JP2012501091A - Material for organic photoelectric element and organic photoelectric element including the same - Google Patents

Material for organic photoelectric element and organic photoelectric element including the same Download PDF

Info

Publication number
JP2012501091A
JP2012501091A JP2011524896A JP2011524896A JP2012501091A JP 2012501091 A JP2012501091 A JP 2012501091A JP 2011524896 A JP2011524896 A JP 2011524896A JP 2011524896 A JP2011524896 A JP 2011524896A JP 2012501091 A JP2012501091 A JP 2012501091A
Authority
JP
Japan
Prior art keywords
group
organic
organic photoelectric
substituted
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011524896A
Other languages
Japanese (ja)
Other versions
JP5596687B2 (en
Inventor
キム,ナム−スー
カン,ミョン−スン
ジュン,ホ−クク
カン,ウィ−ス
パク,ヨン−スン
チェ,ミ−ヨン
パク,ジン−ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Publication of JP2012501091A publication Critical patent/JP2012501091A/en
Application granted granted Critical
Publication of JP5596687B2 publication Critical patent/JP5596687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

化学式1の非対称化合物を含む有機光電素子用材料およびそれを含む有機光電素子を開示する。前記有機光電素子用材料は、有機発光ダイオードをはじめとする有機光電素子において、正孔注入材料、正孔輸送材料、発光材料、または電子注入材料および/または電子輸送材料の役割を果たすことができ、適切なドーパントと共に発光ホストとしての役割も果たすことができる。前記材料を有機発光ダイオードなどの有機光電素子に適用すると、寿命、効率、駆動電圧、電気化学的安定性および熱安定性に優れた有機光電素子が得られうる。
【選択図】図1
Disclosed is an organic photoelectric device material containing an asymmetric compound of Formula 1 and an organic photoelectric device containing the same. The organic photoelectric device material can serve as a hole injection material, a hole transport material, a light emitting material, or an electron injection material and / or an electron transport material in an organic photoelectric device such as an organic light emitting diode. It can also serve as a light emitting host with an appropriate dopant. When the material is applied to an organic photoelectric element such as an organic light emitting diode, an organic photoelectric element excellent in life, efficiency, driving voltage, electrochemical stability and thermal stability can be obtained.
[Selection] Figure 1

Description

本発明は、有機光電素子用材料およびこれを含む有機光電素子に関する。より詳細には、本発明は、有機光電素子の寿命、効率、駆動電圧、電気化学的安定性および熱安定性を向上させることができる有機光電素子用材料およびこれを含む有機光電素子に関する。   The present invention relates to a material for an organic photoelectric device and an organic photoelectric device including the material. In more detail, this invention relates to the organic photoelectric element material which can improve the lifetime, efficiency, drive voltage, electrochemical stability, and thermal stability of an organic photoelectric element, and an organic photoelectric element containing the same.

有機光電素子(organic photoelectric device)は、正孔または電子を利用した電極と有機材料との間での電荷交換を必要とする素子である。   An organic photoelectric device is an element that requires charge exchange between an electrode and an organic material using holes or electrons.

有機光電素子は動作原理に応じて次のように分けることができる。第一の有機光電素子は、外部の光源からの光子により有機材料層でエキシトン(exciton)が生成し、このエキシトンが電子と正孔に分離され、そしてこの電子と正孔が互いに異なる電極に電流源(電圧源)として移動することによって駆動される電子素子である。   Organic photoelectric elements can be classified as follows according to the operating principle. In the first organic photoelectric device, exciton is generated in the organic material layer by photons from an external light source, the exciton is separated into electrons and holes, and the electrons and holes are passed through different electrodes. It is an electronic device that is driven by moving as a source (voltage source).

第二の有機光電素子は、少なくとも2つの電極に電圧または電流を加えて前記電極の界面に位置する有機材料半導体に正孔または電子を注入し、そして注入された電子および正孔により素子が駆動される電子素子である。   In the second organic photoelectric device, voltage or current is applied to at least two electrodes to inject holes or electrons into the organic material semiconductor located at the interface between the electrodes, and the devices are driven by the injected electrons and holes. Electronic device.

有機光電素子の例としては、有機発光ダイオード(OLED)、有機太陽電池、有機感光体ドラム(organic photo conductor drum)、有機トランジスタ、有機メモリ素子などがあり、これらは正孔注入材料もしくは正孔輸送材料、電子注入材料もしくは電子輸送材料、または発光材料を必要とする。   Examples of organic photoelectric elements include organic light emitting diodes (OLEDs), organic solar cells, organic photoconductor drums, organic transistors, organic memory elements, and the like, which are hole injection materials or hole transports. A material, an electron injection material or an electron transport material, or a light emitting material is required.

以下、主に有機発光ダイオードについて具体的に説明するが、前記有機光電素子では正孔注入材料もしくは正孔輸送材料、電子注入材料もしくは電子輸送材料、または発光材料が同様の原理で作用する。   Hereinafter, the organic light emitting diode will be specifically described mainly. In the organic photoelectric element, a hole injection material or a hole transport material, an electron injection material or an electron transport material, or a light emitting material acts on the same principle.

有機発光ダイオード(organic light emitting diode、OLED)は、近年、平板ディスプレイ(flat panel display)の需要が増加することに伴って注目されている。一般に有機発光とは、有機物質を利用して電気エネルギーを光エネルギーに変換させることをいう。   2. Description of the Related Art Organic light emitting diodes (OLEDs) have attracted attention in recent years as demand for flat panel displays has increased. In general, organic light emission refers to conversion of electrical energy into light energy using an organic substance.

このような有機発光ダイオードは、有機発光材料に電流を加えて電気エネルギーを光に変換させる素子であって、陽極(anode)と陰極(cathode)との間に機能性有機材料層が挿入された構造を有する。前記有機材料層は、有機発光ダイオードの効率および安全性を高めるために、それぞれ異なる材料を含む多層、例えば、正孔注入層(HIL)、正孔輸送層(HTL)、発光層、電子輸送層(ETL)、電子注入層(EIL)などを含む。   Such an organic light emitting diode is an element that converts electric energy into light by applying an electric current to an organic light emitting material, and a functional organic material layer is inserted between an anode and a cathode. It has a structure. The organic material layer may be a multilayer including different materials, for example, a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer, an electron transport layer, in order to increase the efficiency and safety of the organic light emitting diode (ETL), an electron injection layer (EIL), and the like.

このような有機発光ダイオードにおいて、陽極と陰極との間に電圧をかけると、陽極からは正孔(hole)が、陰極からは電子(electron)が有機材料層に注入される。生成した励起子が基底状態(ground state)に移動しながら特定の波長を有する光を生成する。   In such an organic light emitting diode, when a voltage is applied between the anode and the cathode, holes are injected from the anode and electrons are injected from the cathode into the organic material layer. The generated excitons move to the ground state and generate light having a specific wavelength.

1987年にイーストマンコダック(Eastman Kodak)社では、発光層形成用材料として低分子の芳香族ジアミンとアルミニウム錯体とを含む有機発光ダイオードを最初に開発した(Applied Physics Letters,51,913,1987)。1987年にC.W.Tangらが最初に有機発光ダイオードとして実用的な素子を報告した(Applied Physics Letters,51 12,913〜915,1987)。   In 1987, Eastman Kodak first developed an organic light-emitting diode containing a low-molecular aromatic diamine and an aluminum complex as a light-emitting layer forming material (Applied Physics Letters, 51, 913, 1987). . In 1987, C.I. W. Tang et al. First reported a practical device as an organic light emitting diode (Applied Physics Letters, 512, 913-915, 1987).

前記文献によれば有機層はジアミン誘導体の薄膜(正孔輸送層(HTL))とトリス(8−ヒドロキシ−キノレート)アルミニウム(tris(8−hydroxy−quinolate)aluminum、Alq)の薄膜とが積層された構造を有する。 According to the above document, the organic layer is formed by laminating a thin film of a diamine derivative (hole transport layer (HTL)) and a thin film of tris (8-hydroxy-quinolate) aluminum (Alq 3 ). Has a structured.

最近は、蛍光発光材料のみならず、燐光発光材料も有機発光ダイオードの発光材料として使用され得ることが知られるようになった(D.F.O’Brienら、Applied Physics Letters,74 3,442−444,1999;M.A.Baldoら、Applied Physics letters,75 1,4−6,1999)。このような燐光材料は基底状態(ground state)から励起状態(excited state)に電子が遷移した後、項間交差(intersystem crossing)を通じて一重項励起子が三重項励起子に無輻射遷移した後、三重項励起子が基底状態に遷移して発光するメカニズムによって発光する。   Recently, it has become known that not only fluorescent light-emitting materials but also phosphorescent light-emitting materials can be used as light-emitting materials for organic light-emitting diodes (DF O'Brien et al., Applied Physics Letters, 74 3,442). -444, 1999; MA Baldo et al., Applied Physics letters, 75 1, 4-6, 1999). In such a phosphorescent material, after an electron transitions from a ground state to an excited state, singlet excitons undergo non-radiative transition to triplet excitons through intersystem crossing, Light is emitted by a mechanism in which triplet excitons transition to the ground state and emit light.

前記のように有機発光ダイオードにおいて有機材料層は、発光材料および電荷輸送材料、例えば正孔注入材料、正孔輸送材料、電子輸送材料、電子注入材料などを含む。   As described above, in the organic light emitting diode, the organic material layer includes a light emitting material and a charge transport material such as a hole injection material, a hole transport material, an electron transport material, and an electron injection material.

また、発光材料は、発光色に応じて青色、緑色、および赤色発光材料とさらに改善された天然色に近い色を発光させるための黄色および橙色発光材料とに分類される。   The light emitting materials are classified into blue, green, and red light emitting materials according to the light emission colors, and yellow and orange light emitting materials for emitting light that is further improved to a natural color.

一方、発光材料として一つの材料のみを使用する場合、分子間相互作用により最大発光波長が長波長側に移動したり、色純度が落ちる、または発光クエンチング効果により素子の効率が低下する。したがって、色純度を改善し、エネルギー移動を通じて発光効率および安定性を増加させるために、発光材料としてホスト/ドーパント系を使用しても良い。   On the other hand, when only one material is used as the light emitting material, the maximum emission wavelength shifts to the long wavelength side due to intermolecular interaction, the color purity is lowered, or the efficiency of the device is lowered due to the light emission quenching effect. Thus, a host / dopant system may be used as the luminescent material to improve color purity and increase luminous efficiency and stability through energy transfer.

有機発光ダイオードが前述した優れた特徴を十分に発揮するためには、有機材料層を構成する材料、例えば正孔注入材料、正孔輸送材料、発光材料、電子輸送材料、電子注入材料、ホストおよび/またはドーパントなどの発光材料が安定であり且つ良好な効率を有する必要がある。しかしながら、現在まで有機発光ダイオード用の有機材料層を形成する材料の開発がまだ十分ではなく、したがって新たな材料が要求されている。このような材料開発は前述した他の有機光電素子でも同様に要求されている。   In order for the organic light emitting diode to fully exhibit the above-described excellent characteristics, the material constituting the organic material layer, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and There is a need for luminescent materials such as dopants to be stable and have good efficiency. However, until now, the development of materials for forming organic material layers for organic light emitting diodes has not been sufficiently developed, and therefore new materials are required. Such material development is similarly required for the other organic photoelectric elements described above.

本発明の例示的な実施形態は、正孔注入材料、正孔輸送材料、発光材料、または電子注入材料および/または電子輸送材料の役割を果たすことができ、適切なドーパントと共に発光ホストとしての役割も果たすことができる新規な材料を提供する。   Exemplary embodiments of the present invention can serve as hole injection materials, hole transport materials, light emitting materials, or electron injection materials and / or electron transport materials, and serve as light emitting hosts with suitable dopants. It provides a novel material that can also fulfill.

本発明の他の実施形態は、前記有機光電素子用材料を含み、寿命、効率、駆動電圧、電気化学的安定性、および熱安定性が向上した有機光電素子を提供する。   Another embodiment of the present invention provides an organic photoelectric device that includes the material for an organic photoelectric device and has improved lifetime, efficiency, driving voltage, electrochemical stability, and thermal stability.

本発明の実施形態は上記の技術的課題に制限されず、当業者であれば他の技術的課題を理解しうる。   The embodiments of the present invention are not limited to the above technical problems, and those skilled in the art can understand other technical problems.

本発明の一実施形態によれば、下記の化学式1で表される非対称化合物を含む有機光電素子用材料が提供される。   According to one embodiment of the present invention, a material for an organic photoelectric device including an asymmetric compound represented by the following chemical formula 1 is provided.

前記化学式1において、
Arは、水素、および置換または非置換のアリール基からなる群より選択され、但し、Arが置換されたアリール基である場合、Arの置換基がArと同一ではなく、
ArおよびArは、それぞれ独立して置換または非置換のカルバゾリル基、置換または非置換の炭素数2乃至30のヘテロアリール基、置換または非置換の炭素数2乃至30のアリールアミン基、および置換または非置換の炭素数2乃至30のヘテロアリールアミン基からなる群より選択され、
およびLは、それぞれ独立して置換または非置換のフェニレン、置換または非置換のナフチレン、および置換または非置換のアントラセンからなる群より選択され、
mおよびnは、1乃至4の整数である。
In Formula 1,
Ar 1 is selected from the group consisting of hydrogen and a substituted or unsubstituted aryl group, provided that when Ar 1 is a substituted aryl group, the substituent of Ar 1 is not the same as Ar 2 ;
Ar 2 and Ar 3 are each independently a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, a substituted or unsubstituted arylamine group having 2 to 30 carbon atoms, and Selected from the group consisting of substituted or unsubstituted heteroarylamine groups having 2 to 30 carbon atoms;
L 1 and L 2 are each independently selected from the group consisting of substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, and substituted or unsubstituted anthracene;
m and n are integers of 1 to 4.

本発明の他の実施形態によれば、陽極、陰極、および前記陽極と前記陰極との間に配置された有機薄膜層を含む有機光電素子が提供される。前記有機薄膜層は、前記有機光電素子用材料を含む。   According to another embodiment of the present invention, there is provided an organic photoelectric device including an anode, a cathode, and an organic thin film layer disposed between the anode and the cathode. The organic thin film layer includes the organic photoelectric element material.

本発明のさらなる実施形態によれば、前記有機光電素子を含む表示装置が提供される。   According to a further embodiment of the present invention, a display device including the organic photoelectric device is provided.

以下、本発明のさらなる実施形態を詳細に説明する。   In the following, further embodiments of the invention will be described in detail.

本発明の一実施形態による有機光電素子用材料は、ピリミジンコアに対して非対称構造を有する。ピリミジンコアを含むこのような非対称構造は、非晶質特性が強化されてこれによって結晶化を抑制することができるため、有機光電素子の駆動時に有機光電素子の寿命特性を向上させることができる。したがって、効率、駆動電圧、電気化学的安定性および熱安定性に優れた有機光電素子が提供される。   The material for an organic photoelectric device according to an embodiment of the present invention has an asymmetric structure with respect to the pyrimidine core. Such an asymmetric structure including a pyrimidine core has enhanced amorphous characteristics and can thereby suppress crystallization. Therefore, the lifetime characteristics of the organic photoelectric element can be improved when the organic photoelectric element is driven. Therefore, an organic photoelectric device excellent in efficiency, driving voltage, electrochemical stability and thermal stability is provided.

本発明の一実施形態による新規な材料は、有機発光ダイオードをはじめとする有機光電素子において、正孔注入材料、正孔輸送材料、発光材料、または電子注入材料および/または電子輸送材料の役割を果たすことができ、適切なドーパントと共に発光ホストとしての役割にも適用可能である。   A novel material according to an embodiment of the present invention plays a role of a hole injection material, a hole transport material, a light emitting material, or an electron injection material and / or an electron transport material in an organic photoelectric device such as an organic light emitting diode. It can also be applied to the role as a light emitting host with an appropriate dopant.

本発明の多様な実施形態による化合物を含む有機発光ダイオードを示す断面図である。1 is a cross-sectional view illustrating an organic light emitting diode including a compound according to various embodiments of the present invention. 本発明の多様な実施形態による化合物を含む有機発光ダイオードを示す断面図である。1 is a cross-sectional view illustrating an organic light emitting diode including a compound according to various embodiments of the present invention. 本発明の多様な実施形態による化合物を含む有機発光ダイオードを示す断面図である。1 is a cross-sectional view illustrating an organic light emitting diode including a compound according to various embodiments of the present invention. 本発明の多様な実施形態による化合物を含む有機発光ダイオードを示す断面図である。1 is a cross-sectional view illustrating an organic light emitting diode including a compound according to various embodiments of the present invention. 本発明の多様な実施形態による化合物を含む有機発光ダイオードを示す断面図である。1 is a cross-sectional view illustrating an organic light emitting diode including a compound according to various embodiments of the present invention.

図6は、合成例1による化合物に対する示差走査熱量(DSC)測定結果を示すグラフである。   6 is a graph showing differential scanning calorimetry (DSC) measurement results for the compound according to Synthesis Example 1. FIG.

<図中の主要な要素を示す符号の説明>
100:有機光電素子、
110:陰極、
120:陽極、
105:有機薄膜層、
130:発光層、
140:正孔輸送層(HTL)、
150:電子輸送層(ETL)、
160:電子注入層(EIL)、
170:正孔注入層(HIL)、
230:発光層+電子輸送層(ETL)。
<Explanation of symbols indicating main elements in the figure>
100: Organic photoelectric element,
110: cathode,
120: anode,
105: Organic thin film layer,
130: light emitting layer,
140: hole transport layer (HTL),
150: electron transport layer (ETL),
160: an electron injection layer (EIL),
170: hole injection layer (HIL),
230: Light emitting layer + electron transport layer (ETL).

以下、本発明の例示的な実施形態を詳しく説明する。但し、これらの実施形態は単なる例示であり、これらによって本発明が制限されるものではない。   Hereinafter, exemplary embodiments of the present invention will be described in detail. However, these embodiments are merely examples, and the present invention is not limited thereto.

本明細書で「置換」の用語は、別途の定義がない限り、炭素数1乃至30のアルキル基、炭素数1乃至10のヘテロアルキル基、炭素数3乃至30のシクロアルキル基、炭素数6乃至30のアリール基、炭素数1乃至30のアルコキシ基、フルオロ基、およびシアノ基からなる群より選択される少なくとも1つの置換基で置換されたものを意味する。   In this specification, the term “substituted” means an alkyl group having 1 to 30 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or 6 carbon atoms unless otherwise defined. A group substituted with at least one substituent selected from the group consisting of an aryl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a fluoro group, and a cyano group.

本明細書で「ヘテロ」の用語は、別途の定義がない限り、一つの環内にN、O、S、P、またはSiを含むヘテロ原子を1乃至3個含有し、残りは炭素であるものを意味する。   As used herein, the term “hetero”, unless otherwise defined, contains 1 to 3 heteroatoms containing N, O, S, P, or Si in the ring, with the remainder being carbon. Means things.

本発明の一実施形態によれば、下記の化学式1で表される非対称化合物を含む有機光電素子用材料が提供される。   According to one embodiment of the present invention, a material for an organic photoelectric device including an asymmetric compound represented by the following chemical formula 1 is provided.

前記化学式1において、
Arは、水素、および置換または非置換のアリール基からなる群より選択され、但し、Arが置換アリール基である場合、Arの置換基がArと同一ではなく、
ArおよびArは、それぞれ独立して置換または非置換のカルバゾリル基、置換または非置換の炭素数2乃至30のヘテロアリール基、置換または非置換の炭素数2乃至30のアリールアミン基、および置換または非置換の炭素数2乃至30のヘテロアリールアミン基からなる群より選択され、
およびLは、それぞれ独立して置換または非置換のフェニレン、置換または非置換のナフチレン、および置換または非置換のアントラセンからなる群より選択され、
mおよびnは、1乃至4の整数である。
In Formula 1,
Ar 1 is selected from the group consisting of hydrogen and a substituted or unsubstituted aryl group, provided that when Ar 1 is a substituted aryl group, the substituent of Ar 1 is not the same as Ar 2 ;
Ar 2 and Ar 3 are each independently a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, a substituted or unsubstituted arylamine group having 2 to 30 carbon atoms, and Selected from the group consisting of substituted or unsubstituted heteroarylamine groups having 2 to 30 carbon atoms;
L 1 and L 2 are each independently selected from the group consisting of substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, and substituted or unsubstituted anthracene;
m and n are integers of 1 to 4.

前記化学式1において、Arは、アリール基またはアリール置換基を有するアリール基であることが好ましい。前記アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、クリセニル(chrysenyl)基などが挙げられる。 In Formula 1, Ar 1 is preferably an aryl group or an aryl group having an aryl substituent. Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, and a chrysenyl group.

Arは、炭素数1乃至30のアルキル基、炭素数1乃至10のヘテロアルキル基、炭素数3乃至30のシクロアルキル基、炭素数6乃至30のアリール基、炭素数1乃至30のアルコキシ基、フルオロ基、およびシアノ基からなる群より選択される置換基で置換される。前記アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、およびクリセニル基からなる群より選択されるアリール基が挙げられ、前記ヘテロアルキル基の例としては、アルキルシリル基が挙げられる。しかしながら、前記アリール基およびヘテロアルキル基がこれらに限定されるわけではない。 Ar 1 is an alkyl group having 1 to 30 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms. And a substituent selected from the group consisting of a fluoro group and a cyano group. Examples of the aryl group include an aryl group selected from the group consisting of a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, and a chrysenyl group, and examples of the heteroalkyl group include An alkylsilyl group. However, the aryl group and heteroalkyl group are not limited thereto.

