07 1994-03-11 Nippondenso Co Ltd Liquid-cooled electric rotary machine
JPH0742356U (en) * 1993-12-29 1995-08-04 石川島播磨重工業株式会社 Adjustable tip clearance burner for coal gasifier
JPH07322566A (en) * 1994-05-24 1995-12-08 Yaskawa Electric Corp Manufacture of cooling unit
JPH0979094A (en) * 1995-09-14 1997-03-25 Unisia Jecs Corp Flow control valve for recirculating exhaust gas
JPH0988730A (en) * 1995-09-21 1997-03-31 Usui Internatl Ind Co Ltd Egr gas cooling system
JPH10281414A (en) * 1997-04-04 1998-10-23 Mitsubishi Heavy Ind Ltd Burner for gasification furnace
JP2002144190A (en) * 2000-11-14 2002-05-21 Ekoregu:Kk Cooling device for machine tool
JP2005120129A (en) * 2003-10-14 2005-05-12 Mitsubishi Heavy Ind Ltd Burner for coal gasifying furnace and coal gasifying furnace equipped therewith
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126354A (en) * 2012-12-27 2014-07-07 Electric Power Dev Co Ltd Burner
JP2014152988A (en) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd Burner and combustion furnace, and assembling method of burner and repairing method of burner

Also Published As

Publication number Publication date
JP5959811B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5818550B2 (en) Gasification burner
US8771604B2 (en) Gasifier liner
EP1939271B1 (en) Dump cooled gasifier
CN102538013B (en) There is the fuel injector of tip cooling
JP2010255892A (en) Gasification burner, and method of supplying fuel for gasification burner
CN102171514B (en) Slag melting burner apparatus
JP2010065963A (en) Combustor, method of supplying fuel to the same, and method of modifying the same
JP5959811B2 (en) Burner
CN104471080B (en) Method for operating blast furnace and bundled tube spray gun
US9033259B2 (en) Method and system for mixing reactor feed
US9192900B2 (en) Gasification furnace raw material supplying apparatus
JP2007278581A (en) Cooling structure of burner or lance
US20150300633A1 (en) Burner tip and burner
WO2012133751A1 (en) Burner, reaction furnace such as gasification furnace equipped with burner, and electric generating power plant equipped with reaction furnace
JP6066719B2 (en) Burner
JP6847700B2 (en) Gasifier with burner and burner and how to install the burner
US8357215B2 (en) Method and apparatus of particulate removal from gasifier components
JP6242522B1 (en) Burner and manufacturing method thereof
JP2010106132A (en) Solid fuel gasification burner and gasification furnace equipped with the same
JP2013001907A (en) Feed injector for gasification system
JP2004075438A (en) Reformer
JP7236331B2 (en) Burner tip and burner with same
JP2014088602A (en) Blast furnace operation method and blast furnace tuyere lance
CN218544427U (en) High-temperature corrosion prevention solid waste pure oxygen gasification melting burner
JP6034313B2 (en) Combined lance for blast furnace tuyere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5959811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250