JP2013014801A - Method for forming hard film on bearing parts, and rolling bearing - Google Patents

Method for forming hard film on bearing parts, and rolling bearing Download PDF

Info

Publication number
JP2013014801A
JP2013014801A JP2011147623A JP2011147623A JP2013014801A JP 2013014801 A JP2013014801 A JP 2013014801A JP 2011147623 A JP2011147623 A JP 2011147623A JP 2011147623 A JP2011147623 A JP 2011147623A JP 2013014801 A JP2013014801 A JP 2013014801A
Authority
JP
Japan
Prior art keywords
film
carbon
bearing
dlc film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011147623A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
努 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011147623A priority Critical patent/JP2013014801A/en
Publication of JP2013014801A publication Critical patent/JP2013014801A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a hard film on the track face or on the rolling face of a bearing part made from bearing steel, formable of a hard film of sufficient durability in a high load environment.SOLUTION: The method for forming a DLC (diamond-like carbon) film 5 comprised of carbon, silicon and hydrogen on a track groove 1a of an upper race 1 and on a track groove 2a of a lower race 2, employs an unbalanced magnetron sputtering process wherein methane gas and argon gas are introduced, using a silicon target and a carbon target. The temperature of a heater heating a specimen support table in the sputtering device is controlled to keep the temperature of the track grooves 1a, 2a of the upper and lower races 1, 2 supported by the specimen support table in a range of 150 to 180°C. The time of forming the film is set so that the thickness of the DLC film 5 becomes 1.0 to 1.6 μm.

Description

この発明は、軸受鋼からなる軸受部品の軌道面または転動面への硬質膜形成方法に関する。   The present invention relates to a method for forming a hard film on a raceway surface or a rolling surface of a bearing component made of bearing steel.

ダイヤモンドライクカーボン(以下「DLC」と略称する。)膜は、その表面がダイヤモンドに準ずる硬さ(10GPa以上の塑性変形硬さ)を有し、摺動抵抗に関しても、摩擦係数が0.2以下と、二硫化モリブデンやフッ素樹脂と同程度に小さい。そのため、DLC膜は、軸受部品の軌道面や転動面に形成する新たな耐摩耗性被膜として注目されている。転がり軸受の軌道面等に形成されたDLC膜には、高い接触応力によって軌道面等から剥離し易いという問題点があり、DLC膜の密着性を改善するための提案が多数なされている。   The diamond-like carbon (hereinafter abbreviated as “DLC”) film has a hardness equivalent to diamond (plastic deformation hardness of 10 GPa or more), and the friction coefficient is 0.2 or less. And as small as molybdenum disulfide and fluororesin. Therefore, the DLC film is attracting attention as a new wear-resistant coating formed on the raceway surface and rolling surface of the bearing component. The DLC film formed on the raceway surface or the like of a rolling bearing has a problem that it is easily peeled off from the raceway surface or the like due to high contact stress, and many proposals have been made for improving the adhesion of the DLC film.

特許文献1には、転がり軸受の転がり接触する軌道部に、表面に凹凸を有する厚さ30μm以上の窒化層を形成した上に、硬質非晶質炭素−水素−珪素膜であって珪素含有率が30at%以下であるDLC膜を形成することが記載されている。窒化層はガス窒化処理により形成され、表面の凹凸はイオン衝撃処理により10〜100nmの高さで平均幅300nm以下に形成されている。DLC膜はプラズマCVD法により形成されている。   Patent Document 1 discloses that a hard amorphous carbon-hydrogen-silicon film having a silicon content is formed on a raceway portion of a rolling bearing that is in rolling contact with a nitride layer having a thickness of 30 μm or more having irregularities on the surface. Describes that a DLC film having a thickness of 30 at% or less is formed. The nitride layer is formed by gas nitriding, and the surface irregularities are formed by ion bombardment at a height of 10 to 100 nm and an average width of 300 nm or less. The DLC film is formed by a plasma CVD method.

しかし、窒化処理は、一般的には400℃以上の高温で行われるため、使用できる基材の材質が限定される。
特許文献2には、DLC膜と基材との間にTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、およびSiの少なくとの一つの元素、またはその炭化物からなる中間層を、0.5nm以上10nm未満の厚さで設けることが記載されている。しかし、このような中間層を設けても、転がり軸受が使用されるような、接触面圧が数GPaにも及ぶ環境では、DLC膜の剥離が防止できない恐れがある。
However, since the nitriding treatment is generally performed at a high temperature of 400 ° C. or higher, the material of the base material that can be used is limited.
Patent Document 2 discloses an intermediate layer made of at least one element of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Si, or a carbide thereof, between the DLC film and the substrate. Is provided with a thickness of 0.5 nm or more and less than 10 nm. However, even if such an intermediate layer is provided, peeling of the DLC film may not be prevented in an environment where the contact surface pressure reaches several GPa where a rolling bearing is used.

特許文献3には、水素を含有するDLC膜からなる硬質炭素層が、自身の内部応力によって基板から剥がれたり、基板を反らせることを防止するために、水素を含有しない炭素層等からなる内部応力緩和層を設けることが記載されている。硬質炭素層は、炭化水素系ガスを原料として用いたプラズマCVD法により形成し、前記内部応力緩和層は、スパッタリング法により形成することが記載されている。
しかし、転がり軸受のように、基材が大きく弾性変形するような環境では、前記内部応力緩和層が存在していても、硬質炭素層の基板からの剥離や基板の反りを防止できない恐れがある。
Patent Document 3 discloses an internal stress composed of a carbon layer that does not contain hydrogen in order to prevent a hard carbon layer composed of a DLC film containing hydrogen from peeling off or warping the substrate due to its internal stress. The provision of a relaxation layer is described. It is described that the hard carbon layer is formed by a plasma CVD method using a hydrocarbon gas as a raw material, and the internal stress relaxation layer is formed by a sputtering method.
However, in an environment where the base material is greatly elastically deformed, such as a rolling bearing, even if the internal stress relaxation layer is present, there is a possibility that peeling of the hard carbon layer from the substrate or warping of the substrate cannot be prevented. .

特許3961739号公報Japanese Patent No. 3961739 特開2001−316800号公報JP 2001-316800 A 特開平11−100671号公報Japanese Patent Laid-Open No. 11-10061

この発明の課題は、軸受鋼からなる軸受部品の軌道面または転動面への硬質膜を形成する方法として、高負荷環境においても十分な耐久性を有する硬質膜が形成できる方法を提供することである。   An object of the present invention is to provide a method of forming a hard film having sufficient durability even in a high load environment as a method of forming a hard film on a raceway surface or a rolling surface of a bearing component made of bearing steel. It is.

上記課題を解決するために、この発明の軸受部品への硬質膜形成方法は、軸受鋼からなる軸受部品の軌道面または転動面への硬質膜形成方法であって、炭素と珪素と水素からなるDLC膜を、珪素ターゲットおよび炭素ターゲットを用い、炭化水素ガスを導入したスパッタリング法により、前記軌道面または転動面の温度を150〜180℃の範囲に制御して、厚さ1.6μm以下に成膜することを特徴とする。この方法で形成される炭素と珪素と水素からなるDLC膜の有効な厚さの下限値は0.8μmである。
DLC膜の線膨張係数は、一般に1〜7×10-6/℃であるが、軸受鋼の線膨張係数は12×10-6/℃程度であるため、軸受鋼からなる被成膜面の温度が高いほど、DLC膜と被成膜面との間に大きな体積膨張差が生じる。
In order to solve the above-mentioned problems, a method for forming a hard film on a bearing component according to the present invention is a method for forming a hard film on a raceway surface or a rolling surface of a bearing component made of bearing steel, comprising carbon, silicon and hydrogen. The thickness of the DLC film is 1.6 μm or less by controlling the temperature of the raceway surface or the rolling surface within a range of 150 to 180 ° C. by sputtering using a silicon target and a carbon target and introducing hydrocarbon gas. It is characterized by forming a film. The lower limit of the effective thickness of the DLC film made of carbon, silicon and hydrogen formed by this method is 0.8 μm.
The linear expansion coefficient of the DLC film is generally 1 to 7 × 10 −6 / ° C., but the linear expansion coefficient of the bearing steel is about 12 × 10 −6 / ° C. The higher the temperature, the greater the difference in volume expansion between the DLC film and the film formation surface.

また、珪素ターゲットおよび炭素ターゲットを用い、炭化水素ガスを導入したスパッタリング法で成膜されると、DLC膜中に「C−H」結合だけでなく「Si−H」結合も存在する。「Si−H」は結合エネルギーが小さいため、未結合の「H」が積極的に「Si」と結合する。その結果、炭化水素ガスを導入しない場合と比較してDLC膜の残留応力が小さくなると考えられている。しかし、成膜時の基材(被成膜面)の温度が高いと、「Si−H」結合が切れやすくなり、DLC膜中に未結合の「H」が存在することで、DLC膜の体積膨張が生じ、圧縮残留応力が増加する。   In addition, when a film is formed by sputtering using a silicon target and a carbon target and hydrocarbon gas is introduced, not only “C—H” bonds but also “Si—H” bonds exist in the DLC film. Since “Si—H” has a low binding energy, unbonded “H” is positively bonded to “Si”. As a result, it is considered that the residual stress of the DLC film is reduced as compared with the case where no hydrocarbon gas is introduced. However, when the temperature of the base material (film formation surface) during film formation is high, the “Si—H” bond tends to be broken, and the unbonded “H” exists in the DLC film. Volume expansion occurs and compressive residual stress increases.

また、成膜時の基材(被成膜面)の温度が高いと、珪素が結晶状態で成膜される傾向がある。
これに対して、この発明の方法では、被成膜面である軸受部品の軌道面または転動面の温度を150〜180℃の範囲に制御することで、炭素と珪素と水素からなるDLC膜の体積膨張が抑えられる。また、軸受鋼の硬度低下が抑制されて、被成膜面に対する炭素と珪素と水素からなるDLC膜の密着性および耐久性が良好になる。
Further, when the temperature of the base material (deposition surface) during film formation is high, silicon tends to be formed in a crystalline state.
On the other hand, in the method of the present invention, the temperature of the raceway surface or the rolling surface of the bearing part, which is the film formation surface, is controlled in the range of 150 to 180 ° C., so that the DLC film composed of carbon, silicon, and hydrogen. The volume expansion of is suppressed. In addition, a decrease in the hardness of the bearing steel is suppressed, and the adhesion and durability of the DLC film made of carbon, silicon, and hydrogen with respect to the film formation surface is improved.

また、被成膜面の温度を150〜180℃の範囲に制御しても、炭素と珪素と水素からなるDLC膜の厚さが2.0μm以上になると残留応力が極端に大きくなるが、厚さを1.6μm以下にすることでDLC膜の残留応力が小さく、軸受部品として良好な状態にすることができる。   Even if the temperature of the film formation surface is controlled within the range of 150 to 180 ° C., the residual stress becomes extremely large when the thickness of the DLC film made of carbon, silicon and hydrogen becomes 2.0 μm or more. By setting the thickness to 1.6 μm or less, the residual stress of the DLC film is small, and a favorable state as a bearing component can be obtained.

この発明の方法によれば、軸受部品の軌道面または転動面に、高負荷環境においても十分な耐久性を有する硬質膜が形成できる。   According to the method of the present invention, a hard film having sufficient durability even in a high load environment can be formed on the raceway surface or rolling surface of the bearing component.

実施形態の方法でDLC膜が形成された軌道輪を備えたスラスト玉軸受を示す断面図である。It is sectional drawing which shows the thrust ball bearing provided with the bearing ring in which the DLC film was formed by the method of embodiment. 実施例で成膜したサンプルNo.2とNo.5のDLC膜のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the DLC film of sample No.2 and No.5 formed into a film in the Example.

以下、この発明の実施形態について説明する。
図1のスラスト玉軸受(転がり軸受)は、上レース(軌道輪)1、下レース(軌道輪)2、玉(転動体)3、および保持器4で構成されている。上レース1と下レース2と玉3はSUJ2製であり、通常の方法で作製されている。上レース1の軌道溝(軌道面)1aと下レース2の軌道溝(軌道面)2aに、炭素と珪素と水素からなるDLC膜5が形成されている。
Embodiments of the present invention will be described below.
The thrust ball bearing (rolling bearing) of FIG. 1 is composed of an upper race (race ring) 1, a lower race (race ring) 2, balls (rolling elements) 3, and a cage 4. The upper race 1, the lower race 2, and the ball 3 are made of SUJ2, and are produced by a normal method. A DLC film 5 made of carbon, silicon, and hydrogen is formed on the raceway groove (track surface) 1 a of the upper race 1 and the raceway groove (track surface) 2 a of the lower race 2.

このDLC膜5を、珪素ターゲットおよび炭素ターゲットを用い、メタン(炭化水素)ガスとアルゴンガスを導入した非平衡マグネトロンスパッタリング法により成膜する。その際に、スパッタリング装置内の試料支持台をヒーターで加熱し、ヒーターの温度を制御することで、試料支持台に支持された上下のレース1,2の軌道溝1a,2aの温度を150〜180℃の範囲に保持する。また、DLC膜5の厚さが1.0〜1.6μmとなるように時間を設定して成膜する。これ以外の点は通常のマグネトロンスパッタリング法に従う。   The DLC film 5 is formed by a non-equilibrium magnetron sputtering method using a silicon target and a carbon target and introducing methane (hydrocarbon) gas and argon gas. At that time, the temperature of the raceway grooves 1a and 2a of the upper and lower races 1 and 2 supported by the sample support is controlled by heating the sample support in the sputtering apparatus with a heater and controlling the temperature of the heater. Hold in the range of 180 ° C. Further, the DLC film 5 is formed by setting the time so that the thickness becomes 1.0 to 1.6 μm. Other points follow the normal magnetron sputtering method.

この方法で、上レース1と下レース2に形成された炭素と珪素と水素からなるDLC膜5は、図1のスラスト玉軸受を、荷重8820N(900kgf)、回転速度2000rpm、油潤滑で回転させた場合でも剥離が殆ど生じず、良好な密着性および耐久性が得られる。
なお、軸受部品の軌道面および転動面に形成するDLC膜のヤング率は、150〜200GPaであることが好ましい。DLC膜のヤング率が150GPa未満であると、DLC膜の硬さが軸受部品の軌道面および転動面の硬さとして不十分となる。200GPaを超えると、軸受鋼からなる軸受部品より変形しにくいものとなるため、高負荷環境で剥離しやすくなる。
By this method, the DLC film 5 made of carbon, silicon and hydrogen formed on the upper race 1 and the lower race 2 is rotated by rotating the thrust ball bearing of FIG. 1 with a load of 8820 N (900 kgf), a rotational speed of 2000 rpm, and oil lubrication. In this case, almost no peeling occurs and good adhesion and durability can be obtained.
The Young's modulus of the DLC film formed on the raceway surface and the rolling surface of the bearing component is preferably 150 to 200 GPa. When the Young's modulus of the DLC film is less than 150 GPa, the hardness of the DLC film becomes insufficient as the hardness of the raceway surface and the rolling surface of the bearing component. When it exceeds 200 GPa, it becomes more difficult to deform than a bearing component made of bearing steel, and therefore, it is easy to peel off in a high load environment.

また、軸受鋼からなる軸受部品の軌道面および転動面とDLC膜との間に、クロムなどからなる金属製中間層を設けてもよい。
また、DLC膜の組成が、表面に向かうにつれて炭素の割合が珪素の割合より高くなるように成膜することも、DLC膜の圧縮残留応力を小さくする点で好ましい。
Further, a metal intermediate layer made of chromium or the like may be provided between the raceway surface and rolling surface of the bearing component made of bearing steel and the DLC film.
In addition, it is preferable to form the DLC film so that the proportion of carbon becomes higher than the proportion of silicon as it goes to the surface from the viewpoint of reducing the compressive residual stress of the DLC film.

図1の転がり軸受を構成する上レース1と下レース2の軌道溝1a,2aに、炭素と珪素と水素からなるDLC膜5を、珪素ターゲットおよび炭素ターゲットを用い、メタンガスとアルゴンガスを導入した非平衡マグネトロンスパッタリング法により成膜した。その際に、炭素ダーゲットに加える電圧を徐々に大きくし、珪素ターゲットに加える電圧を徐々に小さくすることで、DLC膜5の組成が、表面に向かうにつれて炭素の割合が珪素の割合より高くなるように成膜した。   A DLC film 5 made of carbon, silicon and hydrogen is introduced into the raceway grooves 1a and 2a of the upper race 1 and the lower race 2 constituting the rolling bearing of FIG. 1, and methane gas and argon gas are introduced using a silicon target and a carbon target. The film was formed by non-equilibrium magnetron sputtering. At that time, by gradually increasing the voltage applied to the carbon target and gradually decreasing the voltage applied to the silicon target, the composition of the DLC film 5 is such that the proportion of carbon becomes higher than the proportion of silicon toward the surface. A film was formed.

また、成膜時の軌道溝1a,2aの温度が150℃(サンプルNo.1)、180℃(サンプルNo.2)、200℃(サンプルNo.3)、250℃(サンプルNo.4)、300℃(サンプルNo.5)の各温度±5℃になるように、試料支持台の温度を制御した。また、膜厚が同じ1.0μmとなるように成膜時間を設定した。これらの点以外は全て同じ条件で成膜した。   In addition, the temperature of the track grooves 1a and 2a during film formation is 150 ° C. (sample No. 1), 180 ° C. (sample No. 2), 200 ° C. (sample No. 3), 250 ° C. (sample No. 4), The temperature of the sample support was controlled so that each temperature of 300 ° C. (sample No. 5) was ± 5 ° C. The film formation time was set so that the film thickness was the same 1.0 μm. Except for these points, the films were formed under the same conditions.

また、サンプルNo.6〜8では、成膜時の軌道溝1a,2aの温度を180℃で同じにし、成膜時間を変化させて、膜厚が異なるDLC5を成膜した。これらの点以外はNo.1〜No. 5と同じ条件とした。
このようにして得られたサンプルNo.2とNo.5のDLC膜5について、IRスペクトルを測定した。その結果のグラフを図2に示す。このグラフにおいて、波長2100cm-1付近の「Si−H」のピークが、成膜時の軌道溝の温度が150℃であるNo.2のDLC膜5では観察されるが、成膜時の軌道溝の温度が300℃であるNo.5のDLC膜5では観察されない。つまり、成膜時の軌道溝の温度が300℃の場合は、「Si−H」結合が切れて未結合の「H」が多く存在することにより、DLC膜5の体積膨張が大きくなり、圧縮残留応力が大きくなったと推察される。
In Samples Nos. 6 to 8, DLC5 having different film thicknesses was formed by changing the temperature of the track grooves 1a and 2a during film formation at the same temperature of 180 ° C. and changing the film formation time. Except for these points, the conditions were the same as those of No. 1 to No. 5.
The IR spectra of the sample No. 2 and No. 5 DLC films 5 thus obtained were measured. The resulting graph is shown in FIG. In this graph, a peak of “Si—H” in the vicinity of a wavelength of 2100 cm −1 is observed in the No. 2 DLC film 5 having a track groove temperature of 150 ° C. during film formation. It is not observed in the No. 5 DLC film 5 having a groove temperature of 300 ° C. That is, when the temperature of the track groove at the time of film formation is 300 ° C., the “Si—H” bond is broken and a large amount of unbonded “H” exists. It is assumed that the residual stress has increased.

また、得られた各サンプルの上レース1と下レース2を組み合わせ、通常の方法で作製したSUJ2製玉3を3個、軌道溝1a,2a間に等間隔で配置して、油浴(VG10)内に入れ、荷重8820N(900kgf)、回転速度2000rpmの条件で、1千万回(107 回)回転させる試験を行った。
試験終了後に、軌道溝1a,2aに形成されていたDLC膜5の状態を顕微鏡により観察した。そして、画像処理を行って、DLC膜5が剥がれている面積の割合を調べた。また、試験終了前(回転が1千万回に達する前)に軌道溝1a,2aに剥離が生じた場合は、その時点で、軌道溝1a,2aの剥離部分を除いた範囲で、DLC膜5が剥がれている面積の割合を調べた。その結果を下記の表1に示す。
Further, the upper race 1 and the lower race 2 of each sample obtained were combined, and three SUJ2 balls 3 made by a normal method were arranged at equal intervals between the raceway grooves 1a and 2a, and an oil bath (VG10 ), And a test of rotating 10 million times (10 7 times) under the conditions of a load of 8820 N (900 kgf) and a rotational speed of 2000 rpm.
After completion of the test, the state of the DLC film 5 formed in the raceway grooves 1a and 2a was observed with a microscope. Then, image processing was performed to examine the ratio of the area where the DLC film 5 was peeled off. In addition, when peeling occurs in the raceway grooves 1a and 2a before the end of the test (before the rotation reaches 10 million times), the DLC film is within the range excluding the peeling portion of the raceway grooves 1a and 2a at that time. The ratio of the area where 5 was peeled was examined. The results are shown in Table 1 below.

また、ヤング率および残留応力を測定するための試験片に対し、サンプルNo.1〜No.8の軌道溝1a,2aに対する成膜と同じ条件で成膜を行い、ヤング率と残留応力を測定した。ヤング率はナノインデンテーション法により測定した。残留応力は金属薄片を用いた形状測定法により算出した。その結果も下記の表1に示す。残留応力で符号「−」が付いた値は圧縮応力を示す。符号無しの値は引張応力を示す。   In addition, a test piece for measuring Young's modulus and residual stress was formed under the same conditions as those for the track grooves 1a and 2a of samples No. 1 to No. 8, and the Young's modulus and residual stress were measured. did. Young's modulus was measured by the nanoindentation method. The residual stress was calculated by a shape measurement method using metal flakes. The results are also shown in Table 1 below. A value with a sign “−” in the residual stress indicates a compressive stress. Unsigned values indicate tensile stress.

Figure 2013014801
Figure 2013014801

表1から分かるように、この発明の方法の実施例に相当する方法で成膜を行ったNo.1、2、6、7は、DLC膜5の残留応力の絶対値が0.12GPa以下と小さく、剥がれ率が4面積%以下と小さかった。また、軌道溝面に剥離は生じなかった。
これに対して、成膜時の軌道溝の温度が180℃より高いNo.3〜5と、温度は180℃であるが膜厚が2.0μm以上であるNo.7とNo.8は、DLC膜5の残留応力の絶対値が0.32GPa以上と大きく、剥がれ率が7面積%以上と大きかった。また、軌道溝面に剥離が生じていた。
以上のことから、成膜時の軌道溝の温度150〜180℃、DLC膜5の厚さ1.6μm以下を満たす方法を採用することで、密着性および耐久性が良好な硬質膜が形成できることが分かる。
As can be seen from Table 1, Nos. 1, 2, 6, and 7 formed by the method corresponding to the embodiment of the method of the present invention have an absolute value of the residual stress of the DLC film 5 of 0.12 GPa or less. It was small and the peeling rate was as small as 4% by area or less. Further, no peeling occurred on the raceway groove surface.
On the other hand, No. 3 to No. 5 in which the temperature of the track groove during film formation is higher than 180 ° C., No. 7 and No. 8 in which the temperature is 180 ° C. but the film thickness is 2.0 μm or more The absolute value of the residual stress of the DLC film 5 was as large as 0.32 GPa or more, and the peeling rate was as large as 7 area% or more. In addition, peeling occurred on the raceway groove surface.
From the above, it is possible to form a hard film with good adhesion and durability by adopting a method satisfying the temperature of the track groove during film formation of 150 to 180 ° C. and the thickness of the DLC film 5 of 1.6 μm or less. I understand.

1 上レース(軌道輪)
1a 軌道溝(軌道面)
2 下レース(軌道輪)
2a 軌道溝(軌道面)
3 玉(転動体)
4 保持器
5 炭素と珪素と水素からなるDLC膜
1 Upper race (Raceway)
1a Track groove (track surface)
2 Lower race (Raceway)
2a Track groove (track surface)
3 balls (rolling elements)
4 Cage 5 DLC film made of carbon, silicon and hydrogen

Claims (2)

軸受鋼からなる軸受部品の軌道面または転動面への硬質膜形成方法であって、
炭素と珪素と水素からなるDLC膜を、炭化水素ガスを導入したスパッタリング法により、珪素ターゲットおよび炭素ターゲットを用い、前記軌道面または転動面の温度を150〜180℃の範囲に制御して、厚さ1.6μm以下に成膜することを特徴とする軸受部品への硬質膜形成方法。
A method of forming a hard film on a raceway surface or a rolling surface of a bearing component made of bearing steel,
By using a silicon target and a carbon target, a DLC film composed of carbon, silicon, and hydrogen, by using a silicon target and a carbon target, and controlling the temperature of the raceway surface or the rolling surface within a range of 150 to 180 ° C., A method of forming a hard film on a bearing component, wherein the film is formed to a thickness of 1.6 μm or less.
請求項1記載の方法で軌道面または転動面に硬質膜が形成された軸受部品を有する転がり軸受。   A rolling bearing having a bearing component in which a hard film is formed on a raceway surface or a rolling surface by the method according to claim 1.
JP2011147623A 2011-07-01 2011-07-01 Method for forming hard film on bearing parts, and rolling bearing Pending JP2013014801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011147623A JP2013014801A (en) 2011-07-01 2011-07-01 Method for forming hard film on bearing parts, and rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011147623A JP2013014801A (en) 2011-07-01 2011-07-01 Method for forming hard film on bearing parts, and rolling bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015112442A Division JP2015194259A (en) 2015-06-02 2015-06-02 rolling bearing

Publications (1)

Publication Number Publication Date
JP2013014801A true JP2013014801A (en) 2013-01-24

Family

ID=47687736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011147623A Pending JP2013014801A (en) 2011-07-01 2011-07-01 Method for forming hard film on bearing parts, and rolling bearing

Country Status (1)

Country Link
JP (1) JP2013014801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350770A (en) * 2016-08-31 2017-01-25 黄山协同轴承有限公司 Bearing with diamond-like coatings, ion sputtering plating machine and method for machining bearing
US9753274B2 (en) 2014-07-31 2017-09-05 Jsr Corporation Display element, photosensitive composition and electrowetting display
JP2018003880A (en) * 2016-06-28 2018-01-11 株式会社リケン Slide member
JP2020143725A (en) * 2019-03-06 2020-09-10 Ntn株式会社 Rolling device and rolling bearing
CN113692495A (en) * 2019-02-14 2021-11-23 日本精工株式会社 Multi-row thrust ball bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240667A (en) * 1999-02-23 2000-09-05 Nsk Ltd Rolling bearing
JP2003222143A (en) * 2002-01-28 2003-08-08 Nsk Ltd Rolling sliding member
JP2007032758A (en) * 2005-07-28 2007-02-08 Toyota Motor Corp Combination of sliding members and internal combustion engine using combination of sliding members and sliding bearing mechanism
JP2008111462A (en) * 2006-10-30 2008-05-15 Nsk Ltd Rolling element and rolling device
EP1262674B1 (en) * 2001-05-29 2008-05-21 NSK Ltd. Rolling sliding member and rolling apparatus
JP2010249306A (en) * 2008-07-02 2010-11-04 Kobe Steel Ltd Sliding member and sliding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240667A (en) * 1999-02-23 2000-09-05 Nsk Ltd Rolling bearing
EP1262674B1 (en) * 2001-05-29 2008-05-21 NSK Ltd. Rolling sliding member and rolling apparatus
JP2003222143A (en) * 2002-01-28 2003-08-08 Nsk Ltd Rolling sliding member
JP2007032758A (en) * 2005-07-28 2007-02-08 Toyota Motor Corp Combination of sliding members and internal combustion engine using combination of sliding members and sliding bearing mechanism
JP2008111462A (en) * 2006-10-30 2008-05-15 Nsk Ltd Rolling element and rolling device
JP2010249306A (en) * 2008-07-02 2010-11-04 Kobe Steel Ltd Sliding member and sliding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015009598; Teixeira, V., et al.: '"Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique"' Journal of Nanoscience and Nanotechnology Vol. 9, No. 7, 200907, pp. 4061-4066 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9753274B2 (en) 2014-07-31 2017-09-05 Jsr Corporation Display element, photosensitive composition and electrowetting display
JP2018003880A (en) * 2016-06-28 2018-01-11 株式会社リケン Slide member
CN106350770A (en) * 2016-08-31 2017-01-25 黄山协同轴承有限公司 Bearing with diamond-like coatings, ion sputtering plating machine and method for machining bearing
CN113692495A (en) * 2019-02-14 2021-11-23 日本精工株式会社 Multi-row thrust ball bearing
JP2020143725A (en) * 2019-03-06 2020-09-10 Ntn株式会社 Rolling device and rolling bearing

Similar Documents

Publication Publication Date Title
JP5222764B2 (en) Multilayer coating and multilayer coating covering member
JP5393108B2 (en) Manufacturing method of hard multilayer film molded body
JPH09133138A (en) Bearing device
Dalibon et al. Wear resistance of nitrided and DLC coated PH stainless steel
Evaristo et al. Influence of the silicon and oxygen content on the properties of non-hydrogenated amorphous carbon coatings
WO2013042765A1 (en) Hard film, hard film formed body, and rolling bearing
JP2013014801A (en) Method for forming hard film on bearing parts, and rolling bearing
JP2009167512A (en) Diamond-like carbon film for sliding component and method for manufacturing the same
JP2008001951A (en) Diamond-like carbon film and method for forming the same
Moolsradoo et al. Thermal Stability and Tribological Performance of DLC‐Si–O Films
JP2018146108A (en) Rolling bearing and its manufacturing method
WO2019130769A1 (en) Sliding member and piston ring
JP5938321B2 (en) Hard film and film forming method thereof, hard film forming body and manufacturing method thereof
JP5993680B2 (en) Rolling bearing and manufacturing method thereof
JP4178826B2 (en) Rolling device
Dalibon et al. Influence of the substrate pre-treatment on the mechanical and corrosion response of multilayer DLC coatings
JP2015194259A (en) rolling bearing
Han et al. Effect of bias gradient delta on mechanical and tribological properties of DLC films sputtered on ACM
JP6533818B2 (en) Sliding member and piston ring
JP5616082B2 (en) Manufacturing method of ceramic coating material
JP6453826B2 (en) Sliding member and manufacturing method thereof
JP7079175B2 (en) Multi-row self-aligning roller bearings and spindle support devices for wind power generation equipped with them
WO2018164139A1 (en) Rolling bearing and method for producing same
JP2019157156A (en) Composite film and method for forming the same
JP2009040927A (en) Sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310