JP2013004730A - Vapor growth device - Google Patents

Vapor growth device Download PDF

Info

Publication number
JP2013004730A
JP2013004730A JP2011134226A JP2011134226A JP2013004730A JP 2013004730 A JP2013004730 A JP 2013004730A JP 2011134226 A JP2011134226 A JP 2011134226A JP 2011134226 A JP2011134226 A JP 2011134226A JP 2013004730 A JP2013004730 A JP 2013004730A
Authority
JP
Japan
Prior art keywords
susceptor
shaped member
vapor phase
phase growth
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011134226A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kodama
義文 児玉
Shintaro Onchi
伸太郎 恩地
Kenkichi Nakaoka
健吉 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2011134226A priority Critical patent/JP2013004730A/en
Publication of JP2013004730A publication Critical patent/JP2013004730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor growth device comprising a substrate holder for holding a substrate, and a susceptor which holds the substrate holder rotatably and has a gear for receiving a rotation driving force transmitted externally on the outer periphery, in which the susceptor is not required to be replaced entirely even if the gear, or the like, is damaged and damage on the susceptor due to thermal stress caused by uneven temperature can be minimized.SOLUTION: The vapor growth device is configured so that the gear of a susceptor can be separated freely from a susceptor body, and preferably configured of a susceptor body consisting of a disk-like member and a ring-like member provided on the outside thereof and the gear, or configured so that the gear consists of a plurality of arcuate members.

Description

本発明は、基板ホルダーを回転自在に保持し外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタが備えられた気相成長装置に関し、特に歯車部のみを新規なものと交換することができ、また温度むらを原因とした熱応力によるサセプタの破損を抑制できる気相成長装置に関する。   The present invention relates to a vapor phase growth apparatus having a susceptor having a gear portion that rotatably holds a substrate holder and receives an external rotational driving force on the outer periphery, and in particular, replaces only the gear portion with a new one. The present invention also relates to a vapor phase growth apparatus that can suppress susceptor breakage due to thermal stress caused by temperature unevenness.

結晶膜を、基板上に成長する方法には、化学的気相成長(CVD)法等の方法があり、基板加熱を伴うCVD法には熱CVD法等が知られている。近年、高温条件(例えば1000℃以上)で基板を加熱して行なう気相成長工程が増加しており、青色若しくは紫外LEDまたは青色若しくは紫外レーザーダイオードを製作するためのIII族窒化物半導体の気相成長工程もその一つである。例えば、III族窒化物半導体結晶膜の成長は、トリメチルガリウム、トリメチルインジウム、またはトリメチルアルミニウム等の有機金属ガスをIII族金属源として、アンモニアを窒素源として用い、1000℃以上の高温に加熱されたシリコン(Si)、サファイア(Al)または窒化ガリウム(GaN)等の基板上に結晶膜を気相成長する熱CVD法により行われることがある。 As a method for growing a crystal film on a substrate, there is a method such as a chemical vapor deposition (CVD) method, and as a CVD method involving substrate heating, a thermal CVD method or the like is known. In recent years, there has been an increase in the vapor phase growth process performed by heating the substrate under a high temperature condition (for example, 1000 ° C. or higher), and the vapor phase of a group III nitride semiconductor for producing a blue or ultraviolet LED or a blue or ultraviolet laser diode. The growth process is one of them. For example, the growth of a group III nitride semiconductor crystal film was heated to a high temperature of 1000 ° C. or higher using an organic metal gas such as trimethylgallium, trimethylindium, or trimethylaluminum as a group III metal source and ammonia as a nitrogen source. The thermal CVD method is sometimes performed by vapor-phase-growing a crystal film on a substrate such as silicon (Si), sapphire (Al 2 O 3 ), or gallium nitride (GaN).

気相成長装置には、基板の結晶成長面を上向きに配置するもの(フェイスアップ型)、基板の結晶成長面を下向きに配置するもの(フェイスダウン型)がある。また、1バッチ当たり1枚の基板上に結晶膜を成長させる気相成長装置があるが、生産性を向上するために1バッチあたり複数枚の基板上に結晶膜を成長させる気相成長装置も知られている。
気相成長装置の構成としては、特許文献1〜4に示すように、基板を保持し、あるいは基板を保持する基板ホルダーを回転自在に保持し、外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタを備えた構成がある。
As the vapor phase growth apparatus, there are an apparatus in which the crystal growth surface of the substrate is arranged upward (face-up type) and an apparatus in which the crystal growth surface of the substrate is arranged downward (face-down type). In addition, there is a vapor phase growth apparatus that grows a crystal film on one substrate per batch, but there is also a vapor phase growth apparatus that grows a crystal film on multiple substrates per batch in order to improve productivity. Are known.
As a configuration of the vapor phase growth apparatus, as shown in Patent Documents 1 to 4, a substrate is held, or a substrate holder that holds the substrate is rotatably held, and a rotation driving force is transmitted from the outside to the outer periphery. There exists a structure provided with the susceptor which has a gear part.

このような気相成長装置において、均一な膜厚及び膜質を得るには、サセプタを回転させながら基板上に結晶膜を成長させることが有効である。サセプタの回転は、サセプタを回転自在に保持し、サセプタの外周に設けられた歯車部に伝達される回転駆動力により行われることがある。また、1バッチあたり複数枚の基板上に結晶膜を成長させる場合には、サセプタの回転により基板を公転させ、基板ホルダーの回転により基板を自転させることにより、各基板間及び同一基板面内において、均一な膜厚及び膜質を得ることもできる。   In such a vapor phase growth apparatus, in order to obtain a uniform film thickness and film quality, it is effective to grow a crystal film on the substrate while rotating the susceptor. The susceptor may be rotated by a rotational driving force transmitted to a gear portion provided on the outer periphery of the susceptor while the susceptor is rotatably held. In addition, when growing crystal films on a plurality of substrates per batch, the substrate is revolved by rotating the susceptor, and the substrate is rotated by rotating the substrate holder. A uniform film thickness and film quality can also be obtained.

特開2002−175992号公報JP 2002-17592 A 特開2007−96280号公報JP 2007-96280 A 特開2010−219225号公報JP 2010-219225 A 特開2010−232624号公報JP 2010-232624 A

前述の気相成長装置において、気相成長装置の反応炉内に用いられる部材は、反応性の原料ガスに高温下で接触することにより腐食や劣化の進行が早まることが多い。また、サセプタを回転させる回転駆動力の伝達を受ける歯車部は、摩耗や応力の影響も受け易いため、特に破損を生じる虞が大きい部分である。
また、歯車部が設けられるサセプタの外周部は、基板を加熱するヒータによる加熱領域と非加熱領域との境界付近に位置することが多く、その結果、半径方向の温度むらによる熱応力により変形や割れ等が発生し易くなる。そのため、歯車部がサセプタ本体に一体となった従来から使用されているサセプタにおいては、歯車部に破損が生じた場合に、その破損が一部だけであってもサセプタ全体を交換しなくてはならないという問題があった。
In the above-mentioned vapor phase growth apparatus, the members used in the reaction furnace of the vapor phase growth apparatus often advance the progress of corrosion and deterioration by contacting the reactive source gas at a high temperature. In addition, the gear portion that receives the transmission of the rotational driving force that rotates the susceptor is easily affected by wear and stress, and thus is particularly likely to be damaged.
In addition, the outer peripheral portion of the susceptor provided with the gear portion is often located near the boundary between the heated region and the non-heated region by the heater that heats the substrate. Cracks are likely to occur. Therefore, in the susceptor that has been used in the past with the gear part integrated with the susceptor body, if the gear part is damaged, the entire susceptor must be replaced even if the damage is only a part. There was a problem of not becoming.