Arが置換されたアリール基である場合、Arの置換基がArと同一ではない。Arが置換されたアリール基であり、Arの置換基がArと同一ではない場合、ピリミジンコアを基準とした非対称構造が得られる。このような非対称構造を有する有機光電素子用材料は結晶化を抑制し、そのため有機光電素子の寿命特性を向上させることができる。 When Ar 1 is a substituted aryl group, the substituent of Ar 1 is not the same as Ar 2 . When Ar 1 is a substituted aryl group and the substituent of Ar 1 is not the same as Ar 2 , an asymmetric structure based on the pyrimidine core is obtained. The material for an organic photoelectric device having such an asymmetric structure suppresses crystallization, so that the life characteristics of the organic photoelectric device can be improved.

前記化学式1において、ArおよびArで表されるヘテロアリール基としては、イミダゾリル基、チアゾリル基、オキサゾリル基、オキサジアゾリル基、トリアゾリル基、ピリジニル基、ピリダジン基、キノリニル基、イソキノリニル基、アクリジル基、イミダゾピリジニル基、イミダゾピリミジニル基などが挙げられる。 In the chemical formula 1, the heteroaryl group represented by Ar 2 and Ar 3 includes an imidazolyl group, a thiazolyl group, an oxazolyl group, an oxadiazolyl group, a triazolyl group, a pyridinyl group, a pyridazine group, a quinolinyl group, an isoquinolinyl group, an acridyl group, Examples include imidazopyridinyl group and imidazopyrimidinyl group.

前記化学式1において、ArおよびArで表されるヘテロアリールアミン基の例としては、ジフェニルアミン基、ジナフチルアミン基、ジビフェニルアミン基、フェニルナフチルアミン基、フェニルジフェニルアミン基、ジトリルアミン基、フェニルトリルアミン基、カルバゾイル基、トリフェニルアミン基、ジピリジルアミン基などが挙げられる。 Examples of the heteroarylamine group represented by Ar 2 and Ar 3 in Chemical Formula 1 include a diphenylamine group, a dinaphthylamine group, a dibiphenylamine group, a phenylnaphthylamine group, a phenyldiphenylamine group, a ditolylamine group, and a phenyltolylamine group. Carbazoyl group, triphenylamine group, dipyridylamine group and the like.

前記化学式1において、ArおよびArで表されるそれぞれの置換基は、置換または非置換でありうる。ArおよびArが置換されている場合には、これらは炭素数1乃至30のアルキル基、炭素数1乃至10のヘテロアルキル基、炭素数3乃至30のシクロアルキル基、炭素数6乃至30のアリール基、炭素数1乃至30のアルコキシ基、フルオロ基、およびシアノ基からなる群から選択される1つで置換されていても良い。前記アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、およびクリセニル基からなる群より選択されるアリール基が挙げられ、前記ヘテロアルキル基の例としては、アルキルシリル基が挙げられる。しかしながら、前記アリール基およびヘテロアルキル基はこれらに限定されるわけではない。 In the chemical formula 1, each of the substituents represented by Ar 2 and Ar 3 may be substituted or unsubstituted. When Ar 2 and Ar 3 are substituted, these are alkyl groups having 1 to 30 carbon atoms, heteroalkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 3 to 30 carbon atoms, and 6 to 30 carbon atoms. The aryl group, an alkoxy group having 1 to 30 carbon atoms, a fluoro group, and a cyano group may be substituted. Examples of the aryl group include an aryl group selected from the group consisting of a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, and a chrysenyl group, and examples of the heteroalkyl group include An alkylsilyl group. However, the aryl group and heteroalkyl group are not limited thereto.

前記化学式1において、LおよびLは、フェニレンであることが好ましい。 In Formula 1, L 1 and L 2 are preferably phenylene.

本発明による前記化学式1の化合物は、ピリミジンコアとAr乃至Arの置換基とを含む。ピリミジンは芳香族化合物であり、ベンゼンのような電子構造を有する。このピリミジンは熱的安定性を有する、または耐酸化性が比較的高いが、2−、4−、および6−位に対する反応性の差によって非対称化合物を合成することができる。 The compound of Formula 1 according to the present invention includes a pyrimidine core and a substituent of Ar 1 to Ar 3 . Pyrimidine is an aromatic compound and has an electronic structure like benzene. This pyrimidine has thermal stability or relatively high oxidation resistance, but asymmetric compounds can be synthesized by the difference in reactivity to the 2-, 4-, and 6-positions.

一実施形態によれば、前記ピリミジンコア部分は互いに同一ではない置換基で置換されて非対称構造を形成する。非対称性置換基を有するピリミジンコア構造では、非晶質特性が高められて結晶化が抑制され、有機光電素子の駆動時に寿命特性を向上させる。一方、同一な置換基を有する対称化合物は、結晶化しやすく、そのため、有機発光ダイオードの寿命特性を短縮させる原因となることもある。   According to one embodiment, the pyrimidine core moieties are substituted with non-identical substituents to form an asymmetric structure. In the pyrimidine core structure having an asymmetric substituent, the amorphous characteristics are enhanced and crystallization is suppressed, and the lifetime characteristics are improved when the organic photoelectric device is driven. On the other hand, a symmetric compound having the same substituent is easily crystallized, which may shorten the life characteristics of the organic light emitting diode.

上記の特徴を有するピリミジンに多様な置換基(Ar乃至Ar)を導入して有機光電素子に必要な特性を付与する。 A variety of substituents (Ar 1 to Ar 3 ) are introduced into the pyrimidine having the above characteristics to impart necessary characteristics to the organic photoelectric device.

例えば、ArおよびArにピリジニル基、キノリニル基、およびイソキノリニル基のようなn−型特性を有する置換基を導入することによって、熱的、電気的に安定したn−型材料を合成することができ、p−型特性を有する置換基を導入することによって、p−型材料を合成することができる。また、n−型置換基とp−型置換基との両方を導入することによって、n−型のみならずp−型の特性も有する両親性材料を提供することができる。 For example, a thermally and electrically stable n-type material is synthesized by introducing substituents having n-type characteristics such as pyridinyl group, quinolinyl group, and isoquinolinyl group into Ar 2 and Ar 3. P-type materials can be synthesized by introducing substituents having p-type properties. In addition, by introducing both an n-type substituent and a p-type substituent, an amphiphilic material having not only the n-type but also the p-type characteristics can be provided.

n−型特性とは、電子生成による陰イオン特性を有するように、LUMO準位に応じた導電特性の性質を意味する。p−型特性とは、正孔生成による陽イオン特性を有するように、HOMO準位に応じた導電特性の性質を意味する。   The n-type characteristic means the property of the conductive characteristic according to the LUMO level so as to have an anion characteristic due to electron generation. The p-type characteristic means the property of the conductive characteristic according to the HOMO level so as to have a cation characteristic due to hole generation.

前記化学式1で表される化合物は、多様な置換基が導入されることによって、全体的な分子の特性がn−型またはp−型へとさらに強化されうる。つまり、化学式1中の置換基部分に特定の置換基が導入されて化学式1の化合物の特性がいずれか一方により強くなると、化学式1で表される化合物は、正孔注入、正孔輸送、発光、電子注入または電子輸送のための材料としての条件をより適するように満たす化合物となり得る。   The compound represented by Formula 1 may further enhance the overall molecular properties to n-type or p-type by introducing various substituents. That is, when a specific substituent is introduced into the substituent portion in Chemical Formula 1 and the characteristic of the compound of Chemical Formula 1 becomes stronger, either of the compounds represented by Chemical Formula 1 becomes hole injection, hole transport, light emission. It can be a compound that satisfies the conditions as a material for electron injection or electron transport more appropriately.

例えば、ArおよびArをヘテロアリールアミン基で置換する場合、化学式1で表される化合物は、正孔注入層(HIL)および正孔輸送層(HTL)用材料など応用範囲が広くなる。 For example, when Ar 2 and Ar 3 are substituted with a heteroarylamine group, the compound represented by Chemical Formula 1 has a wide range of applications such as a material for a hole injection layer (HIL) and a hole transport layer (HTL).

一方、ArおよびArをヘテロアリール基のような電子親和性に優れた材料で置換する場合、化学式1で表される化合物は、電子注入層または電子輸送層(ETL)用材料として応用され得る。 On the other hand, when Ar 2 and Ar 3 are substituted with a material having excellent electron affinity such as a heteroaryl group, the compound represented by Chemical Formula 1 is applied as an electron injection layer or electron transport layer (ETL) material. obtain.

さらに、Arをフェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、クリセニル基などのような置換基で置換する場合、熱的安定性または耐酸化性を増加させることができ、ArまたはArをそれぞれヘテロアリールアミン基およびヘテロアリール基の置換基で同時に置換すれば両親性を有する材料を提供することができ、この材料を発光層に適用できる。 Furthermore, when Ar 1 is substituted with a substituent such as a phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, chrysenyl group, etc., the thermal stability or oxidation resistance can be increased. , Ar 2 or Ar 3 can be substituted with a heteroarylamine group and a heteroaryl group substituent at the same time to provide an amphiphilic material, which can be applied to a light emitting layer.

上述のように化学式1のAr乃至Arの位置に多様な置換基を導入することによって、多様なエネルギーバンドギャップを有する化合物を合成することができる。 As described above, compounds having various energy band gaps can be synthesized by introducing various substituents at the positions of Ar 1 to Ar 3 in Chemical Formula 1.

したがって、前記化学式1で表される化合物は多様な置換基により正孔注入層(HIL)、正孔輸送層(HTL)、発光層、電子注入層および電子輸送層に要求される条件を満たす化合物となり得る。   Therefore, the compound represented by Formula 1 is a compound that satisfies the requirements for the hole injection layer (HIL), the hole transport layer (HTL), the light emitting layer, the electron injection layer, and the electron transport layer due to various substituents. Can be.

化合物1の置換基に応じた適切なエネルギー準位を有する化合物を選択し、これを有機電子素子に適用することによって、駆動電圧が低く、光効率が高い素子を達成することができる。   By selecting a compound having an appropriate energy level according to the substituent of compound 1 and applying it to an organic electronic device, a device with low driving voltage and high light efficiency can be achieved.

前記化学式1で表される化合物の具体的な例としては、下記化合物(1)乃至(90)が挙げられるが、これらに限定されない。   Specific examples of the compound represented by Formula 1 include the following compounds (1) to (90), but are not limited thereto.

上記化合物を含む有機光電素子用材料は、正孔注入、正孔輸送、発光、または電子注入および/または電子輸送の役割を果たすことができ、適切なドーパントと共に発光ホストとしての役割も果たすことができる。本発明の実施形態によれば、有機光電素子用化合物は、有機薄膜層に含まれると有機光電素子の寿命ならびに電気化学的安定性および熱安定性を向上させることができ、寿命特性および効率特性を向上させるために駆動電圧を低下させることができる。   The organic photoelectric device material containing the above compound can play a role of hole injection, hole transport, light emission, or electron injection and / or electron transport, and can also serve as a light emitting host together with an appropriate dopant. it can. According to the embodiment of the present invention, when the compound for an organic photoelectric device is contained in an organic thin film layer, the lifetime and electrochemical stability and thermal stability of the organic photoelectric device can be improved. In order to improve the driving voltage, the driving voltage can be lowered.

本発明の他の一実施形態によれば、前記有機光電素子用材料を含む有機光電素子が提供される。前記有機光電素子としては、有機発光ダイオード、有機太陽電池、有機トランジスタ、有機感光体ドラム、有機メモリ素子などが挙げられる。   According to another embodiment of the present invention, an organic photoelectric device including the organic photoelectric device material is provided. Examples of the organic photoelectric element include an organic light emitting diode, an organic solar battery, an organic transistor, an organic photosensitive drum, and an organic memory element.

有機太陽電池の場合には、本発明の新しい化合物は電極または電極バッファー層に含まれ、これによって量子効率を増加させることができる。有機トランジスタの場合には、ゲート、ソース−ドレイン電極などの電極材料として使用され得る。   In the case of organic solar cells, the new compounds of the present invention are included in the electrode or electrode buffer layer, which can increase quantum efficiency. In the case of an organic transistor, it can be used as an electrode material such as a gate or a source-drain electrode.

以下、有機発光ダイオードについてより詳細に説明する。本発明の他の実施形態によれば、陽極、陰極、および前記陽極と前記陰極との間に配置された少なくとも一層の有機薄膜層を含む有機発光ダイオードが提供される。前記有機薄膜層は、前記有機光電素子用材料を含む。   Hereinafter, the organic light emitting diode will be described in more detail. According to another embodiment of the present invention, there is provided an organic light emitting diode comprising an anode, a cathode, and at least one organic thin film layer disposed between the anode and the cathode. The organic thin film layer includes the organic photoelectric element material.

前記有機薄膜層は、発光層;および正孔輸送層(HTL)、正孔注入層(HIL)、電子輸送層(ETL)、電子注入層(EIL)、正孔阻止層およびこれらの組み合わせからなる群より選択される。少なくとも一つの層は、本発明による有機光電素子用材料を含む。   The organic thin film layer includes a light emitting layer; and a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), an electron injection layer (EIL), a hole blocking layer, and a combination thereof. Selected from the group. At least one layer includes the organic photoelectric device material according to the present invention.

図1乃至図5は、本発明の一実施形態による有機光電素子用材料を含む有機発光ダイオードの断面図である。   1 to 5 are cross-sectional views of an organic light emitting diode including an organic photoelectric device material according to an embodiment of the present invention.

図1乃至図5を参照すれば、本発明の実施形態による有機発光ダイオード100、200、300、400、および500は、陽極120および陰極110との間に配置された少なくとも一層の有機薄膜層105を含む。   Referring to FIGS. 1 to 5, the organic light emitting diodes 100, 200, 300, 400, and 500 according to an embodiment of the present invention include at least one organic thin film layer 105 disposed between the anode 120 and the cathode 110. including.

陽極120は、有機薄膜層への正孔注入を容易にするように仕事関数が大きい陽極材料を含む。前記陽極材料としては、ニッケル、白金、バナジウム、クロム、銅、亜鉛、および金のような金属またはこれらの合金;酸化亜鉛、酸化インジウム、インジウムスズ酸化物(ITO)、およびインジウム亜鉛酸化物(IZO)のような金属酸化物;ZnO:AlまたはSnO:Sbのような金属と酸化物との組み合わせ;またはポリ(3−メチルチオフェン)、ポリ[3,4−(エチレン−1,2−ジオキシ)チオフェン](PEDT)、ポリピロールおよびポリアニリンのような導電性高分子などが挙げられるが、これらに限定されない。好ましくは、前記陽極としてITO(indium tin oxide)などの透明電極を含む。 The anode 120 includes an anode material having a high work function so as to facilitate hole injection into the organic thin film layer. Examples of the anode material include metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or alloys thereof; zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metal oxides such as ZnO: Al or SnO 2 : Sb; or combinations of oxides with oxides; or poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) ) Thiophene] (PEDT), conductive polymers such as polypyrrole and polyaniline, but are not limited thereto. Preferably, the anode includes a transparent electrode such as ITO (indium tin oxide).

陰極110は、有機薄膜層への電子注入を容易にするように仕事関数が小さい陰極材料を含む。陰極材料としては、マグネシウム、カルシウム、ナトリウム、カリウム、チタン、インジウム、イットリウム、リチウム、ガドリニウム、アルミニウム、銀、スズ、および鉛、のような金属またはこれらの合金;LiF/Al、Liq/Al、LiO/Al、LiF/Ca、LiF/Al、およびBaF/Caのような多層材料などが挙げられるが、これらに限定されない。好ましくは、前記陰極としてアルミニウムなどの金属電極を含む。 The cathode 110 includes a cathode material having a low work function so as to facilitate injection of electrons into the organic thin film layer. Cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; LiF / Al, Liq / Al, LiO 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca is a multilayer material and the like such as, but not limited to. Preferably, the cathode includes a metal electrode such as aluminum.

図1を参照すれば、有機光電素子100は、発光層130のみを含む有機薄膜層105を含む。   Referring to FIG. 1, the organic photoelectric device 100 includes an organic thin film layer 105 including only a light emitting layer 130.

図2を参照すれば、2層型有機光電素子200は、電子輸送層(ETL)を含む発光層230と正孔輸送層(HTL)140とを含む有機薄膜層105を含む。発光層230は電子輸送層(ETL)としても機能し、正孔輸送層(HTL)140はITOのような透明電極との結合性に優れる、または正孔輸送性に優れる。   Referring to FIG. 2, the two-layer organic photoelectric device 200 includes an organic thin film layer 105 including a light emitting layer 230 including an electron transport layer (ETL) and a hole transport layer (HTL) 140. The light emitting layer 230 also functions as an electron transport layer (ETL), and the hole transport layer (HTL) 140 has excellent bonding properties with a transparent electrode such as ITO, or has excellent hole transport properties.

図3を参照すれば、3層型有機光電素子300は、電子輸送層(ETL)150、発光層130、および正孔輸送層(HTL)140を含む有機薄膜層105を含む。発光層130は独立して設置され、電子輸送性に優れた層または正孔輸送性に優れた層が別々に積層される。   Referring to FIG. 3, the three-layer organic photoelectric device 300 includes an organic thin film layer 105 including an electron transport layer (ETL) 150, a light emitting layer 130, and a hole transport layer (HTL) 140. The light emitting layer 130 is provided independently, and a layer having excellent electron transporting property or a layer having excellent hole transporting property is laminated separately.

図4に示されるように、4層型有機光電素子400は、電子注入層(EIL)160、発光層130、正孔輸送層(HTL)140、およびITOの陽極との結合のための正孔注入層(ETL)170を含む有機薄膜層105を含む。   As shown in FIG. 4, the four-layer organic photoelectric device 400 includes an electron injection layer (EIL) 160, a light-emitting layer 130, a hole transport layer (HTL) 140, and holes for bonding to the anode of ITO. An organic thin film layer 105 including an injection layer (ETL) 170 is included.

図5に示されるように、5層型有機光電素子500は、電子輸送層(ETL)150、発光層130、正孔輸送層(HTL)140、および正孔注入層(HIL)170を含む有機薄膜層105を含み、低電圧を達成するために電子注入層(EIL)160をさらに含む。   As shown in FIG. 5, the five-layer organic photoelectric element 500 includes an electron transport layer (ETL) 150, a light emitting layer 130, a hole transport layer (HTL) 140, and a hole injection layer (HIL) 170. It includes a thin film layer 105 and further includes an electron injection layer (EIL) 160 to achieve a low voltage.

前記図1乃至図5において、電子輸送層(ETL)150、電子注入層(EIL)160、発光層130および230、正孔輸送層(HTL)140、正孔注入層(HIL)170、ならびにこれらの組み合わせからなる群より選択される少なくとも1つを含む有機薄膜層105は、前記有機光電素子用材料を含む。前記有機光電素子用材料は、電子輸送層(ETL)150または電子注入層(EIL)160を含む電子輸送層(ETL)150に使用されても良い。電子輸送層(ETL)に用いられる場合、さらなる正孔阻止層(図示せず)を必要としないため、より単純化した構造の有機光電素子を提供することができる。   1 to 5, the electron transport layer (ETL) 150, the electron injection layer (EIL) 160, the light emitting layers 130 and 230, the hole transport layer (HTL) 140, the hole injection layer (HIL) 170, and these The organic thin film layer 105 including at least one selected from the group consisting of the above includes the organic photoelectric element material. The organic photoelectric device material may be used for an electron transport layer (ETL) 150 including an electron transport layer (ETL) 150 or an electron injection layer (EIL) 160. When used for an electron transport layer (ETL), an additional hole blocking layer (not shown) is not required, and thus an organic photoelectric device having a more simplified structure can be provided.

また、前記有機光電素子用材料が発光層130および230内に含まれる場合、前記有機光電素子用材料は、燐光もしくは蛍光ホスト、または蛍光青色ドーパントとして含まれても良い。   In addition, when the organic photoelectric device material is included in the light emitting layers 130 and 230, the organic photoelectric device material may be included as a phosphorescent or fluorescent host or a fluorescent blue dopant.

前述した有機発光ダイオードは、基板上に陽極を形成し;真空蒸着(evaporation)、スパッタリング(sputtering)、プラズマメッキ、およびイオンメッキのようなドライコーティング法;またはスピンコーティング(spin coating)、浸漬(dipping)、フローコーティング(flow coating)のようなウエットコーティング法によって有機薄膜層を形成し;そして、その上に陰極を形成することによって作製されうる。   The organic light emitting diode described above forms an anode on a substrate; dry coating methods such as vacuum evaporation, sputtering, plasma plating, and ion plating; or spin coating, dipping. ), Forming an organic thin film layer by a wet coating method such as flow coating; and forming a cathode thereon.

本発明の他の実施形態は、上記の実施形態による有機光電素子を含む表示装置を提供する。   Another embodiment of the present invention provides a display device including the organic photoelectric device according to the above embodiment.

以下の実施を用いて本発明をより詳細に説明する。但し、これらの実施例によって本発明が制限されてはならないことが理解されるであろう。   The invention is explained in more detail using the following implementation. However, it will be understood that the invention should not be limited by these examples.

(有機光電素子用材料の調製)
合成例1:化合物(1)の合成
有機光電素子用材料の具体的な例として、化合物(1)を下記反応式1に従って2段階で合成した。
(Preparation of materials for organic photoelectric devices)
Synthesis Example 1: Synthesis of Compound (1) As a specific example of a material for an organic photoelectric device, compound (1) was synthesized in two steps according to the following reaction formula 1.

第1段階:中間体生成物(A)の合成
2,4,6−トリクロロピリミジン75.0g(409mmol)、フェニルボロン酸54.8g(450mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム11.8g(10mmol)をテトラヒドロフラン450mlとトルエン300mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム113.0g(818mmol)を水300mlに溶解した溶液にこの懸濁液を加え、得られた混合物を9時間加熱還流した。反応流体を2層に分離した後、有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
First stage: synthesis of intermediate product (A) 2,4,6-trichloropyrimidine 75.0 g (409 mmol), phenylboronic acid 54.8 g (450 mmol) and tetrakis- (triphenylphosphine) palladium 11.8 g ( 10 mmol) was suspended in a mixed solvent of 450 ml of tetrahydrofuran and 300 ml of toluene to obtain a suspension. This suspension was added to a solution of 113.0 g (818 mmol) of potassium carbonate in 300 ml of water, and the resulting mixture was heated to reflux for 9 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過により分離し、トルエンで洗浄し、中間体生成物(A)64.7g(収率:70.3%)を収得した。   After the organic solvent was removed by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration, washed with toluene, and 64.7 g of intermediate product (A) (recovered). (Rate: 70.3%).

第2段階:化合物(1)の合成
中間体生成物(A)2.3g(10mmol)、2−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル)ピリジン(B)6.3g(22mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム0.6g(0.5mmol)をテトラヒドロフラン70mlとトルエン50mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム5.7g(41mmol)を水50mlに溶解した溶液にこの懸濁液を加えた。得られた混合物を12時間加熱還流した。反応流体を2層に分離した後、有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
Second stage: Synthesis of compound (1) Intermediate product (A) 2.3 g (10 mmol), 2- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2) Suspension of 6.3 g (22 mmol) of -yl) phenyl) pyridine (B) and 0.6 g (0.5 mmol) of tetrakis- (triphenylphosphine) palladium in a mixed solvent of 70 ml of tetrahydrofuran and 50 ml of toluene Got. This suspension was added to a solution in which 5.7 g (41 mmol) of potassium carbonate was dissolved in 50 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過によって分離し、トルエンで洗浄し、化合物(1)3.9g(収率:67.9%)を収得した。   After removing the organic solvent by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration, washed with toluene, and 3.9 g of compound (1) (yield: 67 0.9%).

H NMR(300MHz、CDCl)8.85(d、2H)、8.75(d、2H)、8.45(d、2H)、8.34(d、2H)、8.21(m、4H)、8.08(s、1H)、7.80(m、4H)、7.60(m、3H)、7.27(m、2H);MS[M+1]463。 1 H NMR (300 MHz, CDCl 3 ) 8.85 (d, 2H), 8.75 (d, 2H), 8.45 (d, 2H), 8.34 (d, 2H), 8.21 (m 4H), 8.08 (s, 1H), 7.80 (m, 4H), 7.60 (m, 3H), 7.27 (m, 2H); MS [M + 1] 463.

合成例2:化合物(2)の合成
有機光電素子用材料の具体的な例として、化合物(2)を下記反応式2に従って2段階で合成した。
Synthesis Example 2: Synthesis of Compound (2) As a specific example of a material for an organic photoelectric device, compound (2) was synthesized in two steps according to the following reaction formula 2.

第1段階:中間体生成物(C)の合成
2,4,6−トリクロロピリミジン75.0g(409mmol)、ナフチルボロン酸77.3g(450mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム11.8g(10mmol)をテトラヒドロフラン450mlとトルエン300mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム113.0g(818mmol)を水300mlに溶解した溶液にこの懸濁液を加え、得られた混合物を9時間加熱還流した。反応流体を2層に分離した後、その有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
First Step: Synthesis of Intermediate Product (C) 75.0 g (409 mmol) of 2,4,6-trichloropyrimidine, 77.3 g (450 mmol) of naphthylboronic acid and 11.8 g of tetrakis- (triphenylphosphine) palladium ( 10 mmol) was suspended in a mixed solvent of 450 ml of tetrahydrofuran and 300 ml of toluene to obtain a suspension. This suspension was added to a solution of 113.0 g (818 mmol) of potassium carbonate in 300 ml of water, and the resulting mixture was heated to reflux for 9 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過により分離し、トルエンで洗浄し、中間体生成物(C)80.0g(収率:71.1%)を収得した。   After removing the organic solvent by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration, washed with toluene, and 80.0 g of intermediate product (C) (recovered). Rate: 71.1%).

第2段階:化合物(2)の合成
中間体生成物(C)3.2g(12mmol)、2−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル)ピリジン(B)7.2g(26mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム0.7g(0.6mmol)をテトラヒドロフラン100mlとトルエン65mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム6.4g(47mmol)を水65mlに溶解した溶液にこの懸濁液を加えた。得られた混合物を12時間加熱還流した。反応流体を2層に分離した後、その有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
Second stage: Synthesis of compound (2) Intermediate product (C) 3.2 g (12 mmol), 2- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2) Suspension of 7.2 g (26 mmol) of -yl) phenyl) pyridine (B) and 0.7 g (0.6 mmol) of tetrakis- (triphenylphosphine) palladium in a mixed solvent of 100 ml of tetrahydrofuran and 65 ml of toluene Got. This suspension was added to a solution in which 6.4 g (47 mmol) of potassium carbonate was dissolved in 65 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、析出した結晶をろ過により分離し、トルエンで洗浄し、化合物(2)4.1g(収率:69.0%)を収得した。   After removing the organic solvent by distillation under reduced pressure, the residue was recrystallized with toluene, the precipitated crystals were separated by filtration, washed with toluene, and 4.1 g of compound (2) (yield: 69. 0%).

H NMR(300MHz、CDCl)8.85(d、2H)、8.76(d、2H)、8.45(m、3H)、8.20(m、4H)、8.01(m、3H)、7.80(m、5H)、7.61(m、3H)、7.27(m、2H);MS[M+1]513。 1 H NMR (300 MHz, CDCl 3 ) 8.85 (d, 2H), 8.76 (d, 2H), 8.45 (m, 3H), 8.20 (m, 4H), 8.01 (m 3H), 7.80 (m, 5H), 7.61 (m, 3H), 7.27 (m, 2H); MS [M + 1] 513.

合成例3:化合物(10)の合成
有機光電素子用材料の具体的な例として、化合物(10)を下記反応式3に従って合成した。
Synthesis Example 3: Synthesis of Compound (10) As a specific example of a material for an organic photoelectric device, a compound (10) was synthesized according to the following reaction formula 3.

中間体生成物(A)2.3g(10mmol)、1−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル)イソキノリン(D)7.5g(22mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム0.6g(0.5mmol)をテトラヒドロフラン70mlとトルエン50mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム5.7g(41mmol)を水50mlに溶解した溶液にこの懸濁液を加えた。得された混合物を12時間加熱還流した。反応流体を2層に分離した後、その有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。   Intermediate product (A) 2.3 g (10 mmol), 1- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) isoquinoline (D) 7 0.5 g (22 mmol) and tetrakis- (triphenylphosphine) palladium 0.6 g (0.5 mmol) were suspended in a mixed solvent of 70 ml of tetrahydrofuran and 50 ml of toluene to obtain a suspension. This suspension was added to a solution in which 5.7 g (41 mmol) of potassium carbonate was dissolved in 50 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、析出した結晶をろ過により分離し、トルエンで洗浄し、化合物(10)3.9g(収率:68.0%)を収得した。   After the organic solvent was removed by distillation under reduced pressure, the residue was recrystallized with toluene, the precipitated crystals were separated by filtration, washed with toluene, and 3.9 g of compound (10) (yield: 68. 0%).

H NMR(300MHz、CDCl)8.94(d、2H)、8.68(d、2H)、8.52(d、2H)、8.39(d、2H)、8.21(d、2H)、8.16(s、1H)、7.94(m、6H)、7.72(m、4H)、7.61(m、5H);MS[M+1]563。 1 H NMR (300 MHz, CDCl 3 ) 8.94 (d, 2H), 8.68 (d, 2H), 8.52 (d, 2H), 8.39 (d, 2H), 8.21 (d 2H), 8.16 (s, 1H), 7.94 (m, 6H), 7.72 (m, 4H), 7.61 (m, 5H); MS [M + 1] 563.

合成例4:化合物(11)の合成
有機光電素子用材料の具体的な例として、化合物(11)を下記反応式4に従って合成した。
Synthesis Example 4: Synthesis of Compound (11) As a specific example of a material for an organic photoelectric device, compound (11) was synthesized according to the following reaction formula 4.

中間体生成物(C)2.7g(10mmol)、1−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル)イソキノリン(D)7.2g(22mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム0.6g(0.5mmol)をテトラヒドロフラン80mlとトルエン55mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム5.4g(39.1mmol)を水55mlに溶解した溶液にこの懸濁液を加えた。得られた混合物を12時間加熱還流した。反応流体を2層に分離した後、その有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。   Intermediate product (C) 2.7 g (10 mmol), 1- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) isoquinoline (D) 7 .2 g (22 mmol) and tetrakis- (triphenylphosphine) palladium 0.6 g (0.5 mmol) were suspended in a mixed solvent of 80 ml of tetrahydrofuran and 55 ml of toluene to obtain a suspension. This suspension was added to a solution of 5.4 g (39.1 mmol) of potassium carbonate in 55 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、析出した結晶をろ過により分離し、トルエンで洗浄し、化合物(11)4.5g(収率:65.0%)を収得した。   After the organic solvent was removed by distillation under reduced pressure, the residue was recrystallized with toluene, the precipitated crystals were separated by filtration, washed with toluene, and 4.5 g of compound (11) (yield: 65. 0%).

H NMR(300MHz、CDCl)8.93(d、2H)、8.67(d、2H)、8.53(d、2H)、8.45(d、1H)、8.21(d、2H)、7.96(m、10H)、7.72(m、5H)、7.64(m、4H);MS[M+1]613。 1 H NMR (300 MHz, CDCl 3 ) 8.93 (d, 2H), 8.67 (d, 2H), 8.53 (d, 2H), 8.45 (d, 1H), 8.21 (d 2H), 7.96 (m, 10H), 7.72 (m, 5H), 7.64 (m, 4H); MS [M + 1] 613.

合成例5:化合物(19)の合成
有機光電素子用材料の具体的な例として、化合物(19)を下記反応式5に従って合成した。
Synthesis Example 5: Synthesis of Compound (19) As a specific example of a material for an organic photoelectric device, a compound (19) was synthesized according to the following reaction formula 5.

中間体生成物(A)4.0g(18mmol)、3−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル)キノリン(E)13.0g(39mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム1.0g(0.9mmol)をテトラヒドロフラン120mlとトルエン80mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム9.8g(71mmol)を水80mlに溶解した溶液にこの懸濁液を加えた。得られた混合物を12時間加熱還流した。反応流体を2層に分離した後、その有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。   Intermediate product (A) 4.0 g (18 mmol), 3- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl) quinoline (E) 13 0.0 g (39 mmol) and 1.0 g (0.9 mmol) of tetrakis- (triphenylphosphine) palladium were suspended in a mixed solvent of 120 ml of tetrahydrofuran and 80 ml of toluene to obtain a suspension. This suspension was added to a solution obtained by dissolving 9.8 g (71 mmol) of potassium carbonate in 80 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、析出した結晶をろ過により分離し、トルエンで洗浄し、化合物(19)6.5g(収率:64.7%)を収得した。   After the organic solvent was removed by distillation under reduced pressure, the residue was recrystallized with toluene, the precipitated crystals were separated by filtration, washed with toluene, and 6.5 g of compound (19) (yield: 64. 7%).

H NMR(300MHz、CDCl)9.31(d、2H)、8.89(d、2H)、8.40(m、6H)、8.17(d、2H)、8.09(s、1H)、7.92(m、6H)、7.75(m、2H)、7.59(m、5H);MS[M+1]563。 1 H NMR (300 MHz, CDCl 3 ) 9.31 (d, 2H), 8.89 (d, 2H), 8.40 (m, 6H), 8.17 (d, 2H), 8.09 (s) 1H), 7.92 (m, 6H), 7.75 (m, 2H), 7.59 (m, 5H); MS [M + 1] 563.

合成例6:化合物(63)の合成
有機光電素子用材料の具体的な例として、化合物(63)を下記反応式6に従って合成した。
Synthesis Example 6: Synthesis of Compound (63) As a specific example of a material for an organic photoelectric device, a compound (63) was synthesized according to the following reaction formula 6.

第1段階:中間体生成物(F)の合成
カルバゾール50.8g(304mmol)、1,4−ジブロモベンゼン71.6g(304mmol)、塩化第一銅3.76g(38mmol)、および炭酸カリウム83.9g(607mmol)をジメチルスルホキシド322mlに懸濁させ、窒素雰囲気下で加熱しながら8時間還流した。得られた反応流体を室温まで冷却し、メタノールを使用して再結晶した。
First Step: Synthesis of Intermediate Product (F) Carbazole 50.8 g (304 mmol), 1,4-dibromobenzene 71.6 g (304 mmol), cuprous chloride 3.76 g (38 mmol), and potassium carbonate 83. 9 g (607 mmol) was suspended in 322 ml of dimethyl sulfoxide and refluxed for 8 hours with heating under a nitrogen atmosphere. The resulting reaction fluid was cooled to room temperature and recrystallized using methanol.

得られた結晶をろ過により分離し、収得した生成物をシリカゲルカラムクロマトグラフィーを用いて精製し、中間体生成物(F)55.9g(収率:61.3%)を収得した。   The obtained crystals were separated by filtration, and the obtained product was purified using silica gel column chromatography to obtain 55.9 g of intermediate product (F) (yield: 61.3%).

第2段階:中間体生成物(G)の合成
中間体生成物(F)37.8g(117mmol)をテトラヒドロフラン378mlに溶解し、アルゴン雰囲気下で−70℃でn−ブチルリチウムヘキサン溶液(1.6M)100.5ml(161mmol)を加え、次いで得られた溶液を−70乃至−40℃で1時間攪拌した。反応流体を−70℃まで冷却した後、イソプロピルテトラメチルジオキサボロラン47.9ml(235mmol)を滴下して加えた。得られた溶液を−70℃で1時間攪拌した後、室温まで昇温させて6時間攪拌した。得られた溶液に水200mlを添加した後20分間攪拌した。
Second Step: Synthesis of Intermediate Product (G) 37.8 g (117 mmol) of the intermediate product (F) was dissolved in 378 ml of tetrahydrofuran, and an n-butyllithium hexane solution (1. 6M) 100.5 ml (161 mmol) was added and then the resulting solution was stirred at -70 to -40 ° C for 1 hour. After cooling the reaction fluid to −70 ° C., 47.9 ml (235 mmol) of isopropyltetramethyldioxaborolane was added dropwise. The resulting solution was stirred at -70 ° C for 1 hour, then warmed to room temperature and stirred for 6 hours. 200 ml of water was added to the resulting solution and stirred for 20 minutes.

反応流体を2層に分離した後、有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。   After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過により分離し、トルエンで洗浄し、中間体生成物(G)28.9g(収率:66.7%)を収得した。   After the organic solvent was removed by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration, washed with toluene, and 28.9 g of intermediate product (G) (recovered). Rate: 66.7%).

第3段階:中間体生成物(H)の合成
中間体生成物(G)26.8g(73mmol)、化合物(C)20.0g(73mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム2.1g(1.8mmol)をテトラヒドロフラン600mlとトルエン400mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム20.1g(154mmol)を水400mlに溶解した溶液にこの懸濁液を加え、得られた混合物を8時間加熱還流した。反応流体を2層に分離した後、有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
Third stage: Synthesis of intermediate product (H) 26.8 g (73 mmol) of intermediate product (G), 20.0 g (73 mmol) of compound (C) and 2.1 g of tetrakis- (triphenylphosphine) palladium ( 1.8 mmol) was suspended in a mixed solvent of 600 ml of tetrahydrofuran and 400 ml of toluene to obtain a suspension. This suspension was added to a solution of 20.1 g (154 mmol) of potassium carbonate in 400 ml of water, and the resulting mixture was heated to reflux for 8 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過により分離し、トルエンで洗浄し、中間体生成物(H)23.0g(収率:65.4%)を収得した。   After removing the organic solvent by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration, washed with toluene, and 23.0 g of intermediate product (H) (recovered). (Rate: 65.4%).

第4段階:化合物(63)の合成
中間体生成物(H)6.0g(12mmol)、化合物(E)4.5g(14mmol)およびテトラキス−(トリフェニルホスフィン)パラジウム0.36g(0.3mmol)をテトラヒドロフラン180mlとトルエン120mlとの混合溶媒に懸濁させて懸濁液を得た。炭酸カリウム3.4g(25mmol)を水120mlに溶解した溶液にこの懸濁液を加えた。得られた混合物を12時間加熱還流した。反応流体を2層に分離した後、有機層を塩化ナトリウム飽和水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。
Fourth Step: Synthesis of Compound (63) Intermediate Product (H) 6.0 g (12 mmol), Compound (E) 4.5 g (14 mmol) and Tetrakis- (triphenylphosphine) palladium 0.36 g (0.3 mmol) ) Was suspended in a mixed solvent of 180 ml of tetrahydrofuran and 120 ml of toluene to obtain a suspension. This suspension was added to a solution in which 3.4 g (25 mmol) of potassium carbonate was dissolved in 120 ml of water. The resulting mixture was heated to reflux for 12 hours. After separating the reaction fluid into two layers, the organic layer was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.

有機溶媒を減圧下で蒸留して除去した後、その残留物をトルエンで再結晶し、得られた結晶をろ過により分離し、トルエンで洗浄し、化合物(63)7.2g(収率:88.3%)を収得した。   After removing the organic solvent by distillation under reduced pressure, the residue was recrystallized with toluene, and the obtained crystals were separated by filtration and washed with toluene to give 7.2 g of Compound (63) (Yield: 88 .3%) was obtained.

H NMR(300MHz、CDCl)9.31(s、1H)、8.92(d、2H)、8.62(d、2H)、8.45(m、2H)、8.19(d、3H)、7.71(m、20H);MS[M+1]651。 1 H NMR (300 MHz, CDCl 3 ) 9.31 (s, 1H), 8.92 (d, 2H), 8.62 (d, 2H), 8.45 (m, 2H), 8.19 (d 3H), 7.71 (m, 20H); MS [M + 1] 651.

合成された化合物のガラス転移温度および熱分解温度を示差走査熱量測定(Differential Scanning Calorimetry:DSC)および熱重量分析(Thermogravimetry:TGA)によって測定して決定した。合成例1による化合物(1)の結果を図6に示す。   The glass transition temperature and thermal decomposition temperature of the synthesized compound were determined by measuring by differential scanning calorimetry (DSC) and thermogravimetry (TGA). The result of the compound (1) according to Synthesis Example 1 is shown in FIG.

(有機光電素子の製造)
実施例1
コーニング社(Corning.Inc)製の15Ω/cm(1200Å)のITOガラス基板を50mm×50mm×0.7mmの大きさに切断してイソプロピルアルコールおよび純水の中でそれぞれ5分間超音波洗浄した後、30分間UVおよびオゾン洗浄した。
(Manufacture of organic photoelectric devices)
Example 1
A 15 Ω / cm 2 (1200 mm) ITO glass substrate manufactured by Corning. Inc. was cut into a size of 50 mm × 50 mm × 0.7 mm and ultrasonically cleaned in isopropyl alcohol and pure water for 5 minutes each. Thereafter, UV and ozone cleaning was performed for 30 minutes.

前記ガラス基板の表面上にN,N’−ジフェニル−N,N’−ビス−[4−(フェニル−m−トリルアミノ)−フェニル)]−ビフェニル−4,4’−ジアミン(N,N’−diphenyl−N,N’−bis−[4−(phenyl−m−tolyl−amino)−phenyl]−biphenyl−4,4’−diamine:DNTPD)(40nm)、N,N’−ジ(1−ナフチル)−N,N’−ジフェニルベンジジン(NPB)(10nm)、EB−46(イーレイ(E−Ray)オプトエレクトロニクステクノロジー社製の蛍光青色ドーパント):EB−512(イーレイオプトエレクトロニクステクノロジー社製の青色蛍光ホスト)6%(40nm)および前記合成例1で得られた化合物(1)(10nm)を順に熱真空蒸着して正孔注入層(HIL)、正孔輸送層(HTL)、発光層、および電子輸送層(ETL)を形成した。   On the surface of the glass substrate, N, N′-diphenyl-N, N′-bis- [4- (phenyl-m-tolylamino) -phenyl)]-biphenyl-4,4′-diamine (N, N′- diphenyl-N, N'-bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4'-diamine: DNTPD) (40 nm), N, N'-di (1-naphthyl) ) -N, N′-diphenylbenzidine (NPB) (10 nm), EB-46 (fluorescent blue dopant manufactured by E-Ray Optoelectronic Technology): EB-512 (blue manufactured by Elay Optoelectronic Technology) Fluorescent host) 6% (40 nm) and compound (1) (10 nm) obtained in Synthesis Example 1 were heated in order. Evaporation to a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer was formed, and the electron transport layer (ETL).

前記ETL上に電子注入層(EIL)としてLiFを0.5nmの厚さに真空蒸着し、Alを100nmの厚さに真空蒸着してLiF/Al電極を形成した。得られた有機光電素子の構造を図5に示す。   On the ETL, LiF was vacuum-deposited as an electron injection layer (EIL) to a thickness of 0.5 nm, and Al was vacuum-deposited to a thickness of 100 nm to form a LiF / Al electrode. The structure of the obtained organic photoelectric device is shown in FIG.

実施例2
化合物(1)の代わりに合成例2で得られた化合物(2)(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Example 2
An organic photoelectric device was produced in the same manner as in Example 1 except that the compound (2) (10 nm) obtained in Synthesis Example 2 was used instead of the compound (1).

実施例3
化合物(1)の代わりに合成例3で得られた化合物(10)(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Example 3
An organic photoelectric device was produced in the same manner as in Example 1 except that the compound (10) (10 nm) obtained in Synthesis Example 3 was used instead of the compound (1).

実施例4
化合物(1)の代わりに合成例4で得られた化合物(11)(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Example 4
An organic photoelectric device was produced in the same manner as in Example 1 except that the compound (11) (10 nm) obtained in Synthesis Example 4 was used instead of the compound (1).

実施例5
化合物(1)の代わりに合成例5で得られた化合物(19)(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Example 5
An organic photoelectric device was produced in the same manner as in Example 1 except that the compound (19) (10 nm) obtained in Synthesis Example 5 was used instead of the compound (1).

実施例6
化合物(1)の代わりに合成例6で得られた化合物(63)(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Example 6
An organic photoelectric device was produced in the same manner as in Example 1 except that the compound (63) (10 nm) obtained in Synthesis Example 6 was used instead of the compound (1).

比較例1
化合物(1)の代わりに下記化学式2で表される化合物であるAlq(10nm)を使用したことを除いては前記実施例1と同様な方法で有機光電素子を製造した。
Comparative Example 1
An organic photoelectric device was produced in the same manner as in Example 1 except that Alq 3 (10 nm), which is a compound represented by the following chemical formula 2, was used instead of the compound (1).

有機光電素子の性能測定
前記実施例1乃至6、および比較例1で製造されたそれぞれの有機光電素子に対して電圧による発光効率を測定した。測定方法は次のとおりである。
Measurement of performance of organic photoelectric device The luminous efficiency by voltage was measured for each of the organic photoelectric devices manufactured in Examples 1 to 6 and Comparative Example 1. The measurement method is as follows.

1)電圧変化による電流密度の変化の測定
前記実施例1乃至6、および比較例1で調製されたそれぞれの有機光電素子に対し、電圧を0Vから14Vまで上昇させ、電流−電圧計(Keithley 2400(登録商標))を利用して単位素子に流れる電流値を測定した。前記電流値を面積で割ってこれらの電流密度を測定した。
1) Measurement of change in current density due to voltage change For each of the organic photoelectric devices prepared in Examples 1 to 6 and Comparative Example 1, the voltage was increased from 0V to 14V, and a current-voltmeter (Keithley 2400). (Registered trademark)) was used to measure the current value flowing through the unit element. These current densities were measured by dividing the current value by the area.

2)電圧変化による輝度の変化の測定
前記実施例1乃至6、および比較例1によるそれぞれの有機光電素子に対し、電圧を0Vから14Vまで上昇させ、輝度計(Minolta Cs−1000A)を利用して輝度を測定した。
2) Measurement of luminance change due to voltage change For each organic photoelectric element according to Examples 1 to 6 and Comparative Example 1, the voltage was increased from 0 V to 14 V, and a luminance meter (Minolta Cs-1000A) was used. The brightness was measured.

3)電力効率(発光効率)の測定
前記「1)電圧変化による電流密度の変化の測定」および「2)電圧変化による輝度の変化の測定」で測定された電流密度および輝度、ならびに電圧(V)から電力効率(発光効率)を計算した。その結果を下記表1に示す。
3) Measurement of power efficiency (luminous efficiency) Current density and luminance measured in “1) Measurement of change in current density due to voltage change” and “2) Measurement of change in luminance due to voltage change”, and voltage (V ) To calculate the power efficiency (luminous efficiency). The results are shown in Table 1 below.

表1を参照すれば、比較例1のAlqを電子輸送層として使用した場合に比べ、本発明による有機光電素子用材料を使用して電子輸送層を形成した実施例1乃至6の有機光電素子は、低い駆動電圧と共に優れた電力効率(lm/W)を有することが分かる。したがって、本発明の一実施形態による有機化合物は、高い熱安定性を有し、有機光電素子の性能評価結果からわかるように、低い駆動電圧および高い発光効率を有するため、有機光電素子の寿命を向上させることができると予想される。有機光電素子用材料が有する非対称性により非晶質特性が強化され、そのため結晶化を抑制されて素子の寿命が向上したと考えられる。 Referring to Table 1, compared with the case where Alq 3 of Comparative Example 1 is used as the electron transport layer, the organic photoelectric elements of Examples 1 to 6 in which the electron transport layer was formed using the organic photoelectric element material according to the present invention. It can be seen that the device has excellent power efficiency (lm / W) with low drive voltage. Therefore, the organic compound according to an embodiment of the present invention has high thermal stability, and, as can be seen from the performance evaluation results of the organic photoelectric device, has a low driving voltage and high light emission efficiency. It is expected that it can be improved. It is thought that the asymmetry of the organic photoelectric device material enhances the amorphous characteristics, which suppresses crystallization and improves the lifetime of the device.

4)熱的特性の測定
合成例1乃至6で得られた化合物を示差走査熱量測定(DSC:differential scanning calorimetry)で1次分析を行い、その後、1次分析済みの化合物について2次分析を行なった。合成例1の化合物に対する分析結果を図6に示す。図6を参照すれば、合成例1の化合物は1次分析で融点ピークを示したが、2次分析では融点ピークを示さなかった。この結果から、合成例1の化合物が安定した非晶質状態で存在することが確認された。
4) Measurement of thermal characteristics The compounds obtained in Synthesis Examples 1 to 6 are subjected to a primary analysis by differential scanning calorimetry (DSC), and then a secondary analysis is performed on the compounds after the primary analysis. It was. The analysis results for the compound of Synthesis Example 1 are shown in FIG. Referring to FIG. 6, the compound of Synthesis Example 1 showed a melting point peak in the primary analysis but did not show a melting point peak in the secondary analysis. From this result, it was confirmed that the compound of Synthesis Example 1 exists in a stable amorphous state.

また、合成例2乃至6の化合物も同様な方法で非晶質状態で存在することが確認された。したがって、合成例1乃至6の各化合物を含む有機発光ダイオードは、駆動時にジュール熱により影響を受けることなく、既存の有機光電素子に比べて向上した寿命特性を示すと予測される。   In addition, it was confirmed that the compounds of Synthesis Examples 2 to 6 exist in an amorphous state by the same method. Therefore, it is predicted that the organic light-emitting diodes containing the compounds of Synthesis Examples 1 to 6 exhibit improved lifetime characteristics as compared with existing organic photoelectric elements without being affected by Joule heat during driving.

本発明は前記実施例に限定されるものではなく、当業者によって特許請求の範囲の精神および技術的範囲に含まれる多様な変形および等価の形態で製造されうる。したがって、上記の実施例は例示的なものであり、本発明をいかようにも限定するものではないことを理解しなければならない。   The present invention is not limited to the above-described embodiments, but can be produced by those skilled in the art in various modifications and equivalent forms included in the spirit and technical scope of the claims. Therefore, it should be understood that the above examples are illustrative and do not limit the invention in any way.

Claims (14)

下記の化学式1で表される非対称化合物を含む、有機光電素子用材料:
前記化学式1において、
Arは、水素、および置換または非置換のアリール基からなる群より選択され、但し、Arが置換されたアリール基である場合、Arの置換基がArと同一ではなく、
ArおよびArは、それぞれ独立して置換または非置換のカルバゾリル基、置換または非置換の炭素数2乃至30のヘテロアリール基、置換または非置換の炭素数2乃至30のアリールアミン基、および置換または非置換の炭素数2乃至30のヘテロアリールアミン基からなる群より選択され、
およびLは、それぞれ独立して置換または非置換のフェニレン、置換または非置換のナフチレン、および置換または非置換のアントラセンからなる群より選択され、
mおよびnは、1乃至4の整数である。
A material for an organic photoelectric device including an asymmetric compound represented by the following chemical formula 1:
In Formula 1,
Ar 1 is selected from the group consisting of hydrogen and a substituted or unsubstituted aryl group, provided that when Ar 1 is a substituted aryl group, the substituent of Ar 1 is not the same as Ar 2 ;
Ar 2 and Ar 3 are each independently a substituted or unsubstituted carbazolyl group, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, a substituted or unsubstituted arylamine group having 2 to 30 carbon atoms, and Selected from the group consisting of substituted or unsubstituted heteroarylamine groups having 2 to 30 carbon atoms;
L 1 and L 2 are each independently selected from the group consisting of substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, and substituted or unsubstituted anthracene;
m and n are integers of 1 to 4.
Arは、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、およびクリセニル基からなる群より選択される、請求項1に記載の材料。 The material according to claim 1, wherein Ar 1 is selected from the group consisting of a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, and a chrysenyl group. Arは、炭素数1乃至30のアルキル基、炭素数1乃至10のヘテロアルキル基、炭素数3乃至30のシクロアルキル基、炭素数6乃至30のアリール基、炭素数1乃至30のアルコキシ基、フルオロ基、およびシアノ基からなる群より選択される置換基で置換される、請求項1に記載の材料。 Ar 1 is an alkyl group having 1 to 30 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms. The material according to claim 1, wherein the material is substituted with a substituent selected from the group consisting of: ArおよびArは、それぞれ独立してイミダゾリル基、チアゾリル基、オキサゾリル基、オキサジアゾリル基、トリアゾリル基、ピリジニル基、ピリダジン基、キノリニル基、イソキノリニル基、アクリジル基、イミダゾピリジニル基、イミダゾピリミジニル基、ジフェニルアミン基、ジナフチルアミン基、ジビフェニルアミン基、フェニルナフチルアミン基、フェニルジフェニルアミン基、ジトリルアミン基、フェニルトリルアミン基、カルバゾイル基、トリフェニルアミン基、およびジピリジルアミン基からなる群より選択される、請求項1に記載の材料。 Ar 2 and Ar 3 are each independently imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, triazolyl group, pyridinyl group, pyridazine group, quinolinyl group, isoquinolinyl group, acridyl group, imidazopyridinyl group, imidazolpyrimidinyl group Selected from the group consisting of: a diphenylamine group, a dinaphthylamine group, a dibiphenylamine group, a phenylnaphthylamine group, a phenyldiphenylamine group, a ditolylamine group, a phenyltolylamine group, a carbazoyl group, a triphenylamine group, and a dipyridylamine group. Item 2. The material according to Item 1. およびLは、フェニレンである、請求項1に記載の材料。 The material of claim 1, wherein L 1 and L 2 are phenylene. 前記化学式1で表される化合物は、下記化合物(1)乃至(90)またはこれらの組み合わせを含む、請求項1に記載の材料。
2. The material according to claim 1, wherein the compound represented by Chemical Formula 1 includes the following compounds (1) to (90) or a combination thereof.
陽極;陰極;および前記陽極と前記陰極との間に配置された少なくとも1つの有機薄膜層を含み、
前記有機薄膜層のうち少なくとも1つは、請求項1〜6のいずれか1項に記載の有機光電素子用材料を含む、有機光電素子。
An anode; a cathode; and at least one organic thin film layer disposed between the anode and the cathode;
At least 1 is an organic photoelectric element containing the material for organic photoelectric elements of any one of Claims 1-6 among the said organic thin film layers.
前記有機薄膜層は、発光層;ならびに正孔輸送層(HTL)、正孔注入層(HIL)、電子注入層(EIL)、正孔阻止層およびこれらの組み合わせからなる群より選択される少なくとも1つの層を含む、請求項7に記載の有機光電素子。   The organic thin film layer is at least one selected from the group consisting of a light emitting layer; and a hole transport layer (HTL), a hole injection layer (HIL), an electron injection layer (EIL), a hole blocking layer, and combinations thereof. The organic photoelectric element of Claim 7 containing two layers. 前記有機光電素子用材料は、電子輸送層(ETL)または電子注入層(EIL)に含まれる、請求項7に記載の有機光電素子。   The organic photoelectric element according to claim 7, wherein the organic photoelectric element material is contained in an electron transport layer (ETL) or an electron injection layer (EIL). 前記有機光電素子用材料は、発光層に含まれる、請求項7に記載の有機光電素子。   The organic photoelectric element according to claim 7, wherein the organic photoelectric element material is included in a light emitting layer. 前記有機光電素子用材料は、発光層に燐光または蛍光ホストとして含まれる、請求項7に記載の有機光電素子。   The organic photoelectric device according to claim 7, wherein the organic photoelectric device material is contained in the light emitting layer as phosphorescent or fluorescent host. 前記有機光電素子用材料は、発光層に青色蛍光ドーパントとして含まれる、請求項7に記載の有機光電素子。   The said organic photoelectric element material is an organic photoelectric element of Claim 7 contained as a blue fluorescence dopant in a light emitting layer. 有機発光ダイオード、有機太陽電池、有機トランジスタ、有機感光体ドラム、および有機メモリ素子からなる群より選択される、請求項7に記載の有機光電素子。   The organic photoelectric element according to claim 7, which is selected from the group consisting of an organic light emitting diode, an organic solar cell, an organic transistor, an organic photosensitive drum, and an organic memory element. 請求項7に記載の有機光電素子を含む、表示装置。   A display device comprising the organic photoelectric element according to claim 7.
JP2011524896A 2008-08-25 2009-08-25 Material for organic photoelectric element and organic photoelectric element including the same Active JP5596687B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20080082905 2008-08-25
KR10-2008-0082905 2008-08-25
KR1020090050580A KR101174090B1 (en) 2008-08-25 2009-06-08 Material for organic photoelectric device and organic photoelectric device including the same
KR10-2009-0050580 2009-06-08
PCT/KR2009/004730 WO2010024572A2 (en) 2008-08-25 2009-08-25 Material for organic photoelectric device and organic photoelectric device including the same

Publications (2)

Publication Number Publication Date
JP2012501091A true JP2012501091A (en) 2012-01-12
JP5596687B2 JP5596687B2 (en) 2014-09-24

Family

ID=42176272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011524896A Active JP5596687B2 (en) 2008-08-25 2009-08-25 Material for organic photoelectric element and organic photoelectric element including the same

Country Status (7)

Country Link
US (1) US8470454B2 (en)
EP (1) EP2315753B1 (en)
JP (1) JP5596687B2 (en)
KR (1) KR101174090B1 (en)
CN (1) CN102089288B (en)
TW (1) TWI423961B (en)
WO (1) WO2010024572A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188947A1 (en) * 2013-05-20 2014-11-27 保土谷化学工業株式会社 Novel pyrimidine derivative and organic electroluminescent element
WO2015190400A1 (en) * 2014-06-11 2015-12-17 保土谷化学工業株式会社 Pyrimidine derivative and organic electroluminescent element
JP2016530230A (en) * 2013-06-28 2016-09-29 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device including the same
WO2016175292A1 (en) * 2015-04-28 2016-11-03 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124762B2 (en) * 2008-09-05 2012-02-28 Korea Institute Of Science & Technology Diphenyl amine derivatives having luminescence property
KR101288557B1 (en) 2008-12-24 2013-07-22 제일모직주식회사 Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101387738B1 (en) 2009-12-29 2014-04-22 제일모직주식회사 Compound for organic photoelectric device and organic photoelectric device including the same
WO2013039914A1 (en) 2011-09-12 2013-03-21 Nitto Denko Corporation Efficient organic light-emitting diodes and fabrication of the same
KR102261235B1 (en) 2011-11-22 2021-06-04 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
WO2013077352A1 (en) 2011-11-22 2013-05-30 出光興産株式会社 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
KR101944917B1 (en) 2012-02-08 2019-02-08 삼성디스플레이 주식회사 Heterocyclic compound and organic light-emitting diode including the same
CN103304487A (en) * 2012-03-15 2013-09-18 海洋王照明科技股份有限公司 Organic semiconductor material containing pyrimidine, preparation method thereof and organic light-emitting device
KR102025834B1 (en) 2012-06-29 2019-09-27 삼성디스플레이 주식회사 Novel organic emitting compound, and organic light emitting diode comprising the same
KR102116494B1 (en) 2013-04-25 2020-05-29 삼성디스플레이 주식회사 Organic light emitting diode
KR102117611B1 (en) 2013-06-12 2020-06-02 삼성디스플레이 주식회사 Organic light emitting device
WO2015072520A1 (en) 2013-11-13 2015-05-21 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
KR102235598B1 (en) * 2014-03-11 2021-04-05 삼성디스플레이 주식회사 Condensed cyclic compound and organic light-emitting diode comprising the same
KR102251735B1 (en) 2014-04-14 2021-05-13 삼성디스플레이 주식회사 Material for organic light emitting device, organic light emitting device, and display device including the same
KR102304716B1 (en) 2014-06-13 2021-09-27 삼성디스플레이 주식회사 Amine-based compounds and organic light-emitting device including the same
JP6640735B2 (en) 2014-11-28 2020-02-05 出光興産株式会社 Compound, material for organic electroluminescence device, organic electroluminescence device and electronic equipment
JP6731355B2 (en) * 2015-01-20 2020-07-29 保土谷化学工業株式会社 Pyrimidine derivative and organic electroluminescence device
US10326079B2 (en) 2015-04-27 2019-06-18 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
KR20160131561A (en) 2015-05-08 2016-11-16 주식회사 지켐 Compound for organic photoelectric device, Organic photoelectric device including the same, and Display device including the organic photoelectric device
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
EP3370272A4 (en) * 2015-10-29 2019-07-10 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
EP3712975A4 (en) * 2017-11-16 2021-08-25 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
WO2020080341A1 (en) 2018-10-17 2020-04-23 保土谷化学工業株式会社 Compound having pyrimidine ring structure and organic electroluminescent element
CN111909132A (en) * 2019-05-07 2020-11-10 北京鼎材科技有限公司 Organic material and organic electroluminescent device using same
KR102381634B1 (en) * 2019-07-05 2022-04-01 주식회사 엘지화학 Compound and organic light emitting device comprising the same
CN111087387B (en) 2019-12-26 2022-04-29 厦门天马微电子有限公司 Organic compound, display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031004A (en) * 2002-06-24 2004-01-29 Konica Minolta Holdings Inc Organic electroluminescent element and display device
WO2005085387A1 (en) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP2006188493A (en) * 2004-12-10 2006-07-20 Pioneer Electronic Corp Organic compound, charge transport material and organic electroluminescent element
WO2009104708A1 (en) * 2008-02-22 2009-08-27 昭和電工株式会社 Polymer compound and organic electroluminescent device using the same
JP2010013421A (en) * 2008-07-07 2010-01-21 Chemiprokasei Kaisha Ltd New bis(dicarbazolylphenyl) derivative, host material using the same and organic electroluminescencent device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965800B2 (en) * 1997-12-01 2007-08-29 チッソ株式会社 Organic electroluminescent device using triarylamine derivative
JP4316387B2 (en) * 2002-03-22 2009-08-19 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
JP2004200141A (en) * 2002-10-24 2004-07-15 Toyota Industries Corp Organic el element
EP2759585B1 (en) * 2002-11-26 2018-08-15 Konica Minolta Business Technologies, Inc. Organic electroluminescent element, and display and illuminator
JP4707082B2 (en) 2002-11-26 2011-06-22 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
BRPI0510482A (en) * 2004-04-29 2007-11-06 Ciba Sc Holding Ag electroluminescent device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031004A (en) * 2002-06-24 2004-01-29 Konica Minolta Holdings Inc Organic electroluminescent element and display device
WO2005085387A1 (en) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP2006188493A (en) * 2004-12-10 2006-07-20 Pioneer Electronic Corp Organic compound, charge transport material and organic electroluminescent element
WO2009104708A1 (en) * 2008-02-22 2009-08-27 昭和電工株式会社 Polymer compound and organic electroluminescent device using the same
JP2010013421A (en) * 2008-07-07 2010-01-21 Chemiprokasei Kaisha Ltd New bis(dicarbazolylphenyl) derivative, host material using the same and organic electroluminescencent device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188947A1 (en) * 2013-05-20 2014-11-27 保土谷化学工業株式会社 Novel pyrimidine derivative and organic electroluminescent element
US10096779B2 (en) 2013-05-20 2018-10-09 Hodogaya Chemical Co., Ltd. Pyrimidine derivatives and organic electroluminescent devices
JP2016530230A (en) * 2013-06-28 2016-09-29 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device including the same
US9882145B2 (en) 2013-06-28 2018-01-30 Lg Chem, Ltd. Hetero ring compound and organic light emitting diode comprising same
US10505122B2 (en) 2013-06-28 2019-12-10 Lg Chem, Ltd. Hetero ring compound and organic light emitting diode comprising same
WO2015190400A1 (en) * 2014-06-11 2015-12-17 保土谷化学工業株式会社 Pyrimidine derivative and organic electroluminescent element
JPWO2015190400A1 (en) * 2014-06-11 2017-04-20 保土谷化学工業株式会社 Pyrimidine derivatives and organic electroluminescence devices
WO2016175292A1 (en) * 2015-04-28 2016-11-03 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US10797244B2 (en) 2015-04-28 2020-10-06 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Also Published As

Publication number Publication date
US20110156014A1 (en) 2011-06-30
EP2315753A4 (en) 2012-09-12
TW201016680A (en) 2010-05-01
EP2315753B1 (en) 2015-10-07
KR101174090B1 (en) 2012-08-14
TWI423961B (en) 2014-01-21
CN102089288A (en) 2011-06-08
WO2010024572A2 (en) 2010-03-04
EP2315753A2 (en) 2011-05-04
JP5596687B2 (en) 2014-09-24
CN102089288B (en) 2015-05-27
WO2010024572A3 (en) 2010-07-01
KR20100024340A (en) 2010-03-05
US8470454B2 (en) 2013-06-25

Similar Documents

Publication Publication Date Title
JP5596687B2 (en) Material for organic photoelectric element and organic photoelectric element including the same
JP5770636B2 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
JP5782045B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101508424B1 (en) Hetero-cyclic compound and organic electronic device comprising the same
KR101506999B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101432599B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
JP5711220B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101387738B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101212669B1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101297158B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
JP5770637B2 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101247626B1 (en) Compounds for organic photoelectric device and organic photoelectric device containing the same
KR20140087996A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20140087647A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
JP2014508130A (en) Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
JP6067873B2 (en) Novel compound and organic electronic device using the same
JP2013516405A (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR20100077675A (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101233375B1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
KR101497137B1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20140087646A (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR20140085400A (en) Compound for organic photoelectric device and organic photoelectric device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250