JP2013024322A - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP2013024322A
JP2013024322A JP2011159300A JP2011159300A JP2013024322A JP 2013024322 A JP2013024322 A JP 2013024322A JP 2011159300 A JP2011159300 A JP 2011159300A JP 2011159300 A JP2011159300 A JP 2011159300A JP 2013024322 A JP2013024322 A JP 2013024322A
Authority
JP
Japan
Prior art keywords
outer ring
trunnion
support beam
toroidal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011159300A
Other languages
Japanese (ja)
Other versions
JP5830999B2 (en
Inventor
Shin Yamamoto
慎 山本
Toshiro Toyoda
俊郎 豊田
Takashi Imanishi
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011159300A priority Critical patent/JP5830999B2/en
Publication of JP2013024322A publication Critical patent/JP2013024322A/en
Application granted granted Critical
Publication of JP5830999B2 publication Critical patent/JP5830999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a structure facilitated in manufacture of parts, management of parts and assembling work, easy to reduce costs, and can stabilize the speed changing operation.SOLUTION: A spacing between a pair of step surfaces 26a and 26b, which are provided per trunnion 7b, is gradually changed in the rocking direction of each outer ring 16b around each support beam part 23. Size of the spacing is set at a neutral value, at which displacement of each outer ring 16b in the axial direction of each support beam part 23 can be prevented in a part facing the outer peripheral surface of each outer ring 16b in a condition wherein a pushing device dose not generate the pushing force and each outer ring 16b exist at a neutral position. Further, in a condition wherein the pushing device generates the pushing force and each outer ring 16b is displaced by rocking around each support beam part 23, the size of the spacing is set at a value larger than the neutral value in a part facing the outer peripheral surface of each outer ring 16b.

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、ハーフトロイダル型のトロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to improvement of a half toroidal toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図11〜12は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を自在に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を自在に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を自在に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. FIGS. 11 to 12 show a first example of a toroidal type continuously variable transmission that is described in each of these patent documents and has been widely known. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is freely supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to freely rotate with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports rotation synchronized with the motor. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、前記各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアルニードル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6, 6 each having a spherical convex surface are sandwiched between the input disks 2, 2 and the output disks 5, 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each trunnion 7, 7 is composed of a pair of tilting shafts 8, 8 provided concentrically with each other at both axial ends, and a support beam existing between these tilting shafts 8, 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial needle bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸12、12と、複数の転がり軸受とを介して、これら各支持軸12、12の先半部回りの回転、及び、これら各支持軸12、12の基半部を中心とする若干の揺動変位自在に支持されている。この様な各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、それぞれが前記複数の転がり軸受の一部である、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、これら各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容するものである。前記各スラスト玉軸受13、13は、これら各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動自在に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各支持軸12、12の先半部が、これら各支持軸12、12の基半部を中心に揺動する事を許容するものである。   Each of the power rollers 6 and 6 includes support shafts 12 and 12 in which the base half portion and the tip half portion are eccentric to each other on the inner surface of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. Via a plurality of rolling bearings, the support shafts 12 and 12 are supported so as to be able to rotate around the front half of each of the support shafts 12 and 12 and to be slightly oscillated and displaced about the base half of each of the support shafts 12 and 12. ing. Between the outer side surfaces of the power rollers 6 and 6 and the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, each is a part of the plurality of rolling bearings. The thrust ball bearings 13 and 13 and the thrust needle bearings 14 and 14 are provided in order from the power rollers 6 and 6 side. Among these, the thrust ball bearings 13 and 13 allow the rotation of the power rollers 6 and 6 while supporting the load in the thrust direction applied to the power rollers 6 and 6. Each thrust ball bearing 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be freely rollable. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. The front half of each of the support shafts 12 and 12 is allowed to swing around the base half of each of the support shafts 12 and 12.

上述の様なトロイダル型無段変速機の運転時には、駆動軸19により一方(図11の左方)の入力ディスク2を、押圧装置20を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1と前記出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ21、21により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。   During operation of the toroidal-type continuously variable transmission as described above, one input disk 2 (left side in FIG. 11) is rotationally driven by the drive shaft 19 via the pressing device 20. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 21, 21. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置20が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 20. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. The pressing force generated by the pressing device 20 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 12 and 12 that support the power rollers 6 and 6 is also oscillated and displaced about the base half as well. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献3には、図13〜18に示す様な構造が記載されている。本発明は、この図13〜18に示した従来構造の第2例を改良するものであるから、次に、この従来構造の第2例に就いて説明する。この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、入力、出力各ディスク2、5(図11参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての構造及び作用は、前述の図11〜12に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 3 describes a structure as shown in FIGS. Since the present invention improves the second example of the conventional structure shown in FIGS. 13 to 18, the second example of the conventional structure will be described next. The feature of the second example of this conventional structure is the structure of the portion that supports the trunnion 7a so that the power roller 6a can be displaced in the axial direction of the input and output disks 2, 5 (see FIG. 11). The overall structure and operation of the toroidal type continuously variable transmission are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5(図11参照)の径方向(図14、16〜18の上下方向)に関する内側(図14、17〜18の上側)の側面を円筒状凸面22とした、支持梁部23とを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図12参照)に、揺動を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least A support having a cylindrical convex surface 22 on the inner side (upper side in FIGS. 14 and 17 to 18) in the radial direction (up and down direction in FIGS. 14 and 16 to 18) of the input and output disks 2 and 5 (see FIG. 11). And a beam portion 23. The two tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 12) via the radial needle bearings 11a and 11a, respectively, so as to be swingable.

又、前記円筒状凸面22の中心軸イは、図14、17〜18に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図14、17〜18の下側)に存在する。又、前記支持梁部23とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部24を、この外側面を径方向に横切る状態で設けている。そして、この凹部24と、前記支持梁部23の円筒状凸面22とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 14 and 17 to 18, the central axis A of the cylindrical convex surface 22 is parallel to the central axis B of the two tilting shafts 8a and 8b, and the center of these tilting shafts 8a and 8b. It exists on the outer side (the lower side of FIGS. 14 and 17 to 18) in the radial direction of each of the disks 2 and 5 with respect to the axis B. Further, a concave portion 24 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 23 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 24 and the cylindrical convex surface 22 of the said support beam part 23 are engaged, and the said outer ring 16a is rockable displacement about the axial direction of each said disks 2 and 5 with respect to the said trunnion 7a. I support it.

