JP2014126354A - Burner - Google Patents

Burner Download PDF

Info

Publication number
JP2014126354A
JP2014126354A JP2012285969A JP2012285969A JP2014126354A JP 2014126354 A JP2014126354 A JP 2014126354A JP 2012285969 A JP2012285969 A JP 2012285969A JP 2012285969 A JP2012285969 A JP 2012285969A JP 2014126354 A JP2014126354 A JP 2014126354A
Authority
JP
Japan
Prior art keywords
cooling water
peripheral surface
supply pipe
oxidant supply
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012285969A
Other languages
Japanese (ja)
Other versions
JP6066719B2 (en
Inventor
Masakazu Utano
雅一 歌野
Makoto Takeda
誠 竹田
Kengo Muroya
健吾 室矢
Masanori Santo
正徳 山藤
Akio Ueda
昭雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK filed Critical Electric Power Development Co Ltd
Priority to JP2012285969A priority Critical patent/JP6066719B2/en
Publication of JP2014126354A publication Critical patent/JP2014126354A/en
Application granted granted Critical
Publication of JP6066719B2 publication Critical patent/JP6066719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a burner which suppresses thermal damage of a top end part of the burner formed by winding a cooling water pipe around an outer circumferential surface of an oxidant supply pipe.SOLUTION: A burner 1 includes a cylindrical fuel nozzle 5 which jets powder fuel carried by carrying gas, a cylindrical oxidant supply pipe 7 which coaxially surrounds the outer circumferential surface of the fuel nozzle 5 and cooling water pipes 9 wound around the outer circumferential surface of the oxidant supply pipe 7. Therein, spiral grooves 17 to which the cooling water pipes 9 are closely attached are formed on the outer circumferential surface of the oxidant supply pipe 7, the cooling water pipes 9 are formed in piles such that at least first one cycle wound around the top end part of the outer circumferential surface of the oxidant supply pipe 7 expands the diameter, a cooling water inlet pipe 21 communicated with the first one cycle of the cooling water pipe 9 is disposed apart from the outer circumferential surface of the oxidant supply pipe 7 and a part of the other cooling water pipes 9 besides the first one cycle of the cooling water pipe is welded and fastened to at least one of the cooling water inlet pipe 21 and the oxidant supply pipe 7.

Description

本発明はバーナに係り、特に、石炭等の固体原料及び酸化剤ガスをガス化炉内に供給するバーナの構造に関する。   The present invention relates to a burner, and more particularly to a structure of a burner that supplies a solid material such as coal and an oxidizing gas into a gasifier.

石炭をガス化する方法としては、高温に保持されたガス化炉内に固体燃料の微粉炭と酸化剤ガスをバーナから供給し、燃料中の可燃分を燃焼させることで一酸化炭素及び水素を生じさせ、灰分を有害成分を含まないスラグに変換して回収する気流層石炭ガス化法が知られている。この方法によれば、燃料ガスが高い効率で得られるとともに、環境保全性も優れ、しかも適用可能な原料種が多いため、石炭ガス化複合発電システムや石炭ガス化燃料電池複合発電システム等の次世代火力発電システム、石炭液化用や化学原料用等に用いる水素製造システムへの利用が期待されている。   As a method of gasifying coal, solid fuel pulverized coal and oxidant gas are supplied from a burner into a gasification furnace maintained at a high temperature, and carbon monoxide and hydrogen are produced by burning combustible components in the fuel. There is known an air-bed coal gasification method in which ash is generated and converted into slag containing no harmful components and recovered. According to this method, fuel gas can be obtained with high efficiency, environmental conservation is excellent, and there are many applicable raw material types. Therefore, there are many types of coal gasification combined power generation systems, coal gasification combined fuel cell combined power generation systems, etc. It is expected to be used for generation thermal power generation systems and hydrogen production systems used for coal liquefaction and chemical raw materials.

この種のガス化プラントに使用されるガス化炉には、微粉炭を噴射するためのバーナが設けられている。この種のバーナは、炉外から炉壁に形成される貫通孔に挿入され、先端部が炉内に突き出た状態で取り付けられている。   A gasification furnace used in this type of gasification plant is provided with a burner for injecting pulverized coal. This type of burner is inserted from the outside of the furnace into a through-hole formed in the furnace wall, and attached with its tip protruding into the furnace.

ところで、炉内に突き出たバーナの先端部は、灰の溶融温度以上の高温に曝されるだけでなく、溶融状態のスラグの付着、剥離等によって大きな熱負荷を受けることがある。このようにバーナの先端部が大きな熱負荷を受けた場合、熱疲労による割れや硫化腐食による減肉等が発生し、バーナの寿命が著しく低下する。そのため、この種のバーナは、燃料ノズルの外周面を同軸の円筒状の酸化剤供給管で包囲するとともに、その酸化剤供給管の外周面を冷却水が流れる冷却水管でさらに包囲する多重管構造が広く採用されている。   By the way, the tip of the burner protruding into the furnace is not only exposed to a high temperature higher than the melting temperature of ash, but may be subjected to a large heat load due to adhesion or peeling of molten slag. Thus, when the tip of the burner is subjected to a large heat load, cracks due to thermal fatigue, thinning due to sulfide corrosion, etc. occur, and the life of the burner is significantly reduced. Therefore, this type of burner surrounds the outer peripheral surface of the fuel nozzle with a coaxial cylindrical oxidant supply pipe, and further surrounds the outer peripheral surface of the oxidant supply pipe with a cooling water pipe through which cooling water flows. Is widely adopted.

特許文献1には、円筒状の酸化剤供給管の少なくとも炉内に露出する外周部分を小径の冷却水管で螺旋状に巻き回したバーナ構造が開示されている。このように冷却水管を流れる冷却水は比較的少ない水量で冷却水管の内面に対して均等かつ十分な流速を確保できるから、バーナの先端部分を効率良く冷却することができる。また、バーナは、炉内の熱の影響を受けて、長手方向にある程度伸び変形するが、特許文献1の構造によれば、冷却水管の冷却効果によって熱伸び変形が抑制されるだけでなく、炉外に設けられたシールエキスパンション構造によって、熱伸び変形が吸収される。   Patent Document 1 discloses a burner structure in which at least an outer peripheral portion of a cylindrical oxidant supply pipe exposed in the furnace is spirally wound with a small-diameter cooling water pipe. Thus, since the cooling water flowing through the cooling water pipe can ensure a uniform and sufficient flow velocity with respect to the inner surface of the cooling water pipe with a relatively small amount of water, the tip portion of the burner can be efficiently cooled. Further, the burner is affected by the heat in the furnace and is deformed to some extent in the longitudinal direction, but according to the structure of Patent Document 1, not only the heat elongation deformation is suppressed by the cooling effect of the cooling water pipe, The thermal expansion deformation is absorbed by the seal expansion structure provided outside the furnace.

特開平10−281414号公報Japanese Patent Laid-Open No. 10-281414

しかしながら、特許文献1では、酸化剤供給管の外周に巻き回した冷却水管の熱伸び変形について配慮されていないため、冷却水管が炉内で大きな熱負荷を受けると、熱伸び変形するおそれがある。すなわち、冷却水管は、炉外から炉壁の貫通孔を通されてバーナの先端側へ延びる冷却水入口管の先端側を屈曲させた後、酸化剤供給管の先端側の外周面から螺旋状に巻き回して形成される。このため、冷却水入口管はある程度拘束されるが、螺旋状の冷却水管はバーナの長手方向で殆ど拘束されない状態となっている。したがって、バーナの先端部が大きな熱負荷を受けると、冷却水管がバーナの長手方向に熱伸び変形を起こし、高温の炉内側に突き出てしまい、バーナの先端部が冷却不足となって熱損傷するおそれがある。   However, in Patent Document 1, since consideration is not given to the thermal expansion deformation of the cooling water pipe wound around the outer periphery of the oxidant supply pipe, there is a risk of thermal expansion deformation when the cooling water pipe receives a large heat load in the furnace. . That is, the cooling water pipe is spirally formed from the outer peripheral surface on the front end side of the oxidant supply pipe after bending the front end side of the cooling water inlet pipe extending from the outside of the furnace through the through hole of the furnace wall and extending to the front end side of the burner. It is formed by wrapping around. For this reason, although the cooling water inlet pipe is restrained to some extent, the spiral cooling water pipe is almost restrained in the longitudinal direction of the burner. Therefore, when the tip of the burner is subjected to a large heat load, the cooling water pipe undergoes thermal elongation deformation in the longitudinal direction of the burner and protrudes inside the high-temperature furnace, and the tip of the burner is insufficiently cooled and thermally damaged. There is a fear.

また、このように冷却水管が熱伸び変形した結果、バーナからの噴流が偏向されると、バーナの先端部に溶融スラグが付着し易くなり、その付着した溶融スラグが成長することでガス化炉の安定操業に支障をきたすおそれがある。   In addition, as a result of the cooling water pipe being deformed by thermal expansion in this way, when the jet flow from the burner is deflected, the molten slag is likely to adhere to the tip of the burner, and the adhered molten slag grows, thereby causing a gasification furnace. There is a risk of disturbing the stable operation of the plant.

これに対し、冷却水管を酸化剤供給管の外周面に溶接固定することで、冷却水管の熱伸び変形を抑制することが考えられる。しかし、溶接による固定部分は、冷却水管の表面と比べて温度が高くなり易いため、バーナの先端部が大きな熱負荷を受けた場合、固定部分に過大な熱応力が発生するだけでなく、高温酸化や硫化腐食による減肉等が発生し、冷却水管の熱損傷を引き起こすおそれがある。   On the other hand, it is conceivable to suppress thermal expansion deformation of the cooling water pipe by fixing the cooling water pipe to the outer peripheral surface of the oxidant supply pipe. However, since the temperature of the fixed part by welding is likely to be higher than the surface of the cooling water pipe, when the tip of the burner is subjected to a large heat load, not only excessive thermal stress is generated in the fixed part, but also the high temperature There is a risk of thinning due to oxidation or sulfidation corrosion, causing thermal damage to the cooling water pipe.

本発明は、酸化剤供給管の外周面に冷却水管を巻き回して形成されるバーナの先端部の熱損傷を抑制することを課題とする。   This invention makes it a subject to suppress the thermal damage of the front-end | tip part of the burner formed by winding a cooling water pipe around the outer peripheral surface of an oxidizing agent supply pipe.

上記課題を解決するため、本発明のバーナは、搬送気体により搬送される粉体燃料を噴出する円筒状の燃料ノズルと、この燃料ノズルの外周面を同軸に包囲する円筒状の酸化剤供給管と、この酸化剤供給管の外周面に巻き回される冷却水管とを備え、この冷却水管が密着して取り付けられる螺旋状の溝が酸化剤供給管の外周面に形成されるバーナにおいて、冷却水管は、酸化剤供給管の外周面の先端部に巻き回される少なくとも最初の1周が拡径するように重ねて形成され、この最初の1周の冷却水管と連通する冷却水入口管が酸化剤供給管の外周面から離れて設けられ、最初の1周の冷却水管を除く他の冷却水管の一部が、冷却水入口管又は酸化剤供給管の少なくとも一方に溶接固定されていることを特徴とする。   In order to solve the above problems, a burner according to the present invention includes a cylindrical fuel nozzle that ejects a pulverized fuel conveyed by a carrier gas, and a cylindrical oxidant supply pipe that coaxially surrounds the outer peripheral surface of the fuel nozzle. And a cooling water pipe wound around the outer peripheral surface of the oxidant supply pipe, and in a burner in which a spiral groove to which the cooling water pipe is closely attached is formed on the outer peripheral surface of the oxidant supply pipe, The water pipe is formed so that at least the first round wound around the tip of the outer peripheral surface of the oxidant supply pipe is expanded, and a cooling water inlet pipe communicating with the first round cooling water pipe is provided. A part of the other cooling water pipe except the first one round cooling water pipe is welded and fixed to at least one of the cooling water inlet pipe and the oxidant supply pipe. It is characterized by.

このように、酸化剤供給管に巻き回す冷却水管の少なくとも最初の1周を拡径するように重ねて形成することで、バーナの先端部の冷却効率を高めることができる。ここで、冷却水管の溶接による固定部分は、バーナの先端側ほど炉内の熱負荷の影響を強く受け、熱損傷し易いことから、最初の1周の冷却水管を溶接することなく、他の部分の冷却水管を溶接固定することで、溶接部分を基点とする冷却水管の熱損傷を防ぐとともに、最初の1周の冷却水管の拘束力を高めて、熱伸び変形を抑制することができる。また、最初の1周の冷却水管に溶接による固定部分を設けていないから、最初の1周の冷却水管が全周に渡って酸化剤供給管を均一に冷却することができ、バーナの先端部の冷却効率を高めることができる。したがって、本発明によれば、冷却水管の熱劣化と熱伸び変形を抑制できるから、バーナの先端部の冷却不足による熱損傷を防ぐことができ、ガス化炉を安定に操業することができる。   Thus, the cooling efficiency of the front-end | tip part of a burner can be improved by forming so that the diameter of at least the 1st round of the cooling water pipe wound around an oxidizing agent supply pipe may be expanded. Here, the fixed part by welding of the cooling water pipe is strongly influenced by the heat load in the furnace toward the tip of the burner, and is easily damaged by heat. Therefore, without welding the first cooling water pipe, By fixing the cooling water pipe of the portion by welding, it is possible to prevent thermal damage of the cooling water pipe with the welded portion as a base point, and to increase the binding force of the cooling water pipe of the first round and suppress the thermal elongation deformation. In addition, since the first one-round cooling water pipe is not provided with a fixing portion by welding, the first one-round cooling water pipe can uniformly cool the oxidant supply pipe over the entire circumference, and the tip of the burner The cooling efficiency can be increased. Therefore, according to the present invention, since thermal deterioration and thermal elongation deformation of the cooling water pipe can be suppressed, thermal damage due to insufficient cooling of the tip of the burner can be prevented, and the gasification furnace can be operated stably.

この場合において、燃料ノズルの外周面と酸化剤供給管の内周面との間に、燃料ノズルの外周面を同軸に包囲する円筒状の隔壁が設けられ、隔壁の内周面と燃料ノズルの外周面との間に酸化剤ガスが通流する空間が形成され、隔壁の外周面と酸化剤供給管の内周面との間に酸素を有しない気体が通流する空間が形成されてなるものとする。   In this case, a cylindrical partition that coaxially surrounds the outer peripheral surface of the fuel nozzle is provided between the outer peripheral surface of the fuel nozzle and the inner peripheral surface of the oxidant supply pipe. A space through which oxidant gas flows is formed between the outer peripheral surface, and a space through which gas without oxygen flows is formed between the outer peripheral surface of the partition wall and the inner peripheral surface of the oxidant supply pipe. Shall.

これによれば、酸素を有しない気体の通流と噴出に伴うバーナの先端部の冷却効果を得ることができるから、炉内の熱負荷の変動によるバーナの先端部の温度変動を抑制することができ、バーナの先端部の熱劣化をより確実に防ぐことができる。   According to this, since it is possible to obtain a cooling effect on the tip of the burner accompanying the flow and ejection of a gas that does not contain oxygen, it is possible to suppress temperature fluctuations at the tip of the burner due to fluctuations in the thermal load in the furnace. It is possible to more reliably prevent thermal deterioration of the tip of the burner.

本発明によれば、酸化剤供給管の外周面に冷却水管を巻き回して形成されるバーナの先端部の熱損傷を抑制することができ、ガス化炉の安定した操業を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal damage of the front-end | tip part of the burner formed by winding a cooling water pipe around the outer peripheral surface of an oxidizing agent supply pipe can be suppressed, and the stable operation | movement of a gasifier can be implement | achieved.

本発明が適用されるバーナの第1の実施形態の構成を示す図であり、(a)は正面図、(b)は断面図である。It is a figure which shows the structure of 1st Embodiment of the burner to which this invention is applied, (a) is a front view, (b) is sectional drawing. 本発明が適用されるバーナの第2の実施形態の構成を示す図であり、(a)は正面図、(b)は断面図である。It is a figure which shows the structure of 2nd Embodiment of the burner to which this invention is applied, (a) is a front view, (b) is sectional drawing.

(第1の実施形態)
以下、本発明を適用してなるバーナの第1の実施形態について、図1を参照して説明する。本実施形態のバーナは、微粉炭をガス化するガス化炉の炉壁に設けられるものとして説明するが、燃料と酸化剤ガスを噴出するガス化用バーナであれば、この例に限られるものではない。
(First embodiment)
Hereinafter, a first embodiment of a burner to which the present invention is applied will be described with reference to FIG. Although the burner of this embodiment is described as being provided on the furnace wall of a gasification furnace that gasifies pulverized coal, the burner is limited to this example as long as it is a gasification burner that ejects fuel and oxidant gas. is not.

本実施形態のバーナ1は、図示しないガス化炉の炉壁の貫通孔に挿入され、先端側を炉壁から炉内側に突き出した状態で炉壁に装着されている。このバーナ1は、窒素ガス等の搬送用ガスに同伴された微粉炭3を搬送する空間が形成される円筒状の燃料ノズル5と、この燃料ノズル5の外周を同軸で包囲して設けられる円筒状の酸化剤供給管7と、この酸化剤供給管7の外周面に沿って巻き回される小径の冷却水管9を備えて構成される。燃料ノズル5の外周面と酸化剤供給管7の内周面との間には、酸素や空気等の酸化剤ガス11が通流する円環状の流路が形成されている。   The burner 1 of this embodiment is inserted into a through-hole in a furnace wall of a gasification furnace (not shown), and is attached to the furnace wall in a state where the tip side protrudes from the furnace wall to the inside of the furnace. The burner 1 includes a cylindrical fuel nozzle 5 in which a space for transporting pulverized coal 3 accompanied by a transport gas such as nitrogen gas is formed, and a cylinder provided so as to coaxially surround the outer periphery of the fuel nozzle 5. And a small-diameter cooling water pipe 9 wound around the outer peripheral surface of the oxidant supply pipe 7. An annular channel is formed between the outer peripheral surface of the fuel nozzle 5 and the inner peripheral surface of the oxidant supply pipe 7 through which an oxidant gas 11 such as oxygen or air flows.

燃料ノズル5の内側の空間を搬送用ガスとともに通流する微粉炭3は、噴出口12から炉内に噴出され、燃料ノズル5の外周面と酸化剤供給管7の内周面との間の円環状の空間を通流する酸化剤ガス11は、燃料ノズル5の先端部の外側に同芯状に設けられる複数(本実施形態では8つ)の噴出孔14から炉内にそれぞれ噴出されるようになっている。   The pulverized coal 3 flowing along with the carrier gas through the space inside the fuel nozzle 5 is ejected into the furnace from the ejection port 12, and between the outer peripheral surface of the fuel nozzle 5 and the inner peripheral surface of the oxidant supply pipe 7. The oxidant gas 11 flowing through the annular space is ejected into the furnace from a plurality of (eight in this embodiment) ejection holes 14 provided concentrically outside the tip of the fuel nozzle 5. It is like that.

燃料ノズル5の先端部の外周面と酸化剤供給管7の先端部の内周面との隙間に形成される円環状の空間は、燃料ノズル5の軸方向に向かって所定の角度をなして形成される。すなわち、燃料ノズル5の先端部の外周面は、その先端側に向かって縮径する円錐状の傾斜面13をなして形成され、この傾斜面13と対向する酸化剤供給管7の先端部の内周面は、傾斜面13と一定の間隔を隔てた先窄みの傾斜面15をなして形成される。このように構成することで、噴出口12から炉内に噴出された微粉炭3と噴出孔14から炉内に噴出された酸化剤ガス11との接触効率が高められるため、微粉炭3と酸化剤ガス11が効率よく反応してガス化効率を高めることができる。   An annular space formed in the gap between the outer peripheral surface of the front end portion of the fuel nozzle 5 and the inner peripheral surface of the front end portion of the oxidant supply pipe 7 forms a predetermined angle toward the axial direction of the fuel nozzle 5. It is formed. That is, the outer peripheral surface of the tip portion of the fuel nozzle 5 is formed as a conical inclined surface 13 whose diameter is reduced toward the tip side, and the tip portion of the oxidant supply pipe 7 facing the inclined surface 13 is formed. The inner peripheral surface is formed as a tapered inclined surface 15 spaced apart from the inclined surface 13 by a certain distance. By comprising in this way, since the contact efficiency of the pulverized coal 3 ejected in the furnace from the jet nozzle 12 and the oxidant gas 11 ejected in the furnace from the ejection hole 14 is improved, pulverized coal 3 and oxidation The agent gas 11 can react efficiently to increase the gasification efficiency.

酸化剤供給管7の外周面には、冷却水管9が装着される溝17が螺旋状に形成されている。溝17は、溝断面が半円状に形成され、断面円形の冷却水管9が溝17内に密着して取り付けられるようになっている。   On the outer peripheral surface of the oxidant supply pipe 7, a groove 17 in which the cooling water pipe 9 is mounted is formed in a spiral shape. The groove 17 has a semicircular cross section, and the cooling water pipe 9 having a circular cross section is attached in close contact with the groove 17.

一方、酸化剤供給管7は、先端部の内周面が傾斜面15をなしているため、その裏側の外周面は先端側に向かって縮径する円錐状の傾斜面19をなしている。ここで、バーナの先端部分に溝17を形成しようとする場合、本実施形態のように複雑な形状を有する先端部に半円状の溝17を形成することは、加工技術的に困難を極める。そのため、最先端に形成される溝17aは、図1に示すように、その先端側の約半分が傾斜面19と連なって先端側に開放された断面形状となっている。   On the other hand, since the inner peripheral surface of the tip of the oxidant supply pipe 7 forms an inclined surface 15, the outer peripheral surface on the back side thereof forms a conical inclined surface 19 whose diameter decreases toward the tip side. Here, when the groove 17 is to be formed at the tip portion of the burner, it is extremely difficult to form the semicircular groove 17 at the tip portion having a complicated shape as in the present embodiment. . Therefore, as shown in FIG. 1, the groove 17 a formed at the foremost end has a cross-sectional shape in which about half of the front end side is continuous with the inclined surface 19 and opened to the front end side.

冷却水管9は、炉外から炉壁を貫通させて炉内の酸化剤供給管7の先端側へ延びる冷却水入口管21の先端側を屈曲させて、酸化剤供給管7の外周面の先端側から外周面に螺旋状に巻き回して形成される。冷却水管9は、酸化剤供給管7に巻き回される最初の1周が周方向に拡径するように2重に巻き回されている。この2重に巻き回される内巻き管23と外巻き管25は、互いに周方向で重なり合って設けられ、内巻き管23は、溝17aと密着した状態となっている。本実施形態では、炉外側から冷却水入口管21を経由して供給された冷却水27は、外巻き管25、内巻き管23の順に冷却水管9の最初の1周を流れた後、2周以降の冷却水管9に経由して螺旋状に流れて、炉外に戻される。   The cooling water pipe 9 is bent at the front end side of the cooling water inlet pipe 21 that penetrates the furnace wall from the outside of the furnace and extends to the front end side of the oxidant supply pipe 7 in the furnace, and the front end of the outer peripheral surface of the oxidant supply pipe 7. It is formed by spirally winding from the side to the outer peripheral surface. The cooling water pipe 9 is wound twice so that the first round wound around the oxidant supply pipe 7 is expanded in the circumferential direction. The inner winding tube 23 and the outer winding tube 25 wound twice are provided so as to overlap each other in the circumferential direction, and the inner winding tube 23 is in close contact with the groove 17a. In this embodiment, the cooling water 27 supplied from the outside of the furnace via the cooling water inlet pipe 21 flows through the first round of the cooling water pipe 9 in the order of the outer winding pipe 25 and the inner winding pipe 23, and then 2 It flows spirally through the cooling water pipe 9 after the circumference and returns to the outside of the furnace.

本実施形態では、冷却水管9の最初の1周を2重に巻き回しているが、2重に限らず、例えば3重以上で巻き回すこともできる。また、冷却水管9は、最初の1周に加えて、2周目以降も同様に重ねて巻き回すこともできる。   In the present embodiment, the first round of the cooling water pipe 9 is wound twice. However, the cooling water pipe 9 is not limited to double, and can be wound, for example, three or more times. In addition to the first round, the cooling water pipe 9 can also be wound in the same manner after the second round.

冷却水管9は、溝17内に密着して取り付けられるため、バーナ1の長手方向に対してある程度拘束される。そのため、炉内温度の変動や溶融スラグの付着、剥離の繰り返し等によってバーナ1の先端部が炉内から受ける熱負荷が大きくなった場合でも、冷却水管9が酸化剤供給管7に対して、酸化剤供給管7の長手方向に熱伸び変形して高温の炉内へ突き出ることが抑制される。よって、バーナ1の先端部を炉内の熱負荷から保護することができる。また、このように冷却水管9の熱伸び変形を抑えることで、バーナ1からの噴流の偏向を抑制することができるから、バーナ1の先端部に溶融スラグが付着して成長するのを防ぐことができる。さらに、溝17は、冷却水管9の形状に合わせて形成されるため、冷却水管9と酸化剤供給管7の外周壁との接触面積が最大限確保され、しかも溝17のフィン効果により伝熱が促進されるため、バーナ1の冷却効率を高めることができる。   Since the cooling water pipe 9 is attached in close contact with the groove 17, the cooling water pipe 9 is restricted to some extent in the longitudinal direction of the burner 1. Therefore, even when the thermal load that the tip of the burner 1 receives from the inside of the furnace becomes large due to fluctuations in the furnace temperature, adhesion of molten slag, repeated peeling, etc., the cooling water pipe 9 is applied to the oxidant supply pipe 7. It is suppressed that the oxidant supply pipe 7 is thermally stretched and deformed in the longitudinal direction and protrudes into a high-temperature furnace. Therefore, the front-end | tip part of the burner 1 can be protected from the heat load in a furnace. Further, since the deflection of the jet flow from the burner 1 can be suppressed by suppressing the thermal expansion deformation of the cooling water pipe 9 in this way, it is possible to prevent the molten slag from adhering to the tip of the burner 1 and growing. Can do. Further, since the groove 17 is formed according to the shape of the cooling water pipe 9, the maximum contact area between the cooling water pipe 9 and the outer peripheral wall of the oxidant supply pipe 7 is ensured, and heat transfer is performed by the fin effect of the groove 17. Therefore, the cooling efficiency of the burner 1 can be increased.

また、本実施形態では、冷却水管9は、最初の1周が拡径方向に重ねて2重に巻き回されるため、バーナ1の先端部の冷却効率を高めることができる。特に、バーナ1と炉壁の貫通孔との間に間隙があると、この間隙を基点としてスラグの付着、成長が生じ易くなるが、バーナ1の最先端部で冷却水管9を2重に巻き回すことで、バーナ1と貫通孔との間の間隙を小さくできるから、間隙を基点とするスラグの付着、成長を防ぐことができる。   Further, in the present embodiment, the cooling water pipe 9 can be increased in the cooling efficiency of the tip end portion of the burner 1 because the first round is overlapped in the diameter increasing direction and is wound twice. In particular, if there is a gap between the burner 1 and the through-hole in the furnace wall, slag is likely to adhere and grow with this gap as the starting point. By turning, the gap between the burner 1 and the through-hole can be reduced, so that it is possible to prevent the slag from adhering to and growing from the gap.

ところで、冷却水管9は、溝内に密着して取り付けられるため、バーナ1の長手方向に対してある程度拘束されるが、内巻き管23と外巻き管25との間、及び、内巻き管23と溝17aとの間は、何ら拘束されていない(内巻き管23は、先端側に向かって開放された溝17aと密着しているだけなので、バーナ1の長手方向で拘束されていない)。そのため、冷却水管9の最初の1周が熱伸び変形すると、バーナ1の先端部分の冷却効果が失われ、バーナ1の先端部分の熱損傷を引き起こすおそれがある。   By the way, since the cooling water pipe 9 is attached in close contact with the groove, the cooling water pipe 9 is restrained to some extent in the longitudinal direction of the burner 1, but between the inner winding pipe 23 and the outer winding pipe 25 and between the inner winding pipe 23. And the groove 17a are not restrained at all (the inner tube 23 is only in close contact with the groove 17a opened toward the distal end side, and is not restrained in the longitudinal direction of the burner 1). Therefore, when the first round of the cooling water pipe 9 is deformed by thermal expansion, the cooling effect of the tip portion of the burner 1 is lost, and there is a risk of causing thermal damage to the tip portion of the burner 1.

この点、本実施形態の冷却水管9は、酸化剤供給管7に巻き回される2周目の冷却水管9が、酸化剤供給管7の外周面と離れて配置される冷却水入口管21との間で、溶接固定部29により溶接固定されている。ここで、冷却水管9は、最初の1周の冷却水管9に溶接固定部を設けていないことが重要である。すなわち、冷却水管9の溶接固定部29は、冷却水管9の表面よりも温度が上がり易く、バーナ1の先端側ほど炉内の熱負荷の影響を受けて温度が上がり易いため、最初の1周の冷却水管9は溶接することなく、2周目以降の冷却水管9を溶接固定する。これにより、溶接固定部29を基点とする冷却水管9の熱損傷を防ぎながら、最初の1周の冷却水管9をある程度の拘束力で拘束することができる。その結果、冷却水管9の最初の1周が過度に熱伸び変形してバーナ1の先端部の冷却不良が生じたり、熱伸び変形した冷却水管9によってバーナ1の噴流を阻害することがなくなる。また、最初の1周の冷却水管9は、溶接固定部を設けていないことから、酸化剤供給管7を周方向で均一かつ効率的に冷却することができる。したがって、本実施形態によれば、冷却水管9によるバーナ1の先端部の冷却効率が高められることに加えて、冷却水管9の熱劣化と熱伸び変形を抑制できるから、バーナ1の先端部の冷却不足による熱損傷を防ぐことができ、安定した操業を実現できる。   In this respect, the cooling water pipe 9 of the present embodiment has a cooling water inlet pipe 21 in which the second cooling water pipe 9 wound around the oxidant supply pipe 7 is arranged away from the outer peripheral surface of the oxidant supply pipe 7. Are fixed by welding with a welding fixing portion 29. Here, it is important that the cooling water pipe 9 is not provided with a weld fixing portion in the cooling water pipe 9 of the first round. That is, the temperature of the weld fixing portion 29 of the cooling water pipe 9 is more likely to rise than the surface of the cooling water pipe 9, and the temperature tends to rise due to the influence of the heat load in the furnace toward the tip of the burner 1. The cooling water pipe 9 is welded and fixed for the second and subsequent rounds without welding. Thereby, the cooling water pipe 9 of the first round can be restrained with a certain restraining force while preventing the heat damage of the cooling water pipe 9 with the weld fixing portion 29 as a base point. As a result, the first round of the cooling water pipe 9 is not excessively thermally deformed to cause poor cooling at the tip of the burner 1 or the jet of the burner 1 is not obstructed by the cooling water pipe 9 that has been deformed by heat. Moreover, since the cooling water pipe 9 of the first round does not have a welding fixing part, the oxidant supply pipe 7 can be cooled uniformly and efficiently in the circumferential direction. Therefore, according to the present embodiment, the cooling efficiency of the tip end portion of the burner 1 by the cooling water pipe 9 can be increased, and the thermal deterioration and thermal elongation deformation of the cooling water pipe 9 can be suppressed. Thermal damage due to insufficient cooling can be prevented, and stable operation can be realized.

本実施形態では、溶接固定部29をバーナ1の先端部の直前部、つまり冷却水管9の2周目に設けているが、溶接固定部29を設ける位置は、最初の1周を除けば、2周目の位置に限定されるものではなく、例えば、3周目以降の冷却水管9と冷却水入口管21を溶接固定してもよい。また、冷却水管9と溶接固定する相手部材は、冷却水入口管21に限られるものではなく、例えば、冷却水管9を酸化剤供給管7の外周面と溶接固定してもよい。さらに、冷却水管9の溶接固定部29は、1箇所に限定されるものではなく、複数箇所に設けてもよい。   In this embodiment, the welding fixing portion 29 is provided immediately before the tip of the burner 1, that is, on the second turn of the cooling water pipe 9, but the position where the welding fixing portion 29 is provided except for the first round, For example, the cooling water pipe 9 and the cooling water inlet pipe 21 in the third and subsequent rounds may be fixed by welding. Further, the mating member to be welded and fixed to the cooling water pipe 9 is not limited to the cooling water inlet pipe 21. For example, the cooling water pipe 9 may be welded to the outer peripheral surface of the oxidant supply pipe 7. Furthermore, the welding fixing part 29 of the cooling water pipe 9 is not limited to one place, and may be provided at a plurality of places.

(第2の実施形態)
次に、本発明を適用してなるバーナの第2の実施形態について、図2を参照して説明する。本実施形態では第1の実施形態と異なる構成について説明し、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the burner to which the present invention is applied will be described with reference to FIG. In this embodiment, a configuration different from that of the first embodiment will be described, and the same components as those of the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

本実施形態のバーナ31は、燃料ノズル33の外周面と酸化剤供給管35の内周面との間に燃料ノズル33の外周面を同軸に包囲する円筒状の隔壁37を配置し、燃料ノズル33の外周面と隔壁37の内周面との間に酸化剤ガス11が通流する円環状の空間を形成し、隔壁37の外周面と酸化剤供給管35の内周面との間に酸素を含有しない気体39が通流する円環状の空間を形成している点で、第1の実施形態と相違する。ここで、気体39とは、酸素を含有しない気体を意味し、例えば、窒素、炭酸ガス等の不活性ガス、水蒸気又はガス化炉で発生する生成ガスの一部等を用いることができる。   In the burner 31 of this embodiment, a cylindrical partition wall 37 that coaxially surrounds the outer peripheral surface of the fuel nozzle 33 is disposed between the outer peripheral surface of the fuel nozzle 33 and the inner peripheral surface of the oxidant supply pipe 35. An annular space through which the oxidant gas 11 flows is formed between the outer peripheral surface of 33 and the inner peripheral surface of the partition wall 37, and between the outer peripheral surface of the partition wall 37 and the inner peripheral surface of the oxidant supply pipe 35. This is different from the first embodiment in that an annular space through which a gas 39 not containing oxygen flows is formed. Here, the gas 39 means a gas that does not contain oxygen, and for example, an inert gas such as nitrogen or carbon dioxide gas, water vapor, or a part of a generated gas generated in a gasification furnace can be used.

燃料ノズル33の内側の空間を搬送用ガスとともに通流する微粉炭3は、噴出口40から炉内に噴出され、燃料ノズル33の外周面と隔壁37の内周面との間の空間を通流する酸化剤ガス11は、燃料ノズル33の外側に同芯状に設けられる複数(本実施形態では8つ)の噴出孔42から炉内に噴出され、隔壁37の外周面と酸化剤供給管35の内周面との間の空間を通流する気体39は、円環状の噴出口44から炉内に噴出されるようになっている。   The pulverized coal 3 flowing through the space inside the fuel nozzle 33 together with the carrier gas is jetted into the furnace from the jet port 40 and passes through the space between the outer peripheral surface of the fuel nozzle 33 and the inner peripheral surface of the partition wall 37. The flowing oxidant gas 11 is ejected into the furnace through a plurality of (eight in this embodiment) ejection holes 42 provided concentrically outside the fuel nozzle 33, and the outer peripheral surface of the partition wall 37 and the oxidant supply pipe. The gas 39 flowing through the space between the inner peripheral surface 35 is ejected from the annular ejection port 44 into the furnace.

また、第1の実施形態で説明した燃料ノズル5の先端部と酸化剤供給管7の先端部にそれぞれ形成される傾斜面13,15は、本実施形態の場合、それぞれ燃料ノズル33の先端部の傾斜面41と隔壁37の先端部の傾斜面43に相当し、酸化剤ガス11は、傾斜面41と傾斜面43との間の流路を流れて噴出孔42から燃料ノズル33の軸芯方向に向かってそれぞれ噴出するようになっている。   In addition, in the present embodiment, the inclined surfaces 13 and 15 formed at the tip of the fuel nozzle 5 and the tip of the oxidant supply pipe 7 described in the first embodiment are respectively the tip of the fuel nozzle 33. The oxidant gas 11 flows through the flow path between the inclined surface 41 and the inclined surface 43 and flows from the ejection hole 42 to the axial center of the fuel nozzle 33. It is designed to erupt in the direction.

本実施形態によれば、第1の実施形態と同様の作用及び効果を得ることができる。また、このように気体39を噴出させる構造を有することで、気体39の通流と噴出に伴うバーナ31の先端部の冷却効果を得ることができ、先端部の温度変動を抑制することができる。また、気体39の噴出によるブロー効果により、バーナ31の先端部への溶融スラグの付着、成長を抑制することができる。   According to the present embodiment, the same operation and effect as the first embodiment can be obtained. Moreover, by having the structure which ejects the gas 39 in this way, the cooling effect of the front-end | tip part of the burner 31 accompanying the flow and ejection of the gas 39 can be acquired, and the temperature fluctuation of a front-end | tip part can be suppressed. . In addition, due to the blowing effect caused by the ejection of the gas 39, adhesion and growth of the molten slag to the tip portion of the burner 31 can be suppressed.

加えて、本実施形態では、酸化剤ガス11が通流する流路を取り囲むように気体39が通流する流路を形成しているため、炉内に噴出された酸化剤ガス11の外側には、酸素を含まない気体39の筒状の幕が形成される。このように気体39の幕を形成することにより、炉内で生成された可燃性ガスと酸化剤ガス11との接触を抑制することができるため、可燃性ガスの回収率を向上させることができる。また、バーナ31の先端部の近傍で、可燃性ガスと酸化剤ガス11とが反応することによる高温場の発生を防ぐことができるため、バーナ31の先端部の熱損傷を防ぐことができる。   In addition, in this embodiment, since the flow path through which the gas 39 flows is formed so as to surround the flow path through which the oxidant gas 11 flows, outside the oxidant gas 11 injected into the furnace. Forms a cylindrical curtain of gas 39 which does not contain oxygen. By forming the curtain of the gas 39 in this way, contact between the combustible gas generated in the furnace and the oxidant gas 11 can be suppressed, so that the recovery rate of the combustible gas can be improved. . Moreover, since generation | occurrence | production of the high temperature field by the combustible gas and the oxidizing gas 11 reacting in the vicinity of the front-end | tip part of the burner 31 can be prevented, the thermal damage of the front-end | tip part of the burner 31 can be prevented.

以上、本発明の実施形態を図面により詳述してきたが、上記実施形態は本発明の例示にしか過ぎないものであり、本発明は上記実施形態の構成にのみ限定されるものではない。本発明の要旨を逸脱しない範囲の設計の変更等があっても、本発明に含まれることは勿論である。   As mentioned above, although embodiment of this invention has been explained in full detail with drawing, the said embodiment is only an illustration of this invention and this invention is not limited only to the structure of the said embodiment. Needless to say, changes in design and the like within the scope of the present invention are included in the present invention.

例えば、バーナ1,31の先端部には、それぞれ酸化剤ガス11が通流する流路を傾斜させて形成する例を説明したが、このように傾斜構造を設けずに、燃料ノズル5,33に対して、酸化剤供給管7や隔壁37をストレートの構造として形成してもよい。   For example, an example in which the flow path through which the oxidant gas 11 flows is formed at the tip of the burners 1 and 31 has been described, but the fuel nozzles 5 and 33 are not provided with such an inclined structure. On the other hand, you may form the oxidizing agent supply pipe | tube 7 and the partition 37 as a straight structure.

1,31 バーナ
3 微粉炭
5,33 燃料ノズル
7,35 酸化剤供給管
9 冷却水管
11 酸化剤ガス
17 溝
21 冷却水入口管
23 内巻き管
25 外巻き管
27 冷却水
29 溶接固定部
37 隔壁
39 気体
DESCRIPTION OF SYMBOLS 1,31 Burner 3 Pulverized coal 5,33 Fuel nozzle 7,35 Oxidant supply pipe 9 Cooling water pipe 11 Oxidant gas 17 Groove 21 Cooling water inlet pipe 23 Inner winding pipe 25 Outer winding pipe 27 Cooling water 29 Welding fixing part 37 Partition 39 Gas

Claims (2)

搬送気体により搬送される粉体燃料を噴出する円筒状の燃料ノズルと、この燃料ノズルの外周面を同軸に包囲する円筒状の酸化剤供給管と、この酸化剤供給管の外周面に巻き回される冷却水管とを備え、この冷却水管が密着して取り付けられる螺旋状の溝が前記酸化剤供給管の外周面に形成されるバーナにおいて、
前記冷却水管は、前記酸化剤供給管の外周面の先端部に巻き回される少なくとも最初の1周が拡径するように重ねて形成され、この最初の1周の冷却水管と連通する冷却水入口管が前記酸化剤供給管の外周面から離れて設けられ、
前記最初の1周の冷却水管を除く他の前記冷却水管の一部が、前記冷却水入口管又は前記酸化剤供給管の少なくとも一方に溶接固定されていることを特徴とするバーナ。
A cylindrical fuel nozzle that ejects pulverized fuel conveyed by the carrier gas, a cylindrical oxidant supply pipe that coaxially surrounds the outer peripheral surface of the fuel nozzle, and a wrap around the outer peripheral surface of the oxidant supply pipe A burner in which a spiral groove to which the cooling water pipe is closely attached is formed on the outer peripheral surface of the oxidant supply pipe.
The cooling water pipe is formed so that at least the first round wound around the tip of the outer peripheral surface of the oxidant supply pipe is expanded, and the cooling water communicated with the cooling water pipe of the first round. An inlet pipe is provided apart from the outer peripheral surface of the oxidant supply pipe;
A part of the cooling water pipe other than the first round cooling water pipe is welded and fixed to at least one of the cooling water inlet pipe or the oxidant supply pipe.
前記燃料ノズルの外周面と前記酸化剤供給管の内周面との間に、前記燃料ノズルの外周面を同軸に包囲する円筒状の隔壁が設けられ、
前記隔壁の内周面と前記燃料ノズルの外周面との間に酸化剤ガスが通流する空間が形成され、前記隔壁の外周面と前記酸化剤供給管の内周面との間に酸素を有しない気体が通流する空間が形成されてなる請求項1に記載のバーナ。
Between the outer peripheral surface of the fuel nozzle and the inner peripheral surface of the oxidant supply pipe, a cylindrical partition wall that coaxially surrounds the outer peripheral surface of the fuel nozzle is provided,
A space through which oxidant gas flows is formed between the inner peripheral surface of the partition wall and the outer peripheral surface of the fuel nozzle, and oxygen is provided between the outer peripheral surface of the partition wall and the inner peripheral surface of the oxidant supply pipe. The burner according to claim 1, wherein a space through which a gas that does not exist flows is formed.
JP2012285969A 2012-12-27 2012-12-27 Burner Active JP6066719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285969A JP6066719B2 (en) 2012-12-27 2012-12-27 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285969A JP6066719B2 (en) 2012-12-27 2012-12-27 Burner

Publications (2)

Publication Number Publication Date
JP2014126354A true JP2014126354A (en) 2014-07-07
JP6066719B2 JP6066719B2 (en) 2017-01-25

Family

ID=51405986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285969A Active JP6066719B2 (en) 2012-12-27 2012-12-27 Burner

Country Status (1)

Country Link
JP (1) JP6066719B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447991Y1 (en) * 1968-05-14 1969-03-27
JPS4974693A (en) * 1972-10-31 1974-07-18
JPS5949415A (en) * 1982-08-12 1984-03-22 テキサコ・デベロツプメント・コ−ポレ−シヨン Burner
JPH0670507A (en) * 1992-08-07 1994-03-11 Nippondenso Co Ltd Liquid-cooled electric rotary machine
JPH0742356U (en) * 1993-12-29 1995-08-04 石川島播磨重工業株式会社 Adjustable tip clearance burner for coal gasifier
JPH0979094A (en) * 1995-09-14 1997-03-25 Unisia Jecs Corp Flow control valve for recirculating exhaust gas
JPH10281414A (en) * 1997-04-04 1998-10-23 Mitsubishi Heavy Ind Ltd Burner for gasification furnace
JP2003314991A (en) * 2002-04-09 2003-11-06 Snecma Propulsion Solide Structure for high-temperature heat exchanger
US20100037613A1 (en) * 2008-08-13 2010-02-18 James Purdue Masso Fuel injector and method of assembling the same
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
US20120132725A1 (en) * 2010-11-30 2012-05-31 General Electric Company Fuel injector having tip cooling
JP2013024425A (en) * 2011-07-14 2013-02-04 Electric Power Dev Co Ltd Burner

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS447991Y1 (en) * 1968-05-14 1969-03-27
JPS4974693A (en) * 1972-10-31 1974-07-18
JPS5949415A (en) * 1982-08-12 1984-03-22 テキサコ・デベロツプメント・コ−ポレ−シヨン Burner
JPH0670507A (en) * 1992-08-07 1994-03-11 Nippondenso Co Ltd Liquid-cooled electric rotary machine
JPH0742356U (en) * 1993-12-29 1995-08-04 石川島播磨重工業株式会社 Adjustable tip clearance burner for coal gasifier
JPH0979094A (en) * 1995-09-14 1997-03-25 Unisia Jecs Corp Flow control valve for recirculating exhaust gas
JPH10281414A (en) * 1997-04-04 1998-10-23 Mitsubishi Heavy Ind Ltd Burner for gasification furnace
JP2003314991A (en) * 2002-04-09 2003-11-06 Snecma Propulsion Solide Structure for high-temperature heat exchanger
US20100037613A1 (en) * 2008-08-13 2010-02-18 James Purdue Masso Fuel injector and method of assembling the same
JP2010255892A (en) * 2009-04-22 2010-11-11 Electric Power Dev Co Ltd Gasification burner, and method of supplying fuel for gasification burner
US20120132725A1 (en) * 2010-11-30 2012-05-31 General Electric Company Fuel injector having tip cooling
JP2013024425A (en) * 2011-07-14 2013-02-04 Electric Power Dev Co Ltd Burner

Also Published As

Publication number Publication date
JP6066719B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5818550B2 (en) Gasification burner
CN102538013B (en) There is the fuel injector of tip cooling
JP2010255892A (en) Gasification burner, and method of supplying fuel for gasification burner
CN102171514B (en) Slag melting burner apparatus
US20150300634A1 (en) Burner tip and burner
JP2010065963A (en) Combustor, method of supplying fuel to the same, and method of modifying the same
JP4739090B2 (en) Burner or lance cooling structure
CN101949538A (en) Combustion nozzle with internal cooling channel and external cooling channel for gasifying powdery carbon fuel
CN104471080B (en) Method for operating blast furnace and bundled tube spray gun
WO2017158636A1 (en) Gas turbine apparatus
US9033259B2 (en) Method and system for mixing reactor feed
JP2013227976A (en) Combustor and method for assembling combustor
JP5959811B2 (en) Burner
US20150300633A1 (en) Burner tip and burner
JP6066719B2 (en) Burner
US9422488B2 (en) System having a fuel injector with tip cooling
JP5425543B2 (en) Burner
JP2010106132A (en) Solid fuel gasification burner and gasification furnace equipped with the same
JP6847700B2 (en) Gasifier with burner and burner and how to install the burner
JP6003535B2 (en) Blast furnace operation method and blast furnace tuyere lance
US20120317992A1 (en) Feed injector for gasification system
JP6242522B1 (en) Burner and manufacturing method thereof
JP6902898B2 (en) Burner
JP7236331B2 (en) Burner tip and burner with same
JP2004075438A (en) Reformer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250