JP2013011515A - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
JP2013011515A
JP2013011515A JP2011144354A JP2011144354A JP2013011515A JP 2013011515 A JP2013011515 A JP 2013011515A JP 2011144354 A JP2011144354 A JP 2011144354A JP 2011144354 A JP2011144354 A JP 2011144354A JP 2013011515 A JP2013011515 A JP 2013011515A
Authority
JP
Japan
Prior art keywords
transmission shaft
torque transmission
torque
temperature
installation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144354A
Other languages
Japanese (ja)
Other versions
JP5790205B2 (en
Inventor
Nobuhiro Saito
伸浩 齊藤
Kazunari Kitachi
一成 北地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2011144354A priority Critical patent/JP5790205B2/en
Publication of JP2013011515A publication Critical patent/JP2013011515A/en
Application granted granted Critical
Publication of JP5790205B2 publication Critical patent/JP5790205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a torque sensor whose temperature compensation accuracy is enhanced by reducing the influences of distortion due to torque inputs and distortion due to centrifugal force on a temperature compensator configured of a resistor or the like.SOLUTION: A torque sensor comprises a torque transmission shaft 2 that has a hollow shaft shape and transmits torque while entailing a twist between the driving side and the driven side, a distortion detector 40 that is fitted to an inner circumferential face 2a of the torque transmission shaft 2 and outputs a detection signal corresponding to any distortion inflicted on the inner circumferential face 2a by a torque input to the torque transmission shaft 2, a temperature compensating resistor 41 as a temperature compensator for correcting and eliminating any detection error contained in the detection signal as a result of temperature-deriving variation of the elasticity coefficient of the torque transmission shaft 2, and an installation member 9 having an equal characteristic to the temperature characteristic of the elasticity coefficient of the torque transmission shaft 2. The installation member 9 is fitted to the inner circumferential face 2a of the torque transmission shaft 2 in a facial contact state with an adhesive 91 in-between, and the temperature compensating resistor 41 is fitted to this installation member 9 in its region closer to the inner circumference than the distortion detector 40.

Description

本発明は、歪ゲージ等の歪検出部を用いたトルクセンサに係り、特に温度変化に起因して歪検出部の検出結果に含まれる検出誤差の補正を適正化したトルクセンサに関する。   The present invention relates to a torque sensor using a strain detection unit such as a strain gauge, and more particularly to a torque sensor that optimizes correction of a detection error included in a detection result of a strain detection unit due to a temperature change.

従来から、電磁作用により回転駆動するモータ等の駆動装置のシャフトに作用するトルクを検出するトルクセンサが知られている。例えば特許文献1には、中空軸状をなし軸方向両端がそれぞれ駆動装置のシャフト及び負荷装置のシャフトに接続され駆動側と負荷側との間で捩れを伴いながらトルクを伝達するカップリングとしてのトルク伝達軸と、トルク伝達軸の内周面に取り付けられトルク入力によって内周面に生じる歪みに対応する検出信号を出力する歪ゲージ等の歪検出部とを備え、歪検出部からの検出信号に基づきトルク伝達軸に作用するトルクの大きさを算出する歪ゲージ式トルクセンサが開示されている。   2. Description of the Related Art Conventionally, a torque sensor that detects torque acting on a shaft of a driving device such as a motor that is rotationally driven by electromagnetic action is known. For example, Patent Document 1 discloses a coupling that transmits a torque while being twisted between the drive side and the load side, having a hollow shaft shape and both axial ends connected to the shaft of the drive device and the shaft of the load device, respectively. A torque transmission shaft and a strain detection unit such as a strain gauge that is attached to the inner peripheral surface of the torque transmission shaft and outputs a detection signal corresponding to the strain generated on the inner peripheral surface by torque input, and a detection signal from the strain detection unit Discloses a strain gauge type torque sensor for calculating the magnitude of torque acting on the torque transmission shaft.

具体的には、歪ゲージを用いた歪検出部は、その歪みによって抵抗値が変化するもので、歪検出部の歪みによって生じた抵抗値の変化を検出信号(差動電圧)として出力するホイートストンブリッジ回路を構成しておき、このブリッジ回路に励起信号(励起電圧)を印加することにより歪みに対応する検出信号(差動電圧)を取得し、この検出信号(差動電圧)に基づきトルクの大きさを算出するように構成するのが通例である。   Specifically, a strain detector using a strain gauge changes its resistance value due to the strain, and outputs a change in resistance value caused by the strain of the strain detector as a detection signal (differential voltage). A bridge circuit is configured, and a detection signal (differential voltage) corresponding to distortion is obtained by applying an excitation signal (excitation voltage) to the bridge circuit, and a torque signal is obtained based on the detection signal (differential voltage). It is customary to configure the size to be calculated.

ところが、温度変化に応じてトルク伝達軸の縦弾性係数(ヤング率)が変化するため、同じトルク(応力)が作用してもトルク伝達軸に発現する歪量が変化し、歪検出部の検出信号に弾性係数の温度変化に起因する検出誤差が含まれてしまうことが知られている。   However, since the longitudinal elastic modulus (Young's modulus) of the torque transmission shaft changes according to changes in temperature, the amount of strain that appears on the torque transmission shaft changes even when the same torque (stress) is applied, and the strain detection unit detects it. It is known that a detection error due to a temperature change of the elastic modulus is included in the signal.

この検出誤差を補正する一つの有効な手段として特許文献2には、温度に応じて抵抗値の変化する抵抗で構成された温度補償部を歪検出部と共に設け、この温度補償部によって検出誤差を無くす方向に補正した検出信号を得る技術が開示されている。特許文献2は、トルクセンサではなくロードセルに適用する例を開示しているが、これをトルクセンサに適用することが有効であると考えられる。   As one effective means for correcting this detection error, in Patent Document 2, a temperature compensation unit composed of a resistance whose resistance value changes according to temperature is provided together with a strain detection unit, and this temperature compensation unit reduces the detection error. A technique for obtaining a detection signal corrected in the direction of elimination is disclosed. Patent Document 2 discloses an example of applying to a load cell instead of a torque sensor, but it is considered effective to apply this to a torque sensor.

特開昭51−131677号公報Japanese Patent Laid-Open No. 51-131777 実開平5−50332号公報Japanese Utility Model Publication No. 5-50332

上記温度補償部としての温度補償用抵抗は、温度ゲージとも呼ばれ、温度に応じてその抵抗値が変化するものであるが、歪ゲージと同様に歪みにも感度を持つ。トルクセンサにおいては、ロードセルとは異なり、トルク入力による捻れがトルク伝達軸全体に発現するため、温度補償用抵抗をトルク伝達軸のどの部位に取り付けてもトルク入力による歪みが温度補償用抵抗に影響を与えてしまい、それがノイズとなって温度補償の精度が損なわれてしまう。   The temperature compensation resistor as the temperature compensation unit is also called a temperature gauge, and its resistance value changes according to the temperature, but it has sensitivity to strain as well as the strain gauge. In a torque sensor, unlike a load cell, twist due to torque input appears in the entire torque transmission shaft. Therefore, distortion due to torque input affects the temperature compensation resistance no matter which part of the torque transmission shaft is attached. Which becomes noise and the accuracy of temperature compensation is impaired.

また、遠心力によってトルク伝達軸が膨張変形するので、捻れだけでなく回転によっても歪みが発生し、この歪みがノイズとなって同様に温度補償の精度が損なわれてしまう。   Further, since the torque transmission shaft expands and deforms due to the centrifugal force, distortion occurs not only by twisting but also by rotation, and this distortion becomes noise and similarly the accuracy of temperature compensation is impaired.

本発明は、このような課題に着目してなされたものであって、その目的は、トルク入力による歪みや遠心力による歪みが温度補償部に与える影響を低減して、温度補償精度を向上させたトルクセンサを提供することである。   The present invention has been made paying attention to such a problem, and its purpose is to improve the temperature compensation accuracy by reducing the influence of distortion caused by torque input and distortion caused by centrifugal force on the temperature compensation unit. A torque sensor is provided.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明のトルクセンサは、中空軸状をなし軸方向一端に駆動力が入力され軸方向他端に負荷が入力されて駆動側と負荷側との間で捩れを伴いながらトルクを伝達するトルク伝達軸と、前記トルク伝達軸の内周面に取り付けられ前記トルク伝達軸に対するトルク入力によって前記内周面に生じる歪みに対応する検出信号を出力する歪検出部と、前記トルク伝達軸の弾性係数の温度変化に起因して前記検出信号に含まれる検出誤差を無くす方向に補正するための温度補償部とを具備し、前記温度補償部によって補正された前記検出信号に基づき前記トルク伝達軸に作用するトルクの大きさを算出するトルクセンサであって、前記トルク伝達軸の弾性係数の温度特性と等しい特性を有する設置用部材を、前記トルク伝達軸の内面に対して直接的又は間接的に面接触状態で取り付け、この設置用部材のうち前記歪検出部よりも内周側となる部位に前記温度補償部を取り付けていることを特徴とする。   That is, the torque sensor of the present invention has a hollow shaft shape and a driving force is input to one end in the axial direction and a load is input to the other end in the axial direction to transmit torque while being twisted between the driving side and the load side. A torque transmission shaft, a strain detection unit that is attached to the inner peripheral surface of the torque transmission shaft and outputs a detection signal corresponding to a strain generated in the inner peripheral surface by torque input to the torque transmission shaft, and elasticity of the torque transmission shaft A temperature compensation unit for correcting in a direction to eliminate the detection error included in the detection signal due to a temperature change of the coefficient, and based on the detection signal corrected by the temperature compensation unit, A torque sensor for calculating the magnitude of the acting torque, wherein an installation member having a characteristic equal to a temperature characteristic of an elastic coefficient of the torque transmission shaft is attached to the inner surface of the torque transmission shaft. Indirect or indirectly attached in surface contact, wherein said attach the temperature compensating unit to the site to be the inner circumferential side of the strain detecting portion of the installation member.

