JP2013024030A - Heat insulation structural body and external heat insulation structure of building - Google Patents

Heat insulation structural body and external heat insulation structure of building Download PDF

Info

Publication number
JP2013024030A
JP2013024030A JP2012162609A JP2012162609A JP2013024030A JP 2013024030 A JP2013024030 A JP 2013024030A JP 2012162609 A JP2012162609 A JP 2012162609A JP 2012162609 A JP2012162609 A JP 2012162609A JP 2013024030 A JP2013024030 A JP 2013024030A
Authority
JP
Japan
Prior art keywords
heat insulation
fire
heat insulating
layer
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162609A
Other languages
Japanese (ja)
Inventor
Shuichi Takamoto
修一 高本
Kenichi Tazawa
憲一 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAMOTO CORP
Maeda Corp
Original Assignee
TAKAMOTO CORP
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/066754 external-priority patent/WO2013014729A1/en
Application filed by TAKAMOTO CORP, Maeda Corp filed Critical TAKAMOTO CORP
Priority to JP2012162609A priority Critical patent/JP2013024030A/en
Publication of JP2013024030A publication Critical patent/JP2013024030A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation structural body which is excellent in workability and can maintain high fire resistance and high heat insulation property for a long period of time at low cost, and an external heat insulation structure of a building.SOLUTION: A heat insulation structural body comprises: a heat insulation member 11 with heat insulation property mounted on a building skeleton outdoor side 21a of a building skeleton 21, with one surface 11a of the heat insulation member 11 being opposed to the outdoor side 21a; a fireproof layer 12 which is a nonmetallic layer formed on the other surface 11b of the heat insulation member 11, with one surface 12a of the fireproof layer 12 being opposed to the other surface 11b; and a fireproof coating film 13 formed on the other surface 12b of the fireproof layer 12, with one surface 13a of the fireproof coating film 13 being opposed to the other surface 12b. The fireproof coating film 13 is expanded and carbonized by heat to form a fireproof heat insulation layer. Moreover, an outer heat insulation structure 20 of the building is configured by providing a heat insulation structural body formed in the above-described manner on the building skeleton outdoor side 21a of the building skeleton 21 of the building.

Description

本発明は外断熱のための断熱構造体および建物の外断熱構造に関するものである。   The present invention relates to a heat insulating structure for external heat insulation and an external heat insulating structure of a building.

建物(住宅、集合住宅、オフィスビル等)における断熱性能向上は、快適な住環境や執務・労働環境を実現し、また冷暖房のエネルギー消費量を低減させ、炭酸ガス排出削減等をもたらすところから、断熱構造体および建物の断熱構造の開発・改良の努力がなされている。   The improvement of thermal insulation performance in buildings (houses, apartment buildings, office buildings, etc.) realizes a comfortable living environment and work / work environment, and also reduces energy consumption of air conditioning and heating, leading to reduction of carbon dioxide emissions, etc. Efforts are being made to develop and improve insulation structures and building insulation structures.

こうした建物の断熱方法としては、建物躯体室内側と内壁との間に断熱材を配設等した、内断熱と呼ばれる断熱工法がある。しかし内断熱では、必然的に室内温度と建物躯体の温度差が大きくなる。そのため冬季に室内を暖房した場合には、建物躯体室内側や内断熱に結露が発生してカビが発生しやすくなる可能性があり、その結果、断熱材が経年変化で劣化する(断熱性が低下する)等の問題が生じる。   As a heat insulation method for such a building, there is a heat insulation method called an internal heat insulation method in which a heat insulating material is disposed between the inside of the building housing and the inner wall. However, in the internal insulation, the temperature difference between the room temperature and the building frame inevitably increases. For this reason, if the room is heated in winter, condensation may occur on the inside of the building enclosure and on the heat insulation inside the building, and mold may easily form.As a result, the heat insulating material deteriorates over time. Etc.).

かかる問題を解消するため、近年、外断熱と呼ばれる断熱工法が普及し始めた。外断熱は、建物躯体室外側に接するようにして断熱構造体を設けて(あるいは断熱構造体を外面に取り付ける等して)、建物躯体を外気から熱遮断するものである。つまり外断熱は、断熱構造体の一面(例えば建物躯体室外側に相対する面)と他面(例えば外気に接する面)との間の温度勾配を大きくすることで、断熱効果を発揮することができる。その結果外断熱は、建物躯体と室内温度の差が小さくなり、建物躯体及び室内の結露を防止し、またカビ発生および断熱材の劣化を防ぐことができる。さらに寒暖差等の気象現象によって生じる建物躯体の経年劣化を軽減して躯体の耐久性を向上させると共に、冷暖房負荷の低減によりライフサイクルコストを抑えることができる。   In order to solve this problem, in recent years, a heat insulation method called outer heat insulation has begun to spread. The external heat insulation is to provide a heat insulating structure so as to be in contact with the outside of the building frame room (or to attach the heat insulating structure to the outer surface, etc.), and to thermally shield the building frame from the outside air. In other words, external heat insulation can exert a heat insulation effect by increasing the temperature gradient between one surface of the heat insulation structure (for example, the surface facing the outside of the building housing room) and the other surface (for example, the surface in contact with the outside air). it can. As a result, the outer heat insulation reduces the difference between the building enclosure and the room temperature, prevents condensation in the building enclosure and the room, and prevents the generation of mold and the deterioration of the heat insulating material. Furthermore, it is possible to improve the durability of the building by reducing the deterioration of the building due to weather phenomena such as temperature difference, and to reduce the life cycle cost by reducing the heating and cooling load.

こうした外断熱のための断熱構造体(以下、「断熱構造体」と表記することがある)の例としては、図5にその断面概略構造を示す断熱構造体1のように、その表面を難燃性組成物3でコーティングした発泡スチレンビーズ2(断熱性を有する)を、融着等して一体化した発泡体4(耐火断熱部材)の表面に、接着剤5を介在させて、ファイバーメッシュ6を埋め込んだモルタルの耐火層7を形成したものがある(特許文献1)。こうした断熱構造体1は、断熱効果はもとより、結露と、結露に伴う断熱材の劣化を防ぐことができ、さらに寒暖差等の気象現象によって生じる建物躯体の経年劣化を軽減することができる。   As an example of such a heat insulating structure for external heat insulation (hereinafter sometimes referred to as “heat insulating structure”), the surface thereof is difficult as in the heat insulating structure 1 whose cross-sectional schematic structure is shown in FIG. A fiber mesh is formed by interposing an adhesive 5 on the surface of a foamed body 4 (fireproof heat insulating member) in which foamed styrene beads 2 (having heat insulation properties) coated with a flammable composition 3 are integrated by fusion or the like. Some have formed a refractory layer 7 of mortar embedded with 6 (Patent Document 1). Such a heat insulation structure 1 can prevent condensation and deterioration of a heat insulating material accompanying condensation as well as a heat insulation effect, and can reduce deterioration of the building frame caused by weather phenomena such as temperature difference.

特開2007−85027号公報JP 2007-85027 A

前述断熱構造体は、スチレンビーズ等を難燃性組成物でコーティングした発泡性組成物で形成されること、またモルタルの耐火層が一定の効果を発揮することから、比較的短時間であれば耐火性を発揮して、火災等から建物を保護することが期待される。しかし、耐火性がスチレンビーズ等に施された難燃性コーティング、およびモルタル層に依存しており、一定時間以上、高温の火熱に晒されると、前述難燃性コーティング層およびモルタル層の耐火性が失われて、延焼を防ぐことができなくなってしまう。さらにはスチレンビーズ等の発泡性組成物が焼失等する可能性を否定することができない。   The heat insulation structure is formed of a foamable composition obtained by coating styrene beads or the like with a flame retardant composition, and the refractory layer of the mortar exhibits a certain effect. It is expected to exhibit fire resistance and protect buildings from fires. However, the fire resistance depends on the flame retardant coating applied to styrene beads, etc., and the mortar layer. When exposed to high temperature heat for a certain period of time or more, the fire resistance of the flame retardant coating layer and mortar layer described above. Will be lost, preventing the spread of fire. Furthermore, the possibility that the foamable composition such as styrene beads may be burned out cannot be denied.

またファイバーメッシュを埋め込んだモルタル層が短時間の耐火性を発揮するとしても、地震等による振動でモルタル層の耐火層にひび割れが生じる可能性を否めず、かかるひび割れは、雨水の浸水の原因となって、発泡スチレンビーズ等の劣化、すなわち断熱性の劣化、および火災発生時における耐火性の劣化を招来し得る。モルタル層を厚くして耐火性を高めることも考えられるが、モルタル層の厚みを増やすと、モルタル層は一般的にひび割れをさらに誘発し剥落しやすくなる。このように、前述断熱構造体は、さらなる耐火性および耐震性の向上という課題を有している。   Moreover, even if the mortar layer embedded with fiber mesh exhibits short-term fire resistance, there is no denying the possibility that the mortar layer will crack due to vibration caused by earthquakes, etc. Thus, deterioration of foamed styrene beads or the like, that is, deterioration of heat insulation, and deterioration of fire resistance in the event of a fire may be caused. Although it is conceivable to increase the fire resistance by increasing the thickness of the mortar layer, when the thickness of the mortar layer is increased, the mortar layer generally further induces cracking and becomes easy to peel off. Thus, the above-mentioned heat insulation structure has the subject of the further improvement of fire resistance and earthquake resistance.

そこで耐火性に優れ、施工性に優れ、低コストで、耐候性、耐震性に優れて高い断熱性を長期にわたって維持することができる、好ましくは、建物の外観のデザイン性向上に寄与できる断熱構造体および建物の断熱構造を実現することが課題となる。   Therefore, it has excellent fire resistance, excellent workability, low cost, excellent weather resistance and earthquake resistance, and can maintain high heat insulation over a long period of time, preferably a heat insulating structure that can contribute to improving the design of the exterior of the building It becomes a subject to realize the heat insulation structure of the body and the building.

上記課題を解決するために本発明にかかる断熱構造体は、建物躯体室外側に、その一面を相対するようにして配設される、断熱部材を有して熱を遮断することができる。ここで断熱部材は、例えば難燃性のコーティング層を備えた発泡組成物で形成した耐火性断熱部材であってもよい。   In order to solve the above-described problems, the heat insulating structure according to the present invention has a heat insulating member disposed on the outside of the building housing room so as to face one surface thereof, and can block heat. Here, the heat insulating member may be, for example, a fire resistant heat insulating member formed of a foam composition having a flame retardant coating layer.

また該断熱構造体は、断熱部材の他面側に、その一面を相対するようにして形成された耐火層を有して、断熱部材への火熱の伝搬を低減することができる。耐火層は非金属層によってなるものである。この場合、非金属層とは、金属パネル以外の建材によってなる層をいい、たとえば、樹脂を含まないモルタル、シラス、漆喰(土壁)等の無機材によってなるもの、ポリマー等の有機材によってなるもの、および有機材・無機材のコンポジット(組合せ)によってなるもの、金属粉等の金属類を一部成分とするものを含む。   Moreover, this heat insulation structure has the fireproof layer formed so that the one surface might face the other surface side of a heat insulation member, and can reduce the propagation of the fire heat to a heat insulation member. The refractory layer is made of a non-metallic layer. In this case, the non-metallic layer refers to a layer made of a building material other than a metal panel. For example, the layer made of an inorganic material such as mortar, shirasu, or plaster (earth wall) that does not contain a resin, or an organic material such as a polymer. And those composed of a composite (combination) of organic and inorganic materials, and those containing a part of metals such as metal powder.

上記において、耐火層はさらに、例えばその内部にメッシュ(例えばグラスファイバー等の耐熱性組成物で形成されたメッシュ)を埋め込んだモルタル層で形成するとしてもよい。 In the above, the refractory layer may be further formed of, for example, a mortar layer in which a mesh (for example, a mesh formed of a heat-resistant composition such as glass fiber) is embedded.

さらに該断熱構造体は、耐火層の他面側に、その一面を相対するようにして形成された耐火塗膜を有しており、この耐火塗膜は、火熱に晒されると、体積が例えば10倍から20倍程度に膨張して、火熱を遮断することができるという特徴を有するものである。この耐火塗膜は、例えばポリリン酸アンモニウムを主成分とする耐火塗料を塗布して形成されたものであり、火熱によって膨張するとともに炭化して優れた耐火性と断熱性を発揮することができる。   Further, the heat insulating structure has a fire-resistant coating film formed on the other surface side of the fire-resistant layer so that the one surface faces each other. When the fire-resistant coating film is exposed to fire heat, the volume is, for example, It has a feature that it can expand about 10 to 20 times and can cut off the heat. This fire-resistant coating film is formed, for example, by applying a fire-resistant paint mainly composed of ammonium polyphosphate. The fire-resistant coating film expands by heat and is carbonized to exhibit excellent fire resistance and heat insulation.

ここで所望の耐火時間等を実現するためには、火熱によって膨張したときの耐火塗膜の厚さが所定の厚さになるように、耐火塗膜を形成する際に、その厚さを管理することが求められる。例えばローラー塗りする場合には、ローラー塗りの回数および塗装厚さゲージで耐火塗膜の厚さを管理することができる。ここで骨材を混入した耐火塗料で塗布耐火塗膜を形成すれば、厚さゲージを使用せず、その厚さを骨材の形状(例えば略球形の骨材であれば、その直径)で管理することができて施工性が向上する。   In order to achieve the desired fireproof time, etc., the thickness of the fireproof coating is controlled when it is formed so that the thickness of the fireproof coating when it is expanded by heat is a predetermined thickness. It is required to do. For example, in the case of roller coating, the thickness of the fire-resistant coating film can be managed by the number of times of roller coating and the coating thickness gauge. If a fire-resistant coating film is formed with a fire-resistant paint mixed with aggregate, the thickness gauge is not used, and the thickness is the shape of the aggregate (for example, the diameter of a roughly spherical aggregate). It can be managed and the workability is improved.

このように該断熱構造体は、耐火塗膜を適切な厚さとすることで、長時間の耐火性を実現することができる。また耐火塗膜は、耐火層を地震等によるひび割れから保護して、耐火層の剥脱を防ぐことができる。こうして耐火塗膜は、耐火層と相まって断熱部材を長期間にわたって保護することができ、また耐火性塗料で形成されるものだから、塗装技術によって、建物の外観のデザイン性を高めることができる。   Thus, this heat insulation structure can implement | achieve fire resistance for a long time by making a fireproof coating film into appropriate thickness. The fire-resistant coating film can protect the fire-resistant layer from cracking due to an earthquake or the like and prevent the fire-resistant layer from peeling off. Thus, the fire-resistant coating film can protect the heat insulating member over a long period of time in combination with the fire-resistant layer, and since it is formed of a fire-resistant paint, the design of the appearance of the building can be enhanced by the painting technique.

さらに該断熱構造体の、耐火塗膜の他面側(該断熱構造体の外気に接する側)に被覆層を形成することによって、耐火塗膜を風雨から保護することができ、耐火塗膜の特徴をさらに長期にわたって維持することができる。かかる被覆層は、例えば耐候性を有する無機系塗料(好適には、例えばオルガノポリシロキサン系樹脂エマルジョン塗料を使用するがこれに限定されるものではない)で形成することができる。   Furthermore, by forming a coating layer on the other side of the heat-resistant structure (the side in contact with the outside air of the heat-resistant structure), the fire-resistant coating can be protected from wind and rain. Features can be maintained for longer periods. Such a coating layer can be formed of, for example, an inorganic paint having weather resistance (preferably, for example, an organopolysiloxane-based resin emulsion paint is used but is not limited thereto).

さらに、こうした断熱構造体を建物の外壁に備えることによって、優れた断熱性を有する建物の外断熱構造を実現することができる。   Further, by providing such a heat insulating structure on the outer wall of the building, an outer heat insulating structure of the building having excellent heat insulating properties can be realized.

このように本発明にかかる断熱構造体および建物の外断熱構造によれば、施工性に優れ、低コストで、耐候性に優れて、すなわち長年月にわたって、高い断熱性および耐火性を維持することができる。また建物における外観のデザイン性を維持しつつ、優れた断熱性と耐火性を実現することができる。   Thus, according to the heat insulating structure and the outer heat insulating structure of the building according to the present invention, excellent workability, low cost, excellent weather resistance, that is, maintaining high heat resistance and fire resistance over many years. Can do. In addition, it is possible to achieve excellent heat insulation and fire resistance while maintaining the appearance design of the building.

本発明にかかる断熱構造体の一実施例(実施例1)における断面概略構造を示す図であり(a)、またその変形例における断面概略構造を示す図である(b)。It is a figure which shows the cross-sectional schematic structure in one Example (Example 1) of the heat insulation structure concerning this invention (a), and is a figure which shows the cross-sectional schematic structure in the modification (b). 本発明にかかる断熱工法(内断熱)を説明する断面図である。It is sectional drawing explaining the heat insulation construction method (internal heat insulation) concerning this invention. 本発明にかかる断熱工法(外断熱)を説明する断面図である。It is sectional drawing explaining the heat insulation construction method (outside heat insulation) concerning this invention. 本発明にかかる断熱構造体の他の実施例(実施例2)における断面概略構造を示す図である。It is a figure which shows the cross-sectional schematic structure in the other Example (Example 2) of the heat insulation structure concerning this invention. 本発明にかかる建物の外断熱構造体の一実施例(実施例3)における外断熱構造の概略断面構成図(斜視図)である。It is a general | schematic cross-section block diagram (perspective view) of the outer heat insulation structure in one Example (Example 3) of the outer heat insulation structure of the building concerning this invention. 図3に示す外断熱構造体の断面概略構造を示す図であり(a)、また同外断熱構造体が火熱に晒された後の断面概略構造を示す図である(b)。It is a figure which shows the cross-sectional schematic structure of the outer heat insulation structure shown in FIG. 3 (a), and is a figure which shows the cross-sectional schematic structure after the same outer heat insulation structure is exposed to a fire heat (b). 従来の断熱構造体の一例における断面概略構造を示す図である。It is a figure which shows the cross-sectional schematic structure in an example of the conventional heat insulation structure.

以下、図面を参照して、本発明にかかる断熱構造体および建物の外断熱構造について説明する。   Hereinafter, with reference to drawings, the heat insulation structure concerning the present invention and the outside heat insulation structure of a building are explained.

本発明にかかる断熱構造体の一実施例(実施例1)にかかる断熱構造体10Aについて説明する。図1(a)は、断熱構造体10Aの概略断面構造を示すものである。断熱構造体10Aは、断熱部材11を有しており、その一面11aが建物躯体室外側(図示せず)の表面側に相対して取り付けられるようになっている。断熱部材11の他面11b側には、耐火層12がその一面12aを接するように形成されている。   A heat insulating structure 10A according to an embodiment (Example 1) of the heat insulating structure according to the present invention will be described. FIG. 1A shows a schematic cross-sectional structure of the heat insulating structure 10A. 10 A of heat insulation structures have the heat insulation member 11, The one surface 11a is attached relatively to the surface side of a building skeleton room outer side (not shown). On the other surface 11b side of the heat insulating member 11, a refractory layer 12 is formed so as to contact the one surface 12a.

耐火層12は、その内部にグラスファイバー・メッシュ12mを有している。耐火層12の他面12b側には、耐火塗膜13がその一面13aを接するように形成されている。すなわち断熱構造体10Aは、図1(a)に示すように、断熱部材11の他面11b上に耐火層12が形成されており、耐火層12の他面12b上にさらの耐火塗膜13が形成されている。そして断熱構造体10Aは、断熱部材11の一面11aが建物躯体室外側に相対して取り付けられ、耐火塗膜13の他面13bが外気に接するようになっている。   The refractory layer 12 has a glass fiber mesh 12m therein. On the other surface 12b side of the refractory layer 12, a refractory coating 13 is formed so as to contact the one surface 13a. That is, as shown in FIG. 1A, the heat insulating structure 10 </ b> A has a fire resistant layer 12 formed on the other surface 11 b of the heat insulating member 11, and a further fire resistant coating film 13 on the other surface 12 b of the fire resistant layer 12. Is formed. In the heat insulating structure 10A, one surface 11a of the heat insulating member 11 is attached to the outside of the building housing room, and the other surface 13b of the fireproof coating 13 is in contact with the outside air.

<断熱部材>
断熱部材11の例としては、ポリスチレンペレットを発泡させて得たポリスチレンビーズの粒ごとに耐火材をコーティングし(難燃性コーティング層を形成し)、これをフォーム状に成形したもので、例えば20〜300mmの厚さを有して、優れた断熱性および耐火性を発揮するものがある。こうした断熱部材を用いた場合には、断熱部材11の耐火性も向上する。もちろんポリスチレンビーズの粒ごとの難燃性コーティング層が形成されていない断熱部材11であっても、断熱構造体10Aの耐火性は、後述する耐火塗膜および耐火層によって実現される。また、かかる耐火性を備えた断熱部材としては上記の耐火材をコーティングしてフォーム状に形成されたものに限らず、耐火断熱性を有する素材を断熱部材11として採用するものであってもよい。
<Heat insulation member>
As an example of the heat insulating member 11, a refractory material is coated on each polystyrene bead particle obtained by foaming polystyrene pellets (a flame retardant coating layer is formed), and this is molded into a foam shape. Some have a thickness of ˜300 mm and exhibit excellent heat insulation and fire resistance. When such a heat insulating member is used, the fire resistance of the heat insulating member 11 is also improved. Of course, even in the heat insulating member 11 in which the flame retardant coating layer for each grain of polystyrene beads is not formed, the fire resistance of the heat insulating structure 10A is realized by a fire resistant coating and a fire resistant layer described later. In addition, the heat insulating member having such fire resistance is not limited to the one formed in the form of a foam by coating the above fire resistant material, but a material having fire resistance and heat insulation may be adopted as the heat insulating member 11. .

略50mmの厚さを有する耐火被覆ポリスチレンフェノール・フォームの場合には、例えば、密度が55±5(kg/立方メーター)であり(測定方法JIS A 9511)、熱伝導率が0.038(W/m・k)以下であり(測定方法JIS A 1412)、酸素指数が30%(V/V)以上であり(測定方法JIS K 7201)、そして燃焼性が燃焼なしである(測定方法JIS A 9511)。   In the case of a fireproof coated polystyrene phenol foam having a thickness of approximately 50 mm, for example, the density is 55 ± 5 (kg / cubic meter) (measurement method JIS A 9511) and the thermal conductivity is 0.038 (W / M · k) or less (measurement method JIS A 1412), the oxygen index is 30% (V / V) or more (measurement method JIS K 7201), and the combustibility is no combustion (measurement method JIS A). 9511).

<耐火層>
耐火層12は、耐火性を有するポリマーセメントモルタルの規格を満たすアクリル系樹脂モルタルで形成されており、その内部に、引っ張り強度・耐衝撃性を有するグラスファイバー・メッシュ12mを伏込んで、例えば略3±0.5mmの厚さを有している。グラスファイバー・メッシュ12mは、耐アルカリ化が施され、耐アルカリ化後の重量が略145g/平方メーター以上のものである。
<Fireproof layer>
The refractory layer 12 is formed of an acrylic resin mortar that satisfies the specifications of a polymer cement mortar having fire resistance, and a glass fiber mesh 12m having tensile strength and impact resistance is embedded in the refractory layer 12, for example, approximately It has a thickness of 3 ± 0.5 mm. The glass fiber mesh 12m is subjected to alkali resistance and has a weight after alkali resistance of approximately 145 g / square meter or more.

アクリル系樹脂モルタルは、耐火被覆ポリスチレンフェノール・フォームと親和性を有しているから、断熱部材11の他面11b上に直接、コテを使用して塗布(コテ塗り)することができ、また硬化後は、弾性があり薄くて軽いので、ひび割れし難いモルタル層が形成され、断熱部材11に密着した脱落し難い耐火層を形成することができる。   Since the acrylic resin mortar has an affinity with the fireproof coated polystyrene phenol foam, it can be applied (trowel coating) directly on the other surface 11b of the heat insulating member 11 using a trowel and cured. After that, since it is elastic and thin and light, a mortar layer that does not easily crack can be formed, and a fire-resistant layer that is in close contact with the heat insulating member 11 and hardly falls off can be formed.

ここで耐火層12は、所望の耐火性、耐ひび割れ性、耐衝撃性および断熱部材11との親和性を有するものであればよく、前述のアクリル系樹脂モルタルに限定されるものではない。換言すれば、耐火層12とは金属パネルを除外する非金属素材をいう。この非金属素材は、たとえば、有機材、無機材、有機材・無機材のコンポジットを含んでよく、より詳細には、樹脂を含まないモルタル、シラス、漆喰(土壁)等の無機材、ポリマー等の有機材を含むものである。   Here, the fire-resistant layer 12 is not limited to the acrylic resin mortar described above as long as it has desired fire resistance, crack resistance, impact resistance, and affinity with the heat insulating member 11. In other words, the refractory layer 12 refers to a non-metallic material excluding a metal panel. This non-metallic material may include, for example, organic materials, inorganic materials, composites of organic materials and inorganic materials, and more specifically, inorganic materials such as mortar, shirasu, and plaster (earth wall) that do not contain resin, polymers. It contains organic materials such as.

またグラスファイバー・メッシュ12mは、所望の引っ張り強度・耐衝撃性等を有するものであればよく、前述のものに限定されるものではない。たとえば、メッシュとして、3次元のメッシュ(図示しない)等を採用してもよい。   The glass fiber mesh 12m is not limited to those described above as long as it has desired tensile strength, impact resistance, and the like. For example, a three-dimensional mesh (not shown) may be adopted as the mesh.

<耐火塗膜>
耐火塗膜13は、例えばポリリン酸アンモニウムを主成分とした耐火塗料を塗布したもので、火熱に晒されると体積が10〜20倍程度に発泡・膨張するとともに炭化して、断熱性および耐火性を発揮して、火熱を長時間にわたり遮断することができる。すなわち耐火塗膜13は、火熱によって膨張して耐火断熱層を形成することを特徴とするものであり、例えば略0.5〜3mm程度の厚さを有している。
<Fireproof coating>
The fire-resistant coating film 13 is, for example, coated with a fire-resistant paint mainly composed of ammonium polyphosphate. When exposed to fire heat, the fire-resistant coating film 13 expands and expands about 10 to 20 times in volume, and carbonizes to provide heat insulation and fire resistance. Can be used to cut off the heat for a long time. That is, the fire-resistant coating film 13 is characterized by being expanded by fire heat to form a fire-resistant heat insulating layer, and has a thickness of about 0.5 to 3 mm, for example.

このように耐火塗膜13は、耐火層12および断熱部材11を火熱から保護することができるから、断熱構造体10Aの耐火性を向上することができる(例えばISO5660に準拠する不燃材料発熱性試験の基準を満たすことができる。)。この耐火塗膜13は、耐火層12の上に耐火塗料をコテ塗り、刷毛塗り、またはローラー塗りで塗布して形成することができるから、断熱構造体10Aは施工性に優れている。   Thus, since the fire-resistant coating film 13 can protect the fire-resistant layer 12 and the heat insulating member 11 from fire heat, the fire resistance of the heat insulating structure 10A can be improved (for example, a non-flammable material exothermic test conforming to ISO 5660). Can meet the criteria.) Since the fire-resistant coating film 13 can be formed by applying a fire-resistant paint on the fire-resistant layer 12 by ironing, brushing, or roller coating, the heat insulating structure 10A is excellent in workability.

また断熱構造体10Aの耐火時間は、耐火塗膜13の膨張後の厚さに依存するから、例えば厚さをゲージで確認しながら、数度にわたって耐火塗料を塗布する等して耐火塗膜13の厚さを適切に管理する必要がある。ここで耐火塗料にシリカ等の骨材を混入すると、骨材の形状で耐火塗料を塗布する厚さを規定することができる。例えば直径略0.5mmの球形骨材を混入した耐火塗料を塗布すれば耐火塗膜13を約0.5mmの厚さで形成することができ、骨材の大きさを変えることにより、必要な厚さの耐火塗膜13を形成することができる。またコテ等を使用して耐火塗膜13の表面(他面13b)に、意匠性の高い左官模様(テクスチャー)などの造型を施すこともでき、建物の外観のデザイン性を高めることができる。   Moreover, since the fireproof time of the heat insulating structure 10A depends on the thickness of the fireproof coating film 13 after expansion, the fireproof coating film 13 is applied by applying a fireproof paint several times while checking the thickness with a gauge, for example. It is necessary to properly manage the thickness of the. Here, when an aggregate such as silica is mixed in the fireproof paint, the thickness of the fireproof paint applied can be defined by the shape of the aggregate. For example, if a fire-resistant paint mixed with a spherical aggregate having a diameter of about 0.5 mm is applied, the fire-resistant coating film 13 can be formed with a thickness of about 0.5 mm, and it is necessary to change the size of the aggregate. A fire-resistant coating film 13 having a thickness can be formed. In addition, using a trowel or the like, the surface (other surface 13b) of the fire-resistant coating film 13 can be molded with a plastering pattern (texture) having a high design property, and the design of the appearance of the building can be enhanced.

かくして断熱構造体10Aは、施工性に優れ、その厚さを適切に管理することができる耐火塗膜13を有して、不燃材料の条件を満たす断熱構造体を実現することができる。もちろん耐火塗膜13は、前述のポリリン酸アンモニウムを主成分とするものと同等、もしくは所望の耐火性等を有するものであればよく、骨材もシリカ以外の炭酸カルシウム、あるいは大理石等石材を粉砕したものでもよい。   Thus, the heat insulating structure 10A is excellent in workability and has the fire-resistant coating film 13 capable of appropriately managing the thickness thereof, and can realize a heat insulating structure that satisfies the conditions of the noncombustible material. Of course, the fire-resistant coating film 13 may be the same as that having the above-mentioned ammonium polyphosphate as a main component, or may have any desired fire resistance, and the aggregate is also pulverized calcium carbonate other than silica or stone such as marble. You may have done.

なお断熱構造体10Aは、建物躯体に取り付けて外断熱を実現できることはもとより、耐火性および断熱性が要求される構造物(構造体)の断熱を実現するための断熱構造体としても使用できるものである。   The heat insulating structure 10A can be used as a heat insulating structure for realizing heat insulation of a structure (structure) that is required to have fire resistance and heat insulation as well as being able to be attached to a building frame to realize external heat insulation. It is.

<変形例>
次に断熱構造体10Aの変形例である断熱構造体10A’について説明する。図1(b)に示す断熱構造体10A’は、断熱構造体10Aの断熱部材11の他面11b側に、耐火層12の一面12aを相対させて、両者を接着剤で形成される接着層15で接着したものである。このような断熱構造体10A’では、断熱部材11と耐火層12とをより強固に一体化することができる。
<Modification>
Next, a heat insulating structure 10A ′, which is a modification of the heat insulating structure 10A, will be described. The heat insulating structure 10A ′ shown in FIG. 1 (b) is an adhesive layer in which one surface 12a of the refractory layer 12 is opposed to the other surface 11b side of the heat insulating member 11 of the heat insulating structure 10A and both are formed of an adhesive. 15 is bonded. In such a heat insulating structure 10A ′, the heat insulating member 11 and the refractory layer 12 can be integrated more firmly.

なお、上記及び以下の説明においては、図1A、図1Bに記載されるように用語の意味を付するものとする。   In the above and following description, the meanings of terms are given as described in FIGS. 1A and 1B.

次に本発明にかかる断熱構造体の他の一実施例(実施例2)にかかる断熱構造体10Bについて説明する。図2は、断熱構造体10Bの概略断面構造を示すものである。なお実施例1の断熱構造体10Aと同一の機能を有する構成要素については、同一の符合を付し、それらの説明を省略する。   Next, a heat insulating structure 10B according to another embodiment (Example 2) of the heat insulating structure according to the present invention will be described. FIG. 2 shows a schematic cross-sectional structure of the heat insulating structure 10B. In addition, about the component which has the same function as 10 A of heat insulation structures of Example 1, the same code | symbol is attached | subjected and those description is abbreviate | omitted.

断熱構造体10Bは、断熱構造体10Aが有する耐火塗膜13の他面13b上に、さらに被覆層14を設けたものである。被覆層14は、例えば、耐候性を有する塗料を塗布して形成され、耐火塗膜13を風雨から保護することができる。従って断熱構造体10Bは、耐火塗膜13の優れた耐火性を、さらに長期間にわたって維持することができる。   The heat insulating structure 10B is obtained by further providing a coating layer 14 on the other surface 13b of the fireproof coating 13 of the heat insulating structure 10A. The coating layer 14 is formed, for example, by applying a weather-resistant paint, and can protect the fire-resistant coating film 13 from wind and rain. Therefore, the heat insulating structure 10B can maintain the excellent fire resistance of the fire-resistant coating film 13 for a longer period of time.

ここで耐候性を有する塗料の例としては、オルガノポリシロキンサン系樹脂エマルジョン塗料等があり、このオルガノポリシロキンサン系樹脂エマルジョン塗料を1平方メーター当たり150g前後塗布することで被覆層14を形成する。もちろん耐候性塗料は、所望の耐候性を発揮するものであればよく、前述のオルガノポリシロキンサン系樹脂エマルジョン塗料に限定されない。また上記塗布量についてもこの数値に限定されるものではない。   Here, examples of the paint having weather resistance include an organopolysiloxane resin emulsion paint and the like, and the coating layer 14 is formed by applying about 150 g of this organopolysiloxane resin emulsion paint per square meter. . Of course, the weather-resistant coating material is not limited to the aforementioned organopolysiloxane resin emulsion coating material as long as it exhibits desired weather resistance. Further, the coating amount is not limited to this value.

ところで被覆層14は、耐火塗装13の他面13b側に設けられるものであり、被覆層14の一面14aと耐火塗装13の他面13bとが直接接する構造はもとより、被覆層14の一面14aと耐火塗装13の他面13bとの間に、さらに他の塗装膜または接着層等が介在してもよい。   By the way, the coating layer 14 is provided on the other surface 13b side of the fire-resistant coating 13, and not only has a structure in which the one surface 14a of the coating layer 14 and the other surface 13b of the fire-resistant coating 13 are in direct contact with each other. Another coating film or an adhesive layer may be interposed between the other surface 13 b of the fireproof coating 13.

次に本発明にかかる建物の外断熱構造を、図3および図4に基づいて説明する。なお前述の実施例と同一の機能を有する構成要素には、同一の符合を付し、それらの説明を省略する。   Next, the external heat insulation structure of the building concerning this invention is demonstrated based on FIG. 3 and FIG. Note that components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図3は、本発明にかかる建物の外断熱構造20の一部を斜視した概略断面構成図であり、建物の外断熱構造20は、少なくとも建物躯体21と断熱構造体10Aまたは断熱構造体10Bとを有している(図3に示す外断熱構造20は、断熱構造体10Bを有している)。断熱構造体10Bは、断熱部材11の一面11aが建物躯体21の建物躯体室外側21aと相対するようにして建物躯体21に取り付けられている。   FIG. 3 is a schematic cross-sectional configuration diagram in which a part of the outer heat insulating structure 20 of the building according to the present invention is perspectively viewed. The outer heat insulating structure 20 of the building includes at least a building housing 21 and a heat insulating structure 10A or a heat insulating structure 10B. (The outer heat insulating structure 20 shown in FIG. 3 has a heat insulating structure 10B). The heat insulating structure 10 </ b> B is attached to the building frame 21 such that one surface 11 a of the heat insulating member 11 faces the building frame outdoor side 21 a of the building frame 21.

建物躯体21の建物躯体室外側21aへの断熱構造体10Bの取り付けは、建物躯体室外側21aに例えばアクリル系樹脂モルタルをコテ塗りして形成した接着層22に、断熱構造体10Bの断熱部材11の一面11aを接着する等して行われる(接着層22は、通常ビード(ノッチング)接着、またはいわゆる団子張りの接着層として形成される)。またはアンカー(図示せず)を使用する、もしくはコンクリート打設時に一緒に打ち込む(図示せず。型枠に断熱構造体10Bを固定してコンクリートを打設する態様、断熱構造体10B自体を型枠的に使用してコンクリートを打設する態様を含む。)等して、断熱構造体10Bが建物躯体21に固定される。すなわち図3および図4(a)に示すように、外断熱構造20では、建物躯体21の建物躯体室外側21a側から順番に、断熱構造体10Bの断熱部材11、耐火層12、耐火塗膜13、および被覆層14が配設されている。   The heat insulating structure 10B is attached to the outer side 21a of the building frame 21 on the outer side 21a of the building frame 21 on the adhesive layer 22 formed by troweling, for example, acrylic resin mortar on the outer side 21a of the building frame. (The adhesive layer 22 is usually formed as a bead (notching) adhesive or a so-called dumpling adhesive layer). Alternatively, an anchor (not shown) is used, or it is driven together at the time of concrete placement (not shown. An embodiment in which concrete is cast by fixing the heat insulation structure 10B to the mold, and the heat insulation structure 10B itself is used as the mold. In other words, the heat insulating structure 10B is fixed to the building frame 21. That is, as shown to FIG. 3 and FIG. 4 (a), in the outer heat insulation structure 20, the heat insulation member 11, the fireproof layer 12, and a fireproof coating film of the heat insulation structure 10B in order from the building housing room outer side 21a side of the building housing 21. 13 and a coating layer 14 are disposed.

外断熱構造20が火災等で火熱に晒されると、図4(b)に示すように、耐火塗膜13が発泡・膨張するとともに炭化して、その耐火性と断熱性によって断熱部材11、耐火層12の変形・消失等を長時間にわたって防ぐことができる(なお被覆層14は、火熱によって消失し得るが、耐火塗膜13及び耐火層12が耐火性等を発揮するから、被覆層14の消失は何ら問題を生じない。)。   When the outer heat insulating structure 20 is exposed to fire heat due to a fire or the like, as shown in FIG. 4 (b), the fire-resistant coating film 13 expands and expands and carbonizes, and the heat-insulating member 11 and fire-resistant due to its fire resistance and heat insulation properties. The deformation / disappearance of the layer 12 can be prevented over a long period of time (note that the coating layer 14 can disappear by fire, but the fire-resistant coating film 13 and the fire-resistant layer 12 exhibit fire resistance and the like. Disappearance does not cause any problems.)

このように、外断熱構造20は、断熱部材11の優れた断熱効果で建物の外断熱を実現することができ、もし火災が生じたとしても、耐火塗装13の優れた耐火性と断熱性で建物を火災から保護することができる。もちろん、外断熱構造20は、建物とその躯体21等が受ける火災の熱ストレスを軽減することができる。   As described above, the outer heat insulating structure 20 can achieve the outer heat insulation of the building by the excellent heat insulating effect of the heat insulating member 11, and even if a fire occurs, the fire resistance coating 13 has excellent fire resistance and heat insulating properties. The building can be protected from fire. Of course, the outer heat insulating structure 20 can reduce the thermal stress of the fire that the building and its housing 21 receive.

なお本発明にかかる断熱構造体および建物の外断熱構造は、各実施例の構成等に限定されるものではなく、それらの趣旨を変更することなく、適宜変形して実施することができる。例えば、耐火層と耐火塗膜の間に、両者と親和性を有する組成物を介在させる等である。   In addition, the heat insulation structure concerning this invention and the external heat insulation structure of a building are not limited to the structure of each Example, etc., It can change suitably and implement without changing those meanings. For example, a composition having affinity for both is interposed between the fireproof layer and the fireproof coating film.

本発明にかかる断熱構造体および建物の外断熱構造は、建物等において使用することができるから、本発明は経済的価値を有して産業上利用することができる発明である。   Since the heat insulating structure and the outer heat insulating structure of a building according to the present invention can be used in a building or the like, the present invention is an invention that has economic value and can be used industrially.

10A、10B 断熱構造体
11 断熱部材
11a 断熱部材の一面
11b 断熱部材の他面
12 耐火層
12a 耐火層の一面
12b 耐火層の他面
12m グラスファイバー・メッシュ
13 耐火塗膜
13a 耐火塗膜の一面
13b 耐火塗膜の他面
14 被覆層
14a 被覆層の一面
20 断熱構造
21 建物躯体
21a 建物躯体室外側
10A, 10B Heat insulation structure 11 Heat insulation member 11a One surface 11b of heat insulation member Other surface 12 of heat insulation member Fireproof layer 12a One surface of fireproof layer 12b Other surface of fireproof layer 12m Glass fiber mesh 13 Fireproof coating 13a One surface of fireproof coating 13b The other side 14 of the fire-resistant coating film 14 The covering layer 14a One side of the covering layer 20 The heat insulating structure 21 The building frame 21a The outside of the building frame room

Claims (8)

建物躯体室外側に、その一面を相対するようにして配設される断熱部材と、
前記断熱部材の他面側に、その一面を相対するようにして形成された耐火層と、
前記耐火層の他面側に、その一面を相対するようにして形成された耐火塗膜を有する断熱構造体であって、
前記耐火層は非金属層によってなり、
前記耐火塗膜は、火熱によって膨張して耐火断熱層を形成することを特徴とする断熱構造体。
A heat insulating member disposed on the outside of the building housing room so as to face one surface thereof;
A refractory layer formed on the other surface side of the heat insulating member so as to face the one surface;
On the other surface side of the refractory layer, a heat insulating structure having a refractory coating formed so as to face one surface thereof,
The refractory layer comprises a non-metallic layer;
The fire-resistant coating film is expanded by fire to form a fire-resistant heat insulating layer.
請求項1に記載の断熱構造体の、前記耐火塗膜の他面側に、更に被覆層を形成したことを特徴とする断熱構造体。   The heat insulating structure according to claim 1, further comprising a coating layer formed on the other surface side of the fireproof coating film. 前記被覆層が、耐候性を有する無機系塗料で形成されたことを特徴とする請求項2に記載の断熱構造体。   The heat insulating structure according to claim 2, wherein the coating layer is formed of an inorganic paint having weather resistance. 前記断熱部材が耐火性を有する材であり、もしくは難燃性コーティング層を備えた発泡組成物であることを特徴とする請求項1乃至3の何れか1項に記載の断熱構造体。   The heat insulating structure according to any one of claims 1 to 3, wherein the heat insulating member is a material having fire resistance or a foamed composition provided with a flame retardant coating layer. 前記耐火層が、その内部にメッシュを埋め込んだモルタル層であることを特徴とする請求項1乃至4の何れか1項に記載の断熱構造体。   The heat insulation structure according to any one of claims 1 to 4, wherein the fireproof layer is a mortar layer in which a mesh is embedded. 前記メッシュが耐アルカリ性を有しており、また前記モルタル層がアクリル系樹脂モルタルであることを特徴とする請求項5に記載の断熱構造体。   The heat insulating structure according to claim 5, wherein the mesh has alkali resistance, and the mortar layer is an acrylic resin mortar. 前記耐火塗膜が、ポリリン酸アンモニウムを主成分とする耐火塗料を塗布して形成され、もしくは骨材を混入して吹付け、または左官で形成されたことを特徴とする請求項1乃至6の何れか1項に記載の断熱構造体。   7. The fire-resistant coating film according to claim 1, wherein the fire-resistant coating film is formed by applying a fire-resistant paint mainly composed of ammonium polyphosphate, sprayed by mixing aggregate, or formed by plastering. The heat insulation structure of any one of Claims. 建物の外断熱構造であって、前記請求項1乃至7の何れか1項に記載の断熱構造体を、建物躯体室外側に備えたことを特徴とする建物の外断熱構造。   An external heat insulation structure for a building, wherein the heat insulation structure according to any one of claims 1 to 7 is provided outside a building housing room.
JP2012162609A 2011-07-22 2012-07-23 Heat insulation structural body and external heat insulation structure of building Pending JP2013024030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162609A JP2013024030A (en) 2011-07-22 2012-07-23 Heat insulation structural body and external heat insulation structure of building

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/JP2011/66754 2011-07-22
PCT/JP2011/066754 WO2013014729A1 (en) 2011-07-22 2011-07-22 Heat insulation structural body, and external heat insulation structure for building
JP2012162609A JP2013024030A (en) 2011-07-22 2012-07-23 Heat insulation structural body and external heat insulation structure of building

Publications (1)

Publication Number Publication Date
JP2013024030A true JP2013024030A (en) 2013-02-04

Family

ID=47782697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162609A Pending JP2013024030A (en) 2011-07-22 2012-07-23 Heat insulation structural body and external heat insulation structure of building

Country Status (1)

Country Link
JP (1) JP2013024030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104358324A (en) * 2014-10-19 2015-02-18 镇江大成新能源有限公司 Novel building fireproof heat-preservation structure
JP2017177429A (en) * 2016-03-29 2017-10-05 有限会社ジャパン通商 Laminate sheet and method for producing laminate sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104358324A (en) * 2014-10-19 2015-02-18 镇江大成新能源有限公司 Novel building fireproof heat-preservation structure
JP2017177429A (en) * 2016-03-29 2017-10-05 有限会社ジャパン通商 Laminate sheet and method for producing laminate sheet

Similar Documents

Publication Publication Date Title
CN202202423U (en) Composite urethane foam thermal insulation system for building outer wall
KR101932135B1 (en) Composition and construction method of nonflammable surface finishing materials for preventing fire spread on exterior insulation layer
KR101835493B1 (en) Method of construcing semi-insulated panel and the same thereof
KR100696092B1 (en) Prefabricated panel made of the autoclaved light weight concrete
JP2010043445A (en) Fire-resistant coating structure of steel column
KR20160093168A (en) Fireproof and noncombustible construction method of structure&#39;s exterior wall
JP2013024030A (en) Heat insulation structural body and external heat insulation structure of building
KR20120085552A (en) the insulation composite panel with wood and the manufacturing method thereof
JP4954352B1 (en) Thermal insulation structure and external thermal insulation structure of building
KR101975801B1 (en) Double Layered Aluminum Foam Panel for Architecture
RU2704993C2 (en) Energy-efficient fire-resistant multilayer insulating panel
KR200420072Y1 (en) Prefabricated panel made of the autoclaved light weight concrete
CN103883097A (en) Insulation decorative plate
JP5317785B2 (en) Fire spread prevention structure in outer heat insulation structure
KR101281365B1 (en) Wood type fireproof door
JP2012092555A (en) Heat-insulated structure
JP2005120646A (en) Composite refractory building material
JP4205535B2 (en) Fireproof and thermal insulation composite panel
TWM577424U (en) Fireproofing, heat blocking and sound insulation mortar structure
CN220704809U (en) Balcony outer wall insulation board structure
CN212002223U (en) ZT composite heat-preservation external template with shock resistance and crack resistance
CN216041844U (en) AB composite fireproof insulation board
CN214220400U (en) Basalt fiber composite rib reinforced rock wool heat-preservation and decoration integrated board
KR102431155B1 (en) Synthetic resin decoration panel reinforced with glass fiber
CN209556159U (en) A kind of fire prevention Felt