さらに、前述の気相成長装置においては、半径方向の温度むらのほか、サセプタの上面と下面では熱伝達や放熱の程度に違いが生じることが多く、厚さ方向の温度むらにより生じる熱応力によりサセプタに変形や割れ等が発生し易いことがわかった。
すなわち、本発明が解決しようとする課題は、前述のような気相成長装置において、歯車部等に破損が生じたとしてもサセプタ全体を交換することを要せず、温度むらを原因とした熱応力によるサセプタの破損を抑制できる気相成長装置を提供することである。
Furthermore, in the above-mentioned vapor phase growth apparatus, in addition to the temperature unevenness in the radial direction, there is often a difference in the degree of heat transfer and heat dissipation between the upper and lower surfaces of the susceptor, which is caused by the thermal stress caused by the temperature unevenness in the thickness direction. It was found that the susceptor is likely to be deformed or cracked.
That is, the problem to be solved by the present invention is that, in the vapor phase growth apparatus as described above, even if the gear portion or the like is damaged, it is not necessary to replace the entire susceptor, and the heat caused by temperature unevenness It is an object of the present invention to provide a vapor phase growth apparatus capable of suppressing damage to a susceptor due to stress.

発明者らは、これらの課題を解決すべく鋭意検討した結果、前述のような気相成長装置のサセプタの構成を、サセプタの歯車部がサセプタ本体から自由自在に分離できる構成、好ましくは円盤状部材とその外側に設けられたリング状部材からなるサセプタ本体及び歯車部からなる構成、あるいは歯車部が複数の円弧状部材からなる構成とすることにより、前述の課題を解決できることを見出し、本発明に到達した。   As a result of diligent investigations to solve these problems, the inventors have determined that the structure of the susceptor of the vapor phase growth apparatus as described above can be freely separated from the susceptor body, preferably a disk shape. It has been found that the above-described problems can be solved by configuring the member and a susceptor body and a gear portion made of a ring-shaped member provided on the outer side thereof, or a structure in which the gear portion is made of a plurality of arc-shaped members. Reached.

すなわち本発明は、基板を保持する基板ホルダー、及び該基板ホルダーを回転自在に保持し外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタが備えられた気相成長装置であって、サセプタの歯車部がサセプタ本体から分離できる構成を備えてなることを特徴とする気相成長装置である。   That is, the present invention is a vapor phase growth apparatus provided with a susceptor having a substrate holder for holding a substrate, and a gear portion that rotatably holds the substrate holder and receives a rotational driving force from the outside. The vapor phase growth apparatus is characterized in that the gear portion of the susceptor is configured to be separable from the susceptor body.

本発明の気相成長装置は、サセプタの歯車部がサセプタ本体から容易に分離できる構成なので、歯車部等に破損が生じたとしてもサセプタ全体を交換する必要がない。また、歯車部の材質を、容易にサセプタ本体より熱伝導性が低い材質とすることができるので、サセプタ本体の温度均一性が向上し、温度むらを原因とした熱応力によるサセプタの破損を抑制できる。
さらに、本発明の気相成長装置において、サセプタの構成を、円盤状部材とその外側に設けられたリング状部材からなるサセプタ本体及び歯車部からなる構成、あるいは歯車部が複数の円弧状部材からなる構成とすることにより、前記の歯車部のみを交換できる効果、サセプタの破損を抑制できる効果がより効率よく得られる。
In the vapor phase growth apparatus of the present invention, since the gear part of the susceptor can be easily separated from the susceptor body, it is not necessary to replace the entire susceptor even if the gear part or the like is damaged. In addition, the material of the gear part can easily be made of a material with lower thermal conductivity than the susceptor body, so the temperature uniformity of the susceptor body is improved and damage to the susceptor due to thermal stress due to temperature unevenness is suppressed. it can.
Furthermore, in the vapor phase growth apparatus according to the present invention, the susceptor is configured by a susceptor body and a gear portion including a disk-shaped member and a ring-shaped member provided outside thereof, or the gear portion is formed of a plurality of arc-shaped members. By adopting such a configuration, it is possible to more efficiently obtain an effect of exchanging only the gear part and an effect of suppressing breakage of the susceptor.

本発明は、基板を保持する基板ホルダー、及び該基板ホルダーを回転自在に保持し外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタが備えられた気相成長装置に適用される。以下、本発明の気相成長装置を、図1〜図5に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1は、本発明の気相成長装置の一例を示す垂直断面構成図であり、図2は、図1に示した気相成長装置の部分拡大図(A部)であり、図3は、図1に示した気相成長装置の水平断面構成図(断面B−B)であり、図4は、図1に示した気相成長装置の水平断面構成図(断面C−C)であり、図5は、本発明の気相成長装置において使用されるサセプタの一例を示す水平断面構成図であり、図6は、リング状部材及びサセプタの歯車部の一例を示す斜視図である。   The present invention is applied to a vapor phase growth apparatus provided with a substrate holder that holds a substrate, and a susceptor having a gear portion that rotatably holds the substrate holder and receives a rotational driving force from the outside. . Hereinafter, although the vapor phase growth apparatus of this invention is demonstrated in detail based on FIGS. 1-5, this invention is not limited by these. 1 is a vertical sectional view showing an example of the vapor phase growth apparatus of the present invention, and FIG. 2 is a partially enlarged view (part A) of the vapor phase growth apparatus shown in FIG. FIG. 4 is a horizontal sectional configuration diagram (cross section BB) of the vapor phase growth apparatus shown in FIG. 1, and FIG. 4 is a horizontal sectional configuration diagram (cross section CC) of the vapor phase growth apparatus shown in FIG. FIG. 5 is a horizontal sectional view showing an example of a susceptor used in the vapor phase growth apparatus of the present invention, and FIG. 6 is a perspective view showing an example of a ring-shaped member and a gear portion of the susceptor.

本発明の気相成長装置は、図1に示すように、基板1を保持する基板ホルダー2、及び該基板ホルダー2を回転自在に保持し外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタ3が備えられた気相成長装置であって、図4に示すように、サセプタの歯車部22がサセプタ本体(21、23)から分離できる構成を備えてなる気相成長装置である。
本発明の気相成長装置は、サセプタの構成が、図4に示すように、円盤状部材21とその外側に設けられたリング状部材23からなるサセプタ本体、及び歯車部22からなる構成、あるいは歯車部が複数(図4においては4個)の円弧状部材からなる構成であることが好ましい。
As shown in FIG. 1, the vapor phase growth apparatus of the present invention includes a substrate holder 2 that holds a substrate 1 and a gear portion that rotatably holds the substrate holder 2 and receives an external rotational driving force on its outer periphery. As shown in FIG. 4, the vapor phase growth apparatus is provided with a configuration in which the gear portion 22 of the susceptor can be separated from the susceptor body (21, 23). .
In the vapor phase growth apparatus of the present invention, as shown in FIG. 4, the structure of the susceptor is composed of a susceptor body composed of a disk-shaped member 21 and a ring-shaped member 23 provided outside thereof, and a gear portion 22, or It is preferable that the gear portion is composed of a plurality of (four in FIG. 4) arcuate members.

尚、本発明において、サセプタの歯車部がサセプタ本体から分離できる構成とは、一般的に使用されている治具により、容易にサセプタの歯車部がサセプタ本体から取り外せる状態を示し、例えば、これらが、螺旋、ボルトとナット、ピン、嵌め合せにより結合されている構成を示すものである。本発明においては、円盤状部材、リング状部材、及び歯車部を各々分離できる構成とすることができ、また円盤状部材をサセプタ本体とし、図6に示すように、リング状部材23を含めて歯車部22とし、これをサセプタ本体から分離する構成とすることもできる。さらに、リング状部材を用いない構成とすることもできる。また、本発明におけるサセプタの円盤状部材は、基板ホルダーを挿入するための孔、あるいは中央部の孔を有することができる。   In the present invention, the structure in which the gear portion of the susceptor can be separated from the susceptor main body means a state in which the gear portion of the susceptor can be easily detached from the susceptor main body by a commonly used jig. The structure which is couple | bonded by a helix, a volt | bolt and a nut, a pin, and fitting is shown. In this invention, it can be set as the structure which can each isolate | separate a disk-shaped member, a ring-shaped member, and a gear part. Moreover, a disk-shaped member is made into a susceptor main body, and as shown in FIG. It can also be set as the structure which makes it the gear part 22 and isolate | separates this from a susceptor main body. Furthermore, it can also be set as the structure which does not use a ring-shaped member. In addition, the disk-shaped member of the susceptor according to the present invention can have a hole for inserting the substrate holder or a hole at the center.

以下、本発明の気相成長装置の細部について説明する。
図1の気相成長装置において、基板1は、成長面を下向きにした状態で基板ホルダー2により保持されている。基板ホルダー2は、直径が2インチ、3インチ、4インチ、または6インチの基板を1枚保持できるが、特にこれらの大きさの基板に限定されない。ここで、ヒータ5からの熱を基板1へ均一に伝達するために、均熱板16を設けてもよい。サセプタ3は、サセプタの対面4とともに反応炉6を形成し、反応炉6は、反応容器19に収められ密封されている。サセプタ3は、6〜15個の基板ホルダー2を保持できることが好ましいが、特に限定されない。反応炉6において、サセプタ3とサセプタの対面4の間隙は、8mm以下であることが好ましく、5mm以下であることがより好ましいが、特にこれらの大きさの間隙に限定されない。
Hereinafter, details of the vapor phase growth apparatus of the present invention will be described.
In the vapor phase growth apparatus of FIG. 1, the substrate 1 is held by a substrate holder 2 with the growth surface facing downward. The substrate holder 2 can hold one substrate having a diameter of 2 inches, 3 inches, 4 inches, or 6 inches, but is not particularly limited to a substrate of these sizes. Here, in order to uniformly transfer the heat from the heater 5 to the substrate 1, a soaking plate 16 may be provided. The susceptor 3 forms a reaction furnace 6 together with the facing 4 of the susceptor, and the reaction furnace 6 is housed in a reaction vessel 19 and sealed. The susceptor 3 can preferably hold 6 to 15 substrate holders 2, but is not particularly limited. In the reaction furnace 6, the gap between the susceptor 3 and the facing surface 4 of the susceptor is preferably 8 mm or less, more preferably 5 mm or less, but the gap is not particularly limited to these sizes.

サセプタ3は、円盤状部材21およびリング状部材23から構成されるサセプタ本体並びに歯車部22から構成され、すべての基板ホルダー2は、回転が自在にできるように円盤状部材21により保持されている。サセプタ本体は、図2に示すように、円盤状部材21の外周上部に設けた突出部の下面とリング状部材23の内周下部に設けた突出部の上面を重ねあわせることにより、円盤状部材21をリング状部材23に嵌合して形成される。サセプタ3は、リング状部材23の外周下部に設けた突出部の上面と歯車部22の内周上部に設けた突出部の下面を重ねあわせることにより、サセプタ本体を歯車部22に嵌合して形成される。尚、サセプタ3は、リング状部材23の下面及び基台20の上面に刻まれたベアリング溝18により挟持されたベアリング17を介して基台20により回転自在に保持される。   The susceptor 3 is composed of a susceptor body composed of a disk-shaped member 21 and a ring-shaped member 23, and a gear portion 22, and all the substrate holders 2 are held by the disk-shaped member 21 so as to be freely rotatable. . As shown in FIG. 2, the susceptor body is formed by overlapping the lower surface of the protruding portion provided on the upper outer periphery of the disk-shaped member 21 and the upper surface of the protruding portion provided on the lower inner peripheral portion of the ring-shaped member 23. 21 is fitted to the ring-shaped member 23. The susceptor 3 fits the susceptor body to the gear portion 22 by overlapping the upper surface of the protruding portion provided on the lower outer periphery of the ring-shaped member 23 and the lower surface of the protruding portion provided on the inner peripheral upper portion of the gear portion 22. It is formed. The susceptor 3 is rotatably held by the base 20 via a bearing 17 sandwiched by bearing grooves 18 carved in the lower surface of the ring-shaped member 23 and the upper surface of the base 20.

円盤状部材21は、直径300〜1000mm(突出部を除く)、厚さ5〜30mmの円盤状であることが好ましいが、特に限定されることはない。リング状部材23の内周円の半径は、円盤状部材21の半径より5〜30mm(突出部を除く)大きいことが好ましく、リング状部材23のリングの半径方向の幅は、10〜50mm(突出部を除く)であることが好ましく、円盤状部材21と同等の厚さであることが好ましい。歯車部22の内周円の半径は、リング状部材23の外周円の半径より5〜40mm(突出部を除く)大きいことが好ましく、歯車部22のリングの半径方向の幅は、10〜50mm(突出部を除く)であることが好ましく、リング状部材23と同等の厚さであることが好ましい。   The disk-shaped member 21 is preferably a disk having a diameter of 300 to 1000 mm (excluding protruding portions) and a thickness of 5 to 30 mm, but is not particularly limited. The radius of the inner circumferential circle of the ring-shaped member 23 is preferably 5 to 30 mm (excluding protrusions) larger than the radius of the disk-shaped member 21, and the radial width of the ring of the ring-shaped member 23 is 10 to 50 mm ( It is preferable that the thickness be equal to that of the disk-shaped member 21. The radius of the inner circumferential circle of the gear portion 22 is preferably 5 to 40 mm (excluding the protruding portion) larger than the radius of the outer circumferential circle of the ring-shaped member 23, and the radial width of the ring of the gear portion 22 is 10 to 50 mm. It is preferable that the thickness is the same as that of the ring-shaped member 23.

前記の各突出部は、任意の箇所で均等に半径方向に5〜30mm突出し、厚さ2〜15mmであることが好ましいが、この大きさ及び厚さに限定されることはない。サセプタ本体を歯車部22に嵌合したときに、リング状部材23と歯車部22の間には半径方向の隙間が形成されることがより好ましく、その隙間の大きさは、任意の場所において均等に1〜10mmがより好ましいが、この大きさに限定されることはない。リング状部材23および歯車部22を、気相成長中に互いに外れることがないように螺旋26により固定してもよいが、温度むらを原因とした熱応力によって螺旋が破損することがないように、螺旋と螺旋穴の間に隙間を設ける等の処置をすることが好ましい。尚、ベアリング17は、直径3〜10mmの球形であることが好ましい。ベアリング溝18の鉛直方向の断面は、半円形、三角形または四角形であることが好ましいが、特に限定されない。   Each of the protrusions preferably protrudes 5 to 30 mm in the radial direction at an arbitrary position and is preferably 2 to 15 mm in thickness, but is not limited to this size and thickness. When the susceptor body is fitted to the gear portion 22, it is more preferable that a radial gap is formed between the ring-shaped member 23 and the gear portion 22, and the size of the gap is equal in any place. Although 1-10 mm is more preferable, it is not limited to this size. The ring-shaped member 23 and the gear portion 22 may be fixed by the spiral 26 so that they are not detached from each other during vapor phase growth, but the spiral is not damaged by thermal stress caused by temperature unevenness. It is preferable to take measures such as providing a gap between the spiral and the spiral hole. The bearing 17 is preferably spherical with a diameter of 3 to 10 mm. The cross section in the vertical direction of the bearing groove 18 is preferably a semicircle, a triangle, or a quadrangle, but is not particularly limited.

また、歯車部22は、サセプタの半径方向に分割形成される複数の円弧状部材24から構成されることが好ましい。円弧状部材24は、歯車部22を半径方向に分割することにより形成される。円弧状部材24は、歯車部22を角度30°、45°、60°、72°、90°、120°、または180°の間隔で分割することにより形成されることが好ましいが、これらの角度に限定されることはない。各円弧状部材24は、その上面及び下面がそれぞれ面一となるように歯車部22を形成することが好ましい。各円弧状部材24同士の間には隙間を設けることが好ましく、その隙間の大きさは、任意の場所において均等に1〜10mmが好ましいが、この大きさに限定されることはない。   Moreover, it is preferable that the gear part 22 is comprised from the some circular-arc-shaped member 24 dividedly formed in the radial direction of a susceptor. The arcuate member 24 is formed by dividing the gear portion 22 in the radial direction. The arcuate member 24 is preferably formed by dividing the gear portion 22 at intervals of 30 °, 45 °, 60 °, 72 °, 90 °, 120 °, or 180 °. It is not limited to. Each arcuate member 24 is preferably formed with a gear portion 22 such that the upper and lower surfaces thereof are flush with each other. It is preferable to provide a gap between the arcuate members 24, and the size of the gap is preferably 1 to 10 mm evenly at an arbitrary place, but is not limited to this size.

サセプタ回転駆動器13からの回転駆動力は、磁性流体シールを用いて反応容器19に対して回転自在に封止されたサセプタ回転駆動軸14に伝達される。サセプタ回転板15はサセプタ回転駆動軸14のサセプタ側先端に固定され、サセプタ回転板15の外周に設けられた歯車部とサセプタ3の歯車部22が噛み合わさることによりサセプタ3に回転駆動力が伝達される。これによりサセプタ3が回転し、サセプタ3上に配置された基板ホルダー2は公転する。気相成長反応中は、基板ホルダー2を常時公転させることが好ましい。サセプタ回転駆動軸14は、直径10〜50mmの円柱状であることが好ましいが、特に限定されない。サセプタ回転板15は、直径50〜200mm、厚さ3〜20mmの円盤状を有することが好ましいが、特に限定されることはない。尚、サセプタ回転板15の歯車部およびサセプタ3の歯車部22は、平歯車構造を有することが好ましいが、特に限定されることはない。   The rotational driving force from the susceptor rotational drive unit 13 is transmitted to the susceptor rotational drive shaft 14 that is rotatably sealed with respect to the reaction vessel 19 using a magnetic fluid seal. The susceptor rotation plate 15 is fixed to the susceptor rotation end of the susceptor rotation drive shaft 14, and the gear portion provided on the outer periphery of the susceptor rotation plate 15 and the gear portion 22 of the susceptor 3 are engaged with each other, so that the rotation driving force is transmitted to the susceptor 3. Is done. Thereby, the susceptor 3 rotates and the substrate holder 2 arranged on the susceptor 3 revolves. It is preferable to always revolve the substrate holder 2 during the vapor phase growth reaction. The susceptor rotation drive shaft 14 is preferably cylindrical with a diameter of 10 to 50 mm, but is not particularly limited. The susceptor rotating plate 15 preferably has a disk shape with a diameter of 50 to 200 mm and a thickness of 3 to 20 mm, but is not particularly limited. The gear portion of the susceptor rotating plate 15 and the gear portion 22 of the susceptor 3 preferably have a spur gear structure, but are not particularly limited.

基板1は公転に加えて自転によって回転されてもよい。基板ホルダー2は、基板ホルダー2の下面及び円盤状部材21の上面に刻まれたベアリング溝18により挟持されたベアリング17を介して、円盤状部材21の上に回転自在に保持される。基板ホルダー回転駆動器9からの回転駆動力は、まず、磁性流体シールを用いて反応容器19に対して回転自在に封止された基板ホルダー回転駆動軸10に伝達される。基板ホルダー回転駆動軸10の基板ホルダー回転板側の先端には複数本のツメ11が設けられており、ツメ11が、基板ホルダー回転板12の上面に設けられた差込口25に差し込まれることにより脱着可能に噛み合わさり、回転駆動力が基板ホルダー回転板12に伝達される。   The substrate 1 may be rotated by rotation in addition to revolution. The substrate holder 2 is rotatably held on the disk-shaped member 21 via a bearing 17 sandwiched by bearing grooves 18 carved on the lower surface of the substrate holder 2 and the upper surface of the disk-shaped member 21. The rotational driving force from the substrate holder rotation driver 9 is first transmitted to a substrate holder rotation driving shaft 10 that is rotatably sealed with respect to the reaction vessel 19 using a magnetic fluid seal. A plurality of claws 11 are provided at the tip of the substrate holder rotation drive shaft 10 on the substrate holder rotation plate side, and the claws 11 are inserted into the insertion ports 25 provided on the upper surface of the substrate holder rotation plate 12. , And the rotational driving force is transmitted to the substrate holder rotating plate 12.

基板ホルダー回転板12は、基板ホルダー回転板12の下面及び円盤状部材21の上面に刻まれたベアリング溝18により挟持されたベアリング17を介して、円盤状部材21により回転自在に保持されている。基板ホルダー2は、原料ガス導入部7の周囲に設けられており、基板ホルダー回転板12の外周に設けられた歯車部と各基板ホルダー2の外周に設けられた歯車部が噛み合わさることにより各基板ホルダー2に回転駆動力が伝達され、各基板ホルダー2は回転(自転)する。基板ホルダー回転板12は、直径100〜500mm、厚さ3〜20mmの円盤状であることが好ましいが、特に限定されない。基板ホルダー回転駆動軸10は、直径10〜50mmの円柱状であることが好ましいが、特に限定されない。尚、基板ホルダー回転板12の歯車部および基板ホルダー2の歯車部は、平歯車構造を有することが好ましいが、特に限定されることはない。   The substrate holder rotating plate 12 is rotatably held by the disk-shaped member 21 via a bearing 17 sandwiched by bearing grooves 18 carved on the lower surface of the substrate holder rotating plate 12 and the upper surface of the disk-shaped member 21. . The substrate holder 2 is provided around the source gas introduction portion 7, and the gear portion provided on the outer periphery of the substrate holder rotating plate 12 and the gear portion provided on the outer periphery of each substrate holder 2 are engaged with each other. A rotational driving force is transmitted to the substrate holder 2, and each substrate holder 2 rotates (rotates). The substrate holder rotating plate 12 is preferably a disc having a diameter of 100 to 500 mm and a thickness of 3 to 20 mm, but is not particularly limited. The substrate holder rotation drive shaft 10 is preferably a cylindrical shape having a diameter of 10 to 50 mm, but is not particularly limited. The gear portion of the substrate holder rotating plate 12 and the gear portion of the substrate holder 2 preferably have a spur gear structure, but are not particularly limited.

反応炉6の中心部には原料ガス導入部7が設けられ、原料ガスは、原料ガス導入部7から放射状に吹き出し、基板1の成長面に対して水平に供給される。気相成長反応は、反応炉6において、ヒータ5により基板1を加熱しながら、原料ガス導入部7から原料ガスを供給することにより行われ、基板1の成長面には結晶膜が形成される。気相成長反応に用いられた原料ガスは、そのまま反応ガスとして反応ガス排出部8から排出される。気相成長反応中、基板ホルダー2は、サセプタ3の回転により常時公転させることが好ましく、サセプタ3及び基板ホルダー2の回転により常時自転及び公転させることがより好ましい。サセプタ3及び基板ホルダー2の回転方向及び回転速度は、それぞれ、サセプタ回転駆動器13及び基板ホルダー回転駆動器9の回転方向及び回転速度を変化させることにより、任意に設定することができる。各基板間において均一な膜厚及び膜質を得るためには、各基板ホルダー2を反応炉の中心に対して同一円周上に配置して、原料ガス導入部からの距離を等しくすることが好ましいが、特に限定されない。   A source gas introduction unit 7 is provided at the center of the reaction furnace 6, and the source gas is blown out radially from the source gas introduction unit 7 and supplied horizontally to the growth surface of the substrate 1. The vapor phase growth reaction is performed by supplying the source gas from the source gas introduction unit 7 while heating the substrate 1 with the heater 5 in the reaction furnace 6, and a crystal film is formed on the growth surface of the substrate 1. . The raw material gas used for the vapor phase growth reaction is directly discharged from the reaction gas discharge unit 8 as a reaction gas. During the vapor phase growth reaction, the substrate holder 2 is preferably constantly revolved by the rotation of the susceptor 3, and more preferably is always rotated and revolved by the rotation of the susceptor 3 and the substrate holder 2. The rotation direction and rotation speed of the susceptor 3 and the substrate holder 2 can be arbitrarily set by changing the rotation direction and rotation speed of the susceptor rotation driver 13 and the substrate holder rotation driver 9, respectively. In order to obtain a uniform film thickness and film quality between the substrates, it is preferable to arrange the substrate holders 2 on the same circumference with respect to the center of the reaction furnace so that the distances from the raw material gas introduction portions are equal. However, it is not particularly limited.

基板ホルダー2、基板ホルダー回転板12、サセプタ回転板15、円盤状部材21、歯車部22、及びリング状部材23は、カーボン系材料またはカーボン系材料をセラミック材料でコーティングしたものが好ましいが、特に限定されない。しかし、歯車部、リング状部材は、サセプタ本体より熱伝導性が低い材質であることが好ましい。このような材料を選択することにより、サセプタ本体から熱が拡散することを防止し、サセプタ本体の温度均一性を向上させ、温度むらを原因とした熱応力によるサセプタの破損を抑制することができる。   The substrate holder 2, the substrate holder rotating plate 12, the susceptor rotating plate 15, the disk-shaped member 21, the gear portion 22, and the ring-shaped member 23 are preferably carbon materials or carbon materials coated with a ceramic material, It is not limited. However, the gear part and the ring-shaped member are preferably made of a material having lower thermal conductivity than the susceptor body. By selecting such a material, it is possible to prevent heat from diffusing from the susceptor body, improve the temperature uniformity of the susceptor body, and suppress damage to the susceptor due to thermal stress caused by temperature unevenness. .

基板ホルダー回転駆動軸10、ツメ11及びサセプタ回転駆動軸14は、金属、合金、金属酸化物、カーボン系材料、セラミック系材料、カーボン系材料をセラミック材料でコーティングしたもの、またはこれらの組み合わせが好ましいが、特に限定されない。ベアリング17は、セラミック材料であることが好ましいが、特に限定されない。ここで、合金の例には、ステンレスまたはインコネルがあるが、特に限定されない。カーボン系材料の例には、カーボン、パイオロリティックグラファイト(PG)、グラッシカーボン(GC)等があるが、特に限定されない。セラミックス系材料の例には、アルミナ、炭化ケイ素(SiC)、窒化ケイ素(Si)、窒化ホウ素(BN)等があるが、特に限定されない。 The substrate holder rotation drive shaft 10, claw 11 and susceptor rotation drive shaft 14 are preferably a metal, an alloy, a metal oxide, a carbon-based material, a ceramic-based material, a carbon-based material coated with a ceramic material, or a combination thereof. However, it is not particularly limited. The bearing 17 is preferably made of a ceramic material, but is not particularly limited. Here, examples of the alloy include stainless steel and inconel, but are not particularly limited. Examples of the carbon-based material include, but are not particularly limited to, carbon, pyrolytic graphite (PG), and glassy carbon (GC). Examples of the ceramic material include alumina, silicon carbide (SiC), silicon nitride (Si 3 N 4 ), boron nitride (BN), and the like, but are not particularly limited.

特に、基板ホルダー2、基板ホルダー回転板12、サセプタ回転板15、円盤状部材21、歯車部22及びリング状部材23は、SiCコートカーボン、ベアリング17は、アルミナであることが好ましく、特に、歯車部22及びリング状部材23は、熱伝導性が低い材質、例えばアルミナ、窒化ケイ素(Si)、窒化ホウ素(BN)等であることが好ましいが、特に限定されることはない。基板ホルダー回転駆動軸10は、基板ホルダー回転駆動器側部分をインコネル製とし、基板ホルダー回転板側部分をSiCコートカーボン製とし、螺旋等で両者を固定することにより一体化したものが好ましく、ツメ11は、SiCコートカーボン製で、基板ホルダー回転駆動軸の基板ホルダー回転板側部分の端面にあらかじめ一体として形成されていることが好ましい。サセプタ回転駆動軸14は、ステンレス製であることが好ましい。
尚、図1〜6においては、本発明の気相成長装置の一例(フェイスダウン型)を示したが、本発明は、フェイスアップ型の気相成長装置にも適用することができる。
In particular, the substrate holder 2, the substrate holder rotating plate 12, the susceptor rotating plate 15, the disk-shaped member 21, the gear portion 22 and the ring-shaped member 23 are preferably SiC-coated carbon, and the bearing 17 is preferably alumina. The portion 22 and the ring-shaped member 23 are preferably made of a material having low thermal conductivity, such as alumina, silicon nitride (Si 3 N 4 ), boron nitride (BN), or the like, but are not particularly limited. The substrate holder rotation drive shaft 10 is preferably made of Inconel on the substrate holder rotation drive side portion, SiC substrate carbon on the substrate holder rotation plate side portion, and integrated by fixing them with a spiral or the like. 11 is made of SiC-coated carbon, and is preferably integrally formed in advance on the end surface of the substrate holder rotating plate side portion of the substrate holder rotating drive shaft. The susceptor rotation drive shaft 14 is preferably made of stainless steel.
1 to 6 show an example of the vapor phase growth apparatus of the present invention (face-down type), the present invention can also be applied to a face-up type vapor phase growth apparatus.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(気相成長装置の製作)
[Example 1]
(Production of vapor phase growth equipment)

図1〜図4に示すような気相成長装置を製作した。直径3インチのサファイア基板を1枚保持可能である基板ホルダー2(SiCコートカーボン製)8個と、基板ホルダー回転板12(SiCコートカーボン製、直径200mm、厚さ15mm)を、円盤状部材21(SiCコートカーボン製、直径600mm(突出部を除く)、厚さ20mm、3インチの基板を8枚保持可能)により、ベアリング17を介して保持し、基板ホルダー2と基板ホルダー回転板12の平歯車部を噛み合わせた。円盤状部材の熱伝導率は120Wm−1−1であった。 A vapor phase growth apparatus as shown in FIGS. 1 to 4 was manufactured. A disk-shaped member 21 includes eight substrate holders 2 (made of SiC-coated carbon) capable of holding one sapphire substrate having a diameter of 3 inches and a substrate holder rotating plate 12 (made of SiC-coated carbon, diameter 200 mm, thickness 15 mm). (SiC-coated carbon, 600 mm in diameter (excluding protrusions), 20 mm in thickness, and can hold 8 substrates with a thickness of 3 inches) is held via the bearing 17, and the substrate holder 2 and the substrate holder rotating plate 12 are flat. The gear part was engaged. The thermal conductivity of the disk-shaped member was 120 Wm −1 K −1 .

円盤状部材21の外周上部には、任意の場所で均等に半径方向に15mm、厚さ10mmの突出部を設けた。リング状部材23は、Si製(熱伝導率:30Wm−1−1)で、内周円の直径が615mm(突出部を除く)、外周円の直径が635mm(突出部を除く)、厚さが20mmのリング状とした。リング状部材23の内周下部及び外周下部には、それぞれ、任意の場所で均等に半径方向に15mm、厚さ10mmの突出部を設けた。円盤状部材21の外周上部に設けた突出部の下面とリング状部材23の内周下部に設けた突出部の上面を重ねあわせることにより、円盤状部材21をリング状部材23に嵌合してサセプタ本体を形成した。 On the upper part of the outer periphery of the disk-shaped member 21, a protruding portion having a thickness of 15 mm and a thickness of 10 mm was provided evenly at an arbitrary position. The ring-shaped member 23 is made of Si 3 N 4 (thermal conductivity: 30 Wm −1 K −1 ), and has an inner circle diameter of 615 mm (excluding protrusions) and an outer circle diameter of 635 mm (excluding protrusions). ), A ring with a thickness of 20 mm. On the inner peripheral lower portion and the outer peripheral lower portion of the ring-shaped member 23, protrusions having a radial direction of 15 mm and a thickness of 10 mm were provided evenly at arbitrary locations. The disc-shaped member 21 is fitted to the ring-shaped member 23 by overlapping the lower surface of the projecting portion provided on the outer peripheral upper portion of the disc-shaped member 21 and the upper surface of the projecting portion provided on the inner peripheral lower portion of the ring-shaped member 23. A susceptor body was formed.

歯車部22は、Si製(熱伝導率:28Wm−1−1)で、内周円の直径が655mm(突出部を除く)、外周円の直径675mm(突出部を除く)、厚さが20mmのリング状とした。歯車部22の内周上部には、任意の場所で均等に半径方向に15mm、厚さ10mmの突出部を設けた。歯車部22を、角度90°の間隔で半径方向に分割形成される4個の円弧状部材24から構成した。歯車部22を形成するときに隣り合う円弧状部材24同士の間に5mmの隙間が生じるように、各分割面を2.5mm切削した。各円弧状部材24に、直径8mmの螺旋穴を角度30°の間隔で3個ずつ設け、直径5mmのカーボン製の雄螺旋をこの螺旋穴に通してから、リング状部材23に設けた雌螺旋に固定することにより、各円弧状部材24をリング状部材23に固定して、歯車部22を形成した。このようにして、リング状部材23の外周下部に設けた突出部の上面と歯車部22の内周上部に設けた突出部の下面を重ね合せることによりサセプタ3を形成した。このとき、リング状部材23と歯車部22の間の任意の場所で均等に、半径方向に5mmの隙間が形成され、隣り合う円弧状部材24同士の間の任意の場所で均等に5mmの隙間が形成された。 The gear portion 22 is made of Si 3 N 4 (thermal conductivity: 28 Wm −1 K −1 ), and the inner circle has a diameter of 655 mm (excluding the protrusion), the outer circle has a diameter of 675 mm (excluding the protrusion), The ring was 20 mm thick. At the upper part of the inner periphery of the gear portion 22, a protruding portion having a diameter of 15 mm and a thickness of 10 mm was provided evenly at an arbitrary position. The gear portion 22 is composed of four arcuate members 24 that are divided and formed in the radial direction at intervals of 90 °. Each split surface was cut by 2.5 mm so that a gap of 5 mm was generated between the adjacent arc-shaped members 24 when the gear portion 22 was formed. In each arc-shaped member 24, three spiral holes with a diameter of 8 mm are provided at intervals of 30 °, a male spiral made of carbon with a diameter of 5 mm is passed through the spiral hole, and then the female spiral provided in the ring-shaped member 23 is provided. Each of the arc-shaped members 24 is fixed to the ring-shaped member 23 to form the gear portion 22. Thus, the susceptor 3 was formed by superimposing the upper surface of the protruding portion provided on the lower outer periphery of the ring-shaped member 23 and the lower surface of the protruding portion provided on the inner peripheral upper portion of the gear portion 22. At this time, a gap of 5 mm is formed in the radial direction evenly at an arbitrary position between the ring-shaped member 23 and the gear portion 22, and a gap of 5 mm is evenly formed at an arbitrary position between the adjacent arc-shaped members 24. Formed.

サセプタ回転駆動軸14は、直径20mm、長さ300mmのステンレス製とし、サセプタ回転板15は、直径100mm、厚さ20mmのSiCコートカーボン製とし、カーボン製の固定螺旋でサセプタ回転駆動軸14のサセプタ側先端に固定した。また、サセプタの対面4、及び基台20はカーボン製とし、反応容器19はステンレス製とした。   The susceptor rotation drive shaft 14 is made of stainless steel having a diameter of 20 mm and a length of 300 mm, the susceptor rotation plate 15 is made of SiC coated carbon having a diameter of 100 mm and a thickness of 20 mm, and the susceptor of the susceptor rotation drive shaft 14 is made of carbon. Fixed to the side tip. The facing surface 4 of the susceptor and the base 20 were made of carbon, and the reaction vessel 19 was made of stainless steel.

(温度むら測定実験)
このような気相成長装置を用いて、基板の表面に窒化ガリウム(GaN)の成長を行なうことを想定して、基板の温度を1050℃まで昇温させ、サセプタの温度むらを測定した。まず、基板ホルダーに基板(直径3インチ、サファイア)基板をセットし、基板ホルダー回転駆動器及びサセプタ回転駆動器を稼働させて、基板の自転(10rpm)及び公転(1rpm)を開始した。次に、原料ガス導入部から窒素を流しながら基板の温度を1050℃まで昇温させ、充分な時間が経過した後、サセプタ(円盤状部材)の最高温度と最低温度の差を測定した結果、温度差は4℃であった。
(Temperature unevenness measurement experiment)
Assuming that gallium nitride (GaN) is grown on the surface of the substrate using such a vapor phase growth apparatus, the temperature of the substrate was raised to 1050 ° C., and the temperature unevenness of the susceptor was measured. First, a substrate (3-inch diameter, sapphire) substrate was set in the substrate holder, the substrate holder rotation driver and the susceptor rotation driver were operated, and rotation (10 rpm) and revolution (1 rpm) of the substrate were started. Next, as a result of measuring the difference between the maximum temperature and the minimum temperature of the susceptor (disc-shaped member) after a sufficient time had elapsed, the temperature of the substrate was raised to 1050 ° C. while flowing nitrogen from the source gas introduction part, The temperature difference was 4 ° C.

[比較例1]
(気相成長装置の製作)
直径が675mmの円盤状で外周に平歯車構造からなる歯車部が設けられたサセプタ(SiCコートカーボン製)を一体として製作して使用したほかは、実施例1と同様の気相成長装置を製作した。このサセプタの熱伝導率は、実施例1の円盤状部材と同様に120Wm−1−1であった。
[Comparative Example 1]
(Production of vapor phase growth equipment)
A vapor phase growth apparatus similar to that of Example 1 was manufactured except that a susceptor (made of SiC coated carbon) having a disc shape with a diameter of 675 mm and provided with a spur gear structure on the outer periphery was integrally manufactured. did. The thermal conductivity of this susceptor was 120 Wm −1 K −1 like the disk-shaped member of Example 1.

(温度むら測定実験)
このような気相成長装置を用いて、実施例1と同様の温度むら測定実験を行なった。その結果、最高温度と最低温度の差は9℃であった。
以上のように、本発明の気相成長装置は、歯車部等に破損が生じたとしてもサセプタ全体を交換する必要がなく、また歯車部の材質を容易にサセプタ本体より熱伝導性が低い材質とすることができるので、サセプタ本体の温度均一性が向上し、温度むらを原因とした熱応力によるサセプタの破損を抑制できる。
(Temperature unevenness measurement experiment)
Using such a vapor phase growth apparatus, a temperature unevenness measurement experiment similar to that in Example 1 was performed. As a result, the difference between the maximum temperature and the minimum temperature was 9 ° C.
As described above, the vapor phase growth apparatus according to the present invention does not require replacement of the entire susceptor even if the gear portion or the like is damaged, and the material of the gear portion is easily made of a material having lower thermal conductivity than the susceptor body. Therefore, the temperature uniformity of the susceptor body is improved, and damage to the susceptor due to thermal stress caused by temperature unevenness can be suppressed.

本発明は、熱CVD法等のための気相成長装置として好適であり、例えば、青色または紫外の発光ダイオードまたはレーザーダイオード等の製造に用いられるIII族窒化物半導体の気相成長装置として好適である。   The present invention is suitable as a vapor phase growth apparatus for a thermal CVD method or the like, for example, as a vapor phase growth apparatus of a group III nitride semiconductor used for manufacturing a blue or ultraviolet light emitting diode or laser diode. is there.

本発明の気相成長装置の一例を示す垂直断面構成図Vertical sectional configuration diagram showing an example of a vapor phase growth apparatus of the present invention 図1に示した気相成長装置の部分拡大図(A部)Partial enlarged view (part A) of the vapor phase growth apparatus shown in FIG. 図1に示した気相成長装置の水平断面構成図(断面B−B)Horizontal sectional configuration diagram (cross section BB) of the vapor phase growth apparatus shown in FIG. 図1に示した気相成長装置の水平断面構成図(断面C−C)Horizontal sectional configuration diagram (cross-section CC) of the vapor phase growth apparatus shown in FIG. 本発明の気相成長装置において使用されるサセプタの一例を示す水平断面構成図Horizontal cross-section block diagram which shows an example of the susceptor used in the vapor phase growth apparatus of this invention リング状部材及び歯車部の一例を示す斜視図The perspective view which shows an example of a ring-shaped member and a gear part

1 基板
2 基板ホルダー
3 サセプタ
4 サセプタの対面
5 ヒータ
6 反応炉
7 原料ガス導入部
8 反応ガス排出部
9 基板ホルダー回転駆動器
10 基板ホルダー回転駆動軸
11 ツメ
12 基板ホルダー回転板
13 サセプタ回転駆動器
14 サセプタ回転駆動軸
15 サセプタ回転板
16 均熱板
17 ベアリング
18 ベアリング溝
19 反応容器
20 基台
21 円盤状部材
22 歯車部
23 リング状部材
24 円弧状部材
25 差込口
26 螺旋
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate holder 3 Susceptor 4 Face of susceptor 5 Heater 6 Reaction furnace 7 Raw material gas introduction part 8 Reaction gas discharge part 9 Substrate holder rotation drive 10 Substrate holder rotation drive shaft 11 Claw 12 Substrate holder rotation plate 13 Susceptor rotation drive Reference Signs List 14 susceptor rotation drive shaft 15 susceptor rotation plate 16 heat equalizing plate 17 bearing 18 bearing groove 19 reaction vessel 20 base 21 disc-shaped member 22 gear portion 23 ring-shaped member 24 arc-shaped member 25 insertion port 26 spiral

Claims (8)

基板を保持する基板ホルダー、及び該基板ホルダーを回転自在に保持し外周に外部からの回転駆動力の伝達を受ける歯車部を有するサセプタが備えられた気相成長装置であって、サセプタの歯車部がサセプタ本体から分離できる構成を備えてなることを特徴とする気相成長装置。   A vapor phase growth apparatus comprising a substrate holder for holding a substrate, and a susceptor having a gear portion that rotatably holds the substrate holder and receives a rotational driving force from the outside, the gear portion of the susceptor Is provided with a structure that can be separated from the susceptor body. サセプタの構成が、円盤状部材とその外側に設けられたリング状部材からなるサセプタ本体、及び歯車部からなる請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the susceptor comprises a susceptor body comprising a disk-shaped member and a ring-shaped member provided outside thereof, and a gear portion. 歯車部が複数の円弧状部材からなる請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the gear portion includes a plurality of arc-shaped members. リング状部材と歯車部が、螺旋により結合された請求項2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 2, wherein the ring-shaped member and the gear portion are coupled by a spiral. 円盤状部材とリング状部材が、螺旋により結合された請求項2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 2, wherein the disk-shaped member and the ring-shaped member are coupled by a spiral. 歯車部がサセプタ本体より熱伝導性が低い材質で構成された請求項2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 2, wherein the gear portion is made of a material having lower thermal conductivity than the susceptor body. リング状部材がサセプタ本体より熱伝導性が低い材質で構成された請求項2に記載の気相成長装置。   The vapor phase growth apparatus according to claim 2, wherein the ring-shaped member is made of a material having lower thermal conductivity than the susceptor body. 複数の円弧状部材同士の間に、隙間が設けられた請求項3に記載の気相成長装置。   The vapor phase growth apparatus according to claim 3, wherein a gap is provided between the plurality of arcuate members.
JP2011134226A 2011-06-16 2011-06-16 Vapor growth device Pending JP2013004730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011134226A JP2013004730A (en) 2011-06-16 2011-06-16 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134226A JP2013004730A (en) 2011-06-16 2011-06-16 Vapor growth device

Publications (1)

Publication Number Publication Date
JP2013004730A true JP2013004730A (en) 2013-01-07

Family

ID=47672983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134226A Pending JP2013004730A (en) 2011-06-16 2011-06-16 Vapor growth device

Country Status (1)

Country Link
JP (1) JP2013004730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423629A (en) * 2017-08-31 2019-03-05 中国科学院苏州纳米技术与纳米仿生研究所 The disposable full-surface deposition work piece actuating device of disk part by performing and gaseous phase deposition stove

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339764A (en) * 1986-08-06 1988-02-20 Eisuke Yokoyama Structure for carrier in lapping machine
JPH04231288A (en) * 1990-05-18 1992-08-20 Outboard Marine Corp Marine propulsion device
JPH09246193A (en) * 1996-03-04 1997-09-19 Nippon Process Eng Kk Film formation device by chemical gas phase growing method
JP2000288920A (en) * 1999-03-31 2000-10-17 Hoya Corp Polishing carrier, polishing method, and manufacture of information recording medium substrate
JP2006114547A (en) * 2004-10-12 2006-04-27 Hitachi Cable Ltd Vapor growth device
JP2007243060A (en) * 2006-03-10 2007-09-20 Taiyo Nippon Sanso Corp Gas-phase growth equipment
JP2009188289A (en) * 2008-02-08 2009-08-20 Taiyo Nippon Sanso Corp Vapor growth system
JP2009214219A (en) * 2008-03-10 2009-09-24 Hoya Corp Manufacturing method for glass substrate for magnetic disk
JP2010253599A (en) * 2009-04-23 2010-11-11 Sumco Corp Polished object carrier and method of manufacturing polishing product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339764A (en) * 1986-08-06 1988-02-20 Eisuke Yokoyama Structure for carrier in lapping machine
JPH04231288A (en) * 1990-05-18 1992-08-20 Outboard Marine Corp Marine propulsion device
JPH09246193A (en) * 1996-03-04 1997-09-19 Nippon Process Eng Kk Film formation device by chemical gas phase growing method
JP2000288920A (en) * 1999-03-31 2000-10-17 Hoya Corp Polishing carrier, polishing method, and manufacture of information recording medium substrate
JP2006114547A (en) * 2004-10-12 2006-04-27 Hitachi Cable Ltd Vapor growth device
JP2007243060A (en) * 2006-03-10 2007-09-20 Taiyo Nippon Sanso Corp Gas-phase growth equipment
JP2009188289A (en) * 2008-02-08 2009-08-20 Taiyo Nippon Sanso Corp Vapor growth system
JP2009214219A (en) * 2008-03-10 2009-09-24 Hoya Corp Manufacturing method for glass substrate for magnetic disk
JP2010253599A (en) * 2009-04-23 2010-11-11 Sumco Corp Polished object carrier and method of manufacturing polishing product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423629A (en) * 2017-08-31 2019-03-05 中国科学院苏州纳米技术与纳米仿生研究所 The disposable full-surface deposition work piece actuating device of disk part by performing and gaseous phase deposition stove
CN109423629B (en) * 2017-08-31 2021-05-04 中国科学院苏州纳米技术与纳米仿生研究所 Workpiece driving device for one-time full-surface deposition of disc parts and vapor deposition furnace

Similar Documents

Publication Publication Date Title
JP5926730B2 (en) Improved wafer carrier
KR20160003441U (en) Wafer carrier with a 31-pocket configuration
JP5394188B2 (en) Chemical vapor deposition equipment
JP5865625B2 (en) Epitaxial wafer manufacturing apparatus and manufacturing method
KR20160003442U (en) Wafer carrier with a 14-pocket configuration
JP2013038153A (en) Manufacturing apparatus and method of epitaxial wafer
WO2020232602A1 (en) Carrier plate, growth device and growth method for growing thin film on substrate
JP2005056984A (en) Apparatus and method for vapor phase growth
JP4575262B2 (en) Wafer support structure and wafer manufacturing apparatus
JP2009071210A (en) Susceptor and epitaxial growth system
JP2013004730A (en) Vapor growth device
US9109303B2 (en) Susceptor and vapor-phase growth apparatus
JP2010034185A (en) Susceptor for vapor deposition apparatus and method of manufacturing epitaxial wafer
TW202029399A (en) Susceptor
JP2013016549A (en) Vapor phase growth apparatus
JP2013239579A (en) Vapor deposition device
JP2011222739A (en) Vapor-phase epitaxial device
JP2014207357A (en) Susceptor and vapor phase growth device employing the same
JP2013157502A (en) Substrate holding tool and vapor growth device using the same
JP6335683B2 (en) SiC epitaxial wafer manufacturing equipment
JP6732483B2 (en) Substrate holding member and vapor phase growth apparatus
JP2010028013A (en) Susceptor for vapor-phase growth device
JP2014212204A (en) Vapor phase epitaxial growth device
JP2015002190A (en) Vapor phase growth device
JP2014204066A (en) Vapor growth device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141127