又、前記外輪16aの内側面中央部に支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこの支持軸12aの周囲に、ラジアルニードル軸受25を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部23の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面26、26を設けている。そして、これら両段差面26、26と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面26、26で支承可能としている。   Further, a support shaft 12a is fixed to the center of the inner surface of the outer ring 16a integrally with the outer ring 16a, and the power roller 6a is rotatable around the support shaft 12a via a radial needle bearing 25. I support it. Furthermore, a pair of stepped surfaces 26 and 26 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both end portions of the support beam portion 23 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 26, 26 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and any traction force applied from the power roller 6a to the outer ring 16a is selected. These step surfaces 26 and 26 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部24と支持梁部23の円筒状凸面22との当接面を滑らせつつ、この円筒状凸面22の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, during operation of the toroidal continuously variable transmission, the power rollers 6a are displaced in the axial direction of the disks 2 and 5 based on elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When necessary, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 24 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 22 of the support beam portion 23. The sliding surface of the cylindrical convex surface 22 is oscillated and displaced about the central axis a. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面22の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面22の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 22 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 22 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図13〜18に示した従来構造の第2例の場合、図11〜12に示した同第1例に比べて、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易いが、変速動作を安定させる面からは、改良の余地がある。この理由は、前記各支持梁部23を中心とする前記各外輪16aの揺動変位を円滑に行わせる為、これら各支持梁部23の両端部分に1対ずつ設けた、前記各段差面26、26同士の間隔Dを、前記各外輪16aの外径dよりも少し大きく(D>d)する為である。これら各外輪16a、及び、これら各外輪16aと同心に支持された前記各パワーローラ6aは、前記間隔Dと前記外径dとの差(D−d)分だけ、前記各支持梁部23の軸方向に変位可能になる。   Compared to the first example shown in FIGS. 11 to 12, the second example of the conventional structure shown in FIGS. 13 to 18 makes it easier to manufacture parts, manage parts, and assemble, thereby reducing costs. Although easy to achieve, there is room for improvement in terms of stabilizing the shifting operation. The reason for this is that each step surface 26 is provided in a pair at each end of each support beam 23 so that the outer ring 16a can be smoothly moved and displaced about each support beam 23. , 26 to make the distance D between the outer rings 16a slightly larger than the outer diameter d (D> d). Each outer ring 16a and each power roller 6a supported concentrically with each outer ring 16a have a difference (D−d) between the distance D and the outer diameter d, so Displaceable in the axial direction.

一方、トロイダル型無段変速機を搭載した車両の運転時、前記各パワーローラ6aには前記各ディスク2、5から、加速時と減速時(エンジンブレーキの作動時)とで逆方向の力(トロイダル型無段変速機の技術分野で周知の「2Ft」)が加わる。そして、この力2Ftにより、前記各パワーローラ6aが、前記各外輪16aと共に、前記各支持梁部23の軸方向に変位する。この変位の方向は、前述した各アクチュエータ21、21による各トラニオン7、7(図12参照)の変位方向と同じであり、変位量が0.1mm程度であっても、変速動作が開始される可能性を生じる。そして、この様な原因で変速動作が開始された場合には、運転動作とは直接関連しない変速動作となり、何れ修正されるにしても、運転者に違和感を与える。特に、トロイダル型無段変速機が伝達するトルクが低い状態で、上述の様な、運転者が意図しない変速が行われると、運転者に与える違和感が大きくなり易い。   On the other hand, during operation of a vehicle equipped with a toroidal-type continuously variable transmission, each power roller 6a receives a force in the opposite direction from the respective disks 2 and 5 during acceleration and deceleration (when the engine brake is activated) ( "2Ft", which is well known in the technical field of toroidal-type continuously variable transmissions, is added. Then, the force 2Ft causes the power rollers 6a to be displaced in the axial direction of the support beam portions 23 together with the outer rings 16a. The direction of this displacement is the same as the displacement direction of each trunnion 7 and 7 (see FIG. 12) by each actuator 21 and 21 described above, and the shifting operation is started even if the displacement is about 0.1 mm. Create a possibility. When the shifting operation is started for such a reason, the shifting operation is not directly related to the driving operation, and the driver feels uncomfortable regardless of any correction. In particular, when a shift that is not intended by the driver as described above is performed in a state where the torque transmitted by the toroidal-type continuously variable transmission is low, a sense of discomfort given to the driver tends to increase.

上述の様にして生じる、運転動作とは直接関連しない変速動作の発生を抑える為には、前記間隔Dと前記外径dとの差(D−d)を僅少に(例えば数十μm程度に)抑える事が考えられる。但し、ハーフトロイダル型のトロイダル型無段変速機の運転時には、トラクション部から前記各パワーローラ6a、前記各外輪16aを介して前記各支持梁部23に加わるスラスト荷重により、前記各トラニオン7aが、図19に誇張して示す様に、前記各外輪16aを設置した側が凹となる方向に弾性変形する。そして、この弾性変形の結果、前記各トラニオン7a毎に1対ずつ設けた段差面26、26同士の間隔が縮まる。この様な状態でも、これら各段差面26、26同士の間隔Dが前記各外輪16aの外径d以下にならない様にする為には、通常状態(前記各トラニオン7aが弾性変形していない状態)での、前記間隔Dと前記外径dとの差を或る程度確保する必要がある。この結果、特に違和感が大きくなり易い、低トルクでの運転時に、上述の様な、運転動作とは直接関連しない変速動作が発生し易くなる。   In order to suppress the occurrence of the speed change operation that is not directly related to the driving operation as described above, the difference (D−d) between the distance D and the outer diameter d is made small (for example, about several tens of μm). ) Can be suppressed. However, during operation of the half-toroidal toroidal continuously variable transmission, each trunnion 7a is caused by a thrust load applied from the traction portion to each support beam portion 23 via each power roller 6a and each outer ring 16a. As exaggeratedly shown in FIG. 19, the side where the outer rings 16a are installed is elastically deformed in the direction of being recessed. As a result of this elastic deformation, the distance between the step surfaces 26, 26 provided in pairs for each trunnion 7a is reduced. Even in such a state, in order to prevent the distance D between the stepped surfaces 26, 26 from being equal to or less than the outer diameter d of each outer ring 16a, the normal state (the state where each trunnion 7a is not elastically deformed). It is necessary to ensure a certain difference between the distance D and the outer diameter d. As a result, a shift operation that is not directly related to the driving operation as described above is likely to occur particularly during driving at a low torque, which tends to increase the sense of discomfort.

一方、前記特許文献3には、支持梁部側に設けた円筒状凸面の一部に係止したアンカ駒と、外輪側の凹部の内面に形成したアンカ溝とを係合させる事により、前記力2Ftを支承する構造が記載されている。又、円筒状凸面と凹部との互いに整合する部分に形成された、それぞれが断面円弧形である転動溝同士の間に複数個の玉を掛け渡して、前記力2Ftを支承する構造も記載されている。但し、前者の構造の場合には、前記アンカ駒を前記支持梁部に、前記力2Ftを支承できる程度の強度及び剛性を確保して支持固定する事が難しく、低コスト化と十分な信頼性確保とを図りにくい。又、後者の場合には、前記力2Ftが大きくなり、前記各玉の転動面と前記各転動溝との転がり接触部の面圧が上昇すると、これら各転動溝の内面に圧痕が形成され、各トラニオンに対して各外輪が揺動変位する際に振動が発生する可能性がある。   On the other hand, in Patent Document 3, the anchor piece locked to a part of the cylindrical convex surface provided on the support beam part side and the anchor groove formed on the inner surface of the concave part on the outer ring side are engaged with each other. A structure for supporting a force 2Ft is described. There is also a structure for supporting the force 2Ft by forming a plurality of balls between the rolling grooves each having an arcuate cross section formed in a portion where the cylindrical convex surface and the concave portion are aligned with each other. Have been described. However, in the case of the former structure, it is difficult to support and fix the anchor piece to the support beam portion with sufficient strength and rigidity to support the force 2Ft, and it is possible to reduce the cost and to provide sufficient reliability. It is difficult to secure. In the latter case, when the force 2Ft increases and the surface pressure of the rolling contact portion between the rolling surface of each ball and each rolling groove increases, an indentation is formed on the inner surface of each rolling groove. As a result, vibration may occur when each outer ring swings and displaces with respect to each trunnion.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A

本発明は、上述の様な事情に鑑み、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure that facilitates parts production, parts management, and assembly work, facilitates cost reduction, and stabilizes the speed change operation. is there.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受と、押圧装置とを備える。
特に、本発明のトロイダル型無段変速機に於いては、前記各トラニオン毎に1対ずつの段差面同士の間隔を、各支持梁部を中心とする各外輪の揺動方向に関して漸次変化させている。
又、前記間隔の大きさは、前記押圧装置が押圧力を発生せず、前記各外輪が中立位置に存在する状態でこれら各外輪の外周面と対向する部分で、これら各外輪が前記各支持梁部の軸方向に変位する事を実質的に阻止する大きさである、中立値としている。
更に、前記押圧装置が押圧力を発生し、前記各ディスク及び前記各パワーローラの弾性変形に伴って前記各支持梁部を中心として前記各外輪が揺動変位した状態でこれら各外輪の外周面と対向する部分で、前記中立値よりも大きくしている。
尚、軸方向に関する変位を実質的に阻止するとは、前記各外輪に支持されたパワーローラが前記各支持梁部の軸方向に、変速動作を開始する程変化する事がない状態を言う。この変速動作は、前記各パワーローラが前記軸方向に0.1mm程度変位した場合でも開始される可能性がある。そこで、前記中立値は、前記各外輪のうちで前記各段差面に挟まれる部分の直径以上であるが、この直径よりも0.1mm大きな値未満とする。
The toroidal type continuously variable transmission of the present invention includes at least a pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, the same number of thrust rolling bearings, and a pressing device.
In particular, in the toroidal-type continuously variable transmission according to the present invention, the distance between the pair of step surfaces for each trunnion is gradually changed with respect to the swinging direction of each outer ring centering on each support beam. ing.
Further, the size of the interval is such that the pressing device does not generate a pressing force and each outer ring faces the outer peripheral surface of each outer ring in a state where each outer ring exists in a neutral position. The neutral value is a size that substantially prevents displacement in the axial direction of the beam portion.
Further, the outer peripheral surface of each outer ring in a state in which the outer ring is oscillated and displaced with the support beam portion as a center along with the elastic deformation of each disk and each power roller when the pressing device generates a pressing force. It is larger than the neutral value at the part facing the.
The phrase “substantially preventing displacement in the axial direction” refers to a state in which the power roller supported by each outer ring does not change in the axial direction of each support beam portion so as to start a shift operation. This speed change operation may be started even when each power roller is displaced about 0.1 mm in the axial direction. Therefore, the neutral value is equal to or larger than the diameter of the portion of the outer ring sandwiched between the stepped surfaces, but is less than a value larger by 0.1 mm than the diameter.

上述の様な本発明を実施する場合に、例えば請求項2に記載した発明の様に、前記各トラニオン毎に1対ずつの段差面同士の間隔を、前記各外輪の揺動方向に一致する、これら各段差面の幅方向中央部で最も狭くする。そして、この最も狭くなった部分の間隔の大きさを、前記中立値とする。   When implementing the present invention as described above, for example, as in the second aspect of the present invention, the distance between the pair of stepped surfaces for each trunnion is made to coincide with the swinging direction of each outer ring. The width is made narrowest at the center in the width direction of each step surface. And the magnitude | size of the space | interval of this narrowest part is made into the said neutral value.

或いは、請求項3に記載した発明の様に、前記各トラニオン毎に1対ずつの段差面同士の間隔を、前記各外輪の揺動方向に一致する、これら各段差面の幅方向に関して、一端から他端に向けて変化させる。そして、これら各段差面の幅方向中間部の間隔の大きさを、前記中立値とする。且つ、前記押圧装置による押圧力の作用方向を、この押圧力に基づいて前記各外輪を、前記各段差面の間隔が大きい方向に変位させる方向とする。   Alternatively, as in the invention described in claim 3, with respect to the width direction of each of the step surfaces, the distance between the pair of step surfaces for each trunnion coincides with the swing direction of each outer ring. Change from one to the other. And the magnitude | size of the space | interval of the width direction intermediate part of each level | step difference surface is made into the said neutral value. In addition, the direction in which the pressing force is applied by the pressing device is a direction in which the outer rings are displaced in the direction in which the distance between the step surfaces is large based on the pressing force.

上述の様に構成する本発明のトロイダル型無段変速機によれば、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現できる。
このうちのコスト低廉化は、前述の図13〜18に示した従来構造の第2例と同様の理由により、図り易い。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, it is easy to manufacture parts, manage parts, and assemble work, easily reduce costs, and stabilize the speed change operation. realizable.
Of these, cost reduction is easy to achieve for the same reason as in the second example of the conventional structure shown in FIGS.

又、変速動作の安定化は、各トラニオン毎に1対ずつ設けた段差面同士の間隔を、これら各トラニオンの支持梁部の軸方向に関する外輪の変位を実質的に阻止し、且つ、この間隔の大きさを、これら各支持梁部を中心とするこれら各外輪の揺動変位の方向に対応して漸次変化させている事により図れる。
先ず、前記各外輪が中立位置に存在する場合には、前記間隔の大きさが、これら各外輪の軸方向変位を実質的に阻止する中立値である事で、変速動作の安定化を図れる。
これに対して、トロイダル型無段変速機が伝達するトルクが大きくなり、押圧装置が発生する押圧力が大きくなる結果、前記各外輪が前記各支持梁部を中心として揺動変位すると、これら各外輪が前記間隔が大きくなっている部分に変位すると同時に、前記各支持梁部の弾性変形に伴ってこの間隔が小さくなる。
In addition, the stabilization of the speed change operation substantially prevents the displacement of the outer ring in the axial direction of the supporting beam portion of each trunnion by separating the gap between the pair of stepped surfaces provided for each trunnion, and this interval. Is gradually changed in accordance with the direction of the swing displacement of each outer ring centered on each of these support beam portions.
First, when each outer ring exists in the neutral position, the size of the interval is a neutral value that substantially prevents the axial displacement of each outer ring, so that the speed change operation can be stabilized.
On the other hand, the torque transmitted by the toroidal-type continuously variable transmission is increased, and the pressing force generated by the pressing device is increased. At the same time as the outer ring is displaced to the portion where the interval is increased, the interval is reduced along with the elastic deformation of the support beam portions.

そこで、前記各支持梁部の剛性と前記間隔が変化する程度とを適切に規制すれば、前記トルクの変化に拘らず、前記各外輪が前記各支持梁部の軸方向に変位する事を、常に実質的に阻止でき、しかも、これら各支持梁部を中心とする前記各外輪の揺動変位を円滑に行わせる事ができる。この結果、前記変速動作の安定化を図れる。
尚、前記各支持梁部の剛性と前記間隔が変化する程度とを規制する事は、前記各トラニオンを構成する金属材料の物性、これら各トラニオンの形状及び寸法、前記伝達するトルクの大きさ等を考慮して、従来から知られた弾性理論等に基づき、コンピュータシミュレーションにより求める他、実験により求める事もできる。これらコンピュータシミュレーションと実験とを併用すれば、前記各段差面が前記各外輪を強く挟み込む事を防止し、且つ、これら各外輪が前記各支持梁部の軸方向に変位する事を十分に阻止できる。
Therefore, if the rigidity of each support beam part and the extent to which the interval changes are appropriately regulated, regardless of the change in the torque, the outer ring is displaced in the axial direction of the support beam part. It is possible to prevent substantially all the time, and to smoothly perform the swing displacement of the outer rings around the support beam portions. As a result, the shifting operation can be stabilized.
The rigidity of each support beam part and the degree to which the interval changes are controlled by the physical properties of the metal material constituting each trunnion, the shape and size of each trunnion, the magnitude of the torque to be transmitted, etc. In consideration of the above, based on the conventionally known elasticity theory or the like, it can be obtained by computer simulation or by experiment. If these computer simulations and experiments are used in combination, it is possible to prevent the stepped surfaces from pinching the outer rings and to prevent the outer rings from being displaced in the axial direction of the support beam portions. .

本発明の実施の形態の第1例を示す、トラニオンと外輪とを取り出して、各ディスクの径方向内側から見た斜視図。The perspective view which took out the trunnion and the outer ring | wheel which showed the 1st example of embodiment of this invention, and was seen from the radial inside of each disc. 同じく径方向内方から見た正投影図。Similarly, an orthographic projection viewed from the inside in the radial direction. 図2のa部拡大図。The a section enlarged view of FIG. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 同じく径方向内方から見た正投影図。Similarly, an orthographic projection viewed from the inside in the radial direction. 図6のb部拡大図。The b section enlarged view of FIG. 同じく、トラニオン及びパワーローラと押圧装置との配置状態を説明する為の模式図。Similarly, the schematic diagram for demonstrating the arrangement | positioning state of a trunnion, a power roller, and a press apparatus. 同じく、トロイダル型無段変速機の運転時に、トラニオンの段差面と外輪の外周面との当接部に働く力の方向を説明する為の模式図。Similarly, a schematic diagram for explaining the direction of the force acting on the contact portion between the step surface of the trunnion and the outer peripheral surface of the outer ring during operation of the toroidal-type continuously variable transmission. 本発明の実施の形態の第4〜5例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 4th-5 examples of embodiment of this invention. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図11のc−c断面図。Cc sectional drawing of FIG. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図14の上方から見た平面図。The top view seen from the upper part of FIG. 図14の右方から見た側面図。The side view seen from the right side of FIG. 図15のd−d断面図。Dd sectional drawing of FIG. 図14のe−e断面図。Ee sectional drawing of FIG. パワーローラから加わるスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図17と同方向から見た断面図。FIG. 18 is a cross-sectional view seen from the same direction as FIG. 17, exaggeratingly showing a state where the trunnion is elastically deformed based on a thrust load applied from a power roller.

[実施の形態の第1例]
図1〜3は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変速動作を安定させるべく、各トラニオン7bの支持梁部23に対し、スラスト玉軸受13a(図13〜18参照)を構成する外輪16bを、これら各支持梁部23に対する揺動変位を可能に支持しつつ、これら各支持梁部23の軸方向に変位しない様にする為の構造にある。その他の部分の構造及び作用は、前述の図13〜18に示した従来構造の第2例と同様であるから、同等部分に関する図示並びに説明は、省略
若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1-3 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. The feature of this example is that the outer ring 16b constituting the thrust ball bearing 13a (see FIGS. 13 to 18) is provided to the support beam portion 23 of each trunnion 7b to stabilize the speed change operation. In this structure, the support beam portions 23 are not displaced in the axial direction while being supported so as to be able to swing. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure shown in FIGS. 13 to 18 described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation will be focused on.

本例の構造の場合、前記各トラニオン7b毎に1対ずつの段差面26a、26a同士の間隔を、前記各支持梁部23を中心とする前記各外輪16bの揺動方向に関して漸次変化させている。具体的には、前記各段差面26a、26aを、部分円筒面状の凸曲面としている。そして、これら各段差面26a、26aは、入力、出力各ディスク2、5(図11参照)の回転方向に一致する、これら各段差面26a、26aの幅方向(前記外輪16bの揺動方向、図2の左右方向)に関する中央部で最も突出しており、この中央部を境として対称形状である。従って、前記各トラニオン7b毎に1対ずつの段差面26a、26a同士の間隔は、これら各段差面26a、26aの幅方向中央部で最も狭くなっている。   In the case of the structure of this example, the distance between the pair of stepped surfaces 26a, 26a for each trunnion 7b is gradually changed with respect to the swinging direction of each outer ring 16b around each support beam portion 23. Yes. Specifically, each of the step surfaces 26a and 26a is a partially cylindrical convex curved surface. The step surfaces 26a and 26a are aligned with the rotational direction of the input and output disks 2 and 5 (see FIG. 11), and the width direction of each of the step surfaces 26a and 26a (the swinging direction of the outer ring 16b, It protrudes most at the center part in the left-right direction in FIG. 2 and is symmetrical with this center part as a boundary. Therefore, the distance between the pair of step surfaces 26a, 26a for each trunnion 7b is the narrowest at the center in the width direction of each of the step surfaces 26a, 26a.

トロイダル型無段変速機に組み込んだ押圧装置20(図11参照)が押圧力を発生しない状態では、前記各ディスク2、5及び各パワーローラ6a(図13〜18)が弾性変形せず、これら各パワーローラ6aがこれら各ディスク2、5の軸方向に変位しない。従って、前記各外輪16bが中立位置に存在する。そして、この状態では、これら各外輪16bが、前記各段差面26a、26aの間部分のうち、最も間隔が狭くなった部分に位置する。本例の場合には、この最も狭くなった部分の間隔Dを、前記各外輪16bの外径dよりも僅かに小さくしている。具体的には、これら各外輪16bを、前記各トラニオン7b毎に1対ずつの段差面26a、26a同士の間に配置した状態で、前記各外輪16bが前記各支持梁部23を中心として揺動変位する事は許容するが、これら各支持梁部23の軸方向に変位する事を実質的に阻止する大きさとしている。   When the pressing device 20 (see FIG. 11) incorporated in the toroidal continuously variable transmission does not generate a pressing force, the disks 2, 5 and the power rollers 6a (FIGS. 13 to 18) are not elastically deformed. The power rollers 6a are not displaced in the axial direction of the disks 2 and 5. Accordingly, each outer ring 16b is in a neutral position. In this state, each of the outer rings 16b is located at the narrowest portion of the portion between the step surfaces 26a and 26a. In the case of this example, the distance D between the narrowest portions is slightly smaller than the outer diameter d of each outer ring 16b. Specifically, in a state where each outer ring 16b is disposed between the pair of stepped surfaces 26a, 26a for each trunnion 7b, each outer ring 16b swings around each support beam portion 23. Although it is allowed to be displaced dynamically, it is set to a size that substantially prevents displacement of each of the support beam portions 23 in the axial direction.

より具体的には、前記間隔Dを、前記外径d以上で、この外径dよりも0.1mm大きな値未満{d≦D<(d+0.1mm)}としている。尚、前記間隔Dと前記外径dとの大小関係は、同じになる事はあっても逆転しない(前記1対ずつの段差面26a、26a同士の間で前記各外輪16bを、締り嵌めで挟持しない)様に、好ましくは、「外径d」<「間隔D」の状態を確保する。この間隔Dの値を上述の範囲に設定される中立値に規制する事により、前記各外輪16bを前記各支持梁部23に対して揺動変位可能に、且つ、軸方向の変位を実質的に阻止した(軸方向の変位を0.1mm未満に抑えた)状態で支持できる。前記間隔Dの中立値を上述の範囲に規制しているのに対して、この中立値以外で前記1対ずつの段差面26a、26a同士の間隔は、これら各段差面26a、26aの幅方向両端部に向かうに従って漸次大きくなる。この大きくなる程度は、前記押圧装置20が発生する押圧力に基づく、前記各外輪16bの揺動角度と、前記各支持梁部23の弾性変形に基づく前記各段差面26a、26a同士の間隔の収縮量との関係で規制する。具体的には、前記押圧力に基づいて、前記揺動角度とこの間隔とが変化した状態でも、この間隔と前記外径dとの関係が上述した範囲内(「間隔」−「外径d」=0〜0.1mm)に収まる様にしている。   More specifically, the distance D is not less than the outer diameter d and less than 0.1 mm larger than the outer diameter d {d ≦ D <(d + 0.1 mm)}. It should be noted that the magnitude relationship between the distance D and the outer diameter d does not reverse even if they are the same (the outer rings 16b are tightly fitted between the pair of stepped surfaces 26a, 26a). Preferably, a state of “outer diameter d” <“interval D” is secured. By restricting the value of the distance D to the neutral value set in the above-described range, the outer rings 16b can be displaced with respect to the support beam portions 23, and the axial displacement can be substantially reduced. (The axial displacement is suppressed to less than 0.1 mm). Whereas the neutral value of the distance D is restricted to the above range, the distance between the pair of stepped surfaces 26a, 26a other than the neutral value is the width direction of the stepped surfaces 26a, 26a. Gradually increases toward both ends. This degree of increase is based on the swing angle of each outer ring 16b based on the pressing force generated by the pressing device 20 and the distance between the step surfaces 26a, 26a based on elastic deformation of the support beam portions 23. Regulate in relation to the amount of shrinkage. Specifically, even when the swing angle and the interval change based on the pressing force, the relationship between the interval and the outer diameter d is within the above-described range (“interval” − “outer diameter d”). "= 0 to 0.1 mm).

上述の様に構成する本例のトロイダル型無段変速機によれば、前述の図13〜18に示した従来構造の第2例と同様の理由により、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易くできる。
特に本例のトロイダル型無段変速機の場合には、前記各トラニオン7b毎に1対ずつ設けた段差面26a、26a同士の間隔を上述の様に規制しているので、変速動作の安定化を図れる。
According to the toroidal-type continuously variable transmission of the present example configured as described above, any part production, part management, and assembly work are performed for the same reason as in the second example of the conventional structure shown in FIGS. It becomes easy, and cost reduction can be easily achieved.
In particular, in the case of the toroidal type continuously variable transmission of this example, the distance between the step surfaces 26a, 26a provided for each trunnion 7b is regulated as described above, so that the shifting operation is stabilized. Can be planned.

先ず、前記押圧装置20が発生している押圧力が零若しくは僅少の場合には、前記入力、出力各ディスク2、5及び前記各パワーローラ6aの弾性変形量も、前記支持梁部23の弾性変形量も、何れも零若しくは僅少であり、前記各外輪16bが、前記各段差面26a、26aの幅方向中央部である中立位置に存在する。この状態では、前記間隔Dと前記外径dとの差が0.1mm未満であるから、前記各支持梁部23の軸方向に関する前記各外輪16bの変位が実質的に阻止されて、変速動作の安定化を図れる。   First, when the pressing force generated by the pressing device 20 is zero or very small, the elastic deformation amounts of the input and output disks 2 and 5 and the power rollers 6a are also determined by the elasticity of the support beam 23. The amount of deformation is also zero or slight, and each outer ring 16b is present at a neutral position that is the center in the width direction of each step surface 26a, 26a. In this state, since the difference between the distance D and the outer diameter d is less than 0.1 mm, the displacement of the outer rings 16b in the axial direction of the support beam portions 23 is substantially prevented, and a speed change operation is performed. Can be stabilized.

これに対して、トロイダル型無段変速機が伝達するトルクが大きくなり、前記押圧装置20が発生する押圧力が大きくなると、前記入力、出力各ディスク2、5及び前記各パワーローラ6aの弾性変形量が増大して、これら各パワーローラ6aがこれら各ディスク2、5の軸方向に変位する。そして、この軸方向変位に伴って、前記各外輪16bが前記各支持梁部23を中心として揺動変位し、これら各外輪16bの位置が、前記中立位置から外れる。具体的には、これら各外輪16bは、前記1対ずつの段差面26a、26a同士の間隔が大きい部分に向けて変位する。同時に、前記各パワーローラ6aに加わるスラスト荷重が大きくなり、このスラスト荷重を支承する、前記各支持梁部23の弾性変形量も増大する。そして、前記1対ずつの段差面26a、26a同士の間隔が縮まる傾向になる。   On the other hand, when the torque transmitted by the toroidal continuously variable transmission increases and the pressing force generated by the pressing device 20 increases, the elastic deformation of the input and output disks 2 and 5 and the power rollers 6a occurs. As the amount increases, the power rollers 6 a are displaced in the axial direction of the disks 2 and 5. Then, along with this axial displacement, each outer ring 16b swings and displaces around each support beam 23, and the position of each outer ring 16b deviates from the neutral position. Specifically, each outer ring 16b is displaced toward a portion where the distance between the pair of stepped surfaces 26a, 26a is large. At the same time, the thrust load applied to each power roller 6a increases, and the amount of elastic deformation of each support beam portion 23 that supports this thrust load also increases. Then, the distance between the pair of stepped surfaces 26a, 26a tends to be reduced.

要するに、前記伝達トルクが大きくなると、前記各外輪16bが前記1対ずつの段差面26a、26a同士の間隔が大きい部分に変位すると同時に、この間隔が縮まる。この様に、前記各外輪16bの間隔が変化する傾向が互いに逆になり(相殺され)、前記1対ずつの段差面26a、26aのうちで前記各外輪16bを挟持している部分の間隔が、この外輪16bの外径dよりも僅かに(0.1mm未満だけ)小さい状態となる。この結果、前記伝達トルクの変化に拘らず、前記各外輪16bが前記各支持梁部23の軸方向に変位する事を、常に実質的に阻止でき、しかも、これら各支持梁部23を中心とする前記各外輪16bの揺動変位を円滑に行わせて、前記トロイダル型無段変速機の変速動作の安定化を図れる。
尚、本例の場合には、前記各段差面26a、26aの形状を、これら各段差面26a、26aの幅方向中央部を境に対称としているので、トロイダル型無段変速機に組み込む複数の(例えば図12で左右両側の)トラニオン7bとして、同形状のものを使用できる。
In short, when the transmission torque increases, each outer ring 16b is displaced to a portion where the distance between the pair of step surfaces 26a, 26a is large, and at the same time, the distance is reduced. In this way, the tendency of the interval between the outer rings 16b to change is reversed (cancelled), and the interval between the pair of stepped surfaces 26a and 26a that sandwich the outer ring 16b is the same. The outer ring 16b is slightly smaller (less than 0.1 mm) than the outer diameter d. As a result, it is possible to always substantially prevent the outer rings 16b from displacing in the axial direction of the support beam portions 23 regardless of the change in the transmission torque. Thus, it is possible to stabilize the speed change operation of the toroidal type continuously variable transmission by smoothly performing the swinging displacement of each outer ring 16b.
In the case of this example, the shape of each stepped surface 26a, 26a is symmetric with respect to the central portion in the width direction of each stepped surface 26a, 26a. Therefore, a plurality of stepped surfaces 26a, 26a are incorporated into a toroidal continuously variable transmission. The same shape can be used as the trunnion 7b (for example, both left and right in FIG. 12).

[実施の形態の第2例]
図4も、請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、各トラニオン7c毎に1対ずつ設けた段差面26b、26bの形状を、それぞれ1対ずつの平坦面を組み合わせた形状としている。即ち、これら各段差面26b、26bを前記各トラニオン7cの内側面側から見た形状を、頂角が180度よりも少し小さいだけの二等辺三角状を構成する、1対の斜辺状としている。その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、重複する説明は省略する。
[Second Example of Embodiment]
FIG. 4 also shows a second example of an embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, the shape of the stepped surfaces 26b and 26b provided for each trunnion 7c is a shape in which a pair of flat surfaces are combined. That is, the shape of each of the step surfaces 26b and 26b viewed from the inner surface side of each trunnion 7c is a pair of oblique sides that form an isosceles triangle with an apex angle slightly smaller than 180 degrees. . Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, redundant description is omitted.

[実施の形態の第3例]
図5〜9は、請求項1、3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、各トラニオン7d毎に1対ずつの段差面26c、26c同士の間隔を、各外輪16bの揺動方向に一致するこれら各段差面26c、26cの幅方向に関して、一端から他端に向けて変化させている。即ち、これら各段差面26c、26cを、入力、出力各ディスク2、5(図11参照)の回転方向に関して、互いに逆方向に傾斜させて、前記1対ずつの段差面26c、26c同士の間隔が、図5の左上から右下に向かう程、図6の左から右に向かう程、広くなる様にしている。そして、前記1対ずつの段差面26c、26cの幅方向中間部の間隔Dの大きさを中立値、即ち、前記各外輪16bの外径dと同じかこれよりも僅かに(0.1mm未満だけ)大きな値としている。
[Third example of embodiment]
5 to 9 show a third example of the embodiment of the invention corresponding to claims 1 and 3. In the case of this example, the distance between the pair of stepped surfaces 26c, 26c for each trunnion 7d is set from one end with respect to the width direction of each of the stepped surfaces 26c, 26c coinciding with the swinging direction of each outer ring 16b. It is changed toward the other end. That is, the step surfaces 26c and 26c are inclined in directions opposite to each other with respect to the rotation direction of the input and output disks 2 and 5 (see FIG. 11), and the distance between the pair of step surfaces 26c and 26c. However, the distance from the upper left to the lower right in FIG. 5 and the width from the left to the right in FIG. 6 are increased. The distance D between the pair of stepped surfaces 26c and 26c in the width direction intermediate portion is set to a neutral value, that is, equal to or slightly smaller than the outer diameter d of each outer ring 16b (less than 0.1 mm). Only) is a big value.

上述の様な本例の構造の場合も、トロイダル型無段変速機の伝達トルクが小さい場合には、前記中立値Dと前記各外輪16bの外径dとの差が僅少である事により、変速動作を安定させられる。又、前記伝達トルクが大きくなると、前記各外輪16bが前記1対ずつの段差面26c、26c同士の間隔が大きい部分に変位すると同時に、この間隔が縮まる。従って、前記伝達トルクの変化に拘らず、前記各外輪16bが前記各支持梁部23の軸方向に変位する事を、常に実質的に阻止できる。しかも、これら各支持梁部23を中心とする前記各外輪16bの揺動変位を円滑に行わせて、前記トロイダル型無段変速機の変速動作の安定化を図れる。   Also in the case of the structure of this example as described above, when the transmission torque of the toroidal-type continuously variable transmission is small, the difference between the neutral value D and the outer diameter d of each outer ring 16b is small. Shifting operation can be stabilized. As the transmission torque increases, the outer ring 16b is displaced to a portion where the distance between the pair of stepped surfaces 26c, 26c is large, and at the same time, the distance is reduced. Accordingly, it is possible to always substantially prevent the outer rings 16b from being displaced in the axial direction of the support beam portions 23 regardless of the change in the transmission torque. In addition, it is possible to stabilize the shifting operation of the toroidal type continuously variable transmission by smoothly swinging the outer ring 16b about the support beam portions 23.

但し、本例の構造の場合には、前記各段差面26c、26cの形状が、前記各ディスク2、5の回転方向に関して非対称であるから、前記各トラニオン7dの設置方向と押圧装置20の設置位置とを適切に規制する必要がある。具体的には、図8に示す様に、この押圧装置20による押圧力の作用方向を、この押圧力に基づいて前記各外輪16bを、前記1対ずつの段差面26c、26c同士の間隔が大きい方向に変位させる方向とする。例えば、図11に示す様な、ダブルキャビティ型で押圧装置20を端部に設置するトロイダル型無段変速機の場合には、前記1対ずつの段差面26c、26c同士の間隔が、中央部に向かうに従って広くなる様に配置する。これに対して、押圧装置を中央部に配置する構造の場合には、前記1対ずつの段差面26c、26c同士の間隔が、端部に向かうに従って広くなる様に配置する。   However, in the case of the structure of this example, the shape of each stepped surface 26c, 26c is asymmetric with respect to the rotation direction of each disk 2, 5, so that the installation direction of each trunnion 7d and the installation of the pressing device 20 are the same. It is necessary to properly regulate the position. Specifically, as shown in FIG. 8, the direction of the pressing force by the pressing device 20 is determined based on the pressing force of each outer ring 16 b and the distance between the pair of stepped surfaces 26 c and 26 c. The direction to be displaced in the larger direction. For example, in the case of a toroidal type continuously variable transmission in which the pressing device 20 is installed at the end as shown in FIG. 11, the distance between the pair of step surfaces 26c, 26c is set at the center. Place it so that it becomes wider as you go to. On the other hand, in the case of the structure in which the pressing device is arranged at the center, the gap between the pair of stepped surfaces 26c, 26c is arranged so as to become wider toward the end.

上述の様な本例の構造の場合には、トロイダル型無段変速機に組み込む複数のトラニオン7dとして、前記各段差面26c、26cの傾斜方向が異なる、少なくとも2種類のものを用意する必要がある。その代わりに本例の構造の場合には、前記各段差面26c、26cの加工が容易である事に加えて、前記押圧装置20が押圧力を発生する初期段階から、前記各外輪16bを前記間隔が広い側に、より変位させ易くできる。この点に就いて、図9を参照しつつ説明する。トロイダル型無段変速機の運転時に前記各外輪16bには、パワーローラ6a(図13〜18参照)から、前記2Ftなる力が、前記各ディスク2、5の回転方向に加わり、前記各外輪16bの外周面の一部が、何れかの段差面26cに押し付けられる。この押し付けの結果、これら各外輪16bをこの段差面26cの傾斜方向に移動させる方向の分力fが発生するが、この分力fの方向は、前記各ディスク2、5等の弾性変形により、前記各外輪16bが揺動変位する方向と一致する。この為、この揺動変位を、より円滑に行わせる事ができる。その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、重複する説明は省略する。   In the case of the structure of this example as described above, it is necessary to prepare at least two types of trunnions 7d to be incorporated in the toroidal-type continuously variable transmission, in which the step surfaces 26c and 26c have different inclination directions. is there. Instead, in the case of the structure of this example, in addition to the easy processing of the stepped surfaces 26c, 26c, the outer ring 16b is moved from the initial stage when the pressing device 20 generates a pressing force. It can be more easily displaced to the side where the interval is wide. This point will be described with reference to FIG. During operation of the toroidal type continuously variable transmission, the force of 2 Ft is applied to each outer ring 16b from the power roller 6a (see FIGS. 13 to 18) in the rotation direction of each disk 2 and 5, and each outer ring 16b. A part of the outer peripheral surface is pressed against any one of the step surfaces 26c. As a result of this pressing, a component force f is generated in a direction in which each outer ring 16b is moved in the direction of inclination of the stepped surface 26c. The direction of this component force f is caused by elastic deformation of each of the disks 2, 5, etc. The direction coincides with the direction in which each outer ring 16b swings and displaces. For this reason, this oscillating displacement can be performed more smoothly. Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment, redundant description is omitted.

[実施の形態の第4〜5例]
図10も、請求項1、3に対応する、本発明の実施の形態の第4〜5例を示している。これら両例の場合には、それぞれ段差面26d、26eの形状を、部分円筒面状の凸曲面{図10の(A)の段差面26d、26d}又は凹曲面{図10の(B)の段差面26e、26e}としている。これら各段差面26d、26eを構成する曲面の曲率半径や傾斜角度等は、伝達トルクの増大に伴う、外輪16bの揺動変位量や支持梁部23の弾性変形量等に応じて設計的に(コンピュータシミュレーションや実験等に応じて)決定する。その他の部分の構成及び作用は、上述した実施の形態の第3例と同様であるから、重複する説明は省略する。
[Fourth to fifth examples of embodiment]
FIG. 10 also shows fourth to fifth examples of the embodiment of the invention corresponding to claims 1 and 3. In both cases, the shape of the step surfaces 26d and 26e is changed to the convex surface of the partial cylindrical surface {the step surfaces 26d and 26d of FIG. 10A} or the concave surface {of FIG. 10B. Step surfaces 26e, 26e} are provided. The curvature radii, inclination angles, etc. of the curved surfaces constituting these stepped surfaces 26d, 26e are designed according to the amount of rocking displacement of the outer ring 16b, the amount of elastic deformation of the support beam portion 23, etc. as the transmission torque increases. Determine (according to computer simulation or experiment). Since the configuration and operation of the other parts are the same as in the third example of the above-described embodiment, overlapping description is omitted.

本発明は、トロイダル型無段変速機単独で実施できる他、特許文献5に記載されている様な、遊星歯車機構と組み合わせた無段変速装置として実施する事もできる。又、押圧装置は、図11に示す様な、機械式のローディングカム装置に限らず、油圧式のものであっても良い。   The present invention can be implemented by a toroidal continuously variable transmission alone, or can be implemented as a continuously variable transmission in combination with a planetary gear mechanism as described in Patent Document 5. Further, the pressing device is not limited to a mechanical loading cam device as shown in FIG. 11, but may be a hydraulic one.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a パワーローラ
7、7a、7b、7c、7d トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a ラジアルニードル軸受
12、12a 支持軸
13、13a スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a、16b 外輪
17 外輪軌道
18 玉
19 駆動軸
20 押圧装置
21 アクチュエータ
22 円筒状凸面
23 支持梁部
24 凹部
25 ラジアルニードル軸受
26、26a〜26e 段差面
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a Power roller 7, 7a, 7b, 7c, 7d Trunnion 8, 8a, 8b Tilt axis 9 Support beam part 10 Support plate 11, 11a Radial Needle bearing 12, 12a Support shaft 13, 13a Thrust ball bearing 14 Thrust needle bearing 15 Inner ring raceway 16, 16a, 16b Outer race 17 Outer raceway 18 Ball 19 Drive shaft 20 Pressing device 21 Actuator 22 Cylindrical convex surface 23 Support beam portion 24 Recess portion 25 Radial needle bearing 26, 26a-26e Stepped surface

Claims (3)

少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数のスラスト転がり軸受と、押圧装置とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、これら両傾転軸の中心軸と平行でこの中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部と、この支持梁部の両端部に互いに対向する状態で設けられた、前記各トラニオン毎に1対ずつの段差面とを備えたもので、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある前記両傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備えたものであり、
前記各スラスト転がり軸受の外輪は、これら各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させると共に、これら各支持梁部の両端部に設けられた前記各トラニオン毎に1対ずつの段差面同士の間に配置する事により、これら各トラニオンに対し、前記各支持梁部の軸方向の変位を規制した状態で、前記各ディスクの軸方向に関する揺動変位を可能に支持されており、
前記押圧装置は、前記各パワーローラを挟んだ状態で互いに対向する前記各ディスク同士を、互いに近づく方向に押圧するものであるトロイダル型無段変速機に於いて、
前記各トラニオン毎に1対ずつの段差面同士の間隔が、前記各支持梁部を中心とする前記各外輪の揺動方向に関して漸次変化しており、この間隔の大きさは、前記押圧装置が押圧力を発生せず、前記各外輪が中立位置に存在する状態でこれら各外輪の外周面と対向する部分で、これら各外輪が前記各支持梁部の軸方向に変位する事を実質的に阻止する大きさの中立値であり、前記押圧装置が押圧力を発生し、前記各ディスク及び前記各パワーローラの弾性変形に伴って前記各支持梁部を中心として前記各外輪が揺動変位した状態でこれら各外輪の外周面と対向する部分で、前記中立値よりも大きい事を特徴とするトロイダル型無段変速機。
At least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, the same number of thrust rolling bearings, and a pressing device,
Each of these discs is a toroidal curved surface having a circular arc cross section, with the axial one side surfaces facing each other, concentrically supported and freely supported by relative rotation,
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between these tilting shafts, and at least the inner side surface in the radial direction of each disk A support beam portion having a cylindrical convex surface having a center axis that is parallel to the center axis of both tilting shafts and outside the center axis in the radial direction of each disk, and both ends of the support beam portion are mutually connected. Provided with a pair of stepped surfaces for each trunnion provided in a state of being opposed to each other, and with respect to the circumferential direction of the positions between the axial side surfaces of each disk in the axial direction, Oscillating displacement about the two tilting shafts in a twisted position with respect to the central axis of the disc is freely provided,
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements are provided between the outer ring raceway provided on the side surface and the inner ring raceway provided on the outer side surface of each of the power rollers, respectively.
The outer ring of each thrust rolling bearing engages the concave portion provided on the outer side surface of each outer ring with the cylindrical convex surface of each support beam portion, and the above described provided on both ends of each support beam portion. By arranging between each pair of stepped surfaces for each trunnion, with respect to each trunnion, the axial displacement of each disk is controlled in a state where the axial displacement of each support beam is restricted. Supported to enable displacement,
In the toroidal type continuously variable transmission, the pressing device presses the disks facing each other in a state of sandwiching the power rollers in a direction approaching each other.
The distance between the pair of stepped surfaces for each trunnion gradually changes with respect to the swinging direction of each outer ring around each support beam, and the size of this distance is determined by the pressing device. It is substantially impossible for the outer rings to be displaced in the axial direction of the support beam portions at the portions facing the outer peripheral surfaces of the outer rings in a state where the outer rings are in a neutral position without generating a pressing force. This is a neutral value to prevent, and the pressing device generates a pressing force, and each outer ring swings and displaces around each supporting beam portion with the elastic deformation of each disk and each power roller. A toroidal-type continuously variable transmission characterized by being larger than the neutral value at a portion facing the outer peripheral surface of each outer ring in a state.
前記各トラニオン毎に1対ずつの段差面同士の間隔が、前記各外輪の揺動方向に一致する、これら各段差面の幅方向中央部で最も狭くなって、この最も狭くなった部分の間隔の大きさが前記中立値である、請求項1に記載したトロイダル型無段変速機。   The distance between the pair of stepped surfaces for each trunnion is the narrowest at the center in the width direction of each stepped surface, which corresponds to the swinging direction of each outer ring, and the distance between the narrowest portions. The toroidal continuously variable transmission according to claim 1, wherein the magnitude of the toroidal value is the neutral value. 前記各トラニオン毎に1対ずつの段差面同士の間隔が、前記各外輪の揺動方向に一致する、これら各段差面の幅方向に関して、一端から他端に向けて変化しており、これら各段差面の幅方向中間部の間隔の大きさが前記中立値であり、且つ、前記押圧装置による押圧力の作用方向が、この押圧力に基づいて前記各外輪を、前記各段差面の間隔が大きい方向に変位させる方向である、請求項1に記載したトロイダル型無段変速機。   The distance between the pair of stepped surfaces for each trunnion changes from one end to the other with respect to the width direction of each stepped surface, which coincides with the swinging direction of each outer ring. The width of the intermediate portion in the width direction of the step surface is the neutral value, and the acting direction of the pressing force by the pressing device is based on the pressing force, and the interval between the step surfaces is The toroidal-type continuously variable transmission according to claim 1, wherein the toroidal-type continuously variable transmission is a direction to be displaced in a large direction.
JP2011159300A 2011-07-20 2011-07-20 Toroidal continuously variable transmission Expired - Fee Related JP5830999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159300A JP5830999B2 (en) 2011-07-20 2011-07-20 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159300A JP5830999B2 (en) 2011-07-20 2011-07-20 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013024322A true JP2013024322A (en) 2013-02-04
JP5830999B2 JP5830999B2 (en) 2015-12-09

Family

ID=47782921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159300A Expired - Fee Related JP5830999B2 (en) 2011-07-20 2011-07-20 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5830999B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082536A (en) * 2006-06-29 2008-04-10 Nsk Ltd Toroidal type cvt(continuously variable transmission)
JP2009150537A (en) * 2007-11-27 2009-07-09 Nsk Ltd Toroidal continuously variable transmission
JP2011112089A (en) * 2009-11-24 2011-06-09 Nsk Ltd Toroidal continuously variable transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082536A (en) * 2006-06-29 2008-04-10 Nsk Ltd Toroidal type cvt(continuously variable transmission)
JP2009150537A (en) * 2007-11-27 2009-07-09 Nsk Ltd Toroidal continuously variable transmission
JP2011112089A (en) * 2009-11-24 2011-06-09 Nsk Ltd Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP5830999B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP2012225390A (en) Continuously variable transmission
JP2011174539A (en) Toroidal type continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP5830999B2 (en) Toroidal continuously variable transmission
JP5786367B2 (en) Drive device having speed change function and rotation direction conversion function
JP5007600B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP6508380B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP5742297B2 (en) Toroidal continuously variable transmission
JP2013044412A (en) Toroidal continuously variable transmission
JP5895463B2 (en) Toroidal continuously variable transmission
JP5994582B2 (en) Toroidal continuously variable transmission
JP6729074B2 (en) Toroidal type continuously variable transmission
JP5803378B2 (en) Toroidal continuously variable transmission
JP5696586B2 (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP5849643B2 (en) Toroidal continuously variable transmission
JP6432207B2 (en) Toroidal continuously variable transmission
JP6221754B2 (en) Toroidal continuously variable transmission
JP2012159186A (en) Toroidal continuously variable transmission
JP2010190382A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5830999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees