JP2013018496A - Synthetic resin molded product - Google Patents

Synthetic resin molded product Download PDF

Info

Publication number
JP2013018496A
JP2013018496A JP2011151055A JP2011151055A JP2013018496A JP 2013018496 A JP2013018496 A JP 2013018496A JP 2011151055 A JP2011151055 A JP 2011151055A JP 2011151055 A JP2011151055 A JP 2011151055A JP 2013018496 A JP2013018496 A JP 2013018496A
Authority
JP
Japan
Prior art keywords
roughness
molded product
mold
seal
peel strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011151055A
Other languages
Japanese (ja)
Inventor
Motomichi Ochiai
基道 落合
Masaru Yaguchi
勝 矢口
Tomoyoshi Yoshida
友啓 吉田
Ichiro Kazama
一郎 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Rubber and Chemical Co Ltd
Original Assignee
Meiji Rubber and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Rubber and Chemical Co Ltd filed Critical Meiji Rubber and Chemical Co Ltd
Priority to JP2011151055A priority Critical patent/JP2013018496A/en
Publication of JP2013018496A publication Critical patent/JP2013018496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthetic resin molded product in which the roughness of an adhesive face can be changed depending on usage, types or the like of seal and the adhesive face having an irregular structure can be also used as a printing face.SOLUTION: The synthetic resin molded product is molded by using a sandblasted mold, and the roughness of irregularities on the surface of the molded product molded by the mold is usable for the adhesive face and the printing face. A relationship between the irregular surface roughness (μm) of the surface of the molded product and the peeling strength of the seal (five-point average) (N) corresponds to one of the following formulae: (1) arithmetic mean roughness (Ra) satisfies y=-1.1318x+r; (2) maximum height (Rmax) satisfies y=-0.1105x+r; and (3) ten-point mean roughness (Rz) satisfies y=-0.1414x+r (where, y represents peeling strength, x represents molded product surface roughness and r represents an initial adhesive force of the seal.).

Description

この発明は、内部に清涼飲料、ビール、食品或いは野菜等を収納して運搬、保管する際に使用する容器等の合成樹脂製成形品に係り、特に同一面にシールの貼着と印刷を可能にした合成樹脂製成形品に関するものである。   The present invention relates to a synthetic resin molded product such as a container used for storing, transporting, and storing soft drinks, beer, food, vegetables, etc., and in particular, enables sticking and printing of a seal on the same surface The present invention relates to a synthetic resin molded product.

一般に、清涼飲料、ビール、食品等の工場で製造された製品は、運搬容器に収納され製造ラインや配送センターに運搬されて保管される。また、集荷された野菜、果物等を運搬する際にも合成樹脂製成形品が使用されている。このような運搬容器等の合成樹脂製成形品には、製品等の管理をするために、製造元、搬送先、製品の種別、個数等を表示したシール又はラベル(以下、シールという)を成形品に貼って識別させることが行われている。   In general, products manufactured in factories such as soft drinks, beer, and food are stored in transport containers and transported to a production line or distribution center for storage. Synthetic resin molded products are also used for transporting collected vegetables and fruits. For such plastic molded products such as transport containers, in order to manage the product, etc., a seal or label (hereinafter referred to as a seal) indicating the manufacturer, transport destination, product type, number, etc. is used as the molded product. It is done to put on and identify.

このような識別用シールは、裏面に形成された粘着層を介して成形品の所定の貼着面に貼着される。図12は成形品の一例を示し、四隅の断面略くの字状支柱部1を下部側壁2,3、及び上部側壁4,5で連結してなる平面方形状の容器であって、前記下部側壁2,3と上部側壁4,5の間に窓6,7が形成されている。   Such an identification seal is attached to a predetermined attachment surface of the molded product through an adhesive layer formed on the back surface. FIG. 12 shows an example of a molded product, which is a planar rectangular container formed by connecting substantially square-shaped struts 1 at the four corners with lower side walls 2 and 3 and upper side walls 4 and 5. Windows 6 and 7 are formed between the side walls 2 and 3 and the upper side walls 4 and 5.

そして、下部側壁2,3、及び上部側壁4,5の適宜の箇所に凹凸に形成した貼着面が設けられ、前記貼着面に識別用シールが貼着される。前記貼着部の構造には、リブ構造のもの、シボ加工のもの、リブにシボ加工したもの等がある。これらの凹凸構造とすることにより、シールの貼着面積を小さくして貼着されたシールを剥離し易くしている。   And the sticking surface formed in the unevenness | corrugation in the appropriate location of the lower side walls 2 and 3 and the upper side walls 4 and 5 is provided, and the identification sticker is stuck on the said sticking surface. Examples of the structure of the sticking part include a rib structure, a textured texture, and a textured rib. By adopting these concavo-convex structures, the sticking area of the seal is reduced to make it easy to peel off the stuck seal.

実開昭59−717号公報Japanese Utility Model Publication No.59-717 特開2001−219936号公報JP 2001-219936 A 特開2005−41549号公報JP 2005-41549 A

しかしながら、上記特許文献1のように、貼着部にリブを突設した場合には、シールはリブ間に強固に貼着されているとともに、リブにも強固に貼着されているから、洗浄後にシールを剥がしたときに容易に剥離できないことがある。   However, as in Patent Document 1, when ribs are provided on the sticking portion, the seal is firmly attached between the ribs, and is also firmly attached to the ribs. When the seal is later peeled off, it may not be easily peeled off.

また、特許文献2のように、貼着部の凹凸面をシボ加工により形成した場合には、シールとの貼着力が十分でなく、成形品の搬送時や保管中にシールが不用意に剥がれてしまうことがある。また、シールの裏面に形成された粘着層の貼着力が強い場合には、容易に剥離することができない。   Moreover, when the uneven surface of the sticking part is formed by embossing as in Patent Document 2, the sticking force with the seal is not sufficient, and the sticker is inadvertently peeled off during transportation or storage of the molded product. May end up. Moreover, when the adhesion force of the adhesion layer formed in the back surface of a seal | sticker is strong, it cannot peel easily.

また、上記特許文献3のように、各リブの間にシボ加工による粗面を設けた場合には、リブ間の貼着力を弱めることができるものの、リブとの貼着力が強固であるために剥がし難いことがある。   In addition, as in Patent Document 3 described above, when a rough surface is provided between each rib, the adhesion between the ribs can be weakened, but the adhesion with the ribs is strong. It may be difficult to remove.

シールは、使用時には剥離が防止されるとともに、シールを張り替えるために剥離するときは容易に剥離することが望ましいが、シールによっては、製造ラインや配送センターへの運搬中に剥離しなければよいもの、長期間貼着していることが望まれるもの等、貼着力の要求はシールの用途によって様々である。   The seal is prevented from peeling when in use, and it is desirable to peel easily when peeling to replace the seal, but depending on the seal, it may not be peeled off during transportation to the production line or distribution center There are various demands for the sticking force depending on the application of the seal, such as those that are desired to be stuck for a long time.

さらに、従来、凹凸面に形成した貼着面は、シールを貼着するために構成されているものであり、シールの貼着にのみ使用されている。そのために、成形品表面の印刷面となる面には凹凸による貼着面を形成することはできなかったし、凹凸面による貼着面には印刷をすることもできなかった。また、貼着面の凹凸形状は一定であり、シールの貼着力の違いによって凹凸面の粗さを変更することはなかった。貼着面における貼着力は、シールの目的に応じた貼着力であることが望ましく、また、貼着面と成形品表面の印刷面とは共用できることが望ましい。   Furthermore, conventionally, the sticking surface formed on the concavo-convex surface is configured to stick a seal, and is used only for sticking a seal. Therefore, it was impossible to form a sticking surface with unevenness on the surface to be a printing surface of the molded product surface, and it was not possible to print on the sticking surface with the uneven surface. Moreover, the uneven | corrugated shape of the sticking surface was constant, and the roughness of the uneven surface was not changed by the difference in the sticking force of a seal | sticker. The adhering force on the adhering surface is desirably an adhering force according to the purpose of the seal, and it is desirable that the adhering surface and the printed surface of the molded product surface can be shared.

この発明はかかる現況に鑑みてなされたもので、シールの用途、種別等によって貼着面の粗さを変えた合成樹脂製成形品を提供せんとするものである。また、凹凸による貼着面も印刷面として使用可能とした合成樹脂製成形品を提供せんとするものである。   The present invention has been made in view of the present situation, and an object of the present invention is to provide a synthetic resin molded product in which the roughness of the sticking surface is changed depending on the use and type of the seal. In addition, the present invention intends to provide a synthetic resin molded product in which the sticking surface by unevenness can be used as a printing surface.

この発明は上記目的を達成するために次のような構成とした。即ち、この発明に係る合成樹脂製成形品は、ブラスト加工された金型で成形され、前記金型で成形された成形品表面の凹凸の粗さは、貼着面とともに印刷面としても使用可能であり、成形品表面の凹凸面粗さ(μm)とシールの剥離強度(5点平均)(N)との関係が、次の式のいずれか1つに該当することを特徴とする。
(1)算術平均粗さ(Ra)が、y=−1.1318x+r
(2)最大高さ(Rmax)が、y=−0.1105x+r
(3)十点平均粗さ(Rz)が、y=−0.1414x+r
(但し、yは剥離強度、xは成形品表面粗さ、rはシールの初期粘着力とする)
In order to achieve the above object, the present invention is configured as follows. That is, the synthetic resin molded product according to the present invention is molded with a blasted mold, and the roughness of the surface of the molded product molded with the mold can be used as a printing surface as well as a sticking surface. The relationship between the roughness of the surface of the molded article (μm) and the peel strength (5-point average) (N) of the seal corresponds to any one of the following formulas.
(1) Arithmetic mean roughness (Ra) is y = −1.1318x + r
(2) The maximum height (Rmax) is y = −0.1105x + r
(3) Ten-point average roughness (Rz) is y = −0.1414x + r
(Where y is the peel strength, x is the surface roughness of the molded product, and r is the initial adhesive strength of the seal)

発明者の試験によって、成形品の凹凸による印刷面の粗さとシールの剥離強度には、高い相関関係があることが分かった。成形品の印刷面となる表面の算術平均粗さ(Ra)とシールの剥離強度5点平均の相関係数Rは0.99であった。従って、シールの剥離強度をある値にするとその成形品表面の凹凸面粗さが得られ、逆に成形品表面の凹凸面粗さが分かればシールの剥離強度を得ることができる。   According to the inventors' tests, it has been found that there is a high correlation between the roughness of the printed surface due to the unevenness of the molded product and the peel strength of the seal. The correlation coefficient R between the arithmetic average roughness (Ra) of the surface to be the printed surface of the molded product and the five-point average peel strength of the seal was 0.99. Accordingly, when the peel strength of the seal is set to a certain value, the uneven surface roughness of the surface of the molded product can be obtained. Conversely, if the uneven surface roughness of the surface of the molded product is known, the peel strength of the seal can be obtained.

また、種々の試験によって成形品の印刷面の凹凸面粗さと金型の粗さにも高い相関関係があることが分った。成形品の印刷面(貼着面)の算術平均粗さ(Ra)と金型表面粗さとの相関係数Rは0.97であった。即ち、この発明に係る合成樹脂成形品は、ブラスト加工された金型で成形され、成形品表面の印刷面粗さと金型表面粗さとの関係が、次のいずれかに該当することを特徴とする合成樹脂製成形品である。
(1)算術平均粗さ(Ra)が、y=ax-s
(2)最大高さ(Rmax)が、y=ax-s
(3)十点平均粗さ(Rz)が、y=ax-s
(但し、y=成形品表面粗さ、a:金型表面の凹凸の成形品への転写率(a≦1)、x=金型表面の粗さ、s=材料係数とする)
なお、ここで材料係数とは、鏡面仕上げの金型で成形した樹脂成形品の表面は、金型と全く同じ鏡面にはならず、樹脂の性質上僅かな粗さが生じるが、この金型表面と成形品表面とを比較したときの関係をいう。通常は、s≒0となる。
Moreover, it was found by various tests that there is a high correlation between the roughness of the printed surface of the molded product and the roughness of the mold. The correlation coefficient R between the arithmetic average roughness (Ra) of the printed surface (sticking surface) of the molded product and the mold surface roughness was 0.97. That is, the synthetic resin molded article according to the present invention is molded with a blasted mold, and the relationship between the printed surface roughness of the molded article surface and the mold surface roughness corresponds to one of the following: It is a synthetic resin molded product.
(1) Arithmetic mean roughness (Ra) is y = ax−s
(2) The maximum height (Rmax) is y = ax−s
(3) Ten-point average roughness (Rz) is y = ax-s
(However, y = molded product surface roughness, a: transfer rate of unevenness of mold surface to molded product (a ≦ 1), x = mold surface roughness, s = material coefficient)
Here, the material coefficient means that the surface of the resin molded product molded with a mirror-finished mold does not have the same mirror surface as the mold, and a slight roughness occurs due to the properties of the resin. It refers to the relationship when the surface and the surface of the molded product are compared. Usually, s≈0.

種々の試験の結果から導き出された上記式に当てはめると、成形品の表面粗さ(y)または金型表面の粗さが得られる。即ち、所望の剥離強度が分かれば、これに対応する成形品表面の凹凸面粗さが得られる。そして、成形品表面の凹凸面粗さが得られれば、その成形品表面の凹凸面粗さを有する成形品を製造するための金型の表面粗さを得ることができる。従って、求められた表面粗さを有する金型で製造すれば、所望のシールの剥離強度を有する凹凸面粗さの成形品が得られるのである。前記成形品表面の凹凸面の粗さは、シールの貼着とともに通常のスクリーン印刷が可能である。   When applied to the above formulas derived from the results of various tests, the surface roughness (y) of the molded product or the roughness of the mold surface is obtained. That is, if the desired peel strength is known, the roughness of the surface of the molded product corresponding to this can be obtained. And if the uneven surface roughness of the surface of a molded product is obtained, the surface roughness of the metal mold | die for manufacturing the molded product which has the uneven surface roughness of the surface of the molded product can be obtained. Therefore, if a mold having the required surface roughness is produced, a molded product having a rough surface having a desired seal peel strength can be obtained. The roughness of the concavo-convex surface of the surface of the molded product allows normal screen printing as well as sticking of a seal.

この発明に係る凹凸面を有する成形品とした場合には、成形品の使用時には、貼着したシールの剥離が防止されるとともに、シールを張り替えるときには容易に剥離することができ、しかも、所望の剥離強度を有する凹凸面とすることができる。また、前記凹凸面はシールを貼着する貼着面であるばかりでなく、印刷面としても共用することができる。   In the case of a molded article having an uneven surface according to the present invention, when the molded article is used, peeling of the stuck seal is prevented, and when the seal is replaced, it can be easily peeled, and desired It can be set as an uneven surface having a peel strength of. Further, the uneven surface is not only a sticking surface for sticking a seal, but can also be used as a printing surface.

成形品の印刷面におけるインクの載り状態を示す図である。It is a figure which shows the mounting state of the ink in the printing surface of a molded article. フレーム処理前における成形品表面の算術平均粗さ(Ra)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the arithmetic mean roughness (Ra) of the surface of a molded article before flame | frame processing, and the peeling strength of a seal | sticker. フレーム処理前における成形品表面の最大高さ(Rmax)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the maximum height (Rmax) of the molded article surface before flame | frame processing, and the peeling strength of a seal | sticker. フレーム処理前における成形品表面の十点平均粗さ(Rz)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the 10-point average roughness (Rz) of the molded article surface before flame | frame processing, and the peeling strength of a seal | sticker. 成形品の印刷後の表面粗さ(Ra)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the surface roughness (Ra) after printing of a molded article, and the peeling strength of a seal | sticker. 成形品の印刷後の最大高さ(Rmax)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the maximum height (Rmax) after printing of a molded article, and the peeling strength of a seal | sticker. 成形品の印刷後の十点平均粗さ(Rz)とシールの剥離強度との関係を示すグラフである。It is a graph which shows the relationship between the ten-point average roughness (Rz) after printing of a molded article, and the peeling strength of a seal | sticker. 金型表面粗さと成形品表面粗さの測定結果である。It is a measurement result of a mold surface roughness and a molded article surface roughness. フレーム処理前における成形品表面の算術平均粗さ(Ra)と金型表面粗さとの関係を示すグラフである。It is a graph which shows the relationship between the arithmetic mean roughness (Ra) of the molded article surface before flame | frame processing, and metal mold | die surface roughness. フレーム処理前における成形品表面の最大高さ(Rmax)と金型表面粗さとの関係を示すグラフである。It is a graph which shows the relationship between the maximum height (Rmax) of the molded article surface before flame | frame processing, and metal mold | die surface roughness. フレーム処理前における成形品表面の十点平均粗さ(Rz)と金型表面粗さとの関係を示すグラフである。It is a graph which shows the relationship between the 10-point average roughness (Rz) of the surface of a molded article before flame | frame processing, and metal mold | die surface roughness. 樹脂成形品の一例を示す運搬用容器の上面斜視図である。It is an upper surface perspective view of the container for conveyance which shows an example of a resin molded product.

この発明を実施例に基づいて説明する。
(表面粗さ測定)
(1)粗さ測定試験機には、株式会社東京精密社製のサーフコム590A(商品名)を使用した。
(2)測定条件は次の通りである。
測定長さは4,000mm、測定速度は0.600mm/s、カットオフ波長は0.800mm、カットオフ種別は2CR、縦倍率は1000、横倍率は10、傾斜補正は最小二乗直線とした。
(3)測定内容は、算術平均粗さ(Ra)、最大高さ(Rmax),十点平均粗さ(Rz)のそれぞれについて測定した。
(4)サンプルは、各ブラスト処理した金型で製造した壜運搬用容器から切出したプレート(100×55mm)を用いた。
The present invention will be described based on examples.
(Surface roughness measurement)
(1) Surfcom 590A (trade name) manufactured by Tokyo Seimitsu Co., Ltd. was used as the roughness measuring tester.
(2) The measurement conditions are as follows.
The measurement length was 4,000 mm, the measurement speed was 0.600 mm / s, the cutoff wavelength was 0.800 mm, the cutoff type was 2CR, the vertical magnification was 1000, the horizontal magnification was 10, and the inclination correction was a least square line.
(3) The measurement content was measured for each of arithmetic average roughness (Ra), maximum height (Rmax), and ten-point average roughness (Rz).
(4) As a sample, a plate (100 × 55 mm) cut out from a container for bag transportation manufactured with each blasted mold was used.

(剥離強度試験)
(1)剥離強度試験には、株式会社エー・アンド・デイ社製のTENSILON RTF−1350(商品名)を使用した。
(2)測定条件は次の通りである。
テープの種類として、リンテック株式会社製のユポ80(UV)PA−T1 8LKアオ(商品名)を用いた。テープ幅は20mm、長さ50mmのものを30mm貼着し、残りの20mmを折り返して長さ210mmの紙に貼り付けた。テープ剥離長さは20mm(剥離設定距離は40mm)であった。剥離強度測定には、ロードセル250Nを用い、剥離試験速度は100mm/minであった。
(Peel strength test)
(1) TENSILON RTF-1350 (trade name) manufactured by A & D Co., Ltd. was used for the peel strength test.
(2) The measurement conditions are as follows.
As a kind of tape, YUPO 80 (UV) PA-T1 8LK Ao (trade name) manufactured by Lintec Corporation was used. A tape having a width of 20 mm and a length of 50 mm was attached to 30 mm, and the remaining 20 mm was folded and attached to a paper having a length of 210 mm. The tape peeling length was 20 mm (peeling set distance was 40 mm). For the peel strength measurement, a load cell 250N was used, and the peel test speed was 100 mm / min.

テープの貼り付け方法は、テープをローラーでサンプルに押し付け、下端が成形品表面の凹凸面に来るように貼り付けた。サンプルのプレート(100×55mm)は、各各ブラスト処理した金型で製造した壜運搬用容器から切出して作成した。剥離方向は、180度である。   The tape was affixed so that the tape was pressed against the sample with a roller and the lower end was on the uneven surface of the molded product surface. A sample plate (100 × 55 mm) was prepared by cutting out from a container for bag transportation manufactured by each blasted mold. The peeling direction is 180 degrees.

試験用サンプルは、次の条件によりブラストした金型で製造した壜運搬用容器から切出した。試験では、ブラスト無しの通常の金型で成形したものを「比較例」とし、研磨材としてサンドの30番を用いてブラスト処理した鉄製金型で成形したものを「実施例1」とし、研磨材としてサンドの20番を用いてブラスト処理した鉄製金型で成形したものを「実施例2」とし、研磨材としてサンドの30番を用いてブラスト処理したアルミ製金型で成形したものを「実施例3」とし、研磨材としてサンドの40番を用いてブラスト処理したアルミ製金型で成形したものを「実施例4」とした。   The test sample was cut out from a container for bag transport manufactured with a mold blasted under the following conditions. In the test, what was molded with a normal mold without blasting was referred to as “Comparative Example”, and what was molded with an iron mold that had been blasted using No. 30 sand as an abrasive was referred to as “Example 1” and polished. What was molded with an iron mold blasted using sand No. 20 as the material was “Example 2”, and what was molded with an aluminum mold blasted using sand No. 30 as the abrasive was “ “Example 3” was obtained by molding with an aluminum mold blasted using sand No. 40 as an abrasive.

上記により製造された成形品の凹凸面を印刷面(貼着面)としたとき、フレーム処理前の表面粗さとシールの剥離強度試験の結果を表1に示す。表1から、実施例2では、剥離強度5点平均Nは比較例と比べて30%であった。比較例では、印刷後の剥離強度が、フレーム処理前の72%になった。また、フレーム処理前と比べた印刷後の剥離強度は、実施例1では90%であり、実施例2では120%であり、実施例3では138%であり、実施例4では89%であった。 Table 1 shows the results of the surface roughness before the frame treatment and the peel strength test of the seal when the uneven surface of the molded product manufactured as described above is used as the printing surface (sticking surface). From Table 1, in Example 2, the peel strength 5-point average N was 30% as compared with the comparative example. In the comparative example, the peel strength after printing was 72% before the frame treatment. Further, the peel strength after printing compared to before the frame treatment was 90% in Example 1, 120% in Example 2, 138% in Example 3, and 89% in Example 4. It was.

次に、上記条件により製造した成形品から切り出したサンプルにフレーム処理した後印刷する前と、印刷した後のそれぞれの表面粗さとシールの剥離強度について試験した。成形品表面の凹凸面にフレーム処理し印刷する前の剥離強度の試験結果を表2に、成形品表面の凹凸面にフレーム処理し印刷した後の剥離強度の試験結果を表3に示す。   Next, the sample cut out from the molded product manufactured under the above conditions was subjected to a frame treatment, before printing, and each surface roughness and seal peel strength after printing were tested. Table 2 shows the test results of the peel strength before frame processing and printing on the uneven surface of the molded product surface, and Table 3 shows the test results of the peel strength after frame processing and printing on the uneven surface of the molded product surface.

上記表2から、サンドブラスト処理した金型により製造した成形品から切り出したサンプルの印刷後の剥離強度は、表1に示すフレーム処理前の表面粗さと剥離強度とほぼ同程度の結果となった。これは、フレーム処理しても印刷前の状態では、剥離強度に影響していないことを表わしている。フレーム処理しても成形品表面の凹凸は壊れていないからと考えられる。     From Table 2 above, the peel strength after printing of the sample cut out from the molded product manufactured by the sandblasted mold was almost the same as the surface roughness and peel strength before frame treatment shown in Table 1. This indicates that even if the frame processing is performed, the peel strength is not affected in the state before printing. It is considered that the unevenness on the surface of the molded product is not broken even after the frame treatment.

また、表3から、フレーム処理した後に印刷した状態では、印刷後の剥離強度は、比較例ではフレーム処理前の7.2Nから5.2Nへと72%になった。これは、印刷インクが影響していると考えられる。サンドブラスト処理した金型により製造してなる実施例2の印刷後の剥離強度は、比較例と比べて5.2Nから2.4Nへと約46%になり、印刷前の約30%よりも剥離強度の低下が少なかった。これは、比較例では、印刷による剥離強度の低下が大きいことが影響している。   Also, from Table 3, in the state of printing after frame processing, the peel strength after printing was 72% from 7.2 N before frame processing to 5.2 N in the comparative example. This is considered to be affected by printing ink. The peel strength after printing of Example 2 manufactured by using a sandblasted mold is about 46% from 5.2N to 2.4N compared to the comparative example, which is more peelable than about 30% before printing. There was little decrease in strength. This is because the comparative example has a large decrease in peel strength due to printing.

次に、図2〜図4は、上記表1の成形品の表面粗さとシールの剥離強度との関係をグラフとして示しものである。このグラフは、表1の数値をエクセルに入力して自動作成された近似式の傾きを示している。図から明らかなように、表面粗さとシールの剥離強度との間には、高い相関関係があることが分かる。図2は、表面粗さの算術平均粗さ(Ra)とシールの剥離強度との関係を示し、図3は、表面粗さの最大高さ(Rmax)とシールの剥離強度との関係を示し、図4は、表面粗さの十点平均粗さ(Rz)とシールの剥離強度との関係を示している。   Next, FIG. 2 to FIG. 4 are graphs showing the relationship between the surface roughness of the molded product in Table 1 and the peel strength of the seal. This graph shows the slope of the approximate expression automatically created by inputting the values in Table 1 into Excel. As can be seen from the figure, there is a high correlation between the surface roughness and the peel strength of the seal. FIG. 2 shows the relationship between the arithmetic average roughness (Ra) of the surface roughness and the peel strength of the seal, and FIG. 3 shows the relationship between the maximum surface roughness (Rmax) and the peel strength of the seal. FIG. 4 shows the relationship between the ten-point average roughness (Rz) of the surface roughness and the peel strength of the seal.

上記グラフから、目的の剥離強度が分かれば製品の粗さを特定することができ、逆に、製品の粗さが分かれば剥離強度を特定することができる。   From the graph, if the target peel strength is known, the roughness of the product can be specified. Conversely, if the product roughness is known, the peel strength can be specified.

(表面観察)
ブラスト処理の有無による成形品の表面の凹凸の粗さについて観察した。表面観察には、撮影機にCCDマイクロスコープを用いた。測定条件は、倍率150倍、観察角度はレンズを15度傾けて撮影した。インクが成形品の成形品凹凸面に載っていることが確認できた。観察結果を図1に示す。
(Surface observation)
The roughness of the surface of the molded product with or without blasting was observed. For surface observation, a CCD microscope was used for the photographing machine. The measurement conditions were 150 × magnification, and the observation angle was taken with the lens tilted 15 °. It was confirmed that the ink was placed on the uneven surface of the molded product. The observation results are shown in FIG.

図1において、「印刷あり」の欄は表3に示したサンプルをCCDマイクロスコープで撮影したものであり、「印刷なし」の欄は表2に示したサンプルをCCDマイクロスコープで撮影したものである。「印刷あり」欄の右半分の黒色の部分は印刷した部分である。白い点は光が当たっている凸の部分であり、凹凸面であることが分かる。また、「印刷なし」欄と比べて「印刷あり」は、凹部にインクが入り、粗さが小さくなっていることが分かる。   In FIG. 1, the “printed” column is a sample of the sample shown in Table 3 taken with a CCD microscope, and the “no print” column is a sample of the sample shown in Table 2 taken with a CCD microscope. is there. The black part in the right half of the “printed” column is the printed part. A white point is a convex part which the light has hit, and it turns out that it is an uneven surface. In addition, it can be seen that “printed” is smaller than the “printed” column, with ink entering the recess and having a smaller roughness.

次に、図5〜図7は、上記表3に示す印刷面の凹凸の粗さとシールの剥離強度との関係を示したグラフである。表3における表面粗さを横軸とし、剥離強度5点平均Nと剥離強度最大点Nを縦軸として表わしたもので、表3の数値をマイクロソフト社の表計算ソフト「エクセル」(以下「エクセル」という。)に入力し、自動作成した近似式を示す。印刷後の表面粗さとシールの剥離強度には高い相関関係があることが分かった。算術平均粗さ(Ra)と剥離強度5点平均の相関係数(R)は0.99であった。   Next, FIGS. 5 to 7 are graphs showing the relationship between the roughness of the unevenness of the printed surface shown in Table 3 above and the peel strength of the seal. The surface roughness in Table 3 is represented by the horizontal axis, and the peel strength 5-point average N and the peel strength maximum point N are represented by the vertical axis. The values in Table 3 are calculated using Microsoft spreadsheet software “Excel” (hereinafter “Excel”). ”) And the approximate expression automatically created. It was found that there was a high correlation between the surface roughness after printing and the peel strength of the seal. The correlation coefficient (R) between the arithmetic average roughness (Ra) and the peel strength 5-point average was 0.99.

図5は、成形品表面の凹凸面の算術平均粗さ(Ra)と5点平均の剥離強度の関係を示すグラフである。前記図5に示すグラフから次の式が成り立つ。即ち、y=−1.1318x+r(但し、yは剥離強度(5点平均)、xは成形品表面の凹凸面の表面粗さ、rはシールの初期粘着力)。図示する実施例では、傾き=−1.1318、r=5.3274であった。この式から、所望の剥離強度が分かれば、成形品表面の凹凸の粗さが得られる。   FIG. 5 is a graph showing the relationship between the arithmetic average roughness (Ra) of the concavo-convex surface of the molded product surface and the five-point average peel strength. From the graph shown in FIG. That is, y = −1.1318x + r (where y is the peel strength (5 points average), x is the surface roughness of the uneven surface of the molded product surface, and r is the initial adhesive strength of the seal). In the illustrated example, the slope = −1.1318 and r = 5.3274. From this formula, if the desired peel strength is known, the roughness of the surface of the molded product can be obtained.

印刷後の表面粗さと剥離強度には、粗さの最大高さ(Rmax)と十点平均粗さにおいても高い相関関係があることが分かった。粗さの最大高さ(Rmax)とシールの剥離強度との関係を図6にグラフで示す。また、十点平均粗さ(Rz)とシールの剥離強度との関係を図7のグラフに示す。   It was found that the surface roughness after printing and the peel strength have a high correlation even in the maximum roughness height (Rmax) and the ten-point average roughness. FIG. 6 is a graph showing the relationship between the maximum roughness height (Rmax) and the peel strength of the seal. The relationship between the ten-point average roughness (Rz) and the peel strength of the seal is shown in the graph of FIG.

図6のグラフからは、y=−0.1105x+r(但し、yは剥離強度、xは成形品表面の凹凸面の表面粗さ、rはシールの初期粘着力、)の式が得られる。図示する実施例では、傾き=−0.11.5、r=7.5717であった。また、図7のグラフからは、y=−0.1414x+r(但し、yは剥離強度、xは成形品表面の凹凸面の表面粗さ、rはシールの初期粘着力)の式が得られる。図示する実施例では、傾き=−0.1414、r=7.6252であった。   From the graph of FIG. 6, the following equation is obtained: y = −0.1105x + r (where y is the peel strength, x is the surface roughness of the uneven surface of the molded product surface, and r is the initial adhesive strength of the seal). . In the illustrated example, the slope = −0.11.5 and r = 7.5717. Further, from the graph of FIG. 7, the following equation is obtained: y = −0.1414x + r (where y is the peel strength, x is the surface roughness of the uneven surface of the molded product surface, and r is the initial adhesive strength of the seal). It is done. In the illustrated example, the slope = −0.1414 and r = 7.6252.

上記の通り、成形品の表面粗さとシールの剥離強度との関係は、算術平均粗さ(Ra),最大高さ(Rmax)、十点平均粗さ(Rz)のいずれにおいても高い相関関係があることが分かる。従って、上記式のいずれかによって成形品の印刷面(貼着面)となる表面粗さを決定することができる。   As described above, the relationship between the surface roughness of the molded product and the peel strength of the seal has a high correlation in any of the arithmetic average roughness (Ra), the maximum height (Rmax), and the ten-point average roughness (Rz). I understand that there is. Therefore, the surface roughness which becomes the printing surface (sticking surface) of the molded product can be determined by any of the above formulas.

(金型表面の粗さと成形品表面の粗さとの関係)
ブラスト処理した金型表面の粗さと前記金型により製造した成形品の表面の凹凸粗さとの関係について説明する。まず、上記実施例に示したブラスト処理した各金型表面の粗さを測定した。試験では、ブラスト無しの通常の金型の表面を「比較例2」とした。比較例2は、表1〜3の比較例に相当する。
(Relationship between mold surface roughness and molded product surface roughness)
The relationship between the roughness of the blasted mold surface and the roughness of the surface of the molded product produced by the mold will be described. First, the roughness of the surface of each mold subjected to the blast treatment shown in the above example was measured. In the test, the surface of a normal mold without blasting was designated as “Comparative Example 2”. Comparative example 2 corresponds to the comparative examples in Tables 1 to 3.

そして、研磨材としてサンドの30番を用いてブラスト処理した鉄製金型の表面を「実施例5」とした。実施例5は、表1〜3の実施例1に相当する。研磨材としてサンドの80番を用いてブラスト処理した鉄製金型の表面を「実施例6」とし、研磨材としてサンドの30番を用いてブラスト処理したアルミ製金型の表面を「実施例7」とし、研磨材としてサンドの80番を用いてブラスト処理したアルミ製金型の表面を「実施例8」とした。   And the surface of the iron metal mold | die which carried out the blasting using the sand No. 30 as an abrasives was set as "Example 5." Example 5 corresponds to Example 1 in Tables 1 to 3. The surface of an iron mold blasted using sand No. 80 as an abrasive is designated as “Example 6”, and the surface of an aluminum mold blasted using sand No. 30 as an abrasive is designated as “Example 7”. The surface of an aluminum mold that was blasted using sand No. 80 as an abrasive was designated as “Example 8”.

研磨材としてサンドの20番を用いてブラスト処理した鉄製金型の表面を「実施例9」とした。実施例9は、表1〜3の実施例2に相当する。研磨材としてサンドの30番を用いてブラスト処理したアルミ製金型の表面を「実施例10」とした。実施例10は、表1〜3の実施例3に相当する。研磨材としてサンドの40番を用いてブラスト処理したアルミ製金型の表面を「実施例11」とした。実施例11は、表1〜3の実施例4に相当する。   The surface of the iron mold that was blasted using No. 20 sand as the abrasive was designated as “Example 9”. Example 9 corresponds to Example 2 in Tables 1 to 3. The surface of the aluminum mold that was blasted using Sand No. 30 as the abrasive was designated as “Example 10”. Example 10 corresponds to Example 3 in Tables 1 to 3. The surface of an aluminum mold that was blasted using sand No. 40 as an abrasive was designated as “Example 11”. Example 11 corresponds to Example 4 in Tables 1 to 3.

上記実施例5〜11において、金型表面の粗さの測定は、それぞれの金型の表面3ヶ所を測定し、その平均を示した。測定結果を表4に示す。表面粗さの測定条件、測定内容については、上述したとおりである。   In the said Examples 5-11, the measurement of the surface roughness of a metal mold | die measured three surfaces of each metal mold | die, and showed the average. Table 4 shows the measurement results. The measurement conditions and measurement contents of the surface roughness are as described above.

また、金型表面粗さと成形品表面粗さの測定結果を図8に示す。図8は、金型表面と成形品表面のそれぞれの粗さを示す凹凸の高さを比較すると、成形品の凹凸の高さ(幅)が金型の凹凸よりも小さくなっていることを示している。これは、成形品表面粗さを示す凹凸の高点と低点が収縮によって丸みを帯びたことによって、金型表面の凹凸の高点と低点よりも小さくなった結果と思われる。   Moreover, the measurement result of a mold surface roughness and a molded article surface roughness is shown in FIG. FIG. 8 shows that the height of the unevenness (width) of the molded product is smaller than the unevenness of the mold when comparing the height of the unevenness indicating the roughness of the mold surface and the surface of the molded product. ing. This is considered to be a result of the heights and low points of the unevenness indicating the surface roughness of the molded product being rounded by shrinkage, resulting in smaller than the high and low points of the unevenness on the mold surface.

上記金型表面の粗さと前記金型により製造した成形品の表面粗さとの関係は、当然ながら、高い相関関係を有していることが分かる。図9〜図11は、表4を金型表面の粗さと成形品表面の粗さとの関係をマイクロソフト社のエクセルを使ってグラフに示したものである。即ち、表4における金型表面粗さを横軸に、成形品表面粗さを縦軸にして、それぞれ算術平均粗さ(Ra),最大高さ(Rmax)、十点平均粗さ(Rz)について示したものである。   It will be understood that the relationship between the surface roughness of the mold and the surface roughness of the molded product produced by the mold has a high correlation. 9 to 11 are graphs showing the relationship between the roughness of the mold surface and the roughness of the surface of the molded product in Table 4 using Microsoft Excel. That is, with the mold surface roughness in Table 4 on the horizontal axis and the molded product surface roughness on the vertical axis, the arithmetic average roughness (Ra), maximum height (Rmax), and ten-point average roughness (Rz), respectively. Is shown.

上記図9〜図11は、表4の数値を「エクセル」に入力し、自動作成した近似式を示す。尚、この実施例で使用した材料は、ポリプロピレン樹脂であり、成形収縮率は0.0013〜0.0017であった。また、図8示す式y=0.727x−0.0058、図9に示すy=0・5862x+4.1448、図10に示すy=0.7281x−0.3781において、数値0.727、0・5862、0.7281は、図8に示した金型表面粗さに対する成形品表面粗さの高さの比率、即ち、金型表面の凹凸の成形品への転写率であり、数値0.0058、4.1448、0.3781は、「エクセル」が自動作成した材料係数である。   9 to 11 show approximate expressions automatically created by inputting the numerical values in Table 4 into “Excel”. The material used in this example was a polypropylene resin, and the molding shrinkage was 0.0013 to 0.0017. Further, in the equation y = 0.727x−0.0058 shown in FIG. 8, y = 0 · 5862x + 1.448 shown in FIG. 9, and y = 0.7281x−0.3781 shown in FIG. 5862 and 0.7281 are ratios of the height of the molded product surface roughness to the mold surface roughness shown in FIG. 8, that is, the transfer rate of the unevenness on the mold surface to the molded product, and the numerical value 0.0058. 4.1448 and 0.3781 are material coefficients automatically created by “Excel”.

従って、図9から、算術平均粗さ(Ra)における金型表面粗さと成形品表面の粗さの関係は、y=ax-s(但し、y=成形品表面粗さ、a=金型表面の凹凸の成形品への転写率、x=金型表面の粗さ、s=材料係数)で表わされる。なお、ここで材料係数とは、鏡面仕上げの金型で成形した樹脂成形品の表面は、金型と全く同じ鏡面にはならず、樹脂の性質上僅かな粗さが生じるが、この金型表面と成形品表面とを比較したときの収縮の関係をいう。通常は、s≒0となる。   Therefore, from FIG. 9, the relationship between the mold surface roughness and the roughness of the molded product surface in the arithmetic average roughness (Ra) is y = ax−s (where y = molded product surface roughness, a = mold surface) The transfer rate of the unevenness to the molded product, x = roughness of the mold surface, and s = material coefficient). Here, the material coefficient means that the surface of the resin molded product molded with a mirror-finished mold does not have the same mirror surface as the mold, and a slight roughness occurs due to the properties of the resin. This refers to the relationship of shrinkage when comparing the surface and the surface of the molded product. Usually, s≈0.

また、図10から、最大高さ(Rmax)における金型表面粗さと成形品表面の粗さの関係を、y=ax-s(但し、y=容器の表面粗さ、x=金型表面の粗さ、s=材料係数)で表わすことができる。また、図11からは、十点平均粗さ(Rz)における金型表面粗さと成形品表面の粗さの関係を、y=ax-s(但し、y=成形品の表面粗さ、x=金型表面の粗さ、s=材料係数)で表わすことができる。   Further, from FIG. 10, the relationship between the mold surface roughness and the molded product surface roughness at the maximum height (Rmax) is expressed as y = ax−s (where y = surface roughness of the container, x = the surface of the mold). Roughness, s = material coefficient). Further, from FIG. 11, the relationship between the mold surface roughness and the surface roughness of the molded product in terms of ten-point average roughness (Rz) is expressed as y = ax−s (where y = surface roughness of the molded product, x = It can be expressed by the roughness of the mold surface, s = material coefficient.

上記図9〜図11に示すように、金型表面粗さと成形品の表面粗さとは、高い相関関係があり、金型表面の粗さは、成形品表面の粗さによって求められ、成形品の表面の粗さが分かれば、シールの剥離強度を求めることができる。反対に、シールの剥離強度が得られれば、成形品表面の粗さが分かるので、最終的には所望の剥離強度を有する成形品を製造する金型を製作することが可能となる。   As shown in FIG. 9 to FIG. 11, the mold surface roughness and the surface roughness of the molded product have a high correlation, and the roughness of the mold surface is determined by the roughness of the molded product surface. If the surface roughness is known, the peel strength of the seal can be determined. On the other hand, if the peel strength of the seal is obtained, the roughness of the surface of the molded product can be known, so that it is finally possible to produce a mold for producing a molded product having a desired peel strength.

1:支柱部
2,3:下部側壁
4,5:上部側壁
6,7:窓
1: support column 2, 3: lower side wall 4, 5: upper side wall 6, 7: window

Claims (2)

サンドブラスト加工された金型で成形され、前記金型で成形された成形品表面の凹凸の粗さは、貼着面とともに印刷面としても使用可能であり、成形品表面の凹凸面粗さ(μm)とシールの剥離強度(5点平均)(N)との関係が、次の式のいずれか1つに該当することを特徴とする合成樹脂製成形品。
(1)算術平均粗さ(Ra)が、y=−1.1318x+r
(2)最大高さ(Rmax)が、y=−0.1105x+r
(3)十点平均粗さ(Rz)が、y=−0.1414x+r
(但し、yは剥離強度、xは成形品表面粗さ、rはシールの初期粘着力とする)
The roughness of the surface of the molded product molded with the mold subjected to sandblasting can be used as the printing surface together with the sticking surface, and the roughness of the surface of the molded product (μm ) And the peel strength (5-point average) (N) of the seal corresponds to any one of the following formulas.
(1) Arithmetic mean roughness (Ra) is y = −1.1318x + r
(2) The maximum height (Rmax) is y = −0.1105x + r
(3) Ten-point average roughness (Rz) is y = −0.1414x + r
(Where y is the peel strength, x is the surface roughness of the molded product, and r is the initial adhesive strength of the seal)
ブラスト加工された金型で成形され、成形品表面の印刷面粗さと金型表面粗さとの関係が、次のいずれかに該当することを特徴とする合成樹脂製成形品。
(1)算術平均粗さ(Ra)が、y=ax-s
(2)最大高さ(Rmax)が、y=ax-s
(3)十点平均粗さ(Rz)が、y=ax-s
(但し、y=成形品表面粗さ、a=金型表面の凹凸の成形品への転写率、x=金型表面の粗さ、s=材料係数とする)
A synthetic resin molded product, which is molded with a blasted mold, and the relationship between the printed surface roughness of the molded product surface and the mold surface roughness corresponds to one of the following:
(1) Arithmetic mean roughness (Ra) is y = ax−s
(2) The maximum height (Rmax) is y = ax−s
(3) Ten-point average roughness (Rz) is y = ax-s
(However, y = surface roughness of the molded product, a = transfer rate of unevenness on the mold surface to the molded product, x = roughness of the mold surface, and s = material coefficient)
JP2011151055A 2011-07-07 2011-07-07 Synthetic resin molded product Pending JP2013018496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151055A JP2013018496A (en) 2011-07-07 2011-07-07 Synthetic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151055A JP2013018496A (en) 2011-07-07 2011-07-07 Synthetic resin molded product

Publications (1)

Publication Number Publication Date
JP2013018496A true JP2013018496A (en) 2013-01-31

Family

ID=47690349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151055A Pending JP2013018496A (en) 2011-07-07 2011-07-07 Synthetic resin molded product

Country Status (1)

Country Link
JP (1) JP2013018496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221514A1 (en) * 2016-06-22 2017-12-28 株式会社クレハ Cutting blade for storage container and storage container
JP7315577B2 (en) 2018-04-03 2023-07-26 サウスコ,インコーポレイティド vehicle glove box latch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687237U (en) * 1993-05-28 1994-12-22 株式会社コバヤシ Packaging container
JPH07266343A (en) * 1994-03-30 1995-10-17 Asahi Chem Ind Co Ltd Synthetic resin molded form with matte surface
WO1995035194A1 (en) * 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Delustered injection molded product of synthetic resin and molding method for the same
JPH08198224A (en) * 1995-01-31 1996-08-06 Sharp Corp Label sticking structure
JP2004018076A (en) * 2002-06-19 2004-01-22 Dainippon Printing Co Ltd Bottle container with label
JP2007168209A (en) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd In-mold foaming resin product and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687237U (en) * 1993-05-28 1994-12-22 株式会社コバヤシ Packaging container
JPH07266343A (en) * 1994-03-30 1995-10-17 Asahi Chem Ind Co Ltd Synthetic resin molded form with matte surface
WO1995035194A1 (en) * 1994-06-22 1995-12-28 Asahi Kasei Kogyo Kabushiki Kaisha Delustered injection molded product of synthetic resin and molding method for the same
JPH08198224A (en) * 1995-01-31 1996-08-06 Sharp Corp Label sticking structure
JP2004018076A (en) * 2002-06-19 2004-01-22 Dainippon Printing Co Ltd Bottle container with label
JP2007168209A (en) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd In-mold foaming resin product and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221514A1 (en) * 2016-06-22 2017-12-28 株式会社クレハ Cutting blade for storage container and storage container
JP7315577B2 (en) 2018-04-03 2023-07-26 サウスコ,インコーポレイティド vehicle glove box latch
US11814881B2 (en) 2018-04-03 2023-11-14 Southco, Inc. Vehicle glove box latch

Similar Documents

Publication Publication Date Title
US10233359B2 (en) Method for labeling items with labels comprising a clear face layer and a clear adhesive layer
JP5489088B2 (en) Glass plate package and method for packing glass plate laminate
WO2014162953A1 (en) Packaging article for tabular products
JP4614845B2 (en) Pellicle storage container
JP2013018496A (en) Synthetic resin molded product
JP6129467B2 (en) Board holding frame and board packaging
KR20130064715A (en) Container with label
US10285521B2 (en) Disposable cup lid
TW201529332A (en) Rollable, self-adhesive dry erase sheet assembly and method of use
MY161009A (en) Coated metal material and process for producing the same
JP2010060992A (en) Large pellicle structure and large pellicle housing structure
US11111069B1 (en) Helix geodesic insulated beverage container
TWI769331B (en) Package for displaying mounting article, method of determining the suitability of mounting article to mount object and system of packages for displaying a series of mounting article
WO2019244539A1 (en) Laminate-pallet integrated article and pallet
JP2010064775A (en) Pellicle packing structure
JP2007050904A (en) Returnable box allowing user to realize time of replacement
CN208828338U (en) A kind of turnover box for tracking logistics information by electronic tag
JP6191676B2 (en) Board holding frame and board packaging
JPH0858829A (en) Separate sheet superior in mar resistance
CN217673930U (en) Plastic sucking box
CN215152802U (en) Composite packaging film for beverage bottle packaging
KR101570836B1 (en) Improved Scratch Resistence Tray and Manufacturing Method
CN207375441U (en) A kind of delivery roller structure for reducing bubble bags abrasion
WO2014041959A1 (en) Plate-like body packaging container
JP2010241458A (en) Resin-film-having tray, method for manufacturing the same, storing structure for optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127