JP2013015459A - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
JP2013015459A
JP2013015459A JP2011149476A JP2011149476A JP2013015459A JP 2013015459 A JP2013015459 A JP 2013015459A JP 2011149476 A JP2011149476 A JP 2011149476A JP 2011149476 A JP2011149476 A JP 2011149476A JP 2013015459 A JP2013015459 A JP 2013015459A
Authority
JP
Japan
Prior art keywords
load
transmission shaft
shaft
torque transmission
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011149476A
Other languages
Japanese (ja)
Other versions
JP5768544B2 (en
Inventor
Nobuhiro Saito
伸浩 齊藤
Kazunari Kitachi
一成 北地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2011149476A priority Critical patent/JP5768544B2/en
Publication of JP2013015459A publication Critical patent/JP2013015459A/en
Application granted granted Critical
Publication of JP5768544B2 publication Critical patent/JP5768544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a torque sensor having a distortion detection part whose detection sensitivity and detection accuracy have been improved.SOLUTION: A torque sensor comprises: a torque transmission shaft 2 that transmits torque with torsion generated between a load-side end portion 2d to which a load-side shaft P1 of a load device P is connected and a drive-side end portion 2c to which driving force is input; bearings 5, 5 that rotatably support the torque transmission shaft 2; and a distortion detection part 40 that detects distortion generated on the torque transmission shaft 2 due to torque input. On the load-side end portion 2d of the torque transmission shaft 2, a load-side connection part 2s is formed that fits in the load-side shaft P1 in the inner circumference of the load-side shaft P1 to allow an engaging structure for keeping almost constant a phase relationship between the load-side connection part and the load-side shaft P1 in their rotational directions. On the torque transmission shaft 2, between the bearings 5 closer to the load-side connection part 2s and the load-side connection part 2s, a thin thickness part 2t is circumferentially formed, whose thickness is further thinner than a spline groove 2s1 having the smallest thickness in the radial direction in the load-side connection part 2s. The distortion detection part 40 is disposed on the thin thickness part 2t.

Description

本発明は、検出精度や検出感度を適正化したトルクセンサに関する。   The present invention relates to a torque sensor with optimized detection accuracy and detection sensitivity.

従来から、電磁作用により回転駆動するモータ等の駆動装置のシャフトに作用するトルクを検出するトルクセンサが知られている。例えば特許文献1には、中空軸状をなし軸方向両端がそれぞれ駆動装置のシャフト及び負荷装置のシャフトに接続され駆動側と負荷側との間で捩れを伴いながらトルクを伝達するカップリングとしてのトルク伝達軸と、トルク伝達軸の内部に中空空間を形成する内周面に取り付けられトルク入力によって内周面に生じる歪みを検出する歪ゲージ等の歪検出部と、中空空間に収納され歪検出部の検出結果を中空空間の外部に送信するテレメータ等の送信部と備え、送信部から受信した検出結果に基づいてトルク伝達軸に作用するトルクの大きさを算出する歪ゲージ式トルクセンサが開示されている。歪ゲージ式トルクセンサは、駆動装置に片持ち状態で取り付けられ又は一体に組み込まれるのが一般的である。   2. Description of the Related Art Conventionally, a torque sensor that detects torque acting on a shaft of a driving device such as a motor that is rotationally driven by electromagnetic action is known. For example, Patent Document 1 discloses a coupling that transmits a torque while being twisted between the drive side and the load side, having a hollow shaft shape and both axial ends connected to the shaft of the drive device and the shaft of the load device, respectively. A torque transmission shaft, a strain detector such as a strain gauge that is attached to the inner peripheral surface forming a hollow space inside the torque transmission shaft and detects strain generated on the inner peripheral surface by torque input, and a strain detection housed in the hollow space Disclosed is a strain gauge type torque sensor that includes a transmission unit such as a telemeter that transmits a detection result of a part to the outside of the hollow space, and calculates the magnitude of torque acting on the torque transmission shaft based on the detection result received from the transmission unit Has been. Generally, the strain gauge type torque sensor is attached to the drive device in a cantilever state or is integrally incorporated therein.

特開昭51−131677号公報Japanese Patent Laid-Open No. 51-131777

近年、モータ等の駆動装置の高速駆動化に伴い、例えば五万回転/毎分などの高速回転に対応したトルクセンサが望まれる。高速回転化に対応するためには、歪検出部の検出感度の向上が要求されることに加えて、遠心力によってトルク伝達軸が破壊されることを防止するためにトルク伝達軸の径を細くする必要がある。上記従来のようにトルク伝達軸内部に送信部を収納する歪ゲージ式トルクセンサでは、軸を細くするほど軸自体が撓みやすくなるうえ、送信部を収納するための空間を確保するためにトルク伝達軸の軸方向寸法をある程度確保しなければならないので、一般的な片持ち支持構造では成り立たず、軸方向に沿って複数配置した軸受を介してトルク伝達軸を回転可能に支持する構造にする必要がある。   2. Description of the Related Art In recent years, a torque sensor corresponding to high-speed rotation such as 50,000 rotations / minute is desired, for example, as drive devices such as motors are driven at high speed. In order to cope with high-speed rotation, in addition to the improvement in detection sensitivity of the strain detection unit, the diameter of the torque transmission shaft is reduced in order to prevent the torque transmission shaft from being destroyed by centrifugal force. There is a need to. In the strain gauge type torque sensor in which the transmission unit is housed in the torque transmission shaft as in the conventional case, the shaft itself is more easily bent as the shaft is made thinner, and torque transmission is performed to secure a space for housing the transmission unit. Since the axial dimension of the shaft must be secured to some extent, a general cantilever support structure does not hold, and it is necessary to have a structure that rotatably supports the torque transmission shaft via a plurality of bearings arranged along the axial direction. There is.

このような軸受支持構造において、例えば歪検出部を二つの軸受間に配置すると、軸受での摩擦(メカロス)が歪検出部に悪影響を与え、歪検出部での検出精度が損なわれてしまうことが考えられる。   In such a bearing support structure, for example, if a strain detection unit is disposed between two bearings, friction (mechanical loss) at the bearing adversely affects the strain detection unit, and detection accuracy at the strain detection unit is impaired. Can be considered.

この悪影響を低減するために、トルク伝達軸の負荷側の軸端から負荷側の軸受の間に歪検出部を配置することが一つの有効な手段として考えられる。この構成において、トルク伝達軸の負荷側の軸端および負荷装置のシャフトにそれぞれスプライン溝を有する接続部を設け、この接続部同士を嵌合させてトルク伝達可能に両軸を接続する場合には、トルク伝達軸の接続部の近傍に歪検出部を配置することになる。この場合、接続部を構成する凹部又は凸部によって応力に偏りが発生し、トルク入力による歪みが歪検出部でバランス良く検出できずに、検出精度を損なうおそれが考えられる。   In order to reduce this adverse effect, it is conceivable as an effective means to dispose a strain detector between the load-side shaft end of the torque transmission shaft and the load-side bearing. In this configuration, when connecting portions having spline grooves are provided in the shaft end of the load side of the torque transmission shaft and the shaft of the load device, and the shafts are connected to each other so that torque can be transmitted. In addition, the strain detector is disposed in the vicinity of the connecting portion of the torque transmission shaft. In this case, there is a possibility that stress is biased due to the concave portion or the convex portion constituting the connecting portion, and distortion due to torque input cannot be detected in a well-balanced manner by the strain detecting portion, and the detection accuracy may be impaired.

上記以外に歪検出部の検出精度を損なう要因としては、回転に伴いトルク伝達軸に発生するコニカルモードの振動やパラレルモードの振動が挙げられる。このような振動の発生を抑制するためには、軸受間の距離を長くして可能な限りトルク伝達軸の軸端に近いところに軸受を配置することが望まれる。   In addition to the above, factors that impair the detection accuracy of the strain detection unit include conical mode vibration and parallel mode vibration that occur in the torque transmission shaft as it rotates. In order to suppress the occurrence of such vibrations, it is desirable to dispose the bearing as close to the shaft end of the torque transmission shaft as possible by increasing the distance between the bearings.

上記課題は、歪検出部として歪ゲージを用いた歪ゲージ式トルクセンサだけでなく、トルク伝達軸の外周面に歪みによって透磁率の変わる磁歪膜を設けた磁歪式トルクセンサでも同様のことが言え、また、トルク伝達軸と負荷装置のシャフトを接続するための接続部をスプライン溝で構成した場合だけでなく、例えばキー又はキー溝で接続部を構成した場合にも同様のことが言える。勿論、トルク伝達軸の駆動側の軸端から駆動側の軸受の間に歪検出部を配置する場合にも同様のことが言える。   The same applies to not only the strain gauge type torque sensor using a strain gauge as a strain detector, but also a magnetostrictive type torque sensor having a magnetostrictive film whose permeability changes depending on strain on the outer peripheral surface of the torque transmission shaft. The same can be said not only when the connecting portion for connecting the torque transmission shaft and the shaft of the load device is constituted by a spline groove, but also when the connecting portion is constituted by a key or a key groove, for example. Of course, the same applies to the case where the strain detection unit is disposed between the driving-side shaft end of the torque transmission shaft and the driving-side bearing.

本発明は、このような課題に着目してなされたものであって、その目的は、歪検出部の検出感度や検出精度を向上させたトルクセンサを提供することである。   The present invention has been made paying attention to such problems, and an object of the present invention is to provide a torque sensor with improved detection sensitivity and detection accuracy of a strain detection unit.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明のトルクセンサは、負荷装置の負荷側シャフトを介して軸方向一端に負荷が入力され駆動装置の駆動側シャフトを介して軸方向他端に駆動力が入力されて負荷側と駆動側との間で捻れを伴いながらトルクを伝達するトルク伝達軸と、軸方向に沿って複数配置された軸受を介してトルク伝達軸を回転可能に支持する固定支持部と、トルク入力によって前記トルク伝達軸に生じる歪みを検出する歪検出部とを具備し、前記歪検出部の検出結果に基づき前記トルク伝達軸に作用するトルクの大きさを算出するトルクセンサであって、前記トルク伝達軸の負荷側端部又は駆動側端部の少なくとも一方には、接続相手となる前記シャフトの外周側又は内周側のいずれかにおいて当該シャフトに嵌合することにより互いの回転方向の位相関係をほぼ一定に維持する噛み合い構造をなす接続部が形成されており、前記トルク伝達軸のうち前記接続部に近い方の前記軸受と前記接続部との間には、前記接続部のうち径方向の肉厚が最も薄い部分よりも更に肉厚を薄くした薄肉部が周回して形成されており、当該薄肉部に前記歪検出部が配置されていることを特徴とする。   In other words, the torque sensor according to the present invention is driven with the load side by the load being input to one end in the axial direction via the load side shaft of the load device and the driving force being input to the other end in the axial direction via the drive side shaft of the drive device. A torque transmission shaft that transmits torque while twisting between the side, a fixed support portion that rotatably supports the torque transmission shaft via a plurality of bearings arranged along the axial direction, and the torque input by torque input A torque sensor that detects a distortion generated in the transmission shaft, and calculates a magnitude of a torque acting on the torque transmission shaft based on a detection result of the strain detection unit, wherein the torque transmission shaft At least one of the load-side end and the drive-side end is fitted to the shaft on either the outer peripheral side or the inner peripheral side of the shaft to be connected to each other, thereby rotating each other in the rotational direction phase. A connecting portion having a meshing structure for maintaining the engagement substantially constant is formed, and the diameter of the connecting portion is between the bearing and the connecting portion closer to the connecting portion of the torque transmission shaft. A thin portion having a thinner thickness than the thinnest portion in the direction is formed around the thin portion, and the strain detecting portion is disposed in the thin portion.

互いに回転方向の位相関係をほぼ一定に維持するとは、同軸上に同期回転可能に取り付けられる場合のほか、回転方向の位相に多少のガタつきや位置ずれを許容した状態で一体回転可能に取り付けられる場合を意味する。この噛み合い構造をなす例としては、スプライン溝やキー溝などが挙げられる。   In order to maintain the phase relationship in the rotational direction to be almost constant, in addition to being mounted on the same axis so as to be able to rotate synchronously, the phase in the rotational direction can be mounted so as to be able to rotate integrally while allowing some backlash or misalignment. Means the case. Examples of this meshing structure include spline grooves and key grooves.

このように、接続部を構成するスプライン溝といった凸凹部によって応力集中箇所に偏りが生じるものの、この応力集中化箇所の偏りによる影響を低減すべく、接続部のうち径方向の肉厚が最も薄い部位よりも更に肉厚を薄くした薄肉部が周回して形成され、この薄肉部に歪検出部を配置しているので、接続部の応力集中の偏りによる歪検出部への影響を低減することが可能となる。しかも、歪検出部を軸受よりも外側(負荷側又は駆動側)に配置しているので、軸受での摩擦(メカロス)が歪検出部に与える影響を低減して、歪検出部での検出精度を向上することができる。さらに、歪検出部の配置される部位は、周囲に比べて径方向の肉厚の薄い薄肉部であるので、他の部位に比べて応力が集中しやすく、歪検出部の検出感度を向上させることが可能となる。   As described above, although the stress concentration location is biased by the convex and concave portions such as the spline grooves constituting the connection portion, the thickness in the radial direction is the thinnest in the connection portion in order to reduce the influence due to the bias of the stress concentration location. A thin part with a smaller thickness than the part is formed around the part, and the strain detection part is placed in this thin part, reducing the influence on the strain detection part due to uneven stress concentration in the connection part. Is possible. In addition, since the strain detection unit is located outside the load (load side or drive side), the influence of friction (mechanical loss) on the bearing on the strain detection unit is reduced, and the detection accuracy at the strain detection unit is reduced. Can be improved. Further, since the portion where the strain detection unit is disposed is a thin portion having a thin radial thickness compared to the surroundings, stress is more likely to be concentrated than other portions, and the detection sensitivity of the strain detection unit is improved. It becomes possible.

また、例えば、接続部がスプライン溝を有するスプライン軸又は軸受である場合、スプライン溝を形成するために必要な歯切り工具の逃げ部の軸方向寸法を、歪検出部の取り付け可能な程度の寸法まで広げるだけで、逃げ部を薄肉部として利用できるので、逃げ部とは別途に薄肉部を形成する場合に比べて軸端から軸受までの軸寸法(オーバーハング寸法)を低減でき、コニカルモードやパラレルモードでの振動の発生を抑制することも可能となる。   Also, for example, when the connecting part is a spline shaft or bearing having a spline groove, the axial dimension of the relief part of the gear cutting tool necessary for forming the spline groove is a dimension that can be attached to the strain detection part. Since the relief part can be used as a thin part simply by spreading it out to the shaft part, the shaft dimension from the shaft end to the bearing (overhang dimension) can be reduced compared to the case where a thin part is formed separately from the relief part. It is also possible to suppress the occurrence of vibration in the parallel mode.

複数の歪検出部の検出バランスを向上させて検出精度を向上させるためには、前記接続部は、円周方向に沿って一定間隔で配置された複数のスプライン溝を有し、歪検出部は、軸心回りに対称となる位置に対をなすように複数取り付けられ、前記歪検出部と前記スプライン溝との円周方向の位相関係は、全ての歪検出部で同一となるように設定されていることが効果的である。   In order to improve detection accuracy by improving the detection balance of the plurality of strain detection units, the connection unit includes a plurality of spline grooves arranged at regular intervals along the circumferential direction, A plurality of pairs are attached so as to make a pair at symmetrical positions around the axis, and the circumferential phase relationship between the strain detector and the spline groove is set to be the same for all strain detectors. It is effective.

本発明は、以上説明したように、接続部における凹部や凸部によって生じる応力集中箇所の偏りによる影響を低減すべく、接続部のうち径方向の肉厚が最も薄い部位よりも更に肉厚を薄くした薄肉部が周回して形成され、この薄肉部に歪検出部を配置しているので、接続部の応力集中箇所の偏りによる歪検出部への影響を低減でき、歪検出部の検出精度を向上させることが可能となる。   As described above, the present invention further reduces the thickness of the connecting portion from the thinnest portion in the radial direction in order to reduce the influence of the bias of the stress concentration portion caused by the concave portion or the convex portion in the connecting portion. Since the thinned thin part is formed around and the strain detection part is arranged in this thin part, the influence on the strain detection part due to the bias of the stress concentration part of the connection part can be reduced, and the detection accuracy of the strain detection part Can be improved.

さらに、歪検出部の配置する部位は、周囲に比べて径方向の肉厚の薄い薄肉部であるので、他の部位に比べて応力が集中しやすく、歪検出部の検出感度を向上させることが可能となる。   Furthermore, since the part where the strain detection unit is arranged is a thin part that is thinner in the radial direction than the surrounding area, stress is more likely to concentrate than other parts, and the detection sensitivity of the strain detection part is improved. Is possible.

したがって、検出精度及び検出感度を向上させたトルクセンサを提供することが可能となる。   Therefore, it is possible to provide a torque sensor with improved detection accuracy and detection sensitivity.

本発明の一実施形態に係るトルクセンサの構成を示す断面図。Sectional drawing which shows the structure of the torque sensor which concerns on one Embodiment of this invention. 同トルクセンサを適用したモータ等の駆動装置を模式的に示す図。The figure which shows typically drive apparatuses, such as a motor, to which the torque sensor is applied. 嵌合軸の構成図、並びに、トルク伝達軸と嵌合軸の嵌合状態を示す図。The block diagram of a fitting shaft, and the figure which shows the fitting state of a torque transmission shaft and a fitting shaft. トルク伝達軸と負荷装置との接続部分及びその近傍の構成を模式的に示す図。The figure which shows typically the structure of the connection part of a torque transmission shaft and a load apparatus, and its vicinity. トルク伝達軸の負荷側接続部を軸方向から視た図。The figure which looked at the load side connection part of a torque transmission shaft from the axial direction. スプライン溝と歪検出部との位置関係を模式的に示す図。The figure which shows typically the positional relationship of a spline groove | channel and a distortion | strain detection part. 本発明の他の実施形態に係るトルクセンサの構成を模式的に示す図。The figure which shows typically the structure of the torque sensor which concerns on other embodiment of this invention.

以下、本発明の一実施形態に係るトルクセンサを、図面を参照して説明する。   Hereinafter, a torque sensor according to an embodiment of the present invention will be described with reference to the drawings.

トルクセンサTsは、図1に示すように、駆動装置Mと負荷装置Pとの間に介在するトルク伝達軸2に作用するトルクの大きさを測定する装置であり、略中空軸状をなし軸方向両端2c,2dがそれぞれ駆動側(駆動装置M)及び負荷側(負荷装置P)に接続され駆動側及び負荷側の間で捩れを伴いながらトルクを伝達するトルク伝達軸2と、トルク伝達軸2の内部に内部空間SP1を形成する内周面2aに取り付けられトルク伝達軸2に対するトルク入力によりトルク伝達軸2に生じる歪みに対応する検出信号(差動信号)を出力する歪ゲージを用いた歪検出部40と、歪検出部40の検出信号をトルク伝達軸2の外部に送信する送信部30と、送信部30からアンテナ部33を介して受信した検出信号に基づきトルク伝達軸2に作用するトルクの大きさを算出するトルク演算部31と、略中空軸状をなしトルク伝達軸2の内周側においてトルク伝達軸2に嵌合することによりトルク伝達軸2と共に二重の中空軸となる嵌合軸8とを有している。このトルクセンサTsは、図2に例示するように、トルク伝達軸2の軸方向一端2cと駆動力出力軸M3a(駆動側シャフト)とを接続してトルクセンサTsを備えたモータ等の駆動装置Mを構成するために利用される。なお、本明細書においては、軸方向をXとし、駆動側をX1とし、負荷側をX2として説明する。   As shown in FIG. 1, the torque sensor Ts is a device that measures the magnitude of torque acting on the torque transmission shaft 2 interposed between the drive device M and the load device P, and has a substantially hollow shaft shape. Both ends 2c and 2d in the direction are connected to the drive side (drive device M) and the load side (load device P), respectively, and a torque transmission shaft 2 that transmits torque while being twisted between the drive side and the load side, and a torque transmission shaft A strain gauge that is attached to an inner peripheral surface 2a that forms an internal space SP1 in the interior of 2 and outputs a detection signal (differential signal) corresponding to strain generated in the torque transmission shaft 2 by torque input to the torque transmission shaft 2 was used. Acting on the torque transmission shaft 2 based on the strain detection unit 40, the transmission unit 30 that transmits the detection signal of the strain detection unit 40 to the outside of the torque transmission shaft 2, and the detection signal received from the transmission unit 30 via the antenna unit 33. Do A torque calculation unit 31 for calculating the size of the torque and a substantially hollow shaft shape are fitted into the torque transmission shaft 2 on the inner peripheral side of the torque transmission shaft 2, thereby forming a double hollow shaft together with the torque transmission shaft 2. And a fitting shaft 8. As illustrated in FIG. 2, the torque sensor Ts includes a driving device such as a motor provided with the torque sensor Ts by connecting the axial end 1 c of the torque transmission shaft 2 and the driving force output shaft M <b> 3 a (driving side shaft). Used to construct M. In the present specification, the axial direction is X, the drive side is X1, and the load side is X2.

トルク伝達軸2は、図1に示すように、内部に内部空間SP1が形成された略中空軸状をなす鋼材で構成され、その内周面2aの横断面の形状は嵌合軸8の外周面8bの横断面に対応する形状にしてある。そして、この内部空間SP1に嵌合軸8を駆動側X1から圧入するしまりばめによって、嵌合軸8の外周面8bとトルク伝達軸2の内周面2aとを接触させた嵌合状態にしている。図1及び図4に示すように、トルク伝達軸2の軸方向一端2c(駆動側X1の端部2c)は、回転駆動するモータ等の駆動装置Mの駆動力出力軸M3a(シャフト)とスプライン接続により関連付けられて駆動装置Mにより駆動力が入力され、トルク伝達軸2の軸方向他端2d(負荷側X2の端部2d)は、負荷装置Pの負荷側シャフトP1とスプライン接続により関連付けられて負荷装置Pにより負荷が入力される。   As shown in FIG. 1, the torque transmission shaft 2 is made of a steel material having a substantially hollow shaft shape in which an internal space SP <b> 1 is formed, and the cross-sectional shape of the inner peripheral surface 2 a is the outer periphery of the fitting shaft 8. The shape corresponds to the cross section of the surface 8b. The fitting shaft 8 is press-fitted into the internal space SP1 from the drive side X1 by an interference fit so that the outer peripheral surface 8b of the fitting shaft 8 and the inner peripheral surface 2a of the torque transmission shaft 2 are brought into contact with each other. ing. As shown in FIGS. 1 and 4, one end 2c in the axial direction of the torque transmission shaft 2 (end portion 2c on the driving side X1) is connected to a driving force output shaft M3a (shaft) of a driving device M such as a motor that rotates and splines. The driving force is input by the driving device M in association with the connection, and the other axial end 2d of the torque transmission shaft 2 (end portion 2d on the load side X2) is associated with the load side shaft P1 of the load device P by spline connection. The load is input by the load device P.

トルク伝達軸2は、図1及び図4に示すように、軸受5を介して固定支持部6に回転可能に支持されている。軸受5は、ボールベアリング等の転がり軸受を用いたもので、トルク伝達軸2を複数箇所(本実施形態では二箇所)で支持するように軸方向に沿って複数(本実施形態では二つ)配置されている。   As shown in FIGS. 1 and 4, the torque transmission shaft 2 is rotatably supported by a fixed support portion 6 via a bearing 5. The bearing 5 uses a rolling bearing such as a ball bearing, and a plurality (two in this embodiment) are provided along the axial direction so as to support the torque transmission shaft 2 at a plurality of places (two in this embodiment). Has been placed.

図4に示すように、トルク伝達軸2の負荷側端部2dには、接続相手となる負荷側シャフトP1の内周側において負荷側シャフトP1に嵌合することにより互いに回転方向の位相関係をほぼ一定に維持する噛み合い構造をなす負荷側接続部2sが設けられている。トルク伝達軸2の駆動側端部2cにも同様に出力軸M3a(駆動側シャフト)に接続するための駆動側接続部2rが設けられている。これら負荷側接続部2s及び駆動側接続部2rは、図5に示すように、トルク伝達軸2の外周面2bに円周方向に沿って一定間隔で形成された複数のスプライン溝2s1を有し、トルク伝達軸2が雄型のインボリュートスプライン軸をなしている。図4に示す負荷側シャフトP1は、これに対応する雌型のインボリュートスプライン軸受をなしている。図5に示すように、トルク伝達軸2の外周面2bは、スプライン溝2s1によって区分された歯部2s2を有し、スプライン溝2s1と歯部2s2とが周方向に沿って交互に形成されており、溝底が最も径方向の肉厚の薄い部分となっている。その溝底の径方向寸法をD1と表している。   As shown in FIG. 4, the load-side end 2d of the torque transmission shaft 2 is fitted with the load-side shaft P1 on the inner peripheral side of the load-side shaft P1 to be connected to each other, so that the phase relationship in the rotational direction is mutually established. There is provided a load side connection portion 2s having a meshing structure that is maintained substantially constant. Similarly, a drive side connection portion 2r for connecting to the output shaft M3a (drive side shaft) is also provided at the drive side end portion 2c of the torque transmission shaft 2. As shown in FIG. 5, the load side connection portion 2s and the drive side connection portion 2r have a plurality of spline grooves 2s1 formed on the outer peripheral surface 2b of the torque transmission shaft 2 at regular intervals along the circumferential direction. The torque transmission shaft 2 forms a male involute spline shaft. The load side shaft P1 shown in FIG. 4 forms a female involute spline bearing corresponding to this. As shown in FIG. 5, the outer peripheral surface 2b of the torque transmission shaft 2 has tooth portions 2s2 divided by spline grooves 2s1, and the spline grooves 2s1 and the tooth portions 2s2 are alternately formed along the circumferential direction. The groove bottom is the thinnest part in the radial direction. The radial dimension of the groove bottom is represented as D1.

図4に示すように、トルク伝達軸2のうち負荷側接続部2sに近い方の軸受5と負荷側接続部2sとの間には、負荷側接続部2sのうち径方向の肉厚が最も薄い部分(スプライン溝2s1)よりも更に肉厚を薄くした薄肉部2tが周回して形成されている。すなわち、複数の軸受5の外側であって負荷側接続部2sの内側に、薄肉部2tが形成されているとも言える。この薄肉部2tは、その径方向寸法D2が、負荷側接続部2sを構成するスプライン溝2s1の径方向寸法D1よりも薄い括れ部とも呼べ、スプライン溝2s1をトルク伝達軸2に形成するために用いる歯切り工具などの切削工具の逃げでもあり、その軸方向寸法W1は、切削工具の逃げとして最低限必要な寸法W2よりも広くして歪検出部40の取付を許容する寸法に設定している。薄肉部2tと負荷側接続部2sとの境界部分は、軸方向に沿って滑らかに肉厚が変化するように縦断面形状が曲面にされ、応力集中を避けている。   As shown in FIG. 4, the radial thickness of the load side connection portion 2s is the largest between the bearing 5 near the load side connection portion 2s of the torque transmission shaft 2 and the load side connection portion 2s. A thin portion 2t having a thinner thickness than the thin portion (spline groove 2s1) is formed to circulate. That is, it can be said that the thin portion 2t is formed outside the plurality of bearings 5 and inside the load side connection portion 2s. The thin portion 2t can also be called a constricted portion whose radial direction dimension D2 is thinner than the radial direction dimension D1 of the spline groove 2s1 constituting the load side connection portion 2s, and for forming the spline groove 2s1 in the torque transmission shaft 2. It is also a relief of a cutting tool such as a gear cutting tool to be used, and its axial dimension W1 is set to a dimension that allows the strain detector 40 to be attached by making it wider than the minimum required dimension W2 as a relief of the cutting tool. Yes. The boundary portion between the thin-walled portion 2t and the load-side connecting portion 2s has a curved longitudinal sectional shape so that the wall thickness smoothly changes along the axial direction, thereby avoiding stress concentration.

嵌合軸8は、図3(a)及び図3(c)に示すように、内部に中空空間SP0が形成された有底の略中空軸状をなすガラスエポキシ樹脂等の樹脂で構成されている。嵌合軸8の内部に設けられる中空空間SP0は、軸方向一端8c側(駆動側X1)が閉止される一方で、軸方向他端8d側(負荷側X2)が開口部8eを介して開放されている。嵌合状態においては、図1に示すように、開口部8eを介して、歪検出部40の配置されたトルク伝達軸2内部の内部空間SP1と、嵌合軸8内部の中空空間SP0とが連通している。この嵌合軸8において送信部30を収納するための中空空間SP0は、軸方向に沿った長尺状をなし、図3(a)に示すように、軸中心Cnを通り負荷側X2の端部8d(軸方向一端)から駆動側X1(軸方向他端)に向かう第一の穴8hと、図3(a)及び図3(d)に示すように、横断面において軸方向Xに直交する線Liを通り径方向X3に沿った貫通孔である第二の穴8hとを導通して形成されている。これら第一の穴8h及び第二の穴8hは、ドリル及びワイヤーカットなどの加工により空けられる。なお、図1に示すように、トルク伝達軸2との嵌合状態において、トルク伝達軸2の内周面2aに設けられた突状の嵌合軸支持部20と、嵌合軸8の軸方向他端8d(負荷側X2の端部8d)とを当接させることにより、軸方向における嵌合軸8の位置決めがなされる。 As shown in FIGS. 3 (a) and 3 (c), the fitting shaft 8 is made of a resin such as a glass epoxy resin having a bottomed substantially hollow shaft shape in which a hollow space SP0 is formed. Yes. The hollow space SP0 provided inside the fitting shaft 8 is closed on the axial one end 8c side (drive side X1), while being opened on the other axial end 8d side (load side X2) through the opening 8e. Has been. In the fitted state, as shown in FIG. 1, an internal space SP1 inside the torque transmission shaft 2 in which the strain detecting unit 40 is arranged and a hollow space SP0 inside the fitting shaft 8 are arranged through the opening 8e. Communicate. The hollow space SP0 for accommodating the transmitting unit 30 in the fitting shaft 8 has an elongated shape along the axial direction, and passes through the shaft center Cn and ends of the load side X2 as shown in FIG. from part 8d (one axial end) and the first hole 8h 1 toward the driving side X1 (axial end), as shown in FIG. 3 (a) and FIG. 3 (d), the axially X in cross-section the orthogonal lines Li conducting a second hole 8h 2 is a through-hole along the street radially X3 are formed. These first bore 8h 1 and the second hole 8h 2 of are emptied by working such as drills and wire cutting. As shown in FIG. 1, in the fitted state with the torque transmission shaft 2, the protruding fitting shaft support portion 20 provided on the inner peripheral surface 2 a of the torque transmission shaft 2 and the shaft of the fitting shaft 8. The fitting shaft 8 is positioned in the axial direction by contacting the other end 8d in the direction (the end 8d on the load side X2).

図1に示すように、歪検出部40は、機械的な寸法の微小な変化を電気信号として検出するシート状の歪ゲージを用いたもので、トルク伝達軸2の内部に内部空間SP1を形成し且つ軸心Cnを中心とする円形に沿った内周面2aに接着剤を介して貼付されている。歪検出部40の貼付位置は、上記薄肉部の内周面2aに設定されている。本実施形態では、互いに軸心Cnを中心として対称となる位置に歪検出部40をそれぞれ取り付けて歪検出部40を一対又は複数対とし、複数の歪検出部を既知の4ゲージ法でホイートストンブリッジ回路を構成するように接続している。このブリッジ回路は、励起信号とも呼べる励起電圧が印加されている状態において、歪検出部40の歪みによって生じた抵抗値の変化を検出信号とも呼べる差動電圧として出力する。この差動電圧は、歪量に比例した大きさの電圧であり、歪みに対応する信号である。また、図6においてトルク伝達軸2の外周面2bと内周面2aとを展開して模式的に示すように、歪検出部40とスプライン溝2s1との円周方向RDの位相関係は、全ての歪検出部40で同一となるように設定されている。本実施形態では、図6に示すように、歪検出部40の受感領域の中心と、スプライン溝2s1の中心とが円周方向に重なるように設定されているが、これに限定されるものではない。   As shown in FIG. 1, the strain detector 40 uses a sheet-like strain gauge that detects a minute change in mechanical dimensions as an electrical signal, and forms an internal space SP <b> 1 inside the torque transmission shaft 2. And it is affixed on the inner peripheral surface 2a along the circle centered on the axis Cn via an adhesive. The application position of the strain detector 40 is set on the inner peripheral surface 2a of the thin portion. In the present embodiment, the strain detectors 40 are respectively attached to positions symmetrical about the axis Cn so that the strain detectors 40 are paired or paired, and the plurality of strain detectors are subjected to a Wheatstone bridge by a known 4-gauge method. They are connected to form a circuit. This bridge circuit outputs a change in resistance value caused by the distortion of the distortion detector 40 as a differential voltage that can also be called a detection signal in a state where an excitation voltage that can also be called an excitation signal is applied. This differential voltage is a voltage proportional to the amount of distortion, and is a signal corresponding to the distortion. Further, as shown schematically in FIG. 6 in which the outer peripheral surface 2b and the inner peripheral surface 2a of the torque transmission shaft 2 are developed and schematically shown, all of the phase relationships in the circumferential direction RD between the strain detector 40 and the spline groove 2s1 are The distortion detection unit 40 is set to be the same. In the present embodiment, as shown in FIG. 6, the center of the sensitive area of the strain detector 40 and the center of the spline groove 2s1 are set to overlap in the circumferential direction, but the present invention is not limited to this. is not.

送信部30は、図1及び図3(a)に示すように、プリント基板などの板状部位30aを有し、歪検出部40に励起電圧を印加し且つ歪検出部40から差動電圧をトルク伝達軸2の外部へ送信するテレメータを用いたもので、嵌合軸8における中空空間SP0内に配置されて、中空空間SP0の内面8aに設けられた取付部80に保持されている。   As shown in FIG. 1 and FIG. 3A, the transmission unit 30 has a plate-like portion 30a such as a printed circuit board, applies an excitation voltage to the strain detection unit 40, and receives a differential voltage from the strain detection unit 40. A telemeter that transmits to the outside of the torque transmission shaft 2 is used. The telemeter is disposed in the hollow space SP0 of the fitting shaft 8 and is held by a mounting portion 80 provided on the inner surface 8a of the hollow space SP0.

取付部80は、図1及び図3(a)に示すように、送信部30の板状部位30aの端部を差し込み可能なスリットであり、中空空間SP0を形成する内面8aに複数形成されている。具体的には、図3(a)及び図3(c)に示すように、中空空間SP0を有底筒状の中空部とみなした場合に、底部に対応する内面8aに第一の取付部80aが形成されていると共に、開口部8e近傍の内周面8aに対をなす第二の取付部80b・80bが形成されており、これら第一及び第二の取付部80a・80bによって長尺状の送信部30を両持ち状態で支持している。   As shown in FIGS. 1 and 3A, the attachment portion 80 is a slit into which an end portion of the plate-like portion 30a of the transmission portion 30 can be inserted, and a plurality of attachment portions 80 are formed on the inner surface 8a forming the hollow space SP0. Yes. Specifically, as shown in FIGS. 3A and 3C, when the hollow space SP0 is regarded as a bottomed cylindrical hollow portion, the first attachment portion is provided on the inner surface 8a corresponding to the bottom portion. 80a is formed, and second mounting portions 80b and 80b that are paired with the inner peripheral surface 8a in the vicinity of the opening 8e are formed. The first and second mounting portions 80a and 80b are long. The transmitter 30 is supported in a both-sided state.

図1に示すように、トルク伝達軸2の外周側には、アンテナ部33が設けられている。このアンテナ部33の軸方向両側には、二つの軸受5・5が配置されている。また、トルク伝達軸2の外部には、送信部30から送信された検出信号をアンテナ部33を介して受信してトルクの大きさを演算処理により算出するトルク演算部31と、送信部30に対して電力を非接触でアンテナ部33を介して供給する電力供給部32とが設けられている。   As shown in FIG. 1, an antenna portion 33 is provided on the outer peripheral side of the torque transmission shaft 2. Two bearings 5, 5 are arranged on both sides of the antenna portion 33 in the axial direction. Further, outside the torque transmission shaft 2, a torque calculation unit 31 that receives the detection signal transmitted from the transmission unit 30 via the antenna unit 33 and calculates the magnitude of the torque by calculation processing, and the transmission unit 30 On the other hand, a power supply unit 32 that supplies power via the antenna unit 33 in a non-contact manner is provided.

すなわち、図1に示すように、電力供給部32からアンテナ部33を介して送信部30に電力が供給され、歪検出部40に励起電圧が印加される。そして、トルク伝達軸2にトルクが作用すると、トルク伝達軸2に捩れが生じ、この捩れがトルク伝達軸2の内周面2aに貼付された歪検出部40によって歪量として検出される。歪検出部40から出力される歪量に対応する検出信号(差動電圧)が送信部30からトルク演算部31に送信され、トルク演算部31が検出信号に基づいてトルクの大きさを算出する。   That is, as shown in FIG. 1, power is supplied from the power supply unit 32 to the transmission unit 30 via the antenna unit 33, and an excitation voltage is applied to the distortion detection unit 40. When torque acts on the torque transmission shaft 2, the torque transmission shaft 2 is twisted, and this twist is detected as a strain amount by the strain detector 40 attached to the inner peripheral surface 2 a of the torque transmission shaft 2. A detection signal (differential voltage) corresponding to the amount of strain output from the strain detection unit 40 is transmitted from the transmission unit 30 to the torque calculation unit 31, and the torque calculation unit 31 calculates the magnitude of torque based on the detection signal. .

固定支持部6は、図1に示すように、略有底円筒状をなし駆動側X1の基端部60aが駆動装置MのハウジングM1にボルト等の止着具を介して取り付けられる筒状支持部60と、筒状支持部60の負荷側X2の開口60kを閉止する蓋状支持部61とから構成されている。筒状支持部60及び蓋状支持部61により形成される内部空間SP2に軸受5が配置されており、固定支持部6は、筒状支持部60の底部60bt及び蓋状支持部61を軸方向Xに沿って貫通する位置に配置されたトルク伝達軸2を軸受5を介して回転可能に支持し、トルク伝達軸2及び嵌合軸8を一体に回転可能にしている。軸受5は、トルク伝達軸2の外周面2bに形成された突状の回転側軸受支持部64aと、蓋状支持部61及び筒状支持部60の底部60btを足場とする固定側軸受支持部64bとにより抱き込まれて軸方向に固定されている。   As shown in FIG. 1, the fixed support portion 6 has a substantially bottomed cylindrical shape, and a cylindrical support in which a base end portion 60a of the drive side X1 is attached to the housing M1 of the drive device M via a fastening device such as a bolt. Part 60 and a lid-like support part 61 that closes the opening 60k on the load side X2 of the cylindrical support part 60. The bearing 5 is arranged in the internal space SP2 formed by the cylindrical support part 60 and the lid-like support part 61, and the fixed support part 6 has the bottom part 60bt of the cylindrical support part 60 and the lid-like support part 61 in the axial direction. The torque transmission shaft 2 disposed at a position penetrating along X is supported rotatably via a bearing 5 so that the torque transmission shaft 2 and the fitting shaft 8 can rotate together. The bearing 5 includes a projecting rotation-side bearing support portion 64 a formed on the outer peripheral surface 2 b of the torque transmission shaft 2, and a fixed-side bearing support portion using the lid-like support portion 61 and the bottom portion 60 bt of the cylindrical support portion 60 as a scaffold. 64b and is fixed in the axial direction.

図1に示すように、トルク伝達軸2の軸方向一端2c側(駆動側X1)から導入される冷媒を内部空間SP1に連通しないように軸受5に供給する冷媒供給路7が設けられている。具体的には、図3(a)、図3(b)及び図3(c)に示すように、嵌合軸8の外周面8bに、軸方向一端8c側(駆動側X1)から軸方向他端8d側(負荷側X2)に向けて延びる溝部81が設けられており、図1及び図3(d)に示すように、トルク伝達軸2及び嵌合軸8の嵌合状態において、溝部81とその溝部81の対向面(トルク伝達軸2の内周面2a)との間に、軸方向Xの一方から導入される冷媒を軸受5に供給するためのスラスト路71が形成されるようにしている。   As shown in FIG. 1, a refrigerant supply path 7 is provided for supplying the refrigerant introduced from the axial one end 2c side (drive side X1) of the torque transmission shaft 2 to the bearing 5 so as not to communicate with the internal space SP1. . Specifically, as shown in FIGS. 3A, 3B, and 3C, the outer peripheral surface 8b of the fitting shaft 8 is axially moved from the axial one end 8c side (drive side X1). A groove 81 extending toward the other end 8d side (load side X2) is provided, and as shown in FIGS. 1 and 3 (d), the groove portion is in the fitted state of the torque transmission shaft 2 and the fitting shaft 8. A thrust path 71 for supplying the refrigerant introduced from one side in the axial direction X to the bearing 5 is formed between 81 and the opposing surface of the groove 81 (the inner peripheral surface 2a of the torque transmission shaft 2). I have to.

スラスト路71以外に冷媒供給路7を構成するものとして、図1及び図3(a)〜(c)に示すように、導入路70及び接続路72が設けられている。導入路70は、嵌合状態で内側となる嵌合軸8の軸中心Cnを通り軸方向一端8c(駆動側X1)から冷媒を導入する路であり、接続路72は、導入路70から外周に向けて延在し導入路70とスラスト路71とを接続する路である。スラスト路71には、各々の軸受5に冷媒を噴出する噴射路73が複数設けられており、スラスト路71を基幹路とし、噴射路73を分岐路として、各々の軸受5に冷媒を供給する流路が一つのスラスト路71から分岐して形成される。この噴射路73に対応して固定側軸受支持部64bは、噴射路73と径方向で重合する位置にあり、噴射路73から供給された冷媒を軸受5に案内する湾曲した案内面64xが形成されている。   As shown in FIG. 1 and FIGS. 3A to 3C, an introduction path 70 and a connection path 72 are provided as components constituting the refrigerant supply path 7 other than the thrust path 71. The introduction path 70 is a path through which the refrigerant is introduced from the axial end 8c (drive side X1) through the axial center Cn of the fitting shaft 8 that is inside in the fitted state, and the connection path 72 is an outer periphery from the introduction path 70. This is a path that extends toward, and connects the introduction path 70 and the thrust path 71. The thrust path 71 is provided with a plurality of injection paths 73 for ejecting refrigerant to each bearing 5, and the thrust path 71 serves as a main path and the injection path 73 serves as a branch path to supply refrigerant to each bearing 5. A flow path is formed by branching from one thrust path 71. Corresponding to the injection path 73, the fixed-side bearing support portion 64b is in a position overlapping with the injection path 73 in the radial direction, and a curved guide surface 64x for guiding the refrigerant supplied from the injection path 73 to the bearing 5 is formed. Has been.

溝部81は、図3(d)に示すように、複数(本実施形態では二つ)設けられて対をなし、対をなす溝部81・81は軸中心Cn回りに対称となる位置に配置されており、図1に示すように、各々の接続路72を介して導入路70の先端部にある分岐部70aと接続されている。これにより、軸全体での荷重バランスをとっている。   As shown in FIG. 3D, a plurality (two in this embodiment) of the groove portions 81 are provided to form a pair, and the pair of groove portions 81 and 81 are arranged at positions that are symmetric about the axial center Cn. As shown in FIG. 1, each connection path 72 is connected to a branch portion 70 a at the tip of the introduction path 70. Thereby, the load balance in the whole axis | shaft is taken.

なお、図2に概念図を用いて模式的に示すように、駆動装置Mは周知のモータ等を用いたもので、ハウジングM1に固定され磁界を発生する固定子M2と、固定子M2に対して回転可能な状態でハウジングM1に支持され磁界を受けて回る回転子M3とを有し、固定子M2への通電制御により磁界を変化させ、固定子M2と回転子M3との間に反発力や吸引力等を作用させて回転子M3を回転させ、電気エネルギーから回転駆動力を出力するものである。回転子M3の駆動力出力軸M3a(シャフト)に上記トルク伝達軸2が接続されてトルク伝達軸2に駆動力が入力されるように構成するとともに、ハウジングM1に固定支持部6を取り付けてある。また、駆動装置Mを構成する駆動力出力軸M3aは、出力軸用の軸受M4により回転可能に支持されるとともに、内部に冷媒を通して出力軸用の軸受M4や図示しない発熱部を始めとする機構部品に冷媒を供給する流路M5の一部を構成するものであり、トルク伝達軸2の内部に形成される導入路70は、出力軸M3aから冷媒が導入されるように構成されている。勿論、トルク伝達軸2と駆動力出力軸M3a(シャフト)とを同一部材として一体に形成してもよく、また、固定支持部6とハウジングM1とを同一部材として一体に形成してもよい。この場合、トルクセンサ及び駆動装置を合わせた装置全体の軸方向寸法を小形化することも可能となる。図2に示す駆動装置Mは概念図で示したものにすぎず、この図示の駆動装置に限定されるものではない。また駆動装置にはモータ以外のものを用いてもよい。   As schematically shown in FIG. 2 using a conceptual diagram, the driving device M uses a well-known motor or the like, and is fixed to the housing M1 and generates a magnetic field. And a rotor M3 that is supported by the housing M1 in a rotatable state and rotates by receiving a magnetic field. The magnetic field is changed by energization control to the stator M2, and a repulsive force is generated between the stator M2 and the rotor M3. The rotor M3 is rotated by applying a suction force or the like, and the rotational driving force is output from the electric energy. The torque transmission shaft 2 is connected to the driving force output shaft M3a (shaft) of the rotor M3 so that the driving force is input to the torque transmission shaft 2, and the fixed support portion 6 is attached to the housing M1. . Further, the driving force output shaft M3a constituting the driving device M is rotatably supported by an output shaft bearing M4, and a mechanism including an output shaft bearing M4 and a heat generating unit (not shown) through the refrigerant therein. A part of the flow path M5 for supplying the refrigerant to the component is configured, and the introduction path 70 formed inside the torque transmission shaft 2 is configured such that the refrigerant is introduced from the output shaft M3a. Of course, the torque transmission shaft 2 and the driving force output shaft M3a (shaft) may be integrally formed as the same member, and the fixed support portion 6 and the housing M1 may be integrally formed as the same member. In this case, it is possible to reduce the axial dimension of the entire device including the torque sensor and the drive device. The driving device M shown in FIG. 2 is only a conceptual diagram, and is not limited to the illustrated driving device. A drive device other than a motor may be used.

以上のように、本実施形態のトルクセンサTsは、負荷装置Pの負荷側シャフトP1を介して軸方向一端(2d)に負荷が入力され軸方向他端(2c)に駆動力が入力されて負荷側X2と駆動側X1との間で捻れを伴いながらトルクを伝達するトルク伝達軸2と、軸方向Xに沿って複数配置された軸受5・5を介してトルク伝達軸2を回転可能に支持する固定支持部6と、トルク入力によってトルク伝達軸2に生じる歪みを検出する歪検出部40とを具備し、歪検出部40の検出結果に基づきトルク伝達軸2に作用するトルクの大きさを算出するトルクセンサTsであって、トルク伝達軸2の負荷側端部2dには、接続相手となる負荷側シャフトP1の内周側において負荷側シャフトP1に嵌合することにより互いの回転方向の位相関係をほぼ一定に維持する噛み合い構造をなす負荷側接続部2sが形成されており、トルク伝達軸2のうち負荷側X2にある軸受5と負荷側接続部2sとの間には、負荷側接続部2sのうち径方向の肉厚が最も薄い部分(スプライン溝2s1)よりも更に肉厚を薄くした薄肉部2tが周回して形成されており、薄肉部2tに歪検出部40が配置されている。   As described above, in the torque sensor Ts of the present embodiment, the load is input to the one axial end (2d) and the driving force is input to the other axial end (2c) via the load side shaft P1 of the load device P. The torque transmission shaft 2 can be rotated via a torque transmission shaft 2 that transmits torque while twisting between the load side X2 and the drive side X1, and a plurality of bearings 5 and 5 arranged along the axial direction X. A fixed support portion 6 for supporting and a strain detection portion 40 for detecting strain generated in the torque transmission shaft 2 by torque input, and the magnitude of torque acting on the torque transmission shaft 2 based on the detection result of the strain detection portion 40. The torque sensor Ts calculates the rotation direction of the torque transmission shaft 2 by engaging with the load side shaft P1 on the inner side of the load side shaft P1 to be connected to the load side end 2d of the torque transmission shaft 2. The phase relationship of A load-side connecting portion 2s having a meshing structure that is maintained constant is formed. Between the bearing 5 on the load side X2 of the torque transmission shaft 2 and the load-side connecting portion 2s, the load-side connecting portion 2s. A thin portion 2t having a thinner thickness than the thinnest portion in the radial direction (spline groove 2s1) is formed around the thin portion 2t, and the strain detector 40 is disposed in the thin portion 2t.

このように、負荷側接続部2sを構成するスプライン溝2s1や歯部2s2などによって応力集中箇所に偏りが生じるが、この応力集中化箇所の偏りによる影響を低減すべく、負荷側接続部2sのうち径方向の肉厚が最も薄い部位であるスプライン溝2s1の径方向寸法D1よりも更に肉厚を薄くした薄肉部2t(径方向寸法D2)が周回して形成されているので、負荷側接続部2sの応力集中の偏りによる歪検出部40への影響を低減することが可能となる。しかも、歪検出部40を軸受5よりも外側(負荷側X2)に配置しているので、軸受での摩擦(メカロス)が歪検出部40に与える影響を低減して、歪検出部40での検出精度を向上させることが可能となる。さらに、歪検出部40の配置される部位は、周囲に比べて径方向の肉厚の薄い薄肉部2tであるので、他の部位に比べて応力が集中しやすく、歪検出部40の検出感度を向上させることが可能となる。   As described above, the stress concentration portion is biased by the spline groove 2s1 and the tooth portion 2s2 constituting the load side connection portion 2s. In order to reduce the influence of the bias of the stress concentration portion, the load side connection portion 2s Since the thin portion 2t (radial dimension D2) having a smaller thickness than the radial dimension D1 of the spline groove 2s1, which is the thinnest part in the radial direction, is formed around the load side connection. It is possible to reduce the influence on the strain detection unit 40 due to the uneven stress concentration of the portion 2s. In addition, since the strain detection unit 40 is disposed outside the load 5 (load side X2), the influence of friction (mechanical loss) on the bearing on the strain detection unit 40 is reduced. Detection accuracy can be improved. Furthermore, since the part where the strain detection unit 40 is disposed is the thin part 2t having a small radial thickness compared to the surroundings, stress is more likely to concentrate than other parts, and the detection sensitivity of the strain detection unit 40 Can be improved.

例えば、本実施形態のように負荷側接続部2sがスプライン溝2s1を有するスプライン軸又は軸受である場合、スプライン溝2s1を形成するために必要な歯切り工具の逃げ部の軸方向寸法W2を、歪検出部40の取り付け可能な程度の軸方向寸法W1まで広げるだけで、逃げ部を薄肉部2tとして利用できるので、逃げ部とは別途に薄肉部を形成する場合に比べて軸端から軸受までの軸寸法(オーバーハング寸法)を低減でき、コニカルモードやパラレルモードでの振動の発生を抑制することも可能となる。   For example, when the load side connecting portion 2s is a spline shaft or bearing having the spline groove 2s1 as in the present embodiment, the axial dimension W2 of the clearance portion of the gear cutting tool necessary for forming the spline groove 2s1 is set as follows: Since the relief part can be used as the thin part 2t simply by expanding the axial dimension W1 to the extent that the strain detection part 40 can be attached, it is possible to use the relief part from the shaft end to the bearing as compared with the case where the thin part is formed separately from the relief part. The axial dimension (overhang dimension) can be reduced, and it is also possible to suppress the occurrence of vibrations in the conical mode and the parallel mode.

さらに、本実施形態では、負荷側接続部2sは、円周方向RDに沿って一定間隔で配置された複数のスプライン溝2s1を有し、歪検出部40は、軸心Cn回りに対称となる位置に対をなすように複数取り付けられ、歪検出部40とスプライン溝2s1との円周方向RDの位相関係は、全ての歪検出部40で同一となるように設定されているので、歪検出部40での検出バランスを向上させ、検出精度を向上させることが可能となる。   Further, in the present embodiment, the load side connection portion 2s has a plurality of spline grooves 2s1 arranged at regular intervals along the circumferential direction RD, and the strain detection portion 40 is symmetric about the axis Cn. A plurality of pairs are attached so as to be paired with each other, and the phase relationship in the circumferential direction RD between the strain detection unit 40 and the spline groove 2s1 is set so as to be the same in all the strain detection units 40. It is possible to improve the detection balance at the unit 40 and improve the detection accuracy.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、トルクセンサTsは、駆動装置Mに組み込まれて構成されているが、単独で構成することも可能である。また、本実施形態では、トルク伝達軸2の負荷側端部2dに負荷側接続部2sを設け、トルク伝達軸2のうち負荷側接続部2sに近い方の軸受5と負荷側接続部2sとの間に薄肉部2tを設けているが、トルク伝達軸2の駆動側端部2cに駆動側接続部を設け、トルク伝達軸のうち駆動側接続部に近い方の軸受と駆動側接続部との間に薄肉部を設けて、この薄肉部に歪検出部を配置してもよい。勿論、トルク伝達軸の両端部に接続部及び薄肉部を設けてもよい。   For example, in the present embodiment, the torque sensor Ts is configured to be incorporated in the drive device M, but may be configured alone. In the present embodiment, the load side end 2d of the torque transmission shaft 2 is provided with a load side connection 2s, and the bearing 5 and the load side connection 2s closer to the load side connection 2s of the torque transmission shaft 2 are provided. A thin-walled portion 2t is provided between them, but a drive-side connection portion is provided at the drive-side end 2c of the torque transmission shaft 2, and the bearing closer to the drive-side connection portion of the torque transmission shaft and the drive-side connection portion A thin portion may be provided between the two, and the strain detector may be disposed on the thin portion. Of course, a connecting portion and a thin portion may be provided at both ends of the torque transmission shaft.

また、本実施形態では、トルク伝達軸2又は負荷側シャフトP1のいずれか一方をスプライン軸受とし、他方をスプライン軸とした噛み合い構造によって、互いの回転方向の位相関係をほぼ一定に維持するようにしているが、スプライン接続に限定されるものではない。例えば、トルク伝達軸又は負荷側シャフトのいずれか一方にキー溝を設け、他方にキーを設けてキー構造によりトルク伝達可能に構成してもよい。   In the present embodiment, the phase relationship in the rotational direction is maintained substantially constant by a meshing structure in which either the torque transmission shaft 2 or the load side shaft P1 is a spline bearing and the other is a spline shaft. However, it is not limited to spline connection. For example, a key groove may be provided on either the torque transmission shaft or the load side shaft, and a key may be provided on the other side so that torque can be transmitted by a key structure.

さらに、本実施形態では、トルク伝達軸2は、負荷側シャフトP1の内周側において負荷側シャフトP1に嵌合する雄型のスプライン軸受であるが、図7(a)に示すように、トルク伝達軸102を、負荷側シャフトP1の外周側において負荷側シャフトP1と嵌合する雌型にしてもよい。この場合、負荷側接続部102sのうち最も薄い部分であるスプライン溝の径方向寸法がD3であり、薄肉部102tの径方向寸法D4は、D3よりも薄く形成されている。   Furthermore, in this embodiment, the torque transmission shaft 2 is a male spline bearing that is fitted to the load-side shaft P1 on the inner peripheral side of the load-side shaft P1, but as shown in FIG. The transmission shaft 102 may be a female type that is fitted to the load side shaft P1 on the outer peripheral side of the load side shaft P1. In this case, the radial dimension of the spline groove, which is the thinnest portion of the load-side connecting portion 102s, is D3, and the radial dimension D4 of the thin portion 102t is formed to be thinner than D3.

さらにまた、本実施形態では、歪検出部40は、薄肉部2tの内周面2aに設けてられているが、薄肉部2tの外周面に設けてもよい。   Furthermore, in the present embodiment, the strain detector 40 is provided on the inner peripheral surface 2a of the thin portion 2t, but may be provided on the outer peripheral surface of the thin portion 2t.

また、本実施形態では、歪検出部40として歪ゲージを例に挙げて説明しているが、トルク伝達軸に生じる歪みを検出できるものであれば歪ゲージ以外のものでもよい。例えば、図7(b)に示すように、トルク伝達軸202に、上記と同様にスプライン溝を有する接続部202sと、括れ部たる薄肉部202tとを形成するとともに、薄肉部202tの外周面202bに歪みによって透磁率の変わる磁歪膜241を設け、励磁用コイル242及び検出用コイル243によって磁歪膜241の透磁率の変化を読み取ってトルク検出する磁歪式トルクセンサにも適用することができる。   In the present embodiment, a strain gauge is described as an example of the strain detection unit 40, but other strain gauges may be used as long as the strain generated in the torque transmission shaft can be detected. For example, as shown in FIG. 7B, the torque transmission shaft 202 is formed with a connecting portion 202s having a spline groove and a thin portion 202t as a constricted portion, and an outer peripheral surface 202b of the thin portion 202t. It is also possible to provide a magnetostrictive torque sensor that is provided with a magnetostrictive film 241 whose permeability changes depending on strain, and detects a torque by reading a change in the magnetic permeability of the magnetostrictive film 241 with the excitation coil 242 and the detection coil 243.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

2…トルク伝達軸
2c…駆動側端部
2d…負荷側端部
2s…負荷側接続部(接続部)
2r…駆動側接続部(接続部)
2s1…スプライン溝
2t…薄肉部
40…歪検出部
5…軸受
6…固定支持部
P…負荷装置
P1…負荷側シャフト
X…軸方向
X1…駆動側
X2…負荷側
2 ... torque transmission shaft 2c ... drive side end 2d ... load side end 2s ... load side connection (connection)
2r ... Drive side connection part (connection part)
2s1 ... Spline groove 2t ... Thin portion 40 ... Strain detection portion 5 ... Bearing 6 ... Fixed support portion P ... Load device P1 ... Load side shaft X ... Axial direction X1 ... Drive side X2 ... Load side

Claims (2)

負荷装置の負荷側シャフトを介して軸方向一端に負荷が入力され駆動装置の駆動側シャフトを介して軸方向他端に駆動力が入力されて負荷側と駆動側との間で捻れを伴いながらトルクを伝達するトルク伝達軸と、軸方向に沿って複数配置された軸受を介してトルク伝達軸を回転可能に支持する固定支持部と、トルク入力によって前記トルク伝達軸に生じる歪みを検出する歪検出部とを具備し、前記歪検出部の検出結果に基づき前記トルク伝達軸に作用するトルクの大きさを算出するトルクセンサであって、
前記トルク伝達軸の負荷側端部又は駆動側端部の少なくとも一方には、接続相手となる前記シャフトの外周側又は内周側のいずれかにおいて当該シャフトに嵌合することにより互いの回転方向の位相関係をほぼ一定に維持する噛み合い構造をなす接続部が形成されており、前記トルク伝達軸のうち前記接続部に近い方の前記軸受と前記接続部との間には、前記接続部のうち径方向の肉厚が最も薄い部分よりも更に肉厚を薄くした薄肉部が周回して形成されており、当該薄肉部に前記歪検出部が配置されていることを特徴とするトルクセンサ。
While a load is input to one end in the axial direction through the load side shaft of the load device and a driving force is input to the other end in the axial direction through the drive side shaft of the drive device, the twist is caused between the load side and the drive side. Torque transmission shaft that transmits torque, a fixed support portion that rotatably supports the torque transmission shaft via a plurality of bearings arranged along the axial direction, and distortion that detects distortion generated in the torque transmission shaft by torque input A torque sensor that calculates a magnitude of torque acting on the torque transmission shaft based on a detection result of the strain detection unit,
At least one of the load side end portion and the drive side end portion of the torque transmission shaft is fitted to the shaft on the outer peripheral side or the inner peripheral side of the shaft to be connected to each other in the rotational direction. A connecting portion that forms a meshing structure that maintains the phase relationship substantially constant is formed, and between the bearing and the connecting portion closer to the connecting portion of the torque transmission shaft, A torque sensor characterized in that a thin portion having a thinner thickness is formed around the portion having the smallest radial thickness, and the strain detecting portion is disposed in the thin portion.
前記接続部は、円周方向に沿って一定間隔で配置された複数のスプライン溝を有し、歪検出部は、軸心回りに対称となる位置に対をなすように複数取り付けられ、前記歪検出部と前記スプライン溝との円周方向の位相関係は、全ての歪検出部で同一となるように設定されている請求項1に記載のトルクセンサ。   The connecting portion has a plurality of spline grooves arranged at regular intervals along the circumferential direction, and a plurality of strain detecting portions are attached so as to be paired at positions symmetrical about the axis. The torque sensor according to claim 1, wherein a phase relationship in a circumferential direction between the detection unit and the spline groove is set to be the same in all the strain detection units.
JP2011149476A 2011-07-05 2011-07-05 Torque sensor Expired - Fee Related JP5768544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149476A JP5768544B2 (en) 2011-07-05 2011-07-05 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149476A JP5768544B2 (en) 2011-07-05 2011-07-05 Torque sensor

Publications (2)

Publication Number Publication Date
JP2013015459A true JP2013015459A (en) 2013-01-24
JP5768544B2 JP5768544B2 (en) 2015-08-26

Family

ID=47688256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149476A Expired - Fee Related JP5768544B2 (en) 2011-07-05 2011-07-05 Torque sensor

Country Status (1)

Country Link
JP (1) JP5768544B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038353A (en) * 2014-08-11 2016-03-22 株式会社ロボテック Torque detector
JP2017034936A (en) * 2015-08-05 2017-02-09 国立大学法人長岡技術科学大学 Motor control apparatus, motor device, and motor control method
CN110514333A (en) * 2019-09-16 2019-11-29 吉孚动力技术(中国)有限公司 A kind of shaft type torque sensor
JP2020020582A (en) * 2018-07-30 2020-02-06 ユニパルス株式会社 Torque converter
JP2020118679A (en) * 2019-01-10 2020-08-06 李育儕 Torque sensing and transmission device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683905B2 (en) * 2015-01-21 2017-06-20 Ford Global Technologies, Llc Transmission and transfer case with torque sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106914A (en) * 2001-09-28 2003-04-09 Moric Co Ltd Rotational driving force detecting method and apparatus
US20040007083A1 (en) * 2002-07-11 2004-01-15 Viola Jeffrey L. Magnetoelastic torque sensor for mitigating non-axisymmetric inhomogeneities in emanating fields
JP2008286626A (en) * 2007-05-17 2008-11-27 Shinko Electric Co Ltd Rotation device
JP2010066043A (en) * 2008-09-09 2010-03-25 Yamaha Motor Electronics Co Ltd Torque sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106914A (en) * 2001-09-28 2003-04-09 Moric Co Ltd Rotational driving force detecting method and apparatus
US20040007083A1 (en) * 2002-07-11 2004-01-15 Viola Jeffrey L. Magnetoelastic torque sensor for mitigating non-axisymmetric inhomogeneities in emanating fields
JP2008286626A (en) * 2007-05-17 2008-11-27 Shinko Electric Co Ltd Rotation device
JP2010066043A (en) * 2008-09-09 2010-03-25 Yamaha Motor Electronics Co Ltd Torque sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038353A (en) * 2014-08-11 2016-03-22 株式会社ロボテック Torque detector
JP2017034936A (en) * 2015-08-05 2017-02-09 国立大学法人長岡技術科学大学 Motor control apparatus, motor device, and motor control method
JP2020020582A (en) * 2018-07-30 2020-02-06 ユニパルス株式会社 Torque converter
JP7204091B2 (en) 2018-07-30 2023-01-16 ユニパルス株式会社 torque transducer
JP2020118679A (en) * 2019-01-10 2020-08-06 李育儕 Torque sensing and transmission device
US11150153B2 (en) 2019-01-10 2021-10-19 China Pneumatic Corporation Torque sensing and transmitting device
CN110514333A (en) * 2019-09-16 2019-11-29 吉孚动力技术(中国)有限公司 A kind of shaft type torque sensor
CN110514333B (en) * 2019-09-16 2024-02-20 吉孚动力技术(中国)有限公司 Shaft type torque sensor

Also Published As

Publication number Publication date
JP5768544B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768544B2 (en) Torque sensor
US9599113B2 (en) Permanent magnet motor pump
JP2012149939A (en) Torque sensor and drive unit with the same
JP5790205B2 (en) Torque sensor
US20200003256A1 (en) Speed reducer with electric motor
KR101243535B1 (en) Manifold sensing apparatus for steering
WO2011108529A1 (en) Drive motor for an electric vehicle
JP2009058388A (en) Torque sensor and motor with torque sensor
JP2008067552A (en) Motor
US10352730B2 (en) Inductive rotation sensor with improved accuracy
JP2013223382A (en) Rotary electric machine
JP6491456B2 (en) Traction power transmission device
JP2017151072A (en) Actuator
JP2016090540A (en) Motor performance inspection device and inspection method using the same
CN109923769B (en) Rotational position detecting device
JP5591180B2 (en) Drive joint mechanism
JP2012127884A (en) Torque sensor and drive device equipped with the same
JP5678642B2 (en) Torque sensor and driving device
JP5821314B2 (en) Torque sensor
JP5810663B2 (en) Torque sensor
JP2017063524A (en) roller
JP2012127883A (en) Torque sensor and drive device equipped with the same
WO2021033557A1 (en) Direct drive motor
JP6582956B2 (en) roller
WO2023219050A1 (en) Sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees