JP2013014692A - Anisotropic conductive adhesive film and insulation coated conductive particle - Google Patents

Anisotropic conductive adhesive film and insulation coated conductive particle Download PDF

Info

Publication number
JP2013014692A
JP2013014692A JP2011148486A JP2011148486A JP2013014692A JP 2013014692 A JP2013014692 A JP 2013014692A JP 2011148486 A JP2011148486 A JP 2011148486A JP 2011148486 A JP2011148486 A JP 2011148486A JP 2013014692 A JP2013014692 A JP 2013014692A
Authority
JP
Japan
Prior art keywords
insulating
particles
conductive particles
conductive
adhesive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011148486A
Other languages
Japanese (ja)
Inventor
Yuko Nagahara
憂子 永原
Kenji Takai
健次 高井
Masaru Watanabe
優 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011148486A priority Critical patent/JP2013014692A/en
Publication of JP2013014692A publication Critical patent/JP2013014692A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Adhesive Tapes (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive film which in a circuit connection using the anisotropic conductive adhesive film having a cationic curing type insulating adhesive layer, suppresses the rise of a connection resistance value while maintaining high insulating property in a non-pressurizing direction.SOLUTION: The anisotropic conductive adhesive film 10 includes: the insulating adhesive layer 7; and insulation coated conductive particles 5, dispersed in the insulating adhesive layer 7, and having conductive particles 3 with conductive metal surfaces and insulating fine particles 1 coating the conductive particles 3. The insulating adhesive layer 7 contains an epoxy resin and a cationic curing agent. In a DSC curve determined by the differential scanning calorimetry of the anisotropic conductive adhesive film 10, when a heat generation value of an exothermic peak with a peak temperature in the range of 100 to 150°C is represented by α, and a heat generation value of an exothermic peak with a peak temperature in the range of 200 to 250°C is represented by β, the anisotropic conductive adhesive film is characterized in that α and β satisfy inequality {α/(α+β)}×100≥60.

Description

本発明は、異方導電性接着フィルム及び絶縁被覆導電粒子に関する。   The present invention relates to an anisotropic conductive adhesive film and insulating coated conductive particles.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)の2種類に大別することができる。COG実装では、導電粒子を含む異方導電性接着フィルムを用いて液晶用ICを直接ガラスパネルに接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着フィルムを用いてそれらをガラスパネルに接合する。「異方導電性」とは、加圧方向の接続端子間を電気的に接続しつつ、非加圧方向には絶縁性を保つことを意味する。   The method of mounting the liquid crystal driving IC on the glass panel for liquid crystal display can be roughly classified into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex). In COG mounting, an IC for liquid crystal is directly bonded to a glass panel using an anisotropic conductive adhesive film containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive film containing conductive particles. “Anisotropic conductivity” means maintaining electrical insulation in the non-pressurization direction while electrically connecting the connection terminals in the pressurization direction.

近年、液晶表示の高精細化に伴って、液晶駆動用ICの回路電極である金バンプには、狭ピッチ化、狭面積化が要求されている状況にある。かかる状況において、異方導電性接着フィルムの導電粒子が隣接する回路電極間に流出してショートを発生させることが問題となっている。また、隣接する回路電極間に導電粒子が流出することにより、金バンプとガラスパネルとの間に捕捉される異方導電性接着フィルム中の導電粒子数が減少して、対向する回路電極間の接続抵抗が上昇し、接続不良が発生することも問題となっている。   In recent years, with the increase in definition of liquid crystal display, gold bumps, which are circuit electrodes of liquid crystal driving ICs, are required to have a narrow pitch and a small area. Under such circumstances, there is a problem that the conductive particles of the anisotropic conductive adhesive film flow out between adjacent circuit electrodes and cause a short circuit. In addition, when conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive film trapped between the gold bumps and the glass panel is reduced, and between the facing circuit electrodes Another problem is that connection resistance rises and connection failure occurs.

そこで、これらの問題を解決する方法として、導電粒子の全表面を絶縁性の被膜で被覆する方法(特許文献1参照)、および絶縁性微粒子によって導電粒子を被覆する方法(特許文献2〜5参照)が提案されている。   Therefore, as a method for solving these problems, a method of coating the entire surface of the conductive particles with an insulating film (see Patent Document 1) and a method of coating the conductive particles with insulating fine particles (see Patent Documents 2 to 5). ) Has been proposed.

異方導電性接着フィルム中での導電粒子の分散性は、絶縁特性を向上させるために非常に重要である。良好な分散性を維持するために、導電粒子を配合する際に樹脂にせん断力を与える混錬方法や、超音波照射にて分散性を向上させる方法が採用されている。そのため、絶縁性微粒子を被覆させた導電粒子は、外部からの衝撃に対して脱落しない高い吸着強度で絶縁性微粒子が導電粒子に吸着していることが望ましい。高い吸着強度を得るために、絶縁性微粒子の表面にアンモニウム基、スルホニウム基等の反応性の官能基を導入して導電粒子の表面と反応させる方法が提案されている(特許文献4、5)。   The dispersibility of the conductive particles in the anisotropic conductive adhesive film is very important for improving the insulating properties. In order to maintain good dispersibility, a kneading method for applying a shearing force to the resin when blending the conductive particles and a method for improving the dispersibility by ultrasonic irradiation are employed. Therefore, it is desirable that the conductive particles coated with the insulating fine particles have the insulating particles adsorbed on the conductive particles with a high adsorption strength that does not drop off from an external impact. In order to obtain a high adsorption strength, methods have been proposed in which reactive functional groups such as ammonium groups and sulfonium groups are introduced into the surface of insulating fine particles to react with the surface of conductive particles (Patent Documents 4 and 5). .

特許第2794009号公報Japanese Patent No. 2779409 特許第2748705号公報Japanese Patent No. 2748705 特開2009−259804号公報JP 2009-259804 A 国際公開第2003/025955号International Publication No. 2003/025955 特開2005−171096号公報JP 2005-171096 A

ところで、近年の液晶パネルの薄型化にともなって、実装時の基板反りを低減するために実装条件が低圧、低温へと変化している。低温の実装に用いられる異方導電性フィルムを構成する絶縁性接着剤として、カチオン硬化型の絶縁性接着剤の採用が有効である。例えば、エポキシ樹脂の低温硬化系の硬化剤として、カチオン系重合開始剤が用いられている。   By the way, with the recent thinning of liquid crystal panels, mounting conditions are changing to low pressure and low temperature in order to reduce substrate warpage during mounting. As an insulating adhesive constituting an anisotropic conductive film used for low-temperature mounting, it is effective to employ a cationic curing insulating adhesive. For example, a cationic polymerization initiator is used as a low-temperature curing agent for epoxy resin.

しかしながら、カチオン硬化型の絶縁性接着剤を用いた従来の異方導電性フィルムによる回路接続において、十分に低い接続抵抗値を維持することが困難であるという問題があった。   However, there is a problem that it is difficult to maintain a sufficiently low connection resistance value in a circuit connection using a conventional anisotropic conductive film using a cation curable insulating adhesive.

そこで、本発明は、カチオン硬化型の絶縁性接着剤層を有する異方導電性接着フィルムを用いた回路接続において、非加圧方向の高い絶縁特性を維持しつつ、接続抵抗値の上昇を抑制することを目的とする。   Therefore, the present invention suppresses an increase in connection resistance value while maintaining high insulation characteristics in the non-pressurizing direction in circuit connection using an anisotropic conductive adhesive film having a cation curable insulating adhesive layer. The purpose is to do.

本発明は、絶縁性接着剤層と、該絶縁性接着剤層中に分散している、導電性の金属表面を有する導電粒子及び導電粒子を被覆する絶縁性微粒子を有する絶縁被覆導電粒子と、を備える異方導電性接着フィルムに関する。絶縁性接着剤層は、エポキシ樹脂及びカチオン系硬化剤を含有する。本発明に係る異方導電性接着フィルムの示差走査熱量測定により求められるDSC曲線において、ピーク温度が100℃〜150℃の範囲にある発熱ピークの発熱量をαとし、ピーク温度が200℃〜250℃の範囲にある発熱ピークの発熱量をβとしたときに、α及びβは式:{α/(α+β)}×100≧60を満たす。   The present invention includes an insulating adhesive layer, conductive particles having conductive metal surfaces dispersed in the insulating adhesive layer, and insulating coated conductive particles having insulating fine particles covering the conductive particles; The present invention relates to an anisotropic conductive adhesive film. The insulating adhesive layer contains an epoxy resin and a cationic curing agent. In the DSC curve obtained by differential scanning calorimetry of the anisotropic conductive adhesive film according to the present invention, the calorific value of the exothermic peak having a peak temperature in the range of 100 ° C to 150 ° C is α, and the peak temperature is 200 ° C to 250 ° C. Α and β satisfy the formula: {α / (α + β)} × 100 ≧ 60, where β is the calorific value of the exothermic peak in the range of ° C.

上記本発明に係る異方導電性フィルムによれば、カチオン硬化型の絶縁性接着剤層を有する異方導電性接着フィルムを用いた回路接続において、非加圧方向の高い絶縁特性を維持しつつ、接続抵抗値の上昇を抑制することができる。{α/(α+β)}×100の値が大きいことは、より低温でカチオン系の硬化反応が速やかに進行することに対応する。エポキシ樹脂の硬化反応が十分に進行しないと、高温高湿環境下での接着剤層の熱膨張が大きくなって、導電粒子の偏平を維持することができなくなり、接続抵抗の上昇を招く場合があると考えられる。液晶パネル等の回路部材の薄型化に伴って、基板の反りを抑制するためにカチオン系硬化剤の量を低減させる傾向があり、そうすると硬化反応が更に進行し難くなる。しかし、{α/(α+β)}×100の値が大きいことにより、硬化反応が十分に進行して、接続抵抗の上昇が十分に抑制されると考えられる。   According to the anisotropic conductive film of the present invention, in the circuit connection using the anisotropic conductive adhesive film having a cation curable insulating adhesive layer, while maintaining high insulation characteristics in the non-pressurizing direction. The increase in connection resistance value can be suppressed. A large value of {α / (α + β)} × 100 corresponds to the rapid progress of the cationic curing reaction at a lower temperature. If the curing reaction of the epoxy resin does not proceed sufficiently, the thermal expansion of the adhesive layer in a high-temperature and high-humidity environment increases, and it becomes impossible to maintain the flatness of the conductive particles, leading to an increase in connection resistance. It is believed that there is. As circuit members such as liquid crystal panels are made thinner, there is a tendency to reduce the amount of the cationic curing agent in order to suppress the warpage of the substrate. However, it is considered that when the value of {α / (α + β)} × 100 is large, the curing reaction sufficiently proceeds and the increase in connection resistance is sufficiently suppressed.

絶縁性接着剤層単独での示差走査熱量測定により求められる発熱量に対するαの割合は、68%以上であることが好ましい。これにより、特に接続信頼性の点でより優れた効果が得られる。   The ratio of α to the calorific value obtained by differential scanning calorimetry with the insulating adhesive layer alone is preferably 68% or more. Thereby, a more excellent effect can be obtained particularly in connection reliability.

別の側面において、本発明は、導電性の金属表面を有する導電粒子及び導電粒子を被覆する絶縁性微粒子を有する絶縁被覆導電粒子に関する。本発明に係る絶縁被覆導電粒子0.5gを、溶出液としての100℃の純水25g中に10時間置いたときに、溶出液のアンモニウムイオン濃度は100ppm未満である。   In another aspect, the present invention relates to insulating coated conductive particles having conductive particles having a conductive metal surface and insulating fine particles covering the conductive particles. When 0.5 g of the insulating coated conductive particles according to the present invention is placed in 25 g of 100 ° C. pure water as an eluent for 10 hours, the ammonium ion concentration of the eluate is less than 100 ppm.

上記本発明に係る絶縁被覆導電性粒子は、上述の本発明に係る異方導電性フィルムを構成するために好適に用いることができる。アンモニウムイオンの溶出が少ないことにより、カチオン硬化型の異方導電性接着フィルムにおいて、{α/(α+β)}×100の値を大きくすることができる。   The insulating coated conductive particles according to the present invention can be suitably used for constituting the anisotropic conductive film according to the present invention described above. Since the elution of ammonium ions is small, the value of {α / (α + β)} × 100 can be increased in the cationically curable anisotropic conductive adhesive film.

本発明に係る絶縁被覆導電粒子は、金属表面に吸着している、分子量100以上の塩基性化合物を更に有することが好ましい。この塩基性化合物はアミノ基を有することが好ましい。塩基性化合物が金属表面に吸着していることにより、絶縁性微粒子と導電粒子との吸着強度が高くなる。ところが、塩基性化合物が存在すると、接着剤中に染み出した塩基性化合物によりカチオン種がトラップされて、カチオン系の硬化反応が阻害される可能性がある。しかし、本発明者らの知見によれば、塩基性化合物の分子量が100以上であることにより、そのような塩基性化合物(例えばアンモニウムイオン)の染み出しが抑制される。その結果、カチオン系の硬化反応を十分に進行させることができる。そして、係る絶縁被覆導電粒子を用いた異方導電性フィルムによれば、{α/(α+β)}×100≧60を容易に満たすことができる。   The insulating coated conductive particles according to the present invention preferably further have a basic compound having a molecular weight of 100 or more adsorbed on the metal surface. This basic compound preferably has an amino group. Since the basic compound is adsorbed on the metal surface, the adsorption strength between the insulating fine particles and the conductive particles is increased. However, in the presence of a basic compound, the cationic compound may be trapped by the basic compound that has oozed into the adhesive, and the cationic curing reaction may be inhibited. However, according to the knowledge of the present inventors, when the molecular weight of the basic compound is 100 or more, exudation of such a basic compound (for example, ammonium ion) is suppressed. As a result, the cationic curing reaction can sufficiently proceed. And according to the anisotropic conductive film using the insulating coating conductive particles, {α / (α + β)} × 100 ≧ 60 can be easily satisfied.

上記導電粒子は、金属表面を形成するニッケル層を有しており、金属表面が突起を形成しており、導電粒子の粒子径が2.0〜4.0μmであることが好ましい。   It is preferable that the conductive particles have a nickel layer that forms a metal surface, the metal surface has protrusions, and the particle size of the conductive particles is 2.0 to 4.0 μm.

上記絶縁性微粒子は、ケイ素原子を含有する共重合体から構成される有機無機ハイブリッド粒子と、該有機無機ハイブリッド粒子の表面に吸着しておりエポキシ基を有するシランカップリング剤と、を含むことが好ましい。   The insulating fine particles may include organic-inorganic hybrid particles composed of a copolymer containing silicon atoms, and a silane coupling agent having an epoxy group adsorbed on the surface of the organic-inorganic hybrid particles. preferable.

本発明に係る異方導電性フィルムによれば、カチオン硬化型の絶縁性接着剤層を有する異方導電性接着フィルムを用いた回路接続において、非加圧方向の高い絶縁特性を維持しつつ、接続抵抗値の上昇を抑制することができる。また、低温でもカチオン系の硬化反応が十分に進行することから、高温高湿環境下でも導電粒子の周囲の樹脂の吸湿し難い。そのため、絶縁抵抗値の低下も抑制される。   According to the anisotropic conductive film according to the present invention, in the circuit connection using the anisotropic conductive adhesive film having a cationic curing type insulating adhesive layer, while maintaining high insulation characteristics in the non-pressurizing direction, An increase in connection resistance value can be suppressed. In addition, since the cationic curing reaction proceeds sufficiently even at a low temperature, it is difficult for the resin around the conductive particles to absorb moisture even under a high temperature and high humidity environment. Therefore, a decrease in insulation resistance value is also suppressed.

異方導電性接着フィルムの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an anisotropically conductive adhesive film. 異方性導電接着剤による回路接続方法の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the circuit connection method by an anisotropic conductive adhesive. 回路接続構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a circuit connection structure.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、異方導電性接着フィルムの一実施形態を示す断面図である。図1に示す異方導電性接着フィルム10は、フィルム状の絶縁性接着剤層7と、絶縁性接着剤層7内に分散した複数の絶縁被覆導電粒子5とを含有する。   FIG. 1 is a cross-sectional view showing an embodiment of an anisotropic conductive adhesive film. An anisotropic conductive adhesive film 10 shown in FIG. 1 contains a film-like insulating adhesive layer 7 and a plurality of insulating coated conductive particles 5 dispersed in the insulating adhesive layer 7.

本発明に係る異方導電性接着フィルムの示差走査熱量測定により求められるDSC曲線において、ピーク温度が100℃〜150℃の範囲にある発熱ピークの発熱量(第1の発熱量)をαとし、ピーク温度が200℃〜250℃の範囲にある発熱ピークの発熱量(第2の発熱量)をβとしたときに、α及びβは式:{α/(α+β)}×100≧60を満たす。   In the DSC curve obtained by differential scanning calorimetry of the anisotropic conductive adhesive film according to the present invention, the calorific value (first calorific value) of the exothermic peak whose peak temperature is in the range of 100 ° C. to 150 ° C. is α, Α and β satisfy the formula: {α / (α + β)} × 100 ≧ 60, where β is the calorific value (second calorific value) of the exothermic peak whose peak temperature is in the range of 200 ° C. to 250 ° C. .

第1の発熱量α及び第2の発熱量βを求めるための示差走査熱量測定は、例えば、10℃/分の昇温速度で40℃から250℃の範囲で行われる。示差走査熱量測定により、熱流と温度との関係を示すDSC曲線が得られる。異方導電性接着フィルムから切り取られた10mg程度の測定試料について測定が行われる。   The differential scanning calorimetry for obtaining the first calorific value α and the second calorific value β is performed, for example, in the range of 40 ° C. to 250 ° C. at a temperature rising rate of 10 ° C./min. Differential scanning calorimetry provides a DSC curve that shows the relationship between heat flow and temperature. Measurement is performed on a measurement sample of about 10 mg cut from the anisotropic conductive adhesive film.

絶縁性接着剤層7単独での示差走査熱量測定により求められる発熱量γに対する第1の発熱量αの割合は、好ましくは68%以上である。絶縁性接着剤層7単独のDSC曲線のいては、通常、単一の発熱ピークが観測される。2以上の発熱ピークが観測される場合、発熱量γはそれらの合計の発熱量である。   The ratio of the first calorific value α to the calorific value γ determined by differential scanning calorimetry of the insulating adhesive layer 7 alone is preferably 68% or more. In the DSC curve of the insulating adhesive layer 7 alone, a single exothermic peak is usually observed. When two or more exothermic peaks are observed, the calorific value γ is the total calorific value thereof.

絶縁性接着剤層7は、カチオン硬化型の熱硬化性樹脂組成物からなる。好ましくは、絶縁性接着剤層7は、エポキシ樹脂と、カチオン系硬化剤とを含有する。   The insulating adhesive layer 7 is made of a cationic curable thermosetting resin composition. Preferably, the insulating adhesive layer 7 contains an epoxy resin and a cationic curing agent.

絶縁性接着剤層7は、エポキシ樹脂100質量部に対して3〜15質量部のカチオン性硬化剤を含有することが好ましい。カチオン硬化系硬化剤は、好ましくは潜在性硬化剤である。カチオン系硬化剤は、例えば、三フッ化ホウ素−アミン錯体及びスルホニウム塩から選ばれる。   The insulating adhesive layer 7 preferably contains 3 to 15 parts by mass of a cationic curing agent with respect to 100 parts by mass of the epoxy resin. The cationic curable curing agent is preferably a latent curing agent. The cationic curing agent is selected from, for example, boron trifluoride-amine complex and sulfonium salt.

絶縁性接着剤層7は、絶縁性接着剤層100質量部に対して20〜30質量部のエポキシ樹脂を含有することが好ましい。エポキシ樹脂としては、例えば、エピクロルヒドリンとビスフェノールA、ビスフェノールF、ビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラック又はクレゾールノボラックとから誘導されるエポキシノボラック樹脂、ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物などが挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。これらのエポキシ樹脂は、エレクトロマイグレーション防止の観点から、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品であることが好ましい。 The insulating adhesive layer 7 preferably contains 20 to 30 parts by mass of an epoxy resin with respect to 100 parts by mass of the insulating adhesive layer. Examples of the epoxy resin include a bisphenol type epoxy resin derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, etc., an epoxy novolak resin derived from epichlorohydrin and phenol novolac or cresol novolac, and a skeleton containing a naphthalene ring. And various epoxy compounds having two or more glycidyl groups in one molecule, such as naphthalene type epoxy resin having glycidyl, glycidylamine, glycidyl ether, biphenyl, and alicyclic. These can be used alone or in combination of two or more. These epoxy resins are preferably high-purity products in which impurity ions (Na + , Cl − and the like), hydrolyzable chlorine and the like are reduced to 300 ppm or less from the viewpoint of preventing electromigration.

絶縁性接着剤層7は、接着後の応力を低減するため、又は接着性を向上するために、上述の成分に加えてブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等のゴム成分を含有することもできる。また、絶縁性接着剤層7は、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。   In order to reduce the stress after bonding or to improve the adhesiveness, the insulating adhesive layer 7 is made of rubber components such as butadiene rubber, acrylic rubber, styrene-butadiene rubber, and silicone rubber in addition to the above components. It can also be contained. The insulating adhesive layer 7 contains a filler, softener, accelerator, anti-aging agent, colorant, flame retardant, thixotropic agent, coupling agent, phenol resin, melamine resin, isocyanates, and the like. You can also

フィルム形成性の観点から、絶縁性接着剤層7は、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂(フィルム形成性高分子)を含有することが好ましい。これらのフィルム形成性高分子を配合することは、反応性樹脂の硬化時の応力を緩和できる観点からも好ましい。   From the viewpoint of film formability, the insulating adhesive layer 7 preferably contains a thermoplastic resin (film-forming polymer) such as a phenoxy resin, a polyester resin, or a polyamide resin. Mixing these film-forming polymers is also preferable from the viewpoint of reducing stress during curing of the reactive resin.

絶縁被覆導電粒子5は、導電性の金属表面を有する導電粒子3と、導電粒子3を被覆する絶縁性微粒子1とを有する。   The insulating coated conductive particles 5 include conductive particles 3 having a conductive metal surface and insulating fine particles 1 covering the conductive particles 3.

0.5gの絶縁被覆導電粒子5を、溶出液としての100℃の純水25g中に加圧下で10時間置いたときに、溶出液のアンモニウムイオン濃度は、好ましくは100ppm未満である。   When 0.5 g of the insulating coated conductive particles 5 is placed under pressure in 25 g of 100 ° C. pure water for 10 hours, the ammonium ion concentration of the eluate is preferably less than 100 ppm.

絶縁性微粒子1は、ケイ素原子を含有する共重合体から構成される有機無機ハイブリッド粒子と、該有機無機ハイブリッド粒子の表面に吸着しておりエポキシ基を有するシランカップリング剤と、を含むことが好ましい。このような構成を有する絶縁性微粒子1は、トルエン、酢酸エチル、メチルエチルケトン等の有機溶剤に容易に溶融しない。したがって、絶縁被覆導電粒子を接着剤成分と混合する際に、有機溶剤中での超音波照射を行い樹脂に配合することにより、異方導電性フィルム内における絶縁被覆導電粒子の分散性を向上させることができる。   The insulating fine particles 1 include organic-inorganic hybrid particles composed of a copolymer containing silicon atoms, and a silane coupling agent having an epoxy group adsorbed on the surface of the organic-inorganic hybrid particles. preferable. The insulating fine particles 1 having such a structure do not easily melt in an organic solvent such as toluene, ethyl acetate, methyl ethyl ketone or the like. Therefore, when mixing the insulating coated conductive particles with the adhesive component, the dispersibility of the insulating coated conductive particles in the anisotropic conductive film is improved by irradiating the resin with an ultrasonic wave in an organic solvent. be able to.

有機無機ハイブリッド粒子を構成する、ケイ素原子を有する共重合体は、例えば、(メタ)アクリル基を有するアクリルモノマーと、加水分解性シリル基(例えばアルコキシシリル基)及びラジカル重合性不飽和基を有するシリル化合物との共重合体である。アクリルモノマーは、好ましくは、メタクリル酸及びアクリル酸アルキルエステルを含む。有機無機ハイブリッド粒子に、エポキシ基及び加水分解性シリル基を有するシランカップリング剤を吸着させることにより、絶縁性微粒子1の表面にエポキシ基が導入される。   The copolymer having silicon atoms constituting the organic-inorganic hybrid particle has, for example, an acrylic monomer having a (meth) acryl group, a hydrolyzable silyl group (for example, an alkoxysilyl group), and a radically polymerizable unsaturated group. It is a copolymer with a silyl compound. The acrylic monomer preferably comprises methacrylic acid and an acrylic acid alkyl ester. By adsorbing a silane coupling agent having an epoxy group and a hydrolyzable silyl group to the organic / inorganic hybrid particle, the epoxy group is introduced onto the surface of the insulating fine particles 1.

上記共重合体から構成される有機無機ハイブリッド粒子は、加水分解性シリル基を含有するため、酸又はアルカリの作用により加水分解性シリル基が加水分解して、シラノール基が生成する。更に、シラノール基が相互に反応して、架橋構造を形成する。この加水分解のために用いられる酸としては、塩酸、硫酸、硝酸等の無機酸、蟻酸、酢酸、p−トルエンスルホン酸、トリクロロ酢酸等の有機酸がある。アルカリとしては水酸化カリウム、水酸化ナトリウム、アンモニア、アミン等がある。架橋を進行させるための硬化触媒としては、マレイン酸ジ−n−ブチル錫、ラウリン酸−n−ジブチル錫等の錫系触媒がある。硬化触媒は架橋後、遠心分離による洗浄により除去されることが好ましい。硬化触媒の添加は、粒子合成後でもよいし、遠心分離後であってもよい。望ましくは遠心分離後に硬化触媒が添加される。   Since the organic-inorganic hybrid particles composed of the copolymer contain a hydrolyzable silyl group, the hydrolyzable silyl group is hydrolyzed by the action of an acid or an alkali to produce a silanol group. Furthermore, silanol groups react with each other to form a crosslinked structure. Examples of the acid used for the hydrolysis include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as formic acid, acetic acid, p-toluenesulfonic acid, and trichloroacetic acid. Examples of the alkali include potassium hydroxide, sodium hydroxide, ammonia and amine. As a curing catalyst for advancing crosslinking, there are tin-based catalysts such as di-n-butyltin maleate and lauric acid-n-dibutyltin. It is preferable that the curing catalyst is removed by washing by centrifugation after crosslinking. The addition of the curing catalyst may be after particle synthesis or after centrifugation. Desirably, the curing catalyst is added after centrifugation.

絶縁被覆導電粒子5が上記のような構成を有していることにより、絶縁被覆導電粒子同士の凝集が防がれる。さらに、絶縁性微粒子1が加熱加圧時に偏平する。その結果、回路接続時に隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性の点で特に優れた効果が奏される。更に、絶縁性微粒子1による被覆の欠陥が少なく、被覆ばらつきが少ないという点でも有利である。   Since the insulating coated conductive particles 5 have the above-described configuration, aggregation of the insulating coated conductive particles is prevented. Furthermore, the insulating fine particles 1 are flattened when heated and pressurized. As a result, particularly excellent effects are achieved in terms of insulation between adjacent circuit electrodes and electrical connection between opposing circuit electrodes when the circuits are connected. Furthermore, it is advantageous in that there are few coating defects due to the insulating fine particles 1 and there are few coating variations.

導電粒子3は金属のみから構成される金属粒子であってもよいし、有機又は無機の核体粒子と、核体粒子を被覆する金属層とを有する複合粒子であってもよい。これらのなかでも、有機核体粒子及びこれを被覆する金属層を有する複合粒子が好ましい。導電粒子3の粒子径は2.0〜4.0μmであることが好ましい。   The conductive particles 3 may be metal particles made of only metal, or may be composite particles having organic or inorganic core particles and a metal layer covering the core particles. Among these, organic core particles and composite particles having a metal layer covering the organic core particles are preferable. The particle diameter of the conductive particles 3 is preferably 2.0 to 4.0 μm.

金属層は、例えば、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム及びカドミウムから選ばれる少なくとも1種の金属、又はITO及びはんだのような金属化合物を含むことができる。特に、耐腐食性の観点からは、金属層はニッケル、パラジウム及び金から選ばれる少なくとも1種の金属を含むことが好ましい。金属層の最外層がニッケル層、特にニッケルめっき層であり、導電粒子3の金属表面がニッケルから構成されることが特に好ましい。   The metal layer is, for example, at least one metal selected from gold, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, and cadmium, or ITO and solder. Various metal compounds. In particular, from the viewpoint of corrosion resistance, the metal layer preferably contains at least one metal selected from nickel, palladium, and gold. It is particularly preferable that the outermost layer of the metal layer is a nickel layer, particularly a nickel plating layer, and the metal surface of the conductive particles 3 is made of nickel.

導電粒子3の金属表面は、突起を形成していることが好ましい。   The metal surface of the conductive particle 3 preferably has a protrusion.

核体粒子の表面上に金属層を形成する方法としては、無電解めっきの他、置換めっき、電気めっき、スパッタリング等がある。   As a method for forming a metal layer on the surface of the core particle, there are displacement plating, electroplating, sputtering and the like in addition to electroless plating.

有機核体粒子は特に限定されないが、例えば、ポリメチルメタクリレート及びポリメチルアクリレートのようなアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン及びポリブタジエンのようなポリオレフィン樹脂、並びに、ジビニルベンゼンとアクリル酸の共重合体の粒子が有機核体粒子として用いられ得る。   The organic core particles are not particularly limited, but, for example, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyolefin resins such as polyethylene, polypropylene, polyisobutylene and polybutadiene, and copolymers of divinylbenzene and acrylic acid These particles can be used as organic core particles.

導電粒子3は、水酸基、カルボキシル基、アルコキシル基及びアルコキシカルボニル基からなる群より選択される少なくとも一つの表面官能基を有することが好ましい。これら表面官能基は、例えば、導電粒子の金属表面にカルボキシベンゾトリアゾールを吸着させ、次いで、ベンゾトリアゾールが吸着した導電粒子に、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基を有する化合物を接触させる方法により容易に導入することができる。   The conductive particles 3 preferably have at least one surface functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group. These surface functional groups include, for example, at least one selected from the group consisting of a mercapto group, a sulfide group, and a disulfide group on a conductive particle on which carboxybenzotriazole is adsorbed on the metal surface of the conductive particle and then adsorbed with benzotriazole. It can introduce | transduce easily by the method of making the compound which has group contact.

導電粒子3の金属表面に、分子量100以上の塩基性化合物が吸着していることが好ましい。この場合、絶縁性微粒子1は、この塩基性化合物を介して導電粒子3に吸着することができる。   It is preferable that a basic compound having a molecular weight of 100 or more is adsorbed on the metal surface of the conductive particles 3. In this case, the insulating fine particles 1 can be adsorbed to the conductive particles 3 through this basic compound.

この塩基性化合物は、アミノ基を有することが好ましく、2つ以上のアミノ基を有することがより好ましい。アミノ基が多いほど、絶縁性微粒子と導電粒子との吸着強度が高くなる。   The basic compound preferably has an amino group, and more preferably has two or more amino groups. The more amino groups, the higher the adsorption strength between the insulating fine particles and the conductive particles.

導電粒子から脱落し難く、絶縁性接着剤層中に溶出し難い点から、塩基性化合物の分子量は好ましくは100以上、より好ましくは1000以上、更に好ましくは10000以上、より一層好ましくは50000以上である。塩基性化合物の分子量が大きくなると、絶縁性微粒子の脱落及び塩基性化合物自体の脱落がより効果的に防止される。塩基性化合物の分子量は、通常、200000以下である。   The molecular weight of the basic compound is preferably 100 or more, more preferably 1000 or more, still more preferably 10,000 or more, and even more preferably 50000 or more, from the point that it is difficult to fall off from the conductive particles and is difficult to elute into the insulating adhesive layer. is there. When the molecular weight of the basic compound is increased, the falling off of the insulating fine particles and the dropping of the basic compound itself are more effectively prevented. The molecular weight of the basic compound is usually 200000 or less.

アミノ基は、導電粒子の金属表面に結合しやすいだけではなく、カルボキシル基等の導電粒子の表面官能基との高い反応性を有する。また、導電粒子の表面官能基と絶縁性微粒子表面のエポキシ基との間に化学結合が形成されて、導電粒子と絶縁性微粒子との結合が強固になる。その結果、絶縁性微粒子による被覆が均一となるとともに、導電粒子に絶縁性微粒子が強固に保持される。このことが、絶縁性微粒子の脱落が防止される要因として考えられる。   The amino group not only easily binds to the metal surface of the conductive particle, but also has high reactivity with the surface functional group of the conductive particle such as a carboxyl group. Further, a chemical bond is formed between the surface functional group of the conductive particle and the epoxy group on the surface of the insulating fine particle, and the bond between the conductive particle and the insulating fine particle becomes strong. As a result, the coating with the insulating fine particles becomes uniform, and the insulating fine particles are firmly held by the conductive particles. This is considered as a factor that prevents the insulating fine particles from falling off.

アミノ基を有する塩基性化合物は、例えば、ポリエチレンイミン、ペンタエチレンヘキサミン、ビス(ヘキサメチレン)トリアミン、テトラエチレンペンタミン、ヘキサメチレンジアミン及び1,5−ジアミノペンタンから選ばれるポリアミンである。これらの中でも、ポリエチレンイミンが好ましい。ポリエチレンイミンは、ポリアミンの中でも最も電荷密度が高いため、表面官能基を有する導電粒子と強固に結合することができる。したがって、表面官能基を有する導電粒子と導電粒子を被覆する絶縁性微粒子との結合を、より一層強固にすることができると考えられる。   The basic compound having an amino group is, for example, a polyamine selected from polyethyleneimine, pentaethylenehexamine, bis (hexamethylene) triamine, tetraethylenepentamine, hexamethylenediamine, and 1,5-diaminopentane. Among these, polyethyleneimine is preferable. Since polyethyleneimine has the highest charge density among polyamines, it can be firmly bonded to conductive particles having surface functional groups. Therefore, it is considered that the bond between the conductive particles having a surface functional group and the insulating fine particles covering the conductive particles can be further strengthened.

表面官能基を有する導電粒子、及び水酸基等を表面に有する絶縁性微粒子の表面電位(ゼータ電位)は、pHが中性領域であれば通常双方とも負電荷である。導電粒子の表面に表面電位が正電荷のアミノ基を有する塩基性化合物が吸着されていると、アミノ基が絶縁性微粒子のエポキシ基と化学結合し、絶縁性微粒子の剥離がより一層起こりにくい。   The surface potential (zeta potential) of the conductive particles having a surface functional group and insulating fine particles having a hydroxyl group or the like on the surface is usually negatively charged as long as the pH is in a neutral region. When a basic compound having an amino group having a positive surface potential is adsorbed on the surface of the conductive particles, the amino group chemically bonds with the epoxy group of the insulating fine particles, and the insulating fine particles are more unlikely to peel off.

絶縁被覆導電粒子は、例えば、導電粒子(好ましくは表面官能基を有する導電粒子)の金属表面に塩基性化合物を付着させる工程と、金属表面に塩基性化合物が付着している導電粒子に絶縁性微粒子を接触させる工程と、を含む方法により得ることができる。このような方法により、被覆の欠陥が一層少なく、絶縁性微粒子が容易に脱離しない絶縁被覆導電粒子を製造することができる。   Insulating coated conductive particles are, for example, insulating a conductive compound (preferably conductive particles having a surface functional group) with a basic compound attached to the metal surface and conductive particles with a basic compound attached to the metal surface. And a step of bringing the fine particles into contact with each other. By such a method, it is possible to produce insulating coated conductive particles with fewer coating defects and in which insulating fine particles are not easily detached.

異方導電性接着フィルム10は、例えば、絶縁性接着剤と、絶縁被覆導電粒子と、これらを溶解又は分散する有機溶剤とを含有する液状組成物を剥離性基材に塗布する工程と、塗布された液状組成物から硬化剤の活性温度以下の温度で有機溶剤を除去する工程とを含む方法により得ることができる。   The anisotropic conductive adhesive film 10 includes, for example, a step of applying a liquid composition containing an insulating adhesive, insulating coated conductive particles, and an organic solvent for dissolving or dispersing them to a peelable substrate, And a step of removing the organic solvent at a temperature not higher than the activation temperature of the curing agent from the liquid composition thus obtained.

別の実施形態として、絶縁性接着剤及び絶縁被覆導電粒子5を含有するペースト状の異方性導電接着剤も、回路接続のために好適に用いることができる。   As another embodiment, a paste-like anisotropic conductive adhesive containing the insulating adhesive and the insulating coated conductive particles 5 can also be suitably used for circuit connection.

図2は、異方導電性接着フィルムによる回路接続方法の一実施形態を示す断面図である。図2に示されるように、基板21及び該基板上に設けられた電極22を有する第一の回路部材20と、基板31及び基板31上に設けられた電極32を有する第二の回路部材30とを、電極22及び電極32が向き合うように対向配置し、第一の回路部材20と第二の回路部材30との間に異方性導電接着フィルム10を配置する。この状態で全体を加熱及び加圧することにより、図3の断面図に示されるように、第一の回路部材20と第二の回路部材30とが回路接続された接続構造体100が得られる。   FIG. 2 is a cross-sectional view showing an embodiment of a circuit connection method using an anisotropic conductive adhesive film. As shown in FIG. 2, a first circuit member 20 having a substrate 21 and an electrode 22 provided on the substrate, and a second circuit member 30 having a substrate 31 and an electrode 32 provided on the substrate 31. Are disposed so that the electrodes 22 and 32 face each other, and the anisotropic conductive adhesive film 10 is disposed between the first circuit member 20 and the second circuit member 30. By heating and pressurizing the whole in this state, a connection structure 100 in which the first circuit member 20 and the second circuit member 30 are connected to each other as shown in the sectional view of FIG. 3 is obtained.

これら回路部材としては、ガラス基板やポリイミド等のテープ基板、ドライバーIC等のベアチップ、リジット型のパッケージ基板等が挙げられる。   Examples of these circuit members include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.

得られた接続構造体100において、絶縁被覆導電粒子5の電極との接触部分では絶縁性微粒子1が剥離して、対向する電極同士は導通する。一方、同一基板上で隣り合う電極間は絶縁性微粒子1が介在することで絶縁性が維持される。   In the obtained connection structure 100, the insulating fine particles 1 are peeled off at the contact portions of the insulating coated conductive particles 5 with the electrodes, and the opposing electrodes are electrically connected. On the other hand, the insulating property is maintained by interposing the insulating fine particles 1 between adjacent electrodes on the same substrate.

以下に実施例をあげて本発明を更に詳しく説明する。ただし、本発明はこれらに限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these.

(実施例1、絶縁被覆導電粒子1)
1.導電粒子
(核体粒子)
架橋度を調整したジビニルベンゼンとアクリル酸との共重合体からなる平均粒径2.6μmのプラスチック核体粒子10gを準備した。このプラスチック核体粒子はその表面にカルボキシル基を有する。プラスチック核体粒子の硬さ(200℃において粒子直径が20%変位したときの圧縮弾性率、20%K値)は280kgf/mmであった。
(Example 1, insulating coated conductive particles 1)
1. Conductive particles (nuclear particles)
10 g of plastic core particles having an average particle diameter of 2.6 μm made of a copolymer of divinylbenzene and acrylic acid having an adjusted degree of crosslinking were prepared. This plastic core particle has a carboxyl group on its surface. The hardness of the plastic core particles (compression modulus when the particle diameter was displaced by 20% at 200 ° C., 20% K value) was 280 kgf / mm 2 .

(突起を有するニッケルめっき層の形成)
分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液(和光純薬社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレン水溶液300mLに上記プラスチック核体粒子10gを加え、室温で15分攪拌した。φ3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過によりプラスチック核体粒子を取り出し、取り出されたプラスチック核体粒子を超純水300gに入れて室温で5分攪拌した。次いでφ3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過によりプラスチック核体粒子を取り出し、メンブレンフィルタ上のプラスチック核体粒子を200gの超純水で2回洗浄し、吸着していないポリエチレンイミンを除去して、ポリエチレンイミンが吸着したプラスチック核体粒子を得た。
(Formation of nickel plating layer with protrusions)
A 30% by mass polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) containing polyethyleneimine having a molecular weight of 70000 was diluted to 0.3% by mass with ultrapure water. 10 g of the plastic core particles were added to 300 mL of this 0.3% by mass polyethylene aqueous solution, and the mixture was stirred at room temperature for 15 minutes. The plastic core particles were taken out by filtration using a φ3 μm membrane filter (Millipore), and the taken out plastic core particles were put in 300 g of ultrapure water and stirred at room temperature for 5 minutes. Next, the plastic core particles are removed by filtration using a φ3 μm membrane filter (Millipore), and the plastic core particles on the membrane filter are washed twice with 200 g of ultrapure water to remove the unadsorbed polyethyleneimine. As a result, plastic core particles adsorbed with polyethyleneimine were obtained.

平均粒子径100nmのコロイダルシリカ分散液を超純水で希釈して、0.33質量%シリカ粒子分散液(シリカ総量:1g)を得た。そこに、ポリエチレンイミンが吸着した上記プラスチック核体粒子を入れ、室温で15分攪拌した。その後φ3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過によりプラスチック核体粒子を取り出した。濾液からシリカは抽出されなかったことから、実質的に全てのシリカ粒子がプラスチック核体粒子に吸着したことが確認された。シリカ粒子が吸着したプラスチック核体粒子を超純水200gに入れて室温で5分攪拌した。その後、φ3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過によりプラスチック核体粒子を取り出し、メンブレンフィルタ上のプラスチック核体粒子を200gの超純水で2回洗浄した。洗浄後のプラスチック核体粒子を80℃で30分、120℃で1時間の順に加熱することにより乾燥して、プラスチック核体粒子及びその表面に吸着したシリカ粒子から構成される複合粒子を得た。   A colloidal silica dispersion having an average particle diameter of 100 nm was diluted with ultrapure water to obtain a 0.33% by mass silica particle dispersion (total amount of silica: 1 g). The plastic core particles adsorbed with polyethyleneimine were put therein and stirred at room temperature for 15 minutes. Thereafter, plastic core particles were taken out by filtration using a φ3 μm membrane filter (Millipore). Since silica was not extracted from the filtrate, it was confirmed that substantially all silica particles were adsorbed on the plastic core particles. The plastic core particles on which the silica particles were adsorbed were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Thereafter, the plastic core particles were taken out by filtration using a φ3 μm membrane filter (Millipore), and the plastic core particles on the membrane filter were washed twice with 200 g of ultrapure water. The washed plastic core particles were dried by heating at 80 ° C. for 30 minutes and 120 ° C. for 1 hour in order to obtain composite particles composed of the plastic core particles and silica particles adsorbed on the surface thereof. .

上記複合粒子を1g分取し、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、φ3μmのメンブレンフィルタ(ミリポア社製)を用いた濾過により複合粒子を取出し、取り出された複合粒子を水洗した。水洗後の複合粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化された複合粒子を得た。   After taking 1 g of the composite particles and irradiating them with ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W for 15 minutes, a palladium catalyst containing 8 mass% of Atotech Nene Gantt 834 (manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst. The solution was added to 100 mL and stirred at 30 ° C. for 30 minutes while irradiating ultrasonic waves. Thereafter, the composite particles were taken out by filtration using a φ3 μm membrane filter (Millipore), and the taken out composite particles were washed with water. The composite particles after washing with water were added to a 0.5% by mass dimethylamine borane solution adjusted to pH 6.0 to obtain composite particles whose surface was activated.

表面が活性化された複合粒子を蒸留水に浸漬し、超音波分散して、懸濁液を得た。この懸濁液を50℃で攪拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム一水和物20g/L、ジメチルアミンボラン2.5g/L及びクエン酸50g/Lを混合しpHを7.5に調整した無電解めっき液Aを徐々に添加し、複合粒子上に無電解ニッケルめっき層を形成させた。ニッケルめっき層中の含リン率は約7%であった。サンプリングと原子吸光によって、ニッケルの膜厚を調整し、ニッケルめっき層の膜厚が750Åになった時点で無電解めっき液Aの添加を中止した。濾過後、100mLの純水を用いた洗浄を60秒行い、表面に突起を有するニッケルめっき層を有する導電粒子1を得た。ニッケルめっき層の突起の高さをSEMで観測したところ、プラスチック核体粒子に吸着したシリカ粒子の粒径とほぼ同じ100nmであった。突起による被覆率をSEM像の画像解析により測定した結果、約40%であった。また、理研電子製BHV−525と比重系を用いて単位体積あたりの飽和磁化を測定したところ、0.5emu/cmであった。 The composite particles whose surface was activated were immersed in distilled water and subjected to ultrasonic dispersion to obtain a suspension. While stirring this suspension at 50 ° C., nickel sulfate hexahydrate 50 g / L, sodium hypophosphite monohydrate 20 g / L, dimethylamine borane 2.5 g / L and citric acid 50 g / L were added. The electroless plating solution A mixed and adjusted to pH 7.5 was gradually added to form an electroless nickel plating layer on the composite particles. The phosphorus content in the nickel plating layer was about 7%. The thickness of the nickel was adjusted by sampling and atomic absorption, and the addition of the electroless plating solution A was stopped when the thickness of the nickel plating layer reached 750 mm. After filtration, washing with 100 mL of pure water was performed for 60 seconds to obtain conductive particles 1 having a nickel plating layer having protrusions on the surface. When the height of the protrusion of the nickel plating layer was observed by SEM, it was 100 nm, which was almost the same as the particle size of the silica particles adsorbed on the plastic core particles. The coverage by the protrusions was measured by image analysis of the SEM image, and was about 40%. Further, the saturation magnetization per unit volume was measured by using BHV-525 manufactured by Riken Denshi and the specific gravity system, and found to be 0.5 emu / cm 3 .

2.絶縁性微粒子
500mL三ツ口フラスコに、ラジカル重合性不飽和基及びアルコキシシリル基を有するシランカップリング剤(信越化学工業(株)製:KBM−5103)7.5gと、メタクリル酸(和光純薬工業(株)製)6.9gと、アクリル酸メチル(和光純薬工業(株)製)4.1とg、2,2’−アゾビス(イソブチロニトリル)0.36gと、アセトニトリル350gとを入れてこれらを混合した。窒素(100mL/分)により1時間かけて溶存酸素を置換した後、80℃に加熱しながら6時間重合反応を進行させて、一次粒子径300nmの有機無機ハイブリッド粒子を得た。この有機無機ハイブリッド粒子を含む分散液を20mLの容器に入れ、3000r.p.m.で30分間の遠心分離(株式会社コクサン製:H−103N)により、未反応のモノマーを除去した。更にメタノールを20mL追加し、超音波分散させ再度遠心分離を行った。そこに、硬化触媒として、カルボキシル基の量に対して等モルのアンモニアを含むアンモニア水溶液(28質量%)を入れ、メタノールを追加して超音波分散させて、架橋反応を進行させた。再度の遠心分離後、アンモニア水溶液を除去し、有機無機ハイブリッド粒子をメタノール30gに分散させた。そこにグリシジル基を有するシランカップリング剤を5g添加し、微粒子の表面に吸着させ、表面にグリシジル基を有する絶縁性微粒子を得た。
2. Insulating fine particles In a 500 mL three-necked flask, 7.5 g of a silane coupling agent having a radical polymerizable unsaturated group and an alkoxysilyl group (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-5103) and methacrylic acid (Wako Pure Chemical Industries, Ltd. ( 6.9 g), methyl acrylate (Wako Pure Chemical Industries, Ltd.) 4.1 and g, 2,2′-azobis (isobutyronitrile) 0.36 g, and acetonitrile 350 g These were mixed. After replacing dissolved oxygen with nitrogen (100 mL / min) over 1 hour, the polymerization reaction was allowed to proceed for 6 hours while heating to 80 ° C. to obtain organic-inorganic hybrid particles having a primary particle size of 300 nm. The dispersion containing the organic-inorganic hybrid particles is placed in a 20 mL container, and 3000 r. p. m. The unreacted monomer was removed by centrifugation for 30 minutes (manufactured by Kokusan Co., Ltd .: H-103N). Further, 20 mL of methanol was added, and the mixture was ultrasonically dispersed and centrifuged again. As a curing catalyst, an aqueous ammonia solution (28% by mass) containing an equimolar amount of ammonia with respect to the amount of carboxyl groups was added, and methanol was added and ultrasonically dispersed to advance the crosslinking reaction. After centrifugation again, the aqueous ammonia solution was removed, and the organic-inorganic hybrid particles were dispersed in 30 g of methanol. Thereto, 5 g of a silane coupling agent having a glycidyl group was added and adsorbed on the surface of the fine particles to obtain insulating fine particles having a glycidyl group on the surface.

3.絶縁被覆導電粒子
<表面官能基を形成する工程>
カルボキシベンゾトリアゾールのメタノール溶液(濃度2質量%)300gに、上述の通り作製した導電粒子を10g加え、超音波照射下で、スリーワンモーター(新東科学株式会社製、商品名:BL3000)を用いて室温(25℃)で攪拌(600r.p.m)を1時間行った。メルカプト酢酸7.5gを攪拌容器内に添加し、さらに1時間攪拌し、φ3μmのメンブレンフィルタ(ミリポア社製 :コーテッドタイプメンブレンフィルター)で濾過して、表面官能基としてカルボキシル基を有する導電粒子10gを得た。
3. Insulating coated conductive particles <Step of forming surface functional groups>
10 g of the conductive particles prepared as described above were added to 300 g of a carboxybenzotriazole methanol solution (concentration: 2% by mass), and three-motor (trade name: BL3000, manufactured by Shinto Kagaku Co., Ltd.) was used under ultrasonic irradiation. Stirring (600 rpm) was performed at room temperature (25 ° C.) for 1 hour. 7.5 g of mercaptoacetic acid was added to the stirring vessel, and the mixture was further stirred for 1 hour, filtered through a φ3 μm membrane filter (manufactured by Millipore: coated type membrane filter), and 10 g of conductive particles having a carboxyl group as a surface functional group were obtained. Obtained.

<塩基性化合物を導電粒子に吸着させる工程>
次に、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製、商品名:30%ポリエチレンイミン P−70溶液)を超純水で希釈して0.3質量%ポリエチレンイミン水溶液を得た。この0.3質量%ポリエチレンイミン水溶液に上記の官能基含有導電粒子10gを加えて室温(25℃)で15分間攪拌し、φ3μmのメンブレンフィルタで濾過して、ポリエチレンイミンが表面に吸着した導電粒子を得た。この導電粒子を、超純水200gに混合して室温(25℃)で5分攪拌し、濾過を行った。濾過して得られた粒子を該メンブレンフィルタ上で200gの超純水で2回洗浄して、粒子に吸着していないポリエチレンイミンを除去した。
<Step of adsorbing basic compound to conductive particles>
Next, a 30% by mass polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd., trade name: 30% polyethyleneimine P-70 solution) containing polyethyleneimine having a weight average molecular weight of 70,000 is diluted with ultrapure water to obtain 0.3. A mass% polyethyleneimine aqueous solution was obtained. 10 g of the above functional group-containing conductive particles are added to this 0.3% by weight polyethyleneimine aqueous solution, stirred for 15 minutes at room temperature (25 ° C.), filtered through a 3 μm membrane filter, and the conductive particles having polyethyleneimine adsorbed on the surface. Got. The conductive particles were mixed with 200 g of ultrapure water, stirred at room temperature (25 ° C.) for 5 minutes, and filtered. The particles obtained by filtration were washed twice with 200 g of ultrapure water on the membrane filter to remove polyethyleneimine not adsorbed on the particles.

<絶縁性微粒子によって導電粒子を被覆する工程>
高分子電解質が吸着した導電粒子10gに対して、絶縁性微粒子を2−プロパノール(和光純薬工業(株)製)で希釈して得られた2質量%の絶縁性微粒子分散液50gを滴下しながら、室温(25℃)で30分間攪拌して、導電粒子を絶縁性微粒子によって被覆した。絶縁性微粒子によって被覆された導電粒子(絶縁被覆導電粒子)を濾過により取り出した。取り出された絶縁被覆導電粒子を、エポキシ基を有する重量平均分子量1000のシリコーンオリゴマ(日立化成コーテッドサンド株式会社製:SC−6000)50gとメタノール150gの混合液に入れ、室温(25℃)で1時間攪拌し、濾過により絶縁被覆導電粒子を取り出した。最後に、絶縁被覆導電粒子をトルエン(和光純薬工業(株)製)中で3分攪拌し、濾過を行った。
<Process for coating conductive particles with insulating fine particles>
50 g of a 2% by weight insulating fine particle dispersion obtained by diluting insulating fine particles with 2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to 10 g of conductive particles adsorbed with the polymer electrolyte. While stirring at room temperature (25 ° C.) for 30 minutes, the conductive particles were covered with insulating fine particles. Conductive particles coated with insulating fine particles (insulating coated conductive particles) were taken out by filtration. The taken insulating coated conductive particles are put in a mixed solution of 50 g of silicone oligomer having an epoxy group and a weight average molecular weight of 1000 (manufactured by Hitachi Chemical Coated Sand Co., Ltd .: SC-6000) and 150 g of methanol, and 1 at room temperature (25 ° C.). The mixture was stirred for a period of time, and the insulating coated conductive particles were taken out by filtration. Finally, the insulating coated conductive particles were stirred in toluene (manufactured by Wako Pure Chemical Industries, Ltd.) for 3 minutes and filtered.

<分級工程>
得られた絶縁被覆導電粒子を150℃、1時間の条件で真空乾燥した。その後、旋回気流式ふるい分け分級機(株式会社セイシン企業)により凝集物を取り除いた。
<Classification process>
The obtained insulating coated conductive particles were vacuum dried at 150 ° C. for 1 hour. Thereafter, aggregates were removed using a swirling air flow classifier (Seishin Enterprise Co., Ltd.).

(実施例2、絶縁被覆導電粒子2)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、重量平均分子量10000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製、商品名:30%ポリエチレンイミン P−70溶液)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子2を作製した。
(Example 2, insulating coated conductive particles 2)
In the step of adsorbing the basic compound to the conductive particles, a 30% by mass polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 10,000 (Wako Pure Chemical Industries, Ltd.) was used instead of the 30% by mass polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 2 were produced in the same manner as the insulating coated conductive particles 1 except that Kogyo Co., Ltd., trade name: 30% polyethyleneimine P-70 solution) was used.

(実施例3、絶縁被覆導電粒子3)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、重量平均分子量600のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子3を作製した。
(Example 3, insulating coated conductive particles 3)
In the step of adsorbing the basic compound to the conductive particles, a 30% by mass polyethyleneimine aqueous solution (Wako Pure Chemical Industries, Ltd.) containing polyethyleneimine having a weight average molecular weight of 600 is used instead of the 30% by mass polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 3 were produced in the same manner as the insulating coated conductive particles 1 except that Kogyo Co., Ltd. was used.

(実施例4、絶縁被覆導電粒子4)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミンに代えて、多官能アジリジンであるケミタイト(2,2−Bishydroxymethylbutanol−tris[3−(1−aziridinyl)proplonate]、日本触媒株式会社製、商品名:PZ−33、分子量:425)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子4を作製した。
(Example 4, insulating coated conductive particles 4)
In the step of adsorbing the basic compound to the conductive particles, a polyfunctional aziridine chemite (2,2-bishydroxymethylbutanol-tris [3- (1-) is used instead of 30 mass% polyethyleneimine containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 4 were produced in the same manner as in the insulating coated conductive particles 1 except that aziridinyl) proposal], manufactured by Nippon Shokubai Co., Ltd., trade name: PZ-33, molecular weight: 425) was used.

(実施例5、絶縁被覆導電粒子5)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、ペンタエチレンヘキサミン(関東化学株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子5を作製した。
(Example 5, insulating coated conductive particles 5)
Insulating coating, except that in the step of adsorbing the basic compound to the conductive particles, pentaethylenehexamine (manufactured by Kanto Chemical Co., Inc.) was used in place of the 30 mass% polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 5 were produced in the same manner as the conductive particles 1.

(実施例6、絶縁被覆導電粒子6)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、ビス(ヘキサメチレン)トリアミン(関東化学株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子6を作製した。
(Example 6, insulating coated conductive particles 6)
In the step of adsorbing the basic compound to the conductive particles, bis (hexamethylene) triamine (manufactured by Kanto Chemical Co., Inc.) was used in place of the 30% by mass polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 6 were produced in the same manner as the insulating coated conductive particles 1.

(実施例7、絶縁被覆導電粒子7)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、テトラエチレンペンタミン(関東化学株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子7を作製した。
(Example 7, insulating coating conductive particles 7)
In the step of adsorbing the basic compound to the conductive particles, insulation was performed except that tetraethylenepentamine (manufactured by Kanto Chemical Co., Inc.) was used in place of the 30 mass% polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 7 were produced in the same manner as the coated conductive particles 1.

(実施例8、絶縁被覆導電粒子8)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、ヘキサメチレンジアミン(和光純薬株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子8を作製した。
(Example 8, insulating coated conductive particles 8)
In the step of adsorbing the basic compound to the conductive particles, insulation was performed except that hexamethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the 30 mass% polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 8 were produced in the same manner as the coated conductive particles 1.

(実施例9、絶縁被覆導電粒子9)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、1,5−ジアミノペンタン(関東化学株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子9を作製した。
(Example 9, insulating coated conductive particles 9)
In the step of adsorbing the basic compound to the conductive particles, 1,5-diaminopentane (manufactured by Kanto Chemical Co., Inc.) was used in place of the 30 mass% polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000. Insulating coated conductive particles 9 were produced in the same manner as the insulating coated conductive particles 1.

(比較例1、絶縁被覆導電粒子10)
塩基性化合物を導電粒子に吸着させる工程において、重量平均分子量70000のポリエチレンイミンを含む30質量%ポリエチレンイミン水溶液に代えて、エチレンジアミン(和光純薬株式会社製)を用いたこと以外は、絶縁被覆導電粒子1と同様にして、絶縁被覆導電粒子10を作製した。
(Comparative Example 1, insulating coated conductive particles 10)
Insulating coated conductive except that ethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the 30 mass% polyethyleneimine aqueous solution containing polyethyleneimine having a weight average molecular weight of 70,000 in the step of adsorbing the basic compound to the conductive particles Insulating coated conductive particles 10 were produced in the same manner as the particles 1.

(異方導電性接着フィルム)
フェノキシ樹脂(ユニオンカーバイド社製:PKHC)5質量部、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、及びグリシジルメタクリレート3質量部の共重合体、重量平均分子量:85万)18質量部、及び、エポキシ樹脂(ジャパンエポキシレジン社製:YL−983U)15質量部を酢酸エチル10質量部に溶解して、フェノキシ樹脂、アクリルゴム及びエポキシ樹脂の合計の濃度が30質量%の溶液を得た。
(Anisotropic conductive adhesive film)
Copolymer of 5 parts by mass of phenoxy resin (manufactured by Union Carbide: PKHC), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate, weight average molecular weight: 85 10 parts by mass and 15 parts by mass of an epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd .: YL-983U) are dissolved in 10 parts by mass of ethyl acetate, and the total concentration of phenoxy resin, acrylic rubber and epoxy resin is 30 masses. % Solution was obtained.

この溶液に、カチオン系硬化剤(スルホニウム塩、三新化学工業株式会社製:SI−60)2質量部を添加し、接着剤溶液を作製した。この接着剤溶液にシリカフィラー(日本アエロジル社製:Aerosil R805)の酢酸エチル分散液(10質量%)を30質量部添加し攪拌した。更に、絶縁被覆導電粒子20質量部を接着剤溶液と混合して、超音波分散を行った。この分散液を、シリコーン処理したポリエチレンテレフタレートフイルムであるセパレータ(厚み40μm)にロールコータで塗布し、80℃で5分間乾燥して、厚み23μmの異方導電性接着フィルムを形成させた。   To this solution, 2 parts by mass of a cationic curing agent (sulfonium salt, Sanshin Chemical Industry Co., Ltd .: SI-60) was added to prepare an adhesive solution. 30 parts by mass of an ethyl acetate dispersion (10% by mass) of a silica filler (manufactured by Nippon Aerosil Co., Ltd .: Aerosil R805) was added to this adhesive solution and stirred. Furthermore, 20 parts by mass of the insulating coated conductive particles were mixed with an adhesive solution, and ultrasonic dispersion was performed. This dispersion was applied to a silicone-treated polyethylene terephthalate film separator (thickness 40 μm) with a roll coater and dried at 80 ° C. for 5 minutes to form an anisotropic conductive adhesive film having a thickness of 23 μm.

作製した異方導電性接着フィルムを用いて、金バンプ(面積:30μm×90μm、スペース10μm、高さ:15μm、バンプ数:362)付きチップ(1.7mm×17mm、厚み:0.5mm)とITO回路付きガラス基板(ジオマテック製、厚み:0.7mm)との接続を、以下の通り行った。   Using the produced anisotropic conductive adhesive film, a chip (1.7 mm × 17 mm, thickness: 0.5 mm) with gold bumps (area: 30 μm × 90 μm, space 10 μm, height: 15 μm, number of bumps: 362) and Connection with a glass substrate with ITO circuit (Geomatec, thickness: 0.7 mm) was performed as follows.

異方導電性接着フィルムを、所定のサイズ(2mm×19mm)に切り出し、そのセパレータとは反対側の面をITO回路付きガラス基板に向け、ITO回路付きガラス基板のITO回路が形成された面に対して、80℃に加熱しながら0.98MPa(10kgf/cm)で加圧することにより貼り付けた。貼り付けられた異方導電性接着フィルムからセパレータを剥離した。その後、チップの金バンプが設けられた面を異方導電性接着フィルムのITO回路付きガラス基板が貼り付けられた面とは反対側の面に向け、その状態でチップの金バンプとITO回路付きガラス基板との位置合わせを行った。次いで、170℃、70MPa、5秒間の条件で加熱及び加圧を行って本接続を行い、実装サンプルを得た。 The anisotropic conductive adhesive film is cut into a predetermined size (2 mm × 19 mm), the surface opposite to the separator is directed to the glass substrate with the ITO circuit, and the ITO circuit of the glass substrate with the ITO circuit is formed on the surface. On the other hand, it was attached by applying pressure at 0.98 MPa (10 kgf / cm 2 ) while heating to 80 ° C. The separator was peeled from the attached anisotropically conductive adhesive film. After that, the surface with the gold bumps of the chip is directed to the surface opposite to the surface with the glass substrate with the ITO circuit of the anisotropic conductive adhesive film, and in that state, with the gold bumps of the chip and the ITO circuit The alignment with the glass substrate was performed. Next, heating and pressurization were performed under the conditions of 170 ° C., 70 MPa, and 5 seconds to perform the main connection, thereby obtaining a mounting sample.

(発熱量の測定)
異方導電性接着フィルムから切り取った10mgのサンプルをアルミ製のセルにいれ、加圧密封した。その後、DSC(TA Instruments製:Q1000)を用いて、10℃/minの昇温速度で40℃〜250℃の範囲で示差走査熱量測定を行った。得られたDSC曲線から、100℃〜150℃の範囲にピークを有する発熱ピークの発熱量(第1発熱量)αと、200℃〜250℃の範囲にピークを有する発熱ピークの発熱量(第2発熱量)βを求めた。得られたα及びβから、{α/(α+β)}×100の値を算出した。
(Measurement of calorific value)
A 10 mg sample cut from the anisotropic conductive adhesive film was placed in an aluminum cell and sealed under pressure. Then, differential scanning calorimetry was performed in the range of 40 ° C. to 250 ° C. at a rate of temperature increase of 10 ° C./min using DSC (manufactured by TA Instruments: Q1000). From the obtained DSC curve, the calorific value (first calorific value) α of the exothermic peak having a peak in the range of 100 ° C. to 150 ° C. and the calorific value of the exothermic peak having the peak in the range of 200 ° C. to 250 ° C. 2 calorific value) β was determined. A value of {α / (α + β)} × 100 was calculated from the obtained α and β.

更に、絶縁被覆導電粒子を含まないこと以外は異方導電性接着フィルムと同様の組成を有する絶縁性接着フィルムを作製し、これのDSC曲線も上記と同様の条件で得た。得られたDSC曲線においては1個の発熱ピークが観測され、その発熱量γを求めたところ、98J/gであった。   Further, an insulating adhesive film having the same composition as the anisotropic conductive adhesive film was prepared except that the insulating coated conductive particles were not included, and the DSC curve thereof was also obtained under the same conditions as described above. In the obtained DSC curve, one exothermic peak was observed, and the calorific value γ was determined to be 98 J / g.

(イオン濃度の測定)
絶縁被覆導電粒子0.5gと、溶出液としての純水25gとを耐圧ポットに入れて蓋をし、100℃の恒温槽に10時間投入した。その後、溶出液をφ0.08μmのフィルターに通して、固形物を除去した。イオンクロマトグラフィー(DIONEX−LC25 Ion Chromatograph)により陽イオン及び陰イオンの濃度を測定した。測定結果から、アンモニウムイオン(NH )の濃度を求めた。
(Ion concentration measurement)
0.5 g of insulating coated conductive particles and 25 g of pure water as an eluent were put in a pressure-resistant pot, covered, and placed in a constant temperature bath at 100 ° C. for 10 hours. Thereafter, the eluate was passed through a filter having a diameter of 0.08 μm to remove solids. The cation and anion concentrations were measured by ion chromatography (DIONEX-LC25 Ion Chromatography). From the measurement results, the concentration of ammonium ions (NH 4 + ) was determined.

(導通特性評価)
実装サンプルの接続抵抗値を4端子法により測定した。定電流電源装置((株)アドバンテスト製R−6145)を用いて一定電流(1mA)をチップ電極−基板電極間に印加し、そのときの接続部分の電位差を、(株)アドバンテスト製デジタルマルチメーター(R−6557)を用いて測定し、抵抗値に換算した。さらに、実装サンプルを85℃、85RH%の高温高湿槽に投入し、500時間経過後に取り出して、上記と同様の方法により信頼性試験後の接続抵抗値を測定した。
(Conductivity evaluation)
The connection resistance value of the mounted sample was measured by the 4-terminal method. A constant current (1 mA) was applied between the chip electrode and the substrate electrode using a constant current power supply device (R-6145 manufactured by Advantest Co., Ltd.), and the potential difference at the connection portion at that time was determined as a digital multimeter manufactured by Advantest Co., Ltd. It measured using (R-6557) and converted into resistance value. Further, the mounting sample was put into a high-temperature and high-humidity tank at 85 ° C. and 85 RH%, taken out after 500 hours, and the connection resistance value after the reliability test was measured by the same method as described above.

(絶縁特性評価)
実装サンプルの回路の接続部に、直流(DC)50Vの電圧を1分間印加し、印加後の絶縁抵抗を、2端子測定法を用いマルチメータで測定した。ここで、絶縁抵抗とは隣り合う回路電極間の抵抗を意味する。
(Insulation characteristics evaluation)
A voltage of direct current (DC) 50V was applied to the connection part of the circuit of the mounting sample for 1 minute, and the insulation resistance after the application was measured with a multimeter using a two-terminal measurement method. Here, the insulation resistance means a resistance between adjacent circuit electrodes.

(脱落試験)
絶縁被覆導電粒子0.5gを酢酸エチル中5gに分散させた分散液が入ったガラス瓶を、超音波槽内に30分間浸漬させた。超音波処理前の絶縁被覆導電粒子、又は、超音波処理後の分散液から取り出した絶縁被覆導電粒子をSEM試料台に乗せ、25枚撮像を行った。粒子の中心から投影面積の60%までの同心円内に存在する絶縁性微粒子による被覆面積を測定した。超音波処理前後での被覆面積の変化を以下のように評価した。結果を表2に示した。
A:0〜10%
B:10〜30%
C:30〜50%
D:50%超
(Dropping test)
A glass bottle containing a dispersion obtained by dispersing 0.5 g of insulating coated conductive particles in 5 g of ethyl acetate was immersed in an ultrasonic bath for 30 minutes. Insulating coated conductive particles before ultrasonic treatment or insulating coated conductive particles taken out from the dispersion after ultrasonic treatment were placed on an SEM sample stage, and 25 images were taken. The area covered with insulating fine particles existing in concentric circles from the center of the grain to 60% of the projected area was measured. The change in the coating area before and after the ultrasonic treatment was evaluated as follows. The results are shown in Table 2.
A: 0 to 10%
B: 10-30%
C: 30-50%
D: Over 50%

(外観)
実装サンプル中の異方導電性接着フィルムを、ガラス基板側から光学顕微鏡(KEYENCE)を用いて2500倍で観察し、導電粒子周囲に浮きが発生しているかどうか観察を行った。
A:浮きなし
B:浮きあり
(appearance)
The anisotropic conductive adhesive film in the mounting sample was observed at 2500 times from the glass substrate side using an optical microscope (KEYENCE) to observe whether or not floating occurred around the conductive particles.
A: No floating B: With floating

Figure 2013014692
Figure 2013014692

Figure 2013014692
Figure 2013014692

評価結果を表1及び表2に示す。これら評価結果から、第1の発熱量α及び第2の発熱量βがα/(α+β)×100≧60を満たす実施例の異方導電性接着フィルムによれば、比較例1の異方導電性接着フィルムと比較して、特に信頼性試験後の絶縁特性の点において顕著な改善が確認された。   The evaluation results are shown in Tables 1 and 2. From these evaluation results, according to the anisotropic conductive adhesive film of the example in which the first heat generation amount α and the second heat generation amount β satisfy α / (α + β) × 100 ≧ 60, the anisotropic conductive film of Comparative Example 1 is used. Compared with the adhesive film, a remarkable improvement was confirmed particularly in terms of insulation characteristics after the reliability test.

1…絶縁性微粒子、3…導電粒子、5…絶縁被覆導電粒子、7…絶縁性接着剤層、10…異方導電性接着フィルム。   DESCRIPTION OF SYMBOLS 1 ... Insulating fine particle, 3 ... Conductive particle, 5 ... Insulation covering conductive particle, 7 ... Insulating adhesive layer, 10 ... Anisotropic conductive adhesive film.

Claims (7)

絶縁性接着剤層と、該絶縁性接着剤層中に分散している、導電性の金属表面を有する導電粒子及び前記導電粒子を被覆する絶縁性微粒子を有する絶縁被覆導電粒子と、を備える異方導電性接着フィルムであって、
前記絶縁性接着剤層が、エポキシ樹脂及びカチオン系硬化剤を含有し、
当該異方導電性接着フィルムの示差走査熱量測定により求められるDSC曲線において、ピーク温度が100℃〜150℃の範囲にある発熱ピークの発熱量をαとし、ピーク温度が200℃〜250℃の範囲にある発熱ピークの発熱量をβとしたときに、α及びβが式:{α/(α+β)}×100≧60を満たす、異方導電性接着フィルム。
An insulating adhesive layer, and insulating coated conductive particles having conductive particles having a conductive metal surface and insulating fine particles covering the conductive particles dispersed in the insulating adhesive layer. A conductive adhesive film,
The insulating adhesive layer contains an epoxy resin and a cationic curing agent,
In the DSC curve obtained by differential scanning calorimetry of the anisotropic conductive adhesive film, the calorific value of the exothermic peak having a peak temperature in the range of 100 ° C to 150 ° C is α, and the peak temperature is in the range of 200 ° C to 250 ° C. An anisotropic conductive adhesive film in which α and β satisfy the formula: {α / (α + β)} × 100 ≧ 60, where β is the calorific value of the exothermic peak in FIG.
前記絶縁性接着剤層単独での示差走査熱量測定により求められる発熱量に対するαの割合が68%以上である、請求項1に記載の異方導電性接着フィルム。   The anisotropic conductive adhesive film according to claim 1, wherein a ratio of α to a calorific value obtained by differential scanning calorimetry of the insulating adhesive layer alone is 68% or more. 導電性の金属表面を有する導電粒子及び前記導電粒子を被覆する絶縁性微粒子を有する絶縁被覆導電粒子であって、
当該絶縁被覆導電粒子0.5gを、溶出液としての100℃の純水25g中に10時間置いたときに、前記溶出液のアンモニウムイオン濃度が100ppm未満である、絶縁被覆導電粒子。
Insulating coated conductive particles having conductive particles having a conductive metal surface and insulating fine particles covering the conductive particles,
Insulating coated conductive particles, wherein 0.5 g of the insulating coated conductive particles is placed in 25 g of 100 ° C. pure water as an eluent for 10 hours, and the ammonium ion concentration of the eluted solution is less than 100 ppm.
前記金属表面に吸着している、分子量100以上の塩基性化合物を更に有する、請求項3に記載の絶縁被覆導電粒子。   The insulating coated conductive particles according to claim 3, further comprising a basic compound having a molecular weight of 100 or more adsorbed on the metal surface. 前記塩基性化合物がアミノ基を有する、請求項4に記載の絶縁被覆導電粒子。   The insulating coated conductive particles according to claim 4, wherein the basic compound has an amino group. 前記導電粒子が、前記金属表面を形成するニッケル層を有しており、前記金属表面が突起を形成しており、前記導電粒子の粒子径が2.0〜4.0μmである、請求項3〜5のいずれか一項に記載の絶縁被覆導電粒子。   The conductive particle has a nickel layer that forms the metal surface, the metal surface forms a protrusion, and the particle size of the conductive particle is 2.0 to 4.0 μm. The insulating coating conductive particles according to any one of -5. 前記絶縁性微粒子が、ケイ素原子を含有する共重合体から構成される有機無機ハイブリッド粒子と、該有機無機ハイブリッド粒子の表面に吸着しておりエポキシ基を有するシランカップリング剤と、を含む、請求項3〜6のいずれか一項に記載の絶縁被覆導電粒子。   The insulating fine particles include organic-inorganic hybrid particles composed of a copolymer containing silicon atoms, and a silane coupling agent having an epoxy group adsorbed on the surface of the organic-inorganic hybrid particles. Item 7. The insulating coated conductive particle according to any one of Items 3 to 6.
JP2011148486A 2011-07-04 2011-07-04 Anisotropic conductive adhesive film and insulation coated conductive particle Withdrawn JP2013014692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148486A JP2013014692A (en) 2011-07-04 2011-07-04 Anisotropic conductive adhesive film and insulation coated conductive particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148486A JP2013014692A (en) 2011-07-04 2011-07-04 Anisotropic conductive adhesive film and insulation coated conductive particle

Publications (1)

Publication Number Publication Date
JP2013014692A true JP2013014692A (en) 2013-01-24

Family

ID=47687666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148486A Withdrawn JP2013014692A (en) 2011-07-04 2011-07-04 Anisotropic conductive adhesive film and insulation coated conductive particle

Country Status (1)

Country Link
JP (1) JP2013014692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125882A (en) * 2014-04-30 2015-11-10 제일모직주식회사 A composition for use of anisotropic conductive film, anisotropic conductive film, and semiconductor device
JP2018022819A (en) * 2016-08-05 2018-02-08 三井化学東セロ株式会社 Insulating film for underfill
CN110214353A (en) * 2017-01-27 2019-09-06 日立化成株式会社 Insulation-coated electroconductive particles, anisotropic conductive film, the manufacturing method of anisotropic conductive film, the manufacturing method of connection structural bodies and connection structural bodies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125882A (en) * 2014-04-30 2015-11-10 제일모직주식회사 A composition for use of anisotropic conductive film, anisotropic conductive film, and semiconductor device
KR101706818B1 (en) 2014-04-30 2017-02-15 제일모직주식회사 A composition for use of anisotropic conductive film, anisotropic conductive film, and semiconductor device
JP2018022819A (en) * 2016-08-05 2018-02-08 三井化学東セロ株式会社 Insulating film for underfill
CN110214353A (en) * 2017-01-27 2019-09-06 日立化成株式会社 Insulation-coated electroconductive particles, anisotropic conductive film, the manufacturing method of anisotropic conductive film, the manufacturing method of connection structural bodies and connection structural bodies

Similar Documents

Publication Publication Date Title
JP5363989B2 (en) Coated conductive powder and conductive adhesive using the same.
JP5151920B2 (en) Conductive particles and method for producing conductive particles
JP4640532B2 (en) Coated conductive particles
KR102039191B1 (en) Conductive particle, anisotropic conductive adhesive film and connecting structure
US8262940B2 (en) Coated conductive powder and conductive adhesive using the same
JP4640531B2 (en) Conductive particles
JP4877407B2 (en) Coated conductive particles and method for producing the same
KR101271814B1 (en) Conductive particle
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
TW201015588A (en) Circuit connection material and circuit connection structure
JP5644067B2 (en) Insulation coated conductive particles
TW201112273A (en) Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
JP5803393B2 (en) Insulating coated conductive particles and anisotropic conductive adhesive film
JP2011233633A (en) Circuit connection material, and connection body for circuit member
JP2013014692A (en) Anisotropic conductive adhesive film and insulation coated conductive particle
JP5589361B2 (en) Conductive particles and method for producing the same
JP5834548B2 (en) Insulating coated conductive particles and anisotropic conductive adhesive film
CN114730646A (en) Conductive particle, method for producing same, and conductive material containing conductive particle
CN114730645A (en) Conductive particle, method for producing same, and conductive material containing conductive particle
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP7077963B2 (en) Insulation coated conductive particles, anisotropic conductive film, method for manufacturing anisotropic conductive film, connection structure and method for manufacturing connection structure
JP2002203871A (en) Adhesive composite, method for connecting circuit terminal using the same and structure of connecting circuit terminal
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007