トルク伝達軸の内面は、トルク伝達軸の内部にある内部空間を形成する面を意味し、例えば、トルク伝達軸の内周面や、内部に段差部があるときにはその段差部の軸方向端面などが挙げられる。直接的又は間接的に面接触とは、面接触により両部材間が熱伝導可能であることを意味し、例えば両部材を直接的に面接触状態にすることや、両者の間に接着剤などの部材を介在させて両部材が間接的に面接触状態にあることなどが挙げられる。温度補償部は、温度及び歪みに感度を持つものを意味し、例えば抵抗などが挙げられる。   The inner surface of the torque transmission shaft means a surface that forms an internal space inside the torque transmission shaft. For example, the inner peripheral surface of the torque transmission shaft or the axial end surface of the stepped portion when there is a stepped portion inside Is mentioned. Direct or indirect surface contact means that heat conduction is possible between both members by surface contact. For example, both members are brought into a surface contact state directly, or an adhesive or the like between the two members. It is mentioned that both members are indirectly in surface contact with each other. The temperature compensation unit means a component having sensitivity to temperature and strain, and examples thereof include a resistor.

この構成によれば、設置用部材はトルク伝達軸の弾性係数の温度特性と等しい特性を有するとともに、設置用部材が面接触部分を介してトルク伝達軸から熱伝導可能であるので、温度補償部をトルク伝達軸以外の設置用部材に取り付けても、歪検出部の検出信号に含まれる検出誤差を補正することが可能となる。そして、設置用部材とトルク伝達軸は別体であるので、温度補償部をトルク伝達軸の内周面に取り付ける場合に比べてトルク伝達軸へのトルク入力による応力が温度補償部に作用しにくくなり、トルク入力による歪みが温度補償部に与える影響を低減させて、温度補償精度を向上させることが可能となる。   According to this configuration, the installation member has a characteristic equal to the temperature characteristic of the elastic coefficient of the torque transmission shaft, and the installation member can conduct heat from the torque transmission shaft via the surface contact portion. Even if it is attached to an installation member other than the torque transmission shaft, it becomes possible to correct the detection error included in the detection signal of the strain detection unit. Since the installation member and the torque transmission shaft are separate, the stress due to the torque input to the torque transmission shaft is less likely to act on the temperature compensation portion than when the temperature compensation portion is attached to the inner peripheral surface of the torque transmission shaft. Thus, it is possible to improve the temperature compensation accuracy by reducing the influence of distortion caused by torque input on the temperature compensation unit.

しかも、温度補償部は、遠心力により部材に生じる歪みの影響も受けるものであるが、設置用部材のうち歪検出部よりも内周側となる部位に取り付けられているので、トルク伝達軸の内周面に歪検出部と共に温度補償部を取り付ける場合に比べて温度補償部に対する遠心力の影響を低減でき、温度補償精度を向上させることが可能となる。   In addition, the temperature compensation unit is also affected by the distortion generated in the member due to the centrifugal force, but is attached to a portion of the installation member that is on the inner peripheral side of the strain detection unit. The influence of centrifugal force on the temperature compensation unit can be reduced compared to the case where the temperature compensation unit is attached together with the strain detection unit on the inner peripheral surface, and the temperature compensation accuracy can be improved.

さらに、設置用部材がトルク伝達軸と別体であるため、温度補償部を設置用部材に貼り付けてから、設置用部材をトルク伝達軸に取り付けることができ、温度補償部をトルク伝達軸の内面に直付けする場合に比べて、その取り付け作業を簡易化することが可能となる。この場合、さらにトルク伝達軸を小径化して高速回転化を追求することも可能となる。   Further, since the installation member is separate from the torque transmission shaft, the installation member can be attached to the torque transmission shaft after the temperature compensation portion is attached to the installation member, and the temperature compensation portion is attached to the torque transmission shaft. Compared with the case of directly attaching to the inner surface, the attaching operation can be simplified. In this case, it is also possible to pursue a higher speed rotation by further reducing the diameter of the torque transmission shaft.

軸全体での荷重バランスの調整を簡易化するためには、前記設置用部材は、前記トルク伝達軸の軸を中心とした環状をなしていることが好ましい。   In order to simplify the adjustment of the load balance of the entire shaft, it is preferable that the installation member has an annular shape centering on the shaft of the torque transmission shaft.

設置用部材の弾性係数の温度特性をトルク伝達軸の温度特性に等しくするためには、前記設置用部材は、前記トルク伝達軸と同一材料で構成されていることが望ましい。   In order to make the temperature characteristic of the elastic coefficient of the installation member equal to the temperature characteristic of the torque transmission shaft, the installation member is preferably made of the same material as the torque transmission shaft.

本発明は、以上説明したように、トルク伝達軸の弾性係数の温度特性と等しい特性を有する設置用部材を、面接触部分を介してトルク伝達軸から熱伝導可能に設けているので、温度補償部をトルク伝達軸以外の設置用部材に取り付けても、歪検出部の検出信号に含まれる検出誤差を補正可能となる。そして、設置用部材とトルク伝達軸とは別体であるので、トルク入力による歪みが温度補償部に与える影響を低減でき、温度補償精度を向上させることが可能となる。しかも、温度補償部を設置用部材のうち歪検出部よりも内周側となる部位に取り付けているので、温度補償部を歪検出部と共にトルク伝達軸に取り付ける場合に比べて温度補償部に対する遠心力の影響を低減でき、温度補償精度を向上させることが可能となる。   In the present invention, as described above, the installation member having the characteristic equal to the temperature characteristic of the elastic coefficient of the torque transmission shaft is provided so as to be able to conduct heat from the torque transmission shaft via the surface contact portion. Even if the portion is attached to an installation member other than the torque transmission shaft, the detection error included in the detection signal of the strain detection portion can be corrected. Since the installation member and the torque transmission shaft are separate, the influence of distortion due to torque input on the temperature compensation unit can be reduced, and the temperature compensation accuracy can be improved. In addition, since the temperature compensation unit is attached to a part of the installation member that is on the inner peripheral side of the strain detection unit, the temperature compensation unit is centrifugally separated from the temperature compensation unit as compared with the case where the temperature compensation unit is attached to the torque transmission shaft together with the strain detection unit. The influence of force can be reduced and the temperature compensation accuracy can be improved.

本発明の一実施形態に係るトルクセンサの構成を示す断面図。Sectional drawing which shows the structure of the torque sensor which concerns on one Embodiment of this invention. 同トルクセンサを適用したモータ等の駆動装置を模式的に示す図。The figure which shows typically drive apparatuses, such as a motor, to which the torque sensor is applied. 嵌合軸の構成図、並びに、トルク伝達軸と嵌合軸の嵌合状態を示す図。The block diagram of a fitting shaft, and the figure which shows the fitting state of a torque transmission shaft and a fitting shaft. 歪検出部と温度補償用抵抗とを含む回路構成を模式的に示す図。The figure which shows typically the circuit structure containing a distortion detection part and the resistance for temperature compensation. 温度補償用抵抗を取り付ける設置用部材の構造を示す図。The figure which shows the structure of the member for installation which attaches the resistance for temperature compensation. 本発明の他の実施形態に係るトルク伝達軸及び設置用部材を示す図。The figure which shows the torque transmission axis | shaft and installation member which concern on other embodiment of this invention. 本発明の上記以外の実施形態に係るトルク伝達軸及び設置用部材を示す図。The figure which shows the torque transmission shaft and installation member which concern on embodiment other than the above of this invention.

以下、本発明の一実施形態に係るトルクセンサを、図面を参照して説明する。   Hereinafter, a torque sensor according to an embodiment of the present invention will be described with reference to the drawings.

トルクセンサTsは、図1に示すように、駆動装置と負荷装置との間に介在するトルク伝達軸2に作用するトルクの大きさを測定する装置であり、略中空軸状をなし軸方向両端2c,2dがそれぞれ駆動側(駆動装置M)及び負荷側(負荷装置)に接続され駆動側及び負荷側の間で捩れを伴いながらトルクを伝達するトルク伝達軸2と、トルク伝達軸2の内部に内部空間SP1を形成する内周面2aに取り付けられトルク伝達軸2に対するトルク入力によりトルク伝達軸2に生じる歪みに対応する検出信号(差動信号)を出力する歪ゲージを用いた歪検出部40と、歪検出部40の検出信号をトルク伝達軸2の外部に送信する送信部30と、送信部30からアンテナ部33を介して受信した検出信号に基づきトルク伝達軸2に作用するトルクの大きさを算出するトルク演算部31と、略中空軸状をなしトルク伝達軸2の内周側においてトルク伝達軸2に嵌合することによりトルク伝達軸2と共に二重の中空軸となる嵌合軸8とを有している。このトルクセンサTsは、図2に例示するように、トルク伝達軸2の軸方向一端2cと駆動力出力軸M3a(シャフト)とを接続してトルクセンサTsを備えたモータ等の駆動装置Mを構成するために利用される。なお、本明細書においては、軸方向をXとし、駆動側をX1とし、負荷側をX2として説明する。   As shown in FIG. 1, the torque sensor Ts is a device that measures the magnitude of torque acting on the torque transmission shaft 2 interposed between the drive device and the load device, and has a substantially hollow shaft shape, and both ends in the axial direction. 2c and 2d are connected to the drive side (drive device M) and the load side (load device), respectively, and transmit torque while twisting between the drive side and load side, and the inside of the torque transmission shaft 2 A strain detector using a strain gauge that is attached to an inner peripheral surface 2a that forms an internal space SP1 and outputs a detection signal (differential signal) corresponding to a strain generated in the torque transmission shaft 2 by torque input to the torque transmission shaft 2 40, a transmission unit 30 that transmits the detection signal of the strain detection unit 40 to the outside of the torque transmission shaft 2, and a torque that acts on the torque transmission shaft 2 based on the detection signal received from the transmission unit 30 via the antenna unit 33 A torque calculation unit 31 for calculating the size, and a substantially hollow shaft shape, and fitting into the torque transmission shaft 2 on the inner peripheral side of the torque transmission shaft 2 to form a double hollow shaft together with the torque transmission shaft 2 And a shaft 8. As illustrated in FIG. 2, the torque sensor Ts includes a driving device M such as a motor provided with the torque sensor Ts by connecting the axial end 2c of the torque transmission shaft 2 and a driving force output shaft M3a (shaft). Used to make up. In the present specification, the axial direction is X, the drive side is X1, and the load side is X2.

トルク伝達軸2は、図1に示すように、内部に内部空間SP1が形成された略中空軸状をなす鋼材で構成され、その内周面2aの横断面の形状は嵌合軸8の外周面8bの横断面に対応する形状にしてある。そして、この内部空間SP1に嵌合軸8を駆動側X1から圧入するしまりばめによって、嵌合軸8の外周面8bとトルク伝達軸2の内周面2aとを接触させた嵌合状態にしている。トルク伝達軸2の軸方向一端2c(駆動側X1の端部2c)は、回転駆動するモータ等の駆動装置Mの駆動力出力軸M3a(シャフト)とスプライン接続等により関連付けられて駆動装置Mにより駆動力が入力され、トルク伝達軸2の軸方向他端2d(負荷側X2の端部2d)は、負荷装置のシャフトとスプライン接続等により関連付けられて負荷装置により負荷が入力される。   As shown in FIG. 1, the torque transmission shaft 2 is made of a steel material having a substantially hollow shaft shape in which an internal space SP <b> 1 is formed, and the cross-sectional shape of the inner peripheral surface 2 a is the outer periphery of the fitting shaft 8. The shape corresponds to the cross section of the surface 8b. The fitting shaft 8 is press-fitted into the internal space SP1 from the drive side X1 by an interference fit so that the outer peripheral surface 8b of the fitting shaft 8 and the inner peripheral surface 2a of the torque transmission shaft 2 are brought into contact with each other. ing. One end 2c in the axial direction of the torque transmission shaft 2 (end portion 2c on the driving side X1) is associated with the driving force output shaft M3a (shaft) of the driving device M such as a motor to be rotated by a spline connection or the like. The driving force is input, and the other axial end 2d of the torque transmission shaft 2 (the end 2d of the load side X2) is associated with the shaft of the load device by spline connection or the like, and the load is input by the load device.

嵌合軸8は、図3(a)及び図3(c)に示すように、内部に中空空間SP0が形成された有底の略中空軸状をなすガラスエポキシ樹脂等の樹脂で構成されている。嵌合軸8の内部に設けられる中空空間SP0は、軸方向一端8c側(駆動側X1)が閉止される一方で、軸方向他端8d側(負荷側X2)が開口部8eを介して開放されている。嵌合状態においては、図1に示すように、開口部8eを介して、歪検出部40の配置されたトルク伝達軸2内部の内部空間SP1と、嵌合軸8内部の中空空間SP0とが連通している。この嵌合軸8において送信部30を収納するための中空空間SP0は、軸方向に沿った長尺状をなし、図3(a)に示すように、軸中心Cnを通り負荷側X2の端部8d(軸方向一端)から駆動側X1(軸方向他端)に向かう第一の穴8hと、図3(a)及び図3(d)に示すように、横断面において軸方向Xに直交する線Liを通り径方向X3に沿った貫通孔である第二の穴8hとを導通して形成されている。これら第一の穴8h及び第二の穴8hは、ドリル及びワイヤーカットなどの加工により空けられる。なお、図1に示すように、トルク伝達軸2との嵌合状態において、トルク伝達軸2の内周面2aに設けられた突状の嵌合軸支持部20と、嵌合軸8の軸方向他端8d(負荷側X2の端部8d)とを当接させることにより、軸方向における嵌合軸8の位置決めがなされる。 As shown in FIGS. 3 (a) and 3 (c), the fitting shaft 8 is made of a resin such as a glass epoxy resin having a bottomed substantially hollow shaft shape in which a hollow space SP0 is formed. Yes. The hollow space SP0 provided inside the fitting shaft 8 is closed on the axial one end 8c side (drive side X1), while being opened on the other axial end 8d side (load side X2) through the opening 8e. Has been. In the fitted state, as shown in FIG. 1, an internal space SP1 inside the torque transmission shaft 2 in which the strain detecting unit 40 is arranged and a hollow space SP0 inside the fitting shaft 8 are arranged through the opening 8e. Communicate. The hollow space SP0 for accommodating the transmitting unit 30 in the fitting shaft 8 has an elongated shape along the axial direction, and passes through the shaft center Cn and ends of the load side X2 as shown in FIG. from part 8d (one axial end) and the first hole 8h 1 toward the driving side X1 (axial end), as shown in FIG. 3 (a) and FIG. 3 (d), the axially X in cross-section the orthogonal lines Li conducting a second hole 8h 2 is a through-hole along the street radially X3 are formed. These first bore 8h 1 and the second hole 8h 2 of are emptied by working such as drills and wire cutting. As shown in FIG. 1, in the fitted state with the torque transmission shaft 2, the protruding fitting shaft support portion 20 provided on the inner peripheral surface 2 a of the torque transmission shaft 2 and the shaft of the fitting shaft 8. The fitting shaft 8 is positioned in the axial direction by contacting the other end 8d in the direction (the end 8d on the load side X2).

図1に示すように、歪検出部40は、機械的な寸法の微小な変化を電気信号として検出するシート状の歪ゲージを用いたもので、トルク伝達軸2の内部に内部空間SP1を形成し且つ軸心Cnを中心とする円形に沿った内周面2aに接着剤を介して貼付されている。歪検出部40の貼付位置は、上記嵌合軸支持部20よりも負荷側X2に設定されている。本実施形態では、互いに軸心Cnを中心として対称となる位置に歪検出部40をそれぞれ取り付けて歪検出部40を一対又は複数対とし、図4(a)に示すように、複数の歪検出部40a・40b・40c・40dを既知の4ゲージ法でホイートストンブリッジ回路4Rを構成するように接続している。このブリッジ回路4Rは、励起信号とも呼べる励起電圧Vinが印加されている状態において、歪検出部40の歪みによって生じた抵抗値の変化を検出信号とも呼べる差動電圧Voutとして出力する。この差動電圧Voutは、歪量に比例した大きさの電圧であり、歪みに対応する信号である。 As shown in FIG. 1, the strain detector 40 uses a sheet-like strain gauge that detects a minute change in mechanical dimensions as an electrical signal, and forms an internal space SP <b> 1 inside the torque transmission shaft 2. And it is affixed on the inner peripheral surface 2a along the circle centered on the axis Cn via an adhesive. The application position of the strain detection unit 40 is set on the load side X2 with respect to the fitting shaft support unit 20. In the present embodiment, the strain detectors 40 are respectively attached to positions that are symmetrical with respect to the axis Cn as a center, and the strain detectors 40 are paired or plural pairs. As shown in FIG. The parts 40a, 40b, 40c, and 40d are connected to form the Wheatstone bridge circuit 4R by a known 4-gauge method. The bridge circuit 4R, in a state in which the excitation voltage V in can be called the excitation signal is applied, and outputs the change in the resistance value caused by the strain of the strain detecting section 40 as a differential voltage V out can be called a detection signal. The differential voltage Vout is a voltage having a magnitude proportional to the amount of distortion, and is a signal corresponding to the distortion.

ところが、トルク伝達軸2に生じる歪みεと、トルク伝達軸2に作用する応力σと、トルク伝達軸2の縦弾性係数E(ヤング率)との関係はε=σ/Eで表され、縦弾性係数Eは温度に応じて変化するので、トルク(すなわち応力σ)が同一であっても、トルク伝達軸2に発現する歪量εが変化してしまい、この変動成分すなわち検出誤差が検出信号たる差動電圧Voutに含まれて検出精度が低減してしまう。 However, the relationship between the strain ε generated in the torque transmission shaft 2, the stress σ acting on the torque transmission shaft 2, and the longitudinal elastic modulus E (Young's modulus) of the torque transmission shaft 2 is expressed by ε = σ / E. Since the elastic coefficient E changes depending on the temperature, even if the torque (that is, the stress σ) is the same, the strain amount ε that appears in the torque transmission shaft 2 changes, and this fluctuation component, that is, the detection error is detected signal. The detection accuracy is reduced by being included in the differential voltage Vout .

そこで、図4(b)に示すように、温度に応じて抵抗値の変化する温度ゲージとも呼べる温度補償部としての温度補償用抵抗41をブリッジ回路4Rに直列接続して、検出誤差を無くす方向に補正された差動電圧Voutが出力されるように構成している。具体的には、この温度補償用抵抗41は、ブリッジ回路4R(すなわち歪検出部40)に印加される電圧V1を温度に応じて調整することにより、検出誤差を無くす補正を実現する。例えば、ブリッジ回路4Rから出力される差動電圧Voutは、温度の上昇につれて縦弾性係数Eが減少するため、歪みεが大きくなって歪検出部40の感度が上がり、増大しようとする。この場合、温度補償用抵抗41の抵抗値も同時に増大して、ブリッジ回路4Rに印加される電圧V1を減少させ、差動電圧Voutを低減させ、温度影響を相殺する。 Therefore, as shown in FIG. 4B, a temperature compensation resistor 41, which can be called a temperature gauge whose resistance value changes according to temperature, is connected in series to the bridge circuit 4R to eliminate detection errors. The differential voltage Vout corrected to is output. Specifically, the temperature compensation resistor 41 realizes correction that eliminates the detection error by adjusting the voltage V1 applied to the bridge circuit 4R (that is, the strain detection unit 40) according to the temperature. For example, the differential voltage Vout output from the bridge circuit 4R tends to increase because the longitudinal elastic modulus E decreases as the temperature increases, so that the strain ε increases and the sensitivity of the strain detector 40 increases. In this case, the resistance value of the temperature compensation resistor 41 is also increased at the same time, the voltage V1 applied to the bridge circuit 4R is decreased, the differential voltage Vout is decreased, and the temperature effect is canceled.

この温度補償用抵抗41は、金属箔等で構成される歪ゲージを用いた歪検出部40と同様の構成であるため、歪みに対する感度を有する。トルク入力による歪みや遠心力による歪みの影響を低減すべく、図1及び図5に示すように、新たに設置用部材9を設けて、この設置用部材9に接着剤を介して温度補償用抵抗41を貼付している。設置用部材9は、図5に示すように、トルク伝達軸2の材料と同じ材料を用いて構成された横断面円環状をなすリング部材で、材料がトルク伝達軸2と同一であるため、トルク伝達軸2の弾性係数の温度特性に等しい特性を有する。その外周面9bは、図1及び図5(c)に示すように、トルク伝達軸2の内周面2aに設けられた突状の嵌合軸支持部20の内周面2a(内面)に対して接着剤91を介して間接的に面接触状態で取り付けてあり、弾性及び熱伝導性を有する接着剤91を介してトルク伝達軸2との間で熱伝導可能にされている。温度補償用抵抗41は、図5(a),図5(b)及び図5(c)に示すように、設置用部材9の内周面9aに、対をなして貼付されており、歪検出部の取り付けられるトルク伝達軸2の内周面2aよりも内周側に配置されている。これによって、温度補償用抵抗41が受ける遠心力の影響を、温度補償用抵抗41を歪検出部40と共にトルク伝達軸2の内周面2aに取り付けた場合に比べて低減している。   The temperature compensation resistor 41 has the same configuration as that of the strain detector 40 using a strain gauge made of metal foil or the like, and thus has sensitivity to strain. In order to reduce the influence of distortion due to torque input and distortion due to centrifugal force, as shown in FIGS. 1 and 5, a new installation member 9 is provided, and this installation member 9 is used for temperature compensation via an adhesive. A resistor 41 is attached. As shown in FIG. 5, the installation member 9 is a ring member having a circular cross section formed using the same material as that of the torque transmission shaft 2, and the material is the same as that of the torque transmission shaft 2. The torque transmission shaft 2 has a characteristic equal to the temperature characteristic of the elastic coefficient. The outer peripheral surface 9b is formed on the inner peripheral surface 2a (inner surface) of the protruding fitting shaft support portion 20 provided on the inner peripheral surface 2a of the torque transmission shaft 2, as shown in FIGS. On the other hand, it is attached in an indirect surface contact state via an adhesive 91 and is capable of heat conduction with the torque transmission shaft 2 via an adhesive 91 having elasticity and thermal conductivity. As shown in FIGS. 5 (a), 5 (b) and 5 (c), the temperature compensating resistor 41 is affixed to the inner peripheral surface 9a of the installation member 9 in a pair, and is thus distorted. It arrange | positions rather than the internal peripheral surface 2a of the torque transmission shaft 2 to which a detection part is attached. Thereby, the influence of the centrifugal force applied to the temperature compensating resistor 41 is reduced as compared with the case where the temperature compensating resistor 41 is attached to the inner peripheral surface 2a of the torque transmission shaft 2 together with the strain detecting unit 40.

また、図5に示すように、設置用部材9の内周面9aには、送信部30の板状部位30aを通すための切欠部9sが形成されており、送信部30と非接触状態にある。なお、本実施形態では、図5(b)に示すように、温度補償用抵抗41を設置用部材9に貼るスペースの制約上、設置用部材9が遠心力で伸縮する方向Y1と検出方向とが一致する姿勢で温度補償用抵抗41を貼り付けているが、設置用部材9が遠心力で伸縮する方向Y1と検出方向とが交差又は直交する姿勢で温度補償用抵抗41を貼り付けるとよい。このような姿勢で温度補償用抵抗41を取り付ければ、遠心力による歪みが温度補償用抵抗41に与える影響を低減することが可能となる。   Further, as shown in FIG. 5, the inner peripheral surface 9 a of the installation member 9 is formed with a notch 9 s through which the plate-like portion 30 a of the transmission unit 30 is passed, and is in a non-contact state with the transmission unit 30. is there. In this embodiment, as shown in FIG. 5 (b), due to the limitation of the space for attaching the temperature compensation resistor 41 to the installation member 9, the direction Y1 in which the installation member 9 expands and contracts by centrifugal force and the detection direction However, the temperature compensation resistor 41 may be attached in a posture in which the direction Y1 in which the installation member 9 expands and contracts by centrifugal force and the detection direction intersect or are orthogonal to each other. . If the temperature compensation resistor 41 is attached in such a posture, it is possible to reduce the influence of distortion due to centrifugal force on the temperature compensation resistor 41.

図1に示すように、トルク伝達軸2の外周面2bのうち歪検出部40及び設置用部材9の設置される部位から軸受5に接触する部位までの間には、外周面2bに漏れ出た冷媒を遠心力で振り切ることにより、負荷装置への冷媒の流出を防ぐためのV字状をなす冷媒振切部2vが設けられている。この冷媒振切部2vによって軸受5の熱を放熱する面積が増えるため、歪検出部40及び温度補償用抵抗41での温度変化を小さくでき、歪量の検出精度低下を抑制している。また、同図に示すように、トルク伝達軸2の外周面2bのうち歪検出部40及び設置用部材9の設置される部位から軸受5に接触する部位までの間には、冷媒を噴射する噴射路73が設けられているので、軸受5の熱が冷媒によって冷却された位置において歪検出と温度補償とを行うことになり、温度変化を抑制した状態となり、歪量の検出精度低下を抑制している。   As shown in FIG. 1, leakage from the outer peripheral surface 2 b of the torque transmission shaft 2 to the outer peripheral surface 2 b occurs between the portion where the strain detection unit 40 and the installation member 9 are installed and the portion that contacts the bearing 5. A refrigerant swinging part 2v having a V shape is provided to prevent the refrigerant from flowing out to the load device by shaking off the remaining refrigerant with centrifugal force. Since the area for radiating the heat of the bearing 5 is increased by the refrigerant swing-off portion 2v, the temperature change in the strain detection portion 40 and the temperature compensation resistor 41 can be reduced, and the decrease in the strain amount detection accuracy is suppressed. Further, as shown in the figure, a refrigerant is injected between the outer peripheral surface 2 b of the torque transmission shaft 2 and the portion where the strain detecting unit 40 and the installation member 9 are installed to the portion contacting the bearing 5. Since the injection path 73 is provided, strain detection and temperature compensation are performed at a position where the heat of the bearing 5 is cooled by the refrigerant, so that the temperature change is suppressed and a decrease in distortion detection accuracy is suppressed. doing.

送信部30は、図1及び図3(a)に示すように、プリント基板などの板状部位30aを有し、歪検出部40に励起電圧Vinたる励起信号を印加し且つ歪検出部40から差動電圧Voutたる検出信号をトルク伝達軸2の外部へ送信するテレメータを用いたもので、嵌合軸8における中空空間SP0内に配置されて、中空空間SP0の内面8aに設けられた取付部80に保持されている。 Transmission unit 30, as shown in FIGS. 1 and 3 (a), has a plate-like portion 30a such as a printed board, by applying an excitation voltage V in serving excitation signal to the distortion detection section 40 and the strain detecting unit 40 Using a telemeter that transmits a detection signal that is a differential voltage V out to the outside of the torque transmission shaft 2, and is disposed in the hollow space SP0 of the fitting shaft 8 and provided on the inner surface 8a of the hollow space SP0. It is held by the mounting portion 80.

取付部80は、図1及び図3(a)に示すように、送信部30の板状部位30aの端部を差し込み可能なスリットであり、中空空間SP0を形成する内面8aに複数形成されている。具体的には、図3(a)及び図3(c)に示すように、中空空間SP0を有底筒状の中空部とみなした場合に、底部に対応する内面8aに第一の取付部80aが形成されていると共に、開口部8e近傍の内周面8aに対をなす第二の取付部80b・80bが形成されており、これら第一及び第二の取付部80a・80bによって長尺状の送信部30を両持ち状態で支持している。   As shown in FIGS. 1 and 3A, the attachment portion 80 is a slit into which an end portion of the plate-like portion 30a of the transmission portion 30 can be inserted, and a plurality of attachment portions 80 are formed on the inner surface 8a forming the hollow space SP0. Yes. Specifically, as shown in FIGS. 3A and 3C, when the hollow space SP0 is regarded as a bottomed cylindrical hollow portion, the first attachment portion is provided on the inner surface 8a corresponding to the bottom portion. 80a is formed, and second mounting portions 80b and 80b that are paired with the inner peripheral surface 8a in the vicinity of the opening 8e are formed. The first and second mounting portions 80a and 80b are long. The transmitter 30 is supported in a both-sided state.

図1に示すように、トルク伝達軸2の外周側には、アンテナ部33が設けられている。また、トルク伝達軸2の外部には、送信部30から送信された検出信号をアンテナ部33を介して受信してトルクの大きさを演算処理により算出するトルク演算部31と、送信部30に対して電力を非接触でアンテナ部33を介して供給する電力供給部32とが設けられている。   As shown in FIG. 1, an antenna portion 33 is provided on the outer peripheral side of the torque transmission shaft 2. Further, outside the torque transmission shaft 2, a torque calculation unit 31 that receives the detection signal transmitted from the transmission unit 30 via the antenna unit 33 and calculates the magnitude of the torque by calculation processing, and the transmission unit 30 On the other hand, a power supply unit 32 that supplies power via the antenna unit 33 in a non-contact manner is provided.

すなわち、図1に示すように、電力供給部32からアンテナ部33を介して送信部30に電力が供給され、歪検出部40に励起電圧Vinが印加される(図4参照)。そして、トルク伝達軸2にトルクが作用すると、トルク伝達軸2に捩れが生じ、この捩れがトルク伝達軸2の内周面2aに貼付された歪検出部40によって歪量として検出される。歪検出部40から出力される歪量に対応する検出信号(差動電圧Vout)が送信部30からトルク演算部31に送信され、トルク演算部31が検出信号に基づいてトルクの大きさを算出する。 That is, as shown in FIG. 1, power is supplied to the transmission unit 30 from the power supply unit 32 via the antenna unit 33, the excitation voltage V in is applied to the distortion detection section 40 (see FIG. 4). When torque acts on the torque transmission shaft 2, the torque transmission shaft 2 is twisted, and this twist is detected as a strain amount by the strain detector 40 attached to the inner peripheral surface 2 a of the torque transmission shaft 2. A detection signal (differential voltage V out ) corresponding to the amount of strain output from the strain detection unit 40 is transmitted from the transmission unit 30 to the torque calculation unit 31, and the torque calculation unit 31 determines the magnitude of the torque based on the detection signal. calculate.

トルク伝達軸2は、図1に示すように、軸受5を介して固定支持部6に回転可能に支持されている。軸受5は、ボールベアリング等の転がり軸受を用いたもので、トルク伝達軸2を複数箇所(本実施形態では二箇所)で支持するように軸方向に沿って複数(本実施形態では二つ)配置されている。具体的には、アンテナ部33の軸方向両側に配置されている。   As shown in FIG. 1, the torque transmission shaft 2 is rotatably supported by a fixed support portion 6 via a bearing 5. The bearing 5 uses a rolling bearing such as a ball bearing, and a plurality (two in this embodiment) are provided along the axial direction so as to support the torque transmission shaft 2 at a plurality of places (two in this embodiment). Has been placed. Specifically, the antenna unit 33 is disposed on both sides in the axial direction.

固定支持部6は、図1に示すように、略有底円筒状をなし駆動側X1の基端部60aが駆動装置MのハウジングM1にボルト等の止着具を介して取り付けられる筒状支持部60と、筒状支持部60の負荷側X2の開口60kを閉止する蓋状支持部61とから構成されている。筒状支持部60及び蓋状支持部61により形成される内部空間SP2に軸受5が配置されており、固定支持部6は、筒状支持部60の底部60bt及び蓋状支持部61を軸方向Xに沿って貫通する位置に配置されたトルク伝達軸2を軸受5を介して回転可能に支持し、トルク伝達軸2及び嵌合軸8を一体に回転可能にしている。軸受5は、トルク伝達軸2の外周面2bに形成された突状の回転側軸受支持部64aと、蓋状支持部61及び筒状支持部60の底部60btを足場とする固定側軸受支持部64bとにより抱き込まれて軸方向に固定されている。   As shown in FIG. 1, the fixed support portion 6 has a substantially bottomed cylindrical shape, and a cylindrical support in which a base end portion 60a of the drive side X1 is attached to the housing M1 of the drive device M via a fastening device such as a bolt. Part 60 and a lid-like support part 61 that closes the opening 60k on the load side X2 of the cylindrical support part 60. The bearing 5 is arranged in the internal space SP2 formed by the cylindrical support part 60 and the lid-like support part 61, and the fixed support part 6 has the bottom part 60bt of the cylindrical support part 60 and the lid-like support part 61 in the axial direction. The torque transmission shaft 2 disposed at a position penetrating along X is supported rotatably via a bearing 5 so that the torque transmission shaft 2 and the fitting shaft 8 can rotate together. The bearing 5 includes a projecting rotation-side bearing support portion 64 a formed on the outer peripheral surface 2 b of the torque transmission shaft 2, and a fixed-side bearing support portion using the lid-like support portion 61 and the bottom portion 60 bt of the cylindrical support portion 60 as a scaffold. 64b and is fixed in the axial direction.

図1に示すように、トルク伝達軸2の軸方向一端2c側(駆動側X1)から導入される冷媒を内部空間SP1に連通しないように軸受5に供給する冷媒供給路7が設けられている。具体的には、図3(a)、図3(b)及び図3(c)に示すように、嵌合軸8の外周面8bに、軸方向一端8c側(駆動側X1)から軸方向他端8d側(負荷側X2)に向けて延びる溝部81が設けられており、図1及び図3(d)に示すように、トルク伝達軸2及び嵌合軸8の嵌合状態において、溝部81とその溝部81の対向面(トルク伝達軸2の内周面2a)との間に、軸方向Xの一方から導入される冷媒を軸受5に供給するためのスラスト路71が形成されるようにしている。   As shown in FIG. 1, a refrigerant supply path 7 is provided for supplying the refrigerant introduced from the axial one end 2c side (drive side X1) of the torque transmission shaft 2 to the bearing 5 so as not to communicate with the internal space SP1. . Specifically, as shown in FIGS. 3A, 3B, and 3C, the outer peripheral surface 8b of the fitting shaft 8 is axially moved from the axial one end 8c side (drive side X1). A groove 81 extending toward the other end 8d side (load side X2) is provided, and as shown in FIGS. 1 and 3 (d), the groove portion is in the fitted state of the torque transmission shaft 2 and the fitting shaft 8. A thrust path 71 for supplying the refrigerant introduced from one side in the axial direction X to the bearing 5 is formed between 81 and the opposing surface of the groove 81 (the inner peripheral surface 2a of the torque transmission shaft 2). I have to.

スラスト路71以外に冷媒供給路7を構成するものとして、図1及び図3(a)〜(c)に示すように、導入路70及び接続路72が設けられている。導入路70は、嵌合状態で内側となる嵌合軸8の軸中心Cnを通り軸方向一端8c(駆動側X1)から冷媒を導入する路であり、接続路72は、導入路70から外周に向けて延在し導入路70とスラスト路71とを接続する路である。スラスト路71には、各々の軸受5に冷媒を噴出する噴射路73が複数設けられており、スラスト路71を基幹路とし、噴射路73を分岐路として、各々の軸受5に冷媒を供給する流路が一つのスラスト路71から分岐して形成される。この噴射路73に対応して固定側軸受支持部64bは、噴射路73と径方向で重合する位置にあり、噴射路73から供給された冷媒を軸受5に案内する湾曲した案内面64xが形成されている。   As shown in FIG. 1 and FIGS. 3A to 3C, an introduction path 70 and a connection path 72 are provided as components constituting the refrigerant supply path 7 other than the thrust path 71. The introduction path 70 is a path through which the refrigerant is introduced from the axial end 8c (drive side X1) through the axial center Cn of the fitting shaft 8 that is inside in the fitted state, and the connection path 72 is an outer periphery from the introduction path 70. This is a path that extends toward, and connects the introduction path 70 and the thrust path 71. The thrust path 71 is provided with a plurality of injection paths 73 for ejecting refrigerant to each bearing 5, and the thrust path 71 serves as a main path and the injection path 73 serves as a branch path to supply refrigerant to each bearing 5. A flow path is formed by branching from one thrust path 71. Corresponding to the injection path 73, the fixed-side bearing support portion 64b is in a position overlapping with the injection path 73 in the radial direction, and a curved guide surface 64x for guiding the refrigerant supplied from the injection path 73 to the bearing 5 is formed. Has been.

溝部81は、図3(d)に示すように、複数(本実施形態では二つ)設けられて対をなし、対をなす溝部81・81は軸中心Cn回りに対称となる位置に配置されており、図1に示すように、各々の接続路72を介して導入路70の先端部にある分岐部70aと接続されている。これにより、軸全体での荷重バランスをとっている。   As shown in FIG. 3D, a plurality (two in this embodiment) of the groove portions 81 are provided to form a pair, and the pair of groove portions 81 and 81 are arranged at positions that are symmetric about the axial center Cn. As shown in FIG. 1, each connection path 72 is connected to a branch portion 70 a at the tip of the introduction path 70. Thereby, the load balance in the whole axis | shaft is taken.

なお、図2に概念図を用いて模式的に示すように、駆動装置Mは周知のモータ等を用いたもので、ハウジングM1に固定され磁界を発生する固定子M2と、固定子M2に対して回転可能な状態でハウジングM1に支持され磁界を受けて回る回転子M3とを有し、固定子M2への通電制御により磁界を変化させ、固定子M2と回転子M3との間に反発力や吸引力等を作用させて回転子M3を回転させ、電気エネルギーから回転駆動力を出力するものである。回転子M3の駆動力出力軸M3a(シャフト)に上記トルク伝達軸2が接続されてトルク伝達軸2に駆動力が入力されるように構成するとともに、ハウジングM1に固定支持部6を取り付けてある。また、駆動装置Mを構成する駆動力出力軸M3aは、出力軸用の軸受M4により回転可能に支持されるとともに、内部に冷媒を通して出力軸用の軸受M4や図示しない発熱部を始めとする機構部品に冷媒を供給する流路M5の一部を構成するものであり、トルク伝達軸2の内部に形成される導入路70は、出力軸M3aから冷媒が導入されるように構成されている。勿論、トルク伝達軸2と駆動力出力軸M3a(シャフト)とを同一部材として一体に形成してもよく、また、固定支持部6とハウジングM1とを同一部材として一体に形成してもよい。この場合、トルクセンサ及び駆動装置を合わせた装置全体の軸方向寸法を小形化することも可能となる。図2に示す駆動装置Mは概念図で示したものにすぎず、この図示の駆動装置に限定されるものではない。また駆動装置にはモータ以外のものを用いてもよい。   As schematically shown in FIG. 2 using a conceptual diagram, the driving device M uses a well-known motor or the like, and is fixed to the housing M1 and generates a magnetic field. And a rotor M3 that is supported by the housing M1 in a rotatable state and rotates by receiving a magnetic field. The magnetic field is changed by energization control to the stator M2, and a repulsive force is generated between the stator M2 and the rotor M3. The rotor M3 is rotated by applying a suction force or the like, and the rotational driving force is output from the electric energy. The torque transmission shaft 2 is connected to the driving force output shaft M3a (shaft) of the rotor M3 so that the driving force is input to the torque transmission shaft 2, and the fixed support portion 6 is attached to the housing M1. . Further, the driving force output shaft M3a constituting the driving device M is rotatably supported by an output shaft bearing M4, and a mechanism including an output shaft bearing M4 and a heat generating unit (not shown) through the refrigerant therein. A part of the flow path M5 for supplying the refrigerant to the component is configured, and the introduction path 70 formed inside the torque transmission shaft 2 is configured such that the refrigerant is introduced from the output shaft M3a. Of course, the torque transmission shaft 2 and the driving force output shaft M3a (shaft) may be integrally formed as the same member, and the fixed support portion 6 and the housing M1 may be integrally formed as the same member. In this case, it is possible to reduce the axial dimension of the entire device including the torque sensor and the drive device. The driving device M shown in FIG. 2 is only a conceptual diagram, and is not limited to the illustrated driving device. A drive device other than a motor may be used.

以上のように、本実施形態のトルクセンサTsは、中空軸状をなし軸方向一端2cに駆動力が入力され軸方向他端2dに負荷が入力されて駆動側X1と負荷側X2との間で捩れを伴いながらトルクを伝達するトルク伝達軸2と、トルク伝達軸2の内周面2aに取り付けられトルク伝達軸2に対するトルク入力によって内周面2aに生じる歪みに対応する検出信号(差動電圧Vout)を出力する歪検出部40と、トルク伝達軸2の弾性係数の温度変化に起因して検出信号(差動電圧Vout)に含まれる検出誤差を無くす方向に補正するための温度補償部たる温度補償用抵抗41とを具備し、温度補償部たる温度補償用抵抗41によって補正された検出信号(差動電圧Vout)に基づきトルク伝達軸2に作用するトルクの大きさを算出するトルクセンサTsであって、トルク伝達軸2の弾性係数Eの温度特性と等しい特性を有する設置用部材9を、トルク伝達軸2の内面(内周面2a)に対して間接的に面接触状態で取り付け、この設置用部材9のうち歪検出部40よりも内周側となる部位に温度補償部たる温度補償用抵抗41を取り付けている。 As described above, the torque sensor Ts of the present embodiment has a hollow shaft shape, and a driving force is input to the one axial end 2c and a load is input to the other axial end 2d. And a detection signal (differential) corresponding to the distortion generated on the inner peripheral surface 2a by torque input to the torque transmission shaft 2 attached to the inner peripheral surface 2a of the torque transmission shaft 2 a distortion detection unit 40 for outputting a voltage V out), the temperature for correcting the direction to eliminate the detection error included in the detection signal (differential voltage V out) due to the temperature change of the elastic modulus of the torque transmitting shaft 2 comprising a compensator serving temperature compensating resistor 41, calculates the magnitude of the torque acting on the torque transmitting shaft 2 based on the corrected detection signal (a differential voltage V out) by the temperature compensating unit serving temperature compensating resistor 41 A torque sensor Ts having a characteristic equal to the temperature characteristic of the elastic coefficient E of the torque transmission shaft 2 is indirectly in surface contact with the inner surface (inner peripheral surface 2a) of the torque transmission shaft 2. A temperature compensation resistor 41 serving as a temperature compensation unit is attached to a portion of the installation member 9 on the inner peripheral side of the strain detection unit 40.

この構成によれば、設置用部材9はトルク伝達軸2の弾性係数Eの温度特性と等しい特性を有するとともに、設置用部材9が面接触部分を介してトルク伝達軸2から熱伝導可能であるので、温度補償部たる温度補償用抵抗41をトルク伝達軸2以外の設置用部材9に取り付けても、歪検出部40の検出信号に含まれる検出誤差を補正することが可能となる。そして、設置用部材9とトルク伝達軸2は別体であるので、温度補償部たる温度補償用抵抗41をトルク伝達軸2の内周面2aに取り付ける場合に比べてトルク伝達軸2へのトルク入力による応力が温度補償用抵抗41に作用しにくくなり、トルク入力による歪みが温度補償用抵抗41に与える影響を低減させて、温度補償精度を向上させることが可能となる。   According to this configuration, the installation member 9 has a characteristic equal to the temperature characteristic of the elastic coefficient E of the torque transmission shaft 2, and the installation member 9 can conduct heat from the torque transmission shaft 2 via the surface contact portion. Therefore, even if the temperature compensation resistor 41 serving as the temperature compensation unit is attached to the installation member 9 other than the torque transmission shaft 2, the detection error included in the detection signal of the strain detection unit 40 can be corrected. Since the installation member 9 and the torque transmission shaft 2 are separate bodies, the torque applied to the torque transmission shaft 2 is compared with the case where the temperature compensation resistor 41 serving as the temperature compensation portion is attached to the inner peripheral surface 2a of the torque transmission shaft 2. It becomes difficult for the stress due to the input to act on the temperature compensation resistor 41, and the influence of the distortion caused by the torque input on the temperature compensation resistor 41 can be reduced to improve the temperature compensation accuracy.

しかも、温度補償部たる温度補償用抵抗41は、遠心力により部材に生じる歪みの影響も受けるものであるが、設置用部材9のうち歪検出部40よりも内周側となる部位に取り付けられているので、トルク伝達軸2の内周面2aに歪検出部40と共に温度補償用抵抗41を取り付ける場合に比べて温度補償用抵抗41に対する遠心力の影響を低減でき、温度補償精度を向上させることが可能となる。   In addition, the temperature compensation resistor 41 serving as the temperature compensation unit is also affected by the distortion generated in the member due to the centrifugal force, but is attached to a portion of the installation member 9 that is on the inner peripheral side of the strain detection unit 40. Therefore, the effect of centrifugal force on the temperature compensation resistor 41 can be reduced and temperature compensation accuracy can be improved compared to the case where the temperature compensation resistor 41 is attached to the inner peripheral surface 2a of the torque transmission shaft 2 together with the strain detector 40. It becomes possible.

さらに、設置用部材9がトルク伝達軸2と別体であるため、温度補償部たる温度補償用抵抗41を設置用部材9に貼り付けてから、設置用部材9をトルク伝達軸2に取り付けることができ、温度補償用抵抗41をトルク伝達軸2の内面に直付けする場合に比べて、その取り付け作業を簡易化することが可能となる。この場合、さらにトルク伝達軸2を小径化して高速回転化を追求することも可能となる。   Further, since the installation member 9 is separate from the torque transmission shaft 2, the installation member 9 is attached to the torque transmission shaft 2 after the temperature compensation resistor 41, which is a temperature compensation unit, is attached to the installation member 9. As compared with the case where the temperature compensating resistor 41 is directly attached to the inner surface of the torque transmission shaft 2, the attaching operation can be simplified. In this case, the torque transmission shaft 2 can be further reduced in diameter to pursue high speed rotation.

特に、本実施形態では、設置用部材9は、トルク伝達軸2の軸心Cnを中心とした環状をなしているので、軸全体での荷重バランスの調整を簡易化することが可能となる。   In particular, in the present embodiment, the installation member 9 has an annular shape centering on the axis Cn of the torque transmission shaft 2, so that it is possible to simplify the adjustment of the load balance of the entire shaft.

さらにまた、本実施形態では、設置用部材9は、トルク伝達軸2と同一材料で構成されているので、設置用部材の弾性係数Eの温度特性をトルク伝達軸2の弾性係数Eの温度特性に等しくなるようにして、温度補償部たる温度補償用抵抗41の取り付けを可能としている。   Furthermore, in this embodiment, since the installation member 9 is made of the same material as the torque transmission shaft 2, the temperature characteristic of the elastic coefficient E of the installation member is the temperature characteristic of the elastic coefficient E of the torque transmission shaft 2. It is possible to attach the temperature compensation resistor 41 as the temperature compensation unit.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、トルクセンサTsは、駆動装置Mに組み込まれて構成されているが、単独で構成することも可能である。本実施形態では、温度補償部は抵抗であるが、温度及び歪みに感度を持つものであれば、抵抗以外のものでもよい。   For example, in the present embodiment, the torque sensor Ts is configured to be incorporated in the drive device M, but may be configured alone. In this embodiment, the temperature compensation unit is a resistor, but may be other than a resistor as long as it has sensitivity to temperature and strain.

また、本実施形態では、設置用部材9をトルク伝達軸2と同じ材料を用いているが、設置用部材とトルク伝達軸2の弾性係数の温度特性が等しければ、同じ材料で構成されていなくてもよい。   In this embodiment, the installation member 9 is made of the same material as that of the torque transmission shaft 2. However, if the temperature characteristics of the elastic coefficients of the installation member and the torque transmission shaft 2 are equal, they are not made of the same material. May be.

さらに、本実施形態において、設置用部材9は、トルク伝達軸2に対し接着剤を介して面接触状態に取り付けられているが、接着剤などを介在させずに直接直づけして、設置用部材9をトルク伝達軸2に直接的に面接触状態で取り付けてもよい。また、間接的に面接触させる場合には、介在させる部材として接着剤に限定されるものではない。   Further, in the present embodiment, the installation member 9 is attached to the torque transmission shaft 2 in a surface contact state via an adhesive, but is directly attached without using an adhesive or the like. The member 9 may be directly attached to the torque transmission shaft 2 in a surface contact state. Moreover, when making surface contact indirectly, it is not limited to an adhesive agent as a member to interpose.

トルク伝達軸と設置用部材とを熱伝導可能に接続するためには、本実施形態のような嵌合や接着以外の方法でもよい。例えば、図6(a)に示すように、トルク伝達軸102の内周面と、設置用部材109の外周面とに互いに対応するネジ溝vvを設けて、ネジ溝vv等の締結手段を用いてトルク伝達軸102と設置用部材109とを面接触状態で固定することが挙げられる。   In order to connect the torque transmission shaft and the installation member so as to be able to conduct heat, a method other than the fitting or bonding as in the present embodiment may be used. For example, as shown in FIG. 6A, screw grooves vv corresponding to each other are provided on the inner peripheral surface of the torque transmission shaft 102 and the outer peripheral surface of the installation member 109, and fastening means such as a screw groove vv are used. For example, the torque transmission shaft 102 and the installation member 109 may be fixed in a surface contact state.

その他には図6(b)に示すように、トルク伝達軸202の内周面に突状の段差部220を形成するとともに、この段差部220の軸方向端面220cに設置用部材209を押圧する止め輪などの押圧手段vp1を設け、トルク伝達軸202の内面220cに設置用部材209を面接触状態で取り付けるようにしてもよい。   In addition, as shown in FIG. 6B, a projecting stepped portion 220 is formed on the inner peripheral surface of the torque transmission shaft 202, and the installation member 209 is pressed against the axial end surface 220 c of the stepped portion 220. A pressing means vp1 such as a retaining ring may be provided, and the installation member 209 may be attached to the inner surface 220c of the torque transmission shaft 202 in a surface contact state.

さらには、図6(c)に示すように、トルク伝達軸302の内周面に突状の段差部320を形成するとともに、端部同士を突き合わせたC字状(一部破断環状)をなす設置用部材309をトルク伝達軸302の内周面に弾性反発力を蓄積した状態で嵌合させ、設置用部材309の弾性反発力によって設置用部材309の外周面がトルク伝達軸302の内周面に押圧されるようにして、トルク伝達軸302の内面に設置用部材309を面接触状態で取り付けるようにしてもよい。   Further, as shown in FIG. 6 (c), a projecting stepped portion 320 is formed on the inner peripheral surface of the torque transmission shaft 302, and a C-shape (partially broken annular) is formed by abutting the ends. The installation member 309 is fitted to the inner peripheral surface of the torque transmission shaft 302 in a state where the elastic repulsion force is accumulated, and the outer peripheral surface of the installation member 309 is caused to be the inner periphery of the torque transmission shaft 302 by the elastic repulsion force of the installation member 309. The installation member 309 may be attached to the inner surface of the torque transmission shaft 302 in a surface contact state so as to be pressed against the surface.

その他、温度補償用抵抗41を複数設ける場合には、温度補償用抵抗41毎に設置用部材を設けてもよい。   In addition, when a plurality of temperature compensation resistors 41 are provided, an installation member may be provided for each temperature compensation resistor 41.

また、本実施形態では、温度補償用抵抗41を取り付ける設置用部材9は環状をなしているが、その形状はこれに限定されるものではない。例えば、図7に示すように、設置用部材409に板面409iを形成して、この板面409iに温度補償用抵抗41を取り付けて、設置用部材409をネジ等の止着具voでトルク伝達軸402に面接触状態で固定することが挙げられる。温度補償用抵抗41を曲面に取り付けると、温度補償用抵抗41が撓んだ状態で取り付けられることになり、オフセット状態で歪みが検出されてしまうものの、このように板面409iに温度補償用抵抗41を取り付けるようにすると、温度補償用抵抗41を撓みの少ない状態又は撓みのない状態で取り付けることができ、オフセット状態で検出される歪みを低減又は無くすることが可能となり、オフセット調整を簡易化することが可能となる。   In this embodiment, the installation member 9 to which the temperature compensation resistor 41 is attached has an annular shape, but the shape is not limited to this. For example, as shown in FIG. 7, a plate surface 409i is formed on the installation member 409, a temperature compensating resistor 41 is attached to the plate surface 409i, and the installation member 409 is torqued with a fastening tool vo such as a screw. For example, the transmission shaft 402 may be fixed in a surface contact state. When the temperature compensation resistor 41 is attached to a curved surface, the temperature compensation resistor 41 is attached in a bent state, and distortion is detected in the offset state, but the temperature compensation resistor is thus formed on the plate surface 409i. When 41 is attached, the temperature compensation resistor 41 can be attached with little or no deflection, and distortion detected in the offset state can be reduced or eliminated, and offset adjustment is simplified. It becomes possible to do.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

2…トルク伝達軸
2c…軸方向一端
2d…軸方向他端
2a…トルク伝達軸の内周面
40…歪検出部
40a・40b・40c・40d…歪検出部
41…温度補償部(温度補償用抵抗)
9…設置用部材
X1…駆動側
X2…負荷側
E…弾性係数(縦弾性係数)
out…検出信号(差動電圧)
2 ... Torque transmission shaft 2c ... One axial end 2d ... Other axial end 2a ... Torque transmission shaft inner peripheral surface 40 ... Strain detection units 40a, 40b, 40c, 40d ... Strain detection unit 41 ... Temperature compensation unit (for temperature compensation) resistance)
9 ... Installation member X1 ... Drive side X2 ... Load side E ... Elastic coefficient (longitudinal elastic coefficient)
V out ... Detection signal (differential voltage)

Claims (2)

中空軸状をなし軸方向一端に駆動力が入力され軸方向他端に負荷が入力されて駆動側と負荷側との間で捩れを伴いながらトルクを伝達するトルク伝達軸と、前記トルク伝達軸の内周面に取り付けられ前記トルク伝達軸に対するトルク入力によって前記内周面に生じる歪みに対応する検出信号を出力する歪検出部と、前記トルク伝達軸の弾性係数の温度変化に起因して前記検出信号に含まれる検出誤差を無くす方向に補正するための温度補償部とを具備し、前記温度補償部によって補正された前記検出信号に基づき前記トルク伝達軸に作用するトルクの大きさを算出するトルクセンサであって、
前記トルク伝達軸の弾性係数の温度特性と等しい特性を有する設置用部材を、前記トルク伝達軸の内面に対して直接的又は間接的に面接触状態で取り付け、この設置用部材のうち前記歪検出部よりも内周側となる部位に前記温度補償部を取り付けていることを特徴とするトルクセンサ。
A torque transmission shaft that has a hollow shaft shape and a driving force is input to one axial end and a load is input to the other axial end to transmit torque while being twisted between the driving side and the load side; and the torque transmission shaft A strain detector that outputs a detection signal corresponding to a strain generated in the inner peripheral surface by torque input to the torque transmission shaft, and a temperature change of an elastic coefficient of the torque transmission shaft. A temperature compensation unit for correcting in a direction to eliminate the detection error included in the detection signal, and calculating a magnitude of torque acting on the torque transmission shaft based on the detection signal corrected by the temperature compensation unit. A torque sensor,
An installation member having a characteristic equal to the temperature characteristic of the elastic coefficient of the torque transmission shaft is attached in a surface contact state directly or indirectly to the inner surface of the torque transmission shaft, and the strain detection among the installation members. A torque sensor, wherein the temperature compensation unit is attached to a portion that is on the inner peripheral side of the unit.
前記設置用部材は、前記トルク伝達軸の軸を中心とした環状をなしている請求項1に記載のトルクセンサ。   The torque sensor according to claim 1, wherein the installation member has an annular shape centering on an axis of the torque transmission shaft.
JP2011144354A 2011-06-29 2011-06-29 Torque sensor Expired - Fee Related JP5790205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144354A JP5790205B2 (en) 2011-06-29 2011-06-29 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144354A JP5790205B2 (en) 2011-06-29 2011-06-29 Torque sensor

Publications (2)

Publication Number Publication Date
JP2013011515A true JP2013011515A (en) 2013-01-17
JP5790205B2 JP5790205B2 (en) 2015-10-07

Family

ID=47685510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144354A Expired - Fee Related JP5790205B2 (en) 2011-06-29 2011-06-29 Torque sensor

Country Status (1)

Country Link
JP (1) JP5790205B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500218A (en) * 2013-12-27 2017-01-05 アトラス・コプコ・インダストリアル・テクニーク・アクチボラグ Power tool
CN107576351A (en) * 2016-07-05 2018-01-12 北京新宇航世纪科技有限公司 Torque and speed sensorses and the measuring system based on torque and speed sensorses
CN107621320A (en) * 2016-07-15 2018-01-23 北京新宇航世纪科技有限公司 Torque sensor
CN110411631A (en) * 2019-08-29 2019-11-05 北京新能源汽车技术创新中心有限公司 A kind of torque sensor
CN110514333A (en) * 2019-09-16 2019-11-29 吉孚动力技术(中国)有限公司 A kind of shaft type torque sensor
CN112832747A (en) * 2020-12-24 2021-05-25 山东科技大学 Inner-outer ring nested type pressure-torsion sensor elastomer structure and sensing element sealing method
CN113237586A (en) * 2021-04-29 2021-08-10 中铁检验认证中心有限公司 Temperature control torque measurement system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021039038A (en) * 2019-09-04 2021-03-11 ミネベアミツミ株式会社 Torque sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131677A (en) * 1975-05-13 1976-11-16 Tateyama Denshi:Kk Coupling construction with torque meter
JPH0550332U (en) * 1991-12-03 1993-07-02 大和製衡株式会社 Load cell
JP2004220392A (en) * 2003-01-16 2004-08-05 Minebea Co Ltd Rotary body torque measuring device
JP2005331441A (en) * 2004-05-21 2005-12-02 Shinko Electric Co Ltd Bearing unit with built-in torque meter, and assembling method therefor
JP2009288187A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Load cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131677A (en) * 1975-05-13 1976-11-16 Tateyama Denshi:Kk Coupling construction with torque meter
JPH0550332U (en) * 1991-12-03 1993-07-02 大和製衡株式会社 Load cell
JP2004220392A (en) * 2003-01-16 2004-08-05 Minebea Co Ltd Rotary body torque measuring device
JP2005331441A (en) * 2004-05-21 2005-12-02 Shinko Electric Co Ltd Bearing unit with built-in torque meter, and assembling method therefor
JP2009288187A (en) * 2008-05-30 2009-12-10 Toyota Motor Corp Load cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500218A (en) * 2013-12-27 2017-01-05 アトラス・コプコ・インダストリアル・テクニーク・アクチボラグ Power tool
CN107576351A (en) * 2016-07-05 2018-01-12 北京新宇航世纪科技有限公司 Torque and speed sensorses and the measuring system based on torque and speed sensorses
CN107621320A (en) * 2016-07-15 2018-01-23 北京新宇航世纪科技有限公司 Torque sensor
CN110411631A (en) * 2019-08-29 2019-11-05 北京新能源汽车技术创新中心有限公司 A kind of torque sensor
CN110514333A (en) * 2019-09-16 2019-11-29 吉孚动力技术(中国)有限公司 A kind of shaft type torque sensor
CN110514333B (en) * 2019-09-16 2024-02-20 吉孚动力技术(中国)有限公司 Shaft type torque sensor
CN112832747A (en) * 2020-12-24 2021-05-25 山东科技大学 Inner-outer ring nested type pressure-torsion sensor elastomer structure and sensing element sealing method
CN112832747B (en) * 2020-12-24 2023-01-24 山东科技大学 Inner-outer ring nested type pressure-torsion sensor elastomer structure and sensing element sealing method
CN113237586A (en) * 2021-04-29 2021-08-10 中铁检验认证中心有限公司 Temperature control torque measurement system and method

Also Published As

Publication number Publication date
JP5790205B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5790205B2 (en) Torque sensor
US6880411B2 (en) Torque sensor and electric power steering system having same
US9097598B2 (en) Torque sensor
CN100547369C (en) Be used to calibrate the device of torque sensor
US7287440B1 (en) Torque sensor
CA2583837C (en) Torque sensor
US8776619B2 (en) Small angle sensor for measuring steering shaft torque
US10232904B2 (en) Leaning vehicle
US9296413B2 (en) Electric power steering device
JP5041139B2 (en) Torque sensor and electric power steering device
JP2012149939A (en) Torque sensor and drive unit with the same
JP2013015459A (en) Torque sensor
CN110411631A (en) A kind of torque sensor
US20220258531A1 (en) Wheel Hub, Auxiliary Driven Vehicle with the Wheel Hub and Clip Arrangement
JP2017102019A (en) Torque sensor unit
CN101299002B (en) Sensor gap balancer
JP5591180B2 (en) Drive joint mechanism
JP5670857B2 (en) Rotational angular velocity sensor
US20150139715A1 (en) Nonshiftable coupling with torque monitoring
KR20180038687A (en) Active Roll Stabilizer
JP5678642B2 (en) Torque sensor and driving device
JP2012127883A (en) Torque sensor and drive device equipped with the same
JP5810663B2 (en) Torque sensor
JP5821314B2 (en) Torque sensor
KR20190073878A (en) Apparatus for sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5790205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees