JP2013012703A - Manufacturing method and manufacturing apparatus of compound semiconductor film - Google Patents

Manufacturing method and manufacturing apparatus of compound semiconductor film Download PDF

Info

Publication number
JP2013012703A
JP2013012703A JP2011284598A JP2011284598A JP2013012703A JP 2013012703 A JP2013012703 A JP 2013012703A JP 2011284598 A JP2011284598 A JP 2011284598A JP 2011284598 A JP2011284598 A JP 2011284598A JP 2013012703 A JP2013012703 A JP 2013012703A
Authority
JP
Japan
Prior art keywords
film
compound semiconductor
forming
semiconductor film
forming solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011284598A
Other languages
Japanese (ja)
Other versions
JP5886622B2 (en
Inventor
Hirofumi Senda
浩文 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011284598A priority Critical patent/JP5886622B2/en
Publication of JP2013012703A publication Critical patent/JP2013012703A/en
Application granted granted Critical
Publication of JP5886622B2 publication Critical patent/JP5886622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a compound semiconductor film with less variation in film quality.SOLUTION: In a compound semiconductor film manufacturing method, aggregates in a solution for deposition for depositing a compound semiconductor film by a CBD method is classified by centrifugal separation at least either before deposition or during deposition, and thereby an average particle size of the aggregates in the solution for deposition is controlled at not more than a predetermined value.

Description

本発明は化合物半導体膜の製造方法および製造装置に関する。   The present invention relates to a method and apparatus for manufacturing a compound semiconductor film.

CIGS系太陽電池素子における光吸収層上に半導体膜を形成する製造装置として、CBD(Chemical Bath Deposition:ケミカルバスデポジション)法を用いた成膜工程があり、成膜槽に複数の溶液を所定量となるように供給して成膜用溶液を調整し、この成膜用溶液に基板を浸漬することにより、化合物半導体膜を成膜する成膜装置がある。
このCBD法を用いた成膜装置においては、成膜槽中の成膜用溶液の濃度や温度、攪拌速度等の条件を一定に管理して、化合物半導体膜を同じ条件で成膜することが求められる。
As a manufacturing apparatus for forming a semiconductor film on a light absorption layer in a CIGS solar cell element, there is a film forming process using a CBD (Chemical Bath Deposition) method, and a predetermined amount of a plurality of solutions are added to a film forming tank. There is a film forming apparatus that forms a compound semiconductor film by adjusting the film forming solution to be supplied and immersing the substrate in the film forming solution.
In this film forming apparatus using the CBD method, the compound semiconductor film can be formed under the same conditions by controlling the conditions such as the concentration, temperature, and stirring speed of the film forming solution in the film forming tank to be constant. Desired.

これに関して、成膜用溶液の透明度が所定範囲のときに成膜することで、成膜用溶液中の化合物半導体微粒子の凝集物の発生が少ない状態で成膜して、膜質を改善することが知られている(例えば、特許文献1参照)。   In this regard, by forming a film when the transparency of the film forming solution is within a predetermined range, it is possible to improve the film quality by forming a film with a small amount of agglomeration of compound semiconductor fine particles in the film forming solution. It is known (see, for example, Patent Document 1).

特開2002−343987号公報JP 2002-343987 A

しかしながら特許文献1に記載の製造方法のように、成膜用溶液の透過率を管理していても成膜用溶液中の変化を十分に検出することはできない。
そのため、量産時に形成される化合物半導体膜の膜質にばらつき生じる場合があった。
However, even if the transmittance of the film forming solution is controlled as in the manufacturing method described in Patent Document 1, a change in the film forming solution cannot be sufficiently detected.
Therefore, the film quality of the compound semiconductor film formed during mass production may vary.

よって本発明の目的は、膜質のばらつきの少ない化合物半導体膜を作製することである。   Therefore, an object of the present invention is to produce a compound semiconductor film with little variation in film quality.

本発明の化合物半導体膜の製造方法は、CBD法によって化合物半導体膜を成膜するための成膜用溶液中の凝集物を、成膜前および成膜中の少なくとも一方において遠心分離によって分級することによって、前記成膜用溶液中の前記凝集物の平均粒度を所定値以下に制御することを特徴とする。   In the method for producing a compound semiconductor film of the present invention, aggregates in a film forming solution for forming a compound semiconductor film by CBD method are classified by centrifugation at least before or during film formation. To control the average particle size of the aggregates in the film-forming solution to a predetermined value or less.

また、本発明の化合物半導体膜の製造装置は、CBD法に用いる成膜用溶液を収容するとともに、CBD法によって化合物半導体膜を成膜する成膜用槽と、該成膜用槽との間で循環させる前記成膜用溶液中の凝集物を遠心分離して分級する分級機構とを備えたことを特徴とする。   In addition, the compound semiconductor film manufacturing apparatus of the present invention accommodates a film forming solution used for the CBD method, and between the film forming tank for forming the compound semiconductor film by the CBD method and the film forming tank. And a classification mechanism for centrifuging and classifying the aggregates in the film-forming solution circulated in step (b).

本発明の化合物半導体膜の製造方法および製造装置によれば、膜質のばらつきの少ない化合物半導体膜を作製することができる。   According to the method and apparatus for producing a compound semiconductor film of the present invention, a compound semiconductor film with little variation in film quality can be produced.

本発明の一実施形態の成膜装置を示す模式図である。It is a mimetic diagram showing the film deposition system of one embodiment of the present invention. 本発明の一実施形態の成膜装置における分級機構を示す模式図である。It is a schematic diagram which shows the classification mechanism in the film-forming apparatus of one Embodiment of this invention. 化合物半導体膜の成膜レートと、化合物半導体微粒子の凝集物の平均粒子径との相関関係の一例を示すグラフである。It is a graph which shows an example of the correlation between the film-forming rate of a compound semiconductor film, and the average particle diameter of the aggregate of compound semiconductor fine particles. 従来の化合物半導体膜表面の一例の写真代用図である。It is a photograph substitute figure of an example of the conventional compound semiconductor film surface. 本発明の化合物半導体膜表面の一例の写真代用図である。It is a photograph substitute figure of an example of the compound semiconductor film surface of this invention. 光電変換素子の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of a photoelectric conversion element. 本発明の他の実施形態における化合物半導体膜のエピタキシャル成長過程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the epitaxial growth process of the compound semiconductor film in other embodiment of this invention.

以下に、光電変換素子1を例にして、化合物半導体膜の製造方法および製造装置の一実施形態について図面を参照しながら詳細に説明する。   Hereinafter, taking a photoelectric conversion element 1 as an example, an embodiment of a method and an apparatus for producing a compound semiconductor film will be described in detail with reference to the drawings.

図6において、光電変換素子1は、基板21と、第1の電極層22と、光吸収層23と、化合物半導体層24と、第2の電極層25とを含んで構成される。   In FIG. 6, the photoelectric conversion element 1 includes a substrate 21, a first electrode layer 22, a light absorption layer 23, a compound semiconductor layer 24, and a second electrode layer 25.

例えば、光吸収層23は、カルコパイライト系の材料を含むことが好ましく、光を吸収して電荷を生じる機能を有する。光吸収層23は特に限定されないが、例えば、Cu(In,Ga)Se(CIGSともいう)、Cu(In,Ga)(Se,S)(CIGSSともいう)、およびCuInS(CISともいう)が挙げられる。なお、Cu(In,Ga)Seとは、CuとInとGaとSeとから主に構成された化合物をいう。また、Cu(In,Ga)(Se,S)とは、CuとInとGaとSeとSとから主に構成された化合物をいう。また、例えば、ZnS、ZnSe、ZnTe、CdS,CdSe、CdTe等が挙げられる。 For example, the light absorption layer 23 preferably includes a chalcopyrite material and has a function of generating light by absorbing light. The light absorption layer 23 is not particularly limited. For example, Cu (In, Ga) Se 2 (also referred to as CIGS), Cu (In, Ga) (Se, S) 2 (also referred to as CIGSS), and CuInS 2 (also referred to as CIS). Say). Cu (In, Ga) Se 2 refers to a compound mainly composed of Cu, In, Ga, and Se. Cu (In, Ga) (Se, S) 2 refers to a compound mainly composed of Cu, In, Ga, Se, and S. Moreover, for example, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, and the like can be given.

このような光吸収層23は原料元素をスパッタリングや蒸着により膜状に形成し、または原料溶液の塗布により膜状に形成し、原料元素を含む前駆体を形成する。そしてこの前駆体を加熱することにより半導体から成る光吸収層23を形成できる。あるいは、金属元素を上記と同様に膜状に形成して前駆体を形成し、この前駆体をVI-B族元素を含むガス雰囲気下で加熱することによっても形成できる。   Such a light absorption layer 23 is formed by forming a raw material element into a film shape by sputtering or vapor deposition, or forming a film shape by applying a raw material solution to form a precursor containing the raw material element. And the light absorption layer 23 which consists of a semiconductor can be formed by heating this precursor. Alternatively, it can also be formed by forming a metal element in the same manner as described above to form a precursor and heating the precursor in a gas atmosphere containing a VI-B group element.

化合物半導体層24は、光吸収層23に対してヘテロ接合を行う層をいう。化合物半導体層24は、光吸収層23上に5nm〜200nm程度の厚みで形成されている。光吸収層23と化合物半導体層24とは異なる導電型であることが好ましく、例えば、光吸収層23がp型半導体である場合、化合物半導体層24はn型半導体である。好ましくはリーク電流を低減するという観点からは、化合物半導体層24は、抵抗率が1Ω・cm以上の層であるのがよい。また、化合物半導体層24は光吸収層23の吸収効率を高めるため、光吸収層23が吸収する光の波長領域に対して光透過性を有するものが好ましい。   The compound semiconductor layer 24 refers to a layer that performs a heterojunction with the light absorption layer 23. The compound semiconductor layer 24 is formed on the light absorption layer 23 with a thickness of about 5 nm to 200 nm. The light absorption layer 23 and the compound semiconductor layer 24 are preferably of different conductivity types. For example, when the light absorption layer 23 is a p-type semiconductor, the compound semiconductor layer 24 is an n-type semiconductor. Preferably, from the viewpoint of reducing leakage current, the compound semiconductor layer 24 is a layer having a resistivity of 1 Ω · cm or more. In addition, the compound semiconductor layer 24 preferably has a light-transmitting property with respect to the wavelength region of light absorbed by the light absorption layer 23 in order to increase the absorption efficiency of the light absorption layer 23.

図6において、光電変換素子1は複数並べて形成されている。そして、光電変換素子1は、光吸収層23の基板21側に第1の電極層22と離間して設けられた第3の電極層26を具備している。そして、第2の電極層25と第3の電極層26とが電気的に接続されている。この第3の電極層26は、隣接する光電変換素子1の第1の電極層22と一体化されている。この構成により、隣接する光電変換素子1同士が直列接続されている。   In FIG. 6, a plurality of photoelectric conversion elements 1 are formed side by side. The photoelectric conversion element 1 includes a third electrode layer 26 provided on the substrate 21 side of the light absorption layer 23 so as to be separated from the first electrode layer 22. The second electrode layer 25 and the third electrode layer 26 are electrically connected. The third electrode layer 26 is integrated with the first electrode layer 22 of the adjacent photoelectric conversion element 1. With this configuration, adjacent photoelectric conversion elements 1 are connected in series.

基板1は、光電変換素子1を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。   The substrate 1 is for supporting the photoelectric conversion element 1. Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal.

第1の電極層22および第3の電極層26は、Mo、Al、TiまたはAu等の導電体が用いられ、基板1上にスパッタリング法または蒸着法等で形成される。   The first electrode layer 22 and the third electrode layer 26 are made of a conductor such as Mo, Al, Ti, or Au, and are formed on the substrate 1 by a sputtering method or a vapor deposition method.

第2の電極層25は、ITO、ZnO等の0.05〜3.0μmの透明導電膜である。
第2の電極層25は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層25は、化合物半導体層24よりも抵抗率の低い層であり、光吸収層23で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層25の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であるのがよい。第2の電極層25は光吸収層23の吸収効率を高めるため、光吸収層23の吸収光に対して光透過性を有するものが好ましい。光透過性を高めると同時に光反射ロス防止効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層25は0.05〜0.5μmの厚さとするのが好ましい。また、第2の電極層25と化合物半導体層24との界面での光反射ロスを防止する観点からは、第2の電極層25と化合物半導体層24の屈折率は等しいのが好ましい。なお、第2の電極層25上には集電電極が形成されていてもよい。
The second electrode layer 25 is a 0.05 to 3.0 μm transparent conductive film such as ITO or ZnO.
The second electrode layer 25 is formed by sputtering, vapor deposition, chemical vapor deposition (CVD), or the like. The second electrode layer 25 is a layer having a resistivity lower than that of the compound semiconductor layer 24, and is for taking out charges generated in the light absorption layer 23. From the viewpoint of taking out charges well, it is preferable that the resistivity of the second electrode layer 25 is less than 1 Ω · cm and the sheet resistance is 50 Ω / □ or less. In order to increase the absorption efficiency of the light absorption layer 23, the second electrode layer 25 preferably has a light transmittance with respect to the absorption light of the light absorption layer 23. The second electrode layer 25 has a thickness of 0.05 to 0.5 μm from the viewpoint of enhancing the light transmittance and at the same time enhancing the light reflection loss preventing effect and the light scattering effect and further transmitting the current generated by the photoelectric conversion. Thickness is preferred. Further, from the viewpoint of preventing light reflection loss at the interface between the second electrode layer 25 and the compound semiconductor layer 24, the refractive indexes of the second electrode layer 25 and the compound semiconductor layer 24 are preferably equal. Note that a collecting electrode may be formed on the second electrode layer 25.

<化合物半導体膜の製造方法1>
以下、本発明の一実施形態の説明において、上記した化合物半導体層24を化合物半導体膜の一例とする。
<Production Method 1 of Compound Semiconductor Film>
Hereinafter, in the description of one embodiment of the present invention, the above-described compound semiconductor layer 24 is taken as an example of a compound semiconductor film.

例えば、湿式のCBD法を採用して、塩化インジウムとチオアセドアミドの水溶液を用いて(さらにpH調整用として、アンモニア水や塩酸が併用される場合もある)、InS系等の化合物半導体膜を成膜している。例えば成膜用溶液7として、三塩化インジウム四水和物の水溶液0.01mol/リットルと、チオアセトアミドの水溶液0.30mol/リットルとの2液を1:1の割合で混合したものを用いる。そして、この成膜用溶液7を用いたCBD法による化合物半導体膜の形成は、例えば下記の処理工程に従って行われる。   For example, a wet CBD method is used to form an InS-based compound semiconductor film using an aqueous solution of indium chloride and thioacedamide (in addition, ammonia water or hydrochloric acid may be used in combination for pH adjustment). doing. For example, as the film-forming solution 7, a solution prepared by mixing two solutions of an indium trichloride tetrahydrate aqueous solution 0.01 mol / liter and a thioacetamide aqueous solution 0.30 mol / liter in a ratio of 1: 1 is used. And formation of the compound semiconductor film by CBD method using this film-forming solution 7 is performed, for example, according to the following processing steps.

まず、第1段階として、室温T1で、成膜用溶液7中に太陽電池素子1の光吸収層24の面を浸して、成膜用溶液7を撹拌しながら、設定時間(例えば5〜10分間)のあいだその状態を保持する。成膜用溶液7の撹拌は、以後化合物半導体膜の成膜が終了するまで持続される。   First, as a first stage, the surface of the light absorption layer 24 of the solar cell element 1 is immersed in the film-forming solution 7 at room temperature T1, and the film-forming solution 7 is stirred, for a set time (for example, 5 to 10). For a minute). Stirring of the film-forming solution 7 is continued thereafter until the formation of the compound semiconductor film is completed.

第2段階として、成膜用溶液7中に光吸収層24の面を浸した状態のままで、成膜用溶液7の温度を所定時間(例えば約10分間)かけて設定温度T2(例えば60℃程度)にまで上昇させる。   As a second step, the temperature of the film-forming solution 7 is set to a set temperature T2 (for example, 60 minutes) over a predetermined time (for example, about 10 minutes) while the surface of the light absorption layer 24 is immersed in the film-forming solution 7. To about ℃).

次いで、第3段階として、成膜用溶液7を設定温度T2に維持しながら、成膜用溶液7中に光吸収層23の面を浸し続けて、昇温後所定時間(約40分間)の経過を待ってから化合物半導体膜の成膜を終了するというものである。   Next, as a third stage, the surface of the light absorption layer 23 is continuously immersed in the film-forming solution 7 while maintaining the film-forming solution 7 at the set temperature T2, and after a temperature rise for a predetermined time (about 40 minutes). After waiting for the progress, the formation of the compound semiconductor film is terminated.

本実施形態においては、CBD法によって化合物半導体膜を成膜するための成膜用溶液中の凝集物を、成膜前および成膜中の少なくとも一方において遠心分離によって分級することによって、成膜用溶液中の凝集物の平均粒度を所定値以下に制御する。   In this embodiment, agglomerates in a film-forming solution for forming a compound semiconductor film by the CBD method are classified by centrifugation at least one of before and during the film formation. The average particle size of the aggregates in the solution is controlled to a predetermined value or less.

成膜用溶液7中の所定の大きさ以上の化合物半導体微粒子の凝集物5は、それ以下の粒度の化合物半導体微粒子を吸着することによって、成膜用溶液7中の凝集物5の粒度分布が大きく変化することがある。   The aggregate 5 of the compound semiconductor fine particles having a predetermined size or more in the film-forming solution 7 adsorbs the compound semiconductor fine particles having a particle size smaller than that, so that the particle size distribution of the aggregate 5 in the film-forming solution 7 is reduced. May change significantly.

よって大きな化合物半導体微粒子の凝集物5を遠心分離により分級した後に、成膜用溶液7中から速やかに除去することにより、成膜用溶液7中の化合物半導体微粒子の凝集物5の粒度分布を維持し、均一な膜質の化合物半導体膜を得ることができる。   Accordingly, the aggregate 5 of the compound semiconductor fine particles is classified by centrifugation and then quickly removed from the film-forming solution 7 to maintain the particle size distribution of the compound semiconductor fine-particle aggregates 5 in the film-forming solution 7. Thus, a compound semiconductor film having a uniform film quality can be obtained.

例えば成膜用溶液7として、三塩化インジウム四水和物の水溶液と、チオアセトアミド
の水溶液との2液を用い場合、前記所定値を3μm、つまり化合物半導体微粒子の凝集物5の平均粒度を3μm以下とすることが好ましい。
For example, when two solutions of an indium trichloride tetrahydrate aqueous solution and a thioacetamide aqueous solution are used as the film forming solution 7, the predetermined value is 3 μm, that is, the average particle size of the aggregate 5 of compound semiconductor fine particles is 3 μm. The following is preferable.

ここで、成膜用溶液7中の化合物半導体微粒子の凝集物5の粒度分布の違いにより、化合物半導体膜の膜質に違いが生じる理由は以下のようなことが考えられる。成膜用溶液中の化合物半導体微粒子の凝集物5の平均粒度と化合物半導体膜の成膜レートとの関係のグラフを図3に示す。図3より、成膜用溶液中の化合物半導体微粒子の凝集物5の平均粒径が変われば成膜レートが大きく変わり、また、大きな化合物半導体微粒子の凝集物5が成膜面に付着することによって、正常なエピタキシャル成長が阻害され、膜質が異なるものとなり易い。例えば成膜初期の平均粒径が3nm以下の成膜用溶液5で形成した化合物半導体膜の表面は図5のような良好な状態だが、成膜が長時間行われて平均粒径が3nmを超えるような状態では、図4のように表面状態が異なったものとなる傾向がある。   Here, the reason for the difference in the film quality of the compound semiconductor film due to the difference in the particle size distribution of the aggregates 5 of the compound semiconductor fine particles in the film-forming solution 7 can be considered as follows. A graph of the relationship between the average particle size of the aggregates 5 of the compound semiconductor fine particles in the film forming solution and the film formation rate of the compound semiconductor film is shown in FIG. From FIG. 3, when the average particle diameter of the aggregate 5 of compound semiconductor fine particles in the film-forming solution changes, the film formation rate changes greatly, and the large aggregate 5 of compound semiconductor fine particles adheres to the film formation surface. Normal epitaxial growth is hindered and the film quality tends to be different. For example, the surface of the compound semiconductor film formed with the film-forming solution 5 having an average particle diameter of 3 nm or less at the initial stage of film formation is in a good state as shown in FIG. 5, but the film formation is performed for a long time and the average particle diameter is 3 nm. In such a state, the surface state tends to be different as shown in FIG.

本発明では成膜用溶液7の粒度分布を長時間に亘って維持することができ、膜質ばらつきを小さくすることができる。   In the present invention, the particle size distribution of the film-forming solution 7 can be maintained over a long period of time, and variations in film quality can be reduced.

<化合物半導体膜の製造装置1>
以下、本発明の化合物半導体膜の製造装置(以下、成膜装置10ともいう)の一実施形態について図を用いて説明する。例えば図1において、成膜装置10の仕組みとしては、計量器11に積載された溶液供給源12は、その内部の成膜用溶液7の基となる溶液の供給量が重量で管理されており、これら溶液は溶液供給源12からポンプ13aによって供給配管14aを通り拡散槽8aに供給される。
<Compound semiconductor film manufacturing apparatus 1>
Hereinafter, an embodiment of a compound semiconductor film manufacturing apparatus (hereinafter also referred to as a film forming apparatus 10) of the present invention will be described with reference to the drawings. For example, in FIG. 1, as a mechanism of the film forming apparatus 10, the solution supply source 12 loaded on the measuring instrument 11 is controlled by the weight of the supply amount of the solution serving as the base of the film forming solution 7 inside. These solutions are supplied from the solution supply source 12 to the diffusion tank 8a through the supply pipe 14a by the pump 13a.

ここで、計量器11に積載された溶液供給源12としては、チオアセトアミド溶液、塩化インジウム溶液、塩酸等があり、それぞれ個別に拡散槽8aに供給されるものであるが、図1においてはそれらの内から1つだけを図示している。   Here, as the solution supply source 12 loaded on the measuring instrument 11, there are a thioacetamide solution, an indium chloride solution, hydrochloric acid, and the like, which are individually supplied to the diffusion tank 8a. Only one of them is shown.

撹拌層8aでは、バルブ17aを開けて、ポンプ13bが起動することによって、成膜用溶液7の基となる各溶液が循環配管16aを循環する。これにより、成膜用溶液7の基となる各溶液が撹拌されて成膜用溶液7となる。   In the stirring layer 8a, the valve 17a is opened, and the pump 13b is activated, whereby each solution serving as the base of the film-forming solution 7 circulates through the circulation pipe 16a. As a result, the respective solutions that are the basis of the film-forming solution 7 are stirred to form the film-forming solution 7.

そして、バルブ17cを開けて、成膜用溶液7を供給配管14bを通して成膜用槽8bに供給する。なお、古くなった成膜用溶液7は、定期的にバルブ17bを開けて排出配管15aを通してドレン19に排出される。   Then, the valve 17c is opened, and the film forming solution 7 is supplied to the film forming tank 8b through the supply pipe 14b. The old film-forming solution 7 is periodically discharged to the drain 19 through the discharge pipe 15a by opening the valve 17b.

成膜装置10は、成膜用溶液7を成膜用槽8b内に供給する供給系機構が、成膜用槽8bと切り離し可能に設けられているとともに、成膜用溶液7を成膜用槽8b内から排出する排出系機構が、成膜用槽8bと切り離し可能に設けられている。   The film forming apparatus 10 is provided with a supply system mechanism for supplying the film forming solution 7 into the film forming tank 8b so as to be separable from the film forming tank 8b. A discharge system mechanism for discharging from the tank 8b is provided so as to be separable from the film forming tank 8b.

さらに、成膜用溶液7を成膜用槽8b内で循環させる循環系機構が、成膜用槽8bに設けられている。つまり、循環系機構は成膜用槽8bと一体となって連動するように設けられている。なお、定期的にバルブ17dあるいはバルブ17eを開けて、古い成膜用溶液7を排出配管15bあるいは15cを通してドレン19に排出する。   Furthermore, a circulation system mechanism for circulating the film forming solution 7 in the film forming tank 8b is provided in the film forming tank 8b. In other words, the circulation system mechanism is provided so as to be interlocked with the film forming tank 8b. Note that the valve 17d or the valve 17e is periodically opened, and the old film-forming solution 7 is discharged to the drain 19 through the discharge pipe 15b or 15c.

以下、本発明の一実施形態に係る分級機構について説明する。   Hereinafter, a classification mechanism according to an embodiment of the present invention will be described.

本発明の化合物半導体膜の製造装置に係る一実施形態では、CBD法に用いる成膜用溶液を収容するとともに、CBD法によって化合物半導体膜を成膜する成膜用槽と、成膜用槽との間で循環させる成膜用溶液中の凝集物を遠心分離して分級する分級機構とを具備する。   In one embodiment of the compound semiconductor film manufacturing apparatus of the present invention, a film forming solution for containing a film forming solution used for the CBD method and forming a compound semiconductor film by the CBD method, a film forming tank, And a classification mechanism for centrifuging and classifying aggregates in the film-forming solution circulated between the two.

さらに好ましくは、分級機構は、成膜用槽から供給される成膜用溶液を収容する回転槽と、収容した成膜用溶液を回転流動させるための回転手段と、一端が回転槽内に配置された軽量凝集物分離管とを備え、軽量凝集物分離管は、回転流動させた成膜用溶液中から所定値以下の粒度の凝集物を抽出して成膜用槽へ戻すものである。   More preferably, the classifying mechanism includes a rotating tank for storing the film forming solution supplied from the film forming tank, a rotating means for rotating and flowing the stored film forming solution, and one end disposed in the rotating tank. The light-weight agglomerate separation tube is for extracting agglomerates having a particle size of a predetermined value or less from the rotationally-flowing film-forming solution and returning it to the film-forming tank.

分級機構については様々な形態が実施可能であり特定されるものではないが、例えば図1および図2に示されるように、回収用配管18cから分級機構2の回転槽3内に、使用後の成膜用溶液7を供給し、次に、回転子4が回転することによって、成膜用溶液7を回転流動させて、化合物半導体微粒子の凝集物5を粒径に応じて遠心分離し、次に、軽量凝集物5aを回転槽3内の中央部側に一端を有する軽量凝集物分離管6aで採取し、次に、成膜用配管18aを介して成膜用槽8bに送り成膜に供する、という構造で実施することができる。   Various forms of the classification mechanism can be implemented and are not specified. For example, as shown in FIGS. 1 and 2, after the collection pipe 18 c is put into the rotary tank 3 of the classification mechanism 2 after use. The film-forming solution 7 is supplied, and then the rotor 4 rotates to rotate and flow the film-forming solution 7, and the compound semiconductor fine particle aggregates 5 are centrifuged according to the particle diameter. Next, the light agglomerate 5a is collected by a light agglomerate separation pipe 6a having one end on the center side in the rotary tank 3, and then sent to the film formation tank 8b through the film formation pipe 18a for film formation. It can be implemented with a structure of providing.

図2において、軽量凝集物5aは中央部側、重量凝集物5bは内壁側に分布するので、軽量凝集物回収管6aの一端を回転槽3の中央に近づけるほど、軽い凝集物5aの割合が多くなる。   In FIG. 2, the light agglomerates 5 a are distributed on the center side and the weight agglomerates 5 b are distributed on the inner wall side. Therefore, the closer the one end of the light agglomerate collection pipe 6 a is to the center of the rotary tank 3, Become more.

一方、重量凝集物5bは回転槽3内の内壁側に一端を有する重量凝集物分離管6bで回収された後に、再利用配管18bを介して別の槽内に送られる。そして還元反応などにより、凝集した重量凝集物5bを再び分解させれば、成膜用溶液7として再利用することができ、材料コストの増大を低減することができる。例えば、重量凝集物5bがInである場合には、InをHClと反応させてInClとして再利用することができる。なお、成膜用溶液7は成膜用槽8bに設けられたポンプ13cによって、軽量凝集物分離管6aを介して、成膜用槽8bと分級機構2とを循環する。 On the other hand, the weight aggregate 5b is collected by the weight aggregate separation pipe 6b having one end on the inner wall side in the rotary tank 3, and then sent to another tank through the reuse pipe 18b. If the aggregated weight aggregate 5b is decomposed again by a reduction reaction or the like, it can be reused as the film-forming solution 7 and the increase in material cost can be reduced. For example, when the weight aggregate 5b is In 2 S 3 , In 2 S 3 can be reacted with HCl and reused as InCl 3 . The film-forming solution 7 is circulated between the film-forming tank 8b and the classification mechanism 2 via the lightweight aggregate separation pipe 6a by a pump 13c provided in the film-forming tank 8b.

以上のような化合物半導体膜の製造装置、化合物半導体膜の製造方法によって、化合物半導体微粒子の凝集物5の大きさを制御すれば、密度の高い化合物半導体層を短時間で形成することができる。   By controlling the size of the aggregate 5 of compound semiconductor fine particles by the compound semiconductor film manufacturing apparatus and the compound semiconductor film manufacturing method as described above, a high-density compound semiconductor layer can be formed in a short time.

<化合物半導体膜の製造装置2>
さらに、本実施形態の化合物半導体膜の製造装置の他の例として、軽量凝集物分離管は、成膜用槽内の中心側から外周側にかけて移動可能であってもよい。
<Compound semiconductor film manufacturing apparatus 2>
Furthermore, as another example of the compound semiconductor film manufacturing apparatus of the present embodiment, the lightweight aggregate separation tube may be movable from the center side to the outer periphery side in the film formation tank.

すなわち、図2において、軽量凝集物分離管6aの口の位置は、成膜用槽3の径方向に移動可能になっている。   That is, in FIG. 2, the position of the mouth of the lightweight aggregate separation tube 6 a is movable in the radial direction of the film formation tank 3.

軽量凝集物分離管6aの口が成膜用槽3内の中心側にあるときは、化合物半導体微粒子の凝集物5が小さい成膜用溶液7を用いることになるので、成膜速度が大きくなる。   When the mouth of the light-weight agglomerate separation tube 6a is on the center side in the film-forming tank 3, a film-forming solution 7 having a small agglomerate 5 of compound semiconductor fine particles is used. .

一方、軽量凝集物分離管6aの口が成膜用槽3内の外周側にあるときは、化合物半導体微粒子の凝集物5が大きい成膜用溶液7を用いることになるので、成膜速度が小さくなるように制御できる。   On the other hand, when the mouth of the light-weight agglomerate separation tube 6a is on the outer peripheral side in the film-formation tank 3, the film-formation solution 7 having a large agglomerate 5 of compound semiconductor fine particles is used. It can be controlled to be smaller.

このような移動可能な軽量凝集物分離管6aを用いることによって、エピタキシャル成長に最適な成膜速度に調整することができるので、化合物
半導体膜の膜質ばらつきを小さくすることができる。
By using such a movable lightweight agglomerate separation tube 6a, it is possible to adjust the film formation speed to be optimal for epitaxial growth, so that the film quality variation of the compound semiconductor film can be reduced.

そして、このような化合物半導体膜の製造装置を用いれば、化合物半導体膜の膜質ばらつきを小さくするという本来の目的以外に、以下のような変形例を目的とした製造方法も
可能となる。
If such a device for manufacturing a compound semiconductor film is used, in addition to the original purpose of reducing the film quality variation of the compound semiconductor film, a manufacturing method for the following modified example is possible.

<化合物半導体膜の製造方法2>
本実施形態の製造方法の他の例によれば、化合物半導体膜の成膜中に、凝集物の平均粒度の所定値を複数段階に変化させて分級する。
<Method 2 for producing compound semiconductor film>
According to another example of the manufacturing method of this embodiment, during the formation of the compound semiconductor film, classification is performed by changing the predetermined value of the average particle size of the aggregate in a plurality of stages.

化合物半導体層24を形成した後に上部電極層25を形成するにあたり、上部電極層25側からのスパッタリング粒子によって、化合物半導体層24がダメージを受けることがある。このスパッタリング粒子を遮蔽してダメージを緩衝するためには、化合物半導体層24を密度の異なる多層構造、例えば化合物半導体層24の上部電極層25側を毛羽状、あるいは、ポーラス状にすることが有効である。   When forming the upper electrode layer 25 after forming the compound semiconductor layer 24, the compound semiconductor layer 24 may be damaged by the sputtered particles from the upper electrode layer 25 side. In order to shield the sputtered particles and buffer the damage, it is effective that the compound semiconductor layer 24 has a multi-layer structure having different densities, for example, the upper surface of the compound semiconductor layer 24 is made fluffy or porous. It is.

そこで本発明の製造方法を用いることによって、このような密度の異なる多層構造を容易、かつ、膜質ばらつきを小さく形成することができる。つまり、化合物半導体の凝集物5の平均粒度が小さくなるように分級して、化合物半導体を緻密な層として形成した後、化合物半導体の凝集物5の平均粒度が大きくなるように分級して、化合物半導体を粗い層として形成することができる。   Therefore, by using the manufacturing method of the present invention, it is possible to easily form such a multilayer structure having different densities and to reduce variations in film quality. That is, after classifying the compound semiconductor aggregate 5 so as to reduce the average particle size and forming the compound semiconductor as a dense layer, the compound semiconductor aggregate 5 is classified so that the average particle size of the compound semiconductor aggregate 5 increases. The semiconductor can be formed as a rough layer.

さらに、本実施形態の製造方法の他の例によれば、遠心分離による分級を周期的に実施することによって、凝集物の平均粒度を周期的に制御する。   Furthermore, according to another example of the production method of the present embodiment, the average particle size of the aggregate is periodically controlled by periodically performing classification by centrifugation.

化合物半導体層24における内部応力を低減する点では
、化合物半導体層24内での密度を交互に変化させた積層周期構造とすることで、内部応力を緩和することが有効である。
In terms of reducing the internal stress in the compound semiconductor layer 24, it is effective to relieve the internal stress by using a stacked periodic structure in which the density in the compound semiconductor layer 24 is alternately changed.

そこで本発明の製造方法を用いることによって、化合物半導体微粒子の凝集物5の平均粒度を周期的に制御する
ことで、成膜速度を周期的に変化させて、例えば化合物半導体層24を密/粗/密/粗・・・の積層周期構造とすることが可能である。
Therefore, by using the manufacturing method of the present invention, the average particle size of the aggregates 5 of the compound semiconductor fine particles is periodically controlled to periodically change the film formation rate, for example, to make the compound semiconductor layer 24 dense / rough. It is possible to have a laminated periodic structure of / dense / rough.

ここで化合物半導体層24の成膜過程において、エピタキシャル成長の配向性が乱れた粗な膜上に、密な膜を形成しなおすことは難しかったが、本発明の製造方法によって可能にしたことを図7を用いて詳細に説明する。例えば図7(a)のように、CBD成膜用溶液7中における大きな化合物半導体微粒子の凝集物5を増やすことによって、配向面aの化合物半導体膜の表面に化合物半導体微粒子の凝集物5等を付着させることで、配向性が変化して配向面bが局所的に形成された粗な表面とする。次に、CBD成膜用溶液7中における大きな化合物半導体微粒子の凝集物5を減らすことによって、成膜速度を高め、図7(b)のように凹部分における配向面bのエピタキシャル成長を横方向に成長させる。そして、図7(c)のように横方向に成長した化合物半導体膜同士がつながり、配向面c(ここでは配向面bに対して90°の垂直な配向面)を形成することができる。   Here, in the film formation process of the compound semiconductor layer 24, it was difficult to re-form a dense film on a rough film in which the orientation of epitaxial growth was disturbed, but this is made possible by the manufacturing method of the present invention. 7 will be described in detail. For example, as shown in FIG. 7A, by increasing the aggregates 5 of the large compound semiconductor fine particles in the CBD film forming solution 7, the aggregates 5 of the compound semiconductor fine particles and the like are formed on the surface of the compound semiconductor film on the orientation plane a. By making it adhere, the orientation is changed to obtain a rough surface in which the orientation surface b is locally formed. Next, by reducing the agglomerates 5 of the large compound semiconductor fine particles in the CBD film forming solution 7, the film forming speed is increased, and the epitaxial growth of the orientation surface b in the concave portion is laterally performed as shown in FIG. 7B. Grow. As shown in FIG. 7C, the compound semiconductor films grown in the lateral direction are connected to each other, and an alignment plane c (here, an alignment plane perpendicular to the alignment plane b) can be formed.

このように、一度粗くなった化合物半導体膜の配向面を均一に整えてから、図7(d)のように新たなエピタキシャル成長(配向面c)を促進させて、緻密な膜を形成することができる。   Thus, after the alignment surface of the compound semiconductor film once roughened is uniformly arranged, new epitaxial growth (alignment surface c) is promoted as shown in FIG. 7D to form a dense film. it can.

そしてCBD成膜用溶液7中における大きな化合物半導体微粒子の凝集物5を増やし、配向面cに化合物半導体微粒子の凝集物5を付着させることによって、図7(a)のように再び配向性が局所的に変化して、他の配向面が局所的に形成された粗な表面とする。   Then, by increasing the aggregates 5 of the large compound semiconductor fine particles in the CBD film forming solution 7 and attaching the aggregates 5 of the compound semiconductor fine particles to the orientation plane c, the orientation becomes local again as shown in FIG. The surface is changed to a rough surface in which other orientation planes are locally formed.

ここで成膜用溶液7の濃度、温度については特に規定はないが、粗い構造の形成条件に
対して密な構造の形成条件は、化合物半導体層24の成膜速度が2倍以上、化合物半導体微粒子の凝集物5の平均粒度が1/2以下であることが好ましい。例えば図3によれば、粗い構造の形成条件は、成膜レート2nm/分、平均粒子径4μmであり、密な構造の形成条件は、成膜レート5nm/分、平均粒子径2μmとなる。なお積層する毎に空気に露出しても構わなければ、化合物半導体微粒子の凝集物5の粒径分布が異なる各成膜用溶液7に交互に浸漬してもよい。
Here, the concentration and temperature of the film-forming solution 7 are not particularly limited, but the formation condition of the dense structure with respect to the formation condition of the rough structure is that the film formation rate of the compound semiconductor layer 24 is twice or more, and the compound semiconductor The average particle size of the fine particle aggregate 5 is preferably ½ or less. For example, according to FIG. 3, the formation condition of the rough structure is a film formation rate of 2 nm / min and an average particle diameter of 4 μm, and the formation condition of the dense structure is a film formation rate of 5 nm / min and an average particle diameter of 2 μm. In addition, as long as it may expose to air every time it laminates | stacks, you may alternately immerse in each film-forming solution 7 from which the particle size distribution of the aggregate 5 of compound semiconductor fine particles differs.

1:光電変換素子
2:分級機構
3:回転槽
4:回転子
5:化合物半導体微粒子の凝集物
5a:軽量凝集物
5b:重量凝集物
6:分離管
6a:軽量凝集物分離管
6b:重量凝集物分離管
7:成膜用溶液
8:槽
8a:拡散槽
8b:成膜用槽
10:成膜装置
11:計量器
12:溶液供給源
13a、13b、13c:ポンプ
14a、14b:供給配管
15a、15b:排出配管
16a、16b:循環配管
17a、17b、17c、17d、17e:バルブ
18a:成膜用配管、18b:再利用配管、18c:回収用配管
19:ドレン
20:整流板
21:基板
22:第1の電極
23:光吸収層
24:化合物半導体層
25:第2の電極
26:第3の電極
a:配向面aの膜
b:配向面bの膜
c:配向面cの膜
1: Photoelectric conversion element 2: Classification mechanism 3: Rotating tank 4: Rotor 5: Compound semiconductor fine particle aggregate 5a: Lightweight aggregate 5b: Heavy weight aggregate 6: Separation tube 6a: Lightweight aggregate separation tube 6b: Weight aggregation Material separation tube 7: Film forming solution 8: Tank 8a: Diffusion tank 8b: Film forming tank 10: Film forming apparatus 11: Meter 12: Solution supply sources 13a, 13b, 13c: Pumps 14a, 14b: Supply pipe 15a 15b: Discharge piping 16a, 16b: Circulation piping 17a, 17b, 17c, 17d, 17e: Valve 18a: Film formation piping, 18b: Reuse piping, 18c: Recovery piping 19: Drain 20: Rectifying plate 21: Substrate 22: first electrode 23: light absorption layer 24: compound semiconductor layer 25: second electrode 26: third electrode a: film b of alignment plane a: film c of alignment plane b: film of alignment plane c

Claims (6)

CBD法によって化合物半導体膜を成膜するための成膜用溶液中の凝集物を、成膜前および成膜中の少なくとも一方において遠心分離によって分級することによって、前記成膜用溶液中の前記凝集物の平均粒度を所定値以下に制御する化合物半導体膜の製造方法。   The agglomerates in the film-forming solution for forming the compound semiconductor film by the CBD method are classified by centrifugation at least one of before and during the film formation, whereby the aggregation in the film-forming solution is performed. The manufacturing method of the compound semiconductor film which controls the average particle size of a thing to below a predetermined value. 前記化合物半導体膜の成膜中に、前記凝集物の平均粒度の所定値を複数段階に変化させて分級する請求項1に記載の化合物半導体膜の製造方法。   The method for producing a compound semiconductor film according to claim 1, wherein during the formation of the compound semiconductor film, classification is performed by changing a predetermined value of an average particle size of the aggregates in a plurality of stages. 前記遠心分離による分級を周期的に実施することによって、前記凝集物の平均粒度を周期的に制御する請求項1または2に記載の化合物半導体膜の製造方法。   3. The method for producing a compound semiconductor film according to claim 1, wherein the average particle size of the aggregate is periodically controlled by periodically performing the classification by centrifugation. CBD法に用いる成膜用溶液を収容するとともに、CBD法によって化合物半導体膜を成膜する成膜用槽と、
該成膜用槽との間で循環させる前記成膜用溶液中の凝集物を遠心分離して分級する分級機構とを備えた化合物半導体膜の製造装置。
A film forming tank for containing a film forming solution used for the CBD method and forming a compound semiconductor film by the CBD method;
An apparatus for producing a compound semiconductor film, comprising: a classification mechanism that centrifuges and classifies aggregates in the film-forming solution to be circulated between the film-forming tanks.
前記分級機構は、前記成膜用槽から供給される前記成膜用溶液を収容する回転槽と、
収容した前記成膜用溶液を回転流動させるための回転手段と、
一端が前記回転槽内に配置された軽量凝集物分離管とを備え、
該軽量凝集物分離管は、回転流動させた前記成膜用溶液中から所定値以下の粒度の凝集物を抽出して前記成膜用槽へ戻すものである請求項4に記載の化合物半導体膜の製造装置。
The classification mechanism includes a rotating tank that stores the film-forming solution supplied from the film-forming tank;
A rotating means for rotating and flowing the film-forming solution stored therein;
A light-weight agglomerate separation tube having one end disposed in the rotary tank;
5. The compound semiconductor film according to claim 4, wherein the light-weight agglomerate separation tube extracts agglomerates having a particle size of a predetermined value or less from the rotating film-forming solution and returns it to the film-forming tank. Manufacturing equipment.
前記軽量凝集物分離管は、前記成膜用槽内の中心側から外周側にかけて移動可能である請求項5に記載の化合物半導体膜の製造装置。   The apparatus for producing a compound semiconductor film according to claim 5, wherein the lightweight aggregate separation tube is movable from a center side to an outer peripheral side in the film formation tank.
JP2011284598A 2011-05-30 2011-12-27 Method and apparatus for manufacturing compound semiconductor film Expired - Fee Related JP5886622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284598A JP5886622B2 (en) 2011-05-30 2011-12-27 Method and apparatus for manufacturing compound semiconductor film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011120387 2011-05-30
JP2011120387 2011-05-30
JP2011284598A JP5886622B2 (en) 2011-05-30 2011-12-27 Method and apparatus for manufacturing compound semiconductor film

Publications (2)

Publication Number Publication Date
JP2013012703A true JP2013012703A (en) 2013-01-17
JP5886622B2 JP5886622B2 (en) 2016-03-16

Family

ID=47686306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284598A Expired - Fee Related JP5886622B2 (en) 2011-05-30 2011-12-27 Method and apparatus for manufacturing compound semiconductor film

Country Status (1)

Country Link
JP (1) JP5886622B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282909A (en) * 2002-03-26 2003-10-03 Honda Motor Co Ltd Compound thin solar cell and manufacturing method therefor
WO2009075944A2 (en) * 2007-10-17 2009-06-18 Yann Roussillon Improved solution deposition assembly
JP2011091228A (en) * 2009-10-23 2011-05-06 Fujifilm Corp Method for manufacturing photo-guide conversion semiconductor layer
WO2012115265A1 (en) * 2011-02-25 2012-08-30 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device
WO2012115267A1 (en) * 2011-02-25 2012-08-30 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282909A (en) * 2002-03-26 2003-10-03 Honda Motor Co Ltd Compound thin solar cell and manufacturing method therefor
WO2009075944A2 (en) * 2007-10-17 2009-06-18 Yann Roussillon Improved solution deposition assembly
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
JP2011091228A (en) * 2009-10-23 2011-05-06 Fujifilm Corp Method for manufacturing photo-guide conversion semiconductor layer
WO2012115265A1 (en) * 2011-02-25 2012-08-30 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device
WO2012115267A1 (en) * 2011-02-25 2012-08-30 京セラ株式会社 Photoelectric conversion element and photoelectric conversion device

Also Published As

Publication number Publication date
JP5886622B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP4841173B2 (en) High resistance buffer layer / window layer continuous film forming method and film forming apparatus for CIS thin film solar cell
Song et al. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics
US8691619B2 (en) Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
JP4055053B2 (en) Compound thin film solar cell and manufacturing method thereof
US8569102B2 (en) Method of manufacturing high density CIS thin film for solar cell and method of manufacturing thin film solar cell using the same
JP2003318424A (en) Thin film solar battery and method of manufacturing same
Wang et al. Reactive close-spaced sublimation processed CuSbSe2 thin films and their photovoltaic application
JP4549570B2 (en) Method for manufacturing heterojunction thin film solar cell
US20150034160A1 (en) Thin film photovoltaic device and method of making same
US9735294B2 (en) Solar cell and manufacturing method thereof
TW200840075A (en) Method for manufacturing CIS based thin film solar cell device
US8916411B1 (en) Absorber layer for a thin film photovoltaic device with a double-graded band gap
CN103080371A (en) Method of coating a substrate for manufacturing a solar cell
KR101542342B1 (en) Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom
JP5886622B2 (en) Method and apparatus for manufacturing compound semiconductor film
CN103620792B (en) Solar cell and method of preparing the same
JP2004047917A (en) Thin film solar battery and its manufacturing method
Peksu et al. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core‐Shell Solar Cell
CN105474371B (en) Layer system for the thin-layer solar cell with sodium indium sulfide cushion
KR20140066189A (en) Method for producing cigs film, and method for manufacturing cigs solar cell using same
JP2013070032A (en) Manufacturing method of buffer layer and manufacturing method of photoelectric conversion element
JP2012174759A (en) Compound semiconductor layer manufacturing method and photoelectric conversion element
JP2013157379A (en) Photoelectric conversion element
Ferhati et al. Boosting the Efficiency of SnS Solar Cells Through Reactively Sputter-Deposited Ag-Nanostructured Layer/SnO2 Film at Glancing Angles
JP2014165376A (en) Manufacturing method and manufacturing apparatus of compound semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160212

R150 Certificate of patent or registration of utility model

Ref document number: 5886622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees