JP2012255082A - Curing method of polyolefin resin in-mold expansion molded product - Google Patents

Curing method of polyolefin resin in-mold expansion molded product Download PDF

Info

Publication number
JP2012255082A
JP2012255082A JP2011128717A JP2011128717A JP2012255082A JP 2012255082 A JP2012255082 A JP 2012255082A JP 2011128717 A JP2011128717 A JP 2011128717A JP 2011128717 A JP2011128717 A JP 2011128717A JP 2012255082 A JP2012255082 A JP 2012255082A
Authority
JP
Japan
Prior art keywords
mold
polyolefin resin
curing
carbon dioxide
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011128717A
Other languages
Japanese (ja)
Inventor
Akihiro Itoi
章裕 糸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011128717A priority Critical patent/JP2012255082A/en
Publication of JP2012255082A publication Critical patent/JP2012255082A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the deformation and the shrinkage problem after in-mold expansion molding by a simple method, using neither execution of a special temperature control nor a special device in a curing step of a polyolefin resin in-mold expansion molded product.SOLUTION: The polyolefin resin in-mold expansion molded product is cured under the atmosphere in which a carbon dioxide concentration is adjusted, and thereby the shrinkage and deformation after the in-mold expansion molding can be controlled.

Description

本発明は、ポリオレフィン系樹脂型内発泡成形体の養生方法に関する。   The present invention relates to a method for curing a foamed molded article in a polyolefin resin mold.

ポリオレフィン系樹脂予備発泡粒子を金型内に充填し、水蒸気で加熱成形して得られるポリオレフィン系樹脂型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。ポリオレフィン系型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に用いられている。   Polyolefin resin pre-expanded particles are filled in a mold and heat-molded with water vapor, and the polyolefin resin in-mold foam molded product is an advantage of the in-mold foam molded product. It has characteristics such as sex. Polyolefin-based in-mold foam moldings are used in various applications such as heat insulating materials, shock-absorbing packaging materials, automobile interior members, and automotive bumper core materials.

従来からポリオレフィン系樹脂型内発泡成形体を製造する方法として、予めポリオレフィン系樹脂予備発泡粒子中に空気等の無機ガスを圧入し、型内発泡成形する方法(いわゆる内圧付与法)、ポリオレフィン系樹脂予備発泡粒子を圧縮状態で金型内に充填し型内発泡成形する方法(いわゆる圧縮充填法)等が行われている。   Conventionally, as a method for producing a polyolefin resin in-mold foam molded body, a method in which an inorganic gas such as air is previously injected into a polyolefin resin pre-expanded particle and foam molding is performed in a mold (so-called internal pressure application method), a polyolefin resin. A method of filling pre-expanded particles in a mold in a compressed state and foam-molding in the mold (so-called compression filling method) is performed.

しかしながら、内圧付与法では、大規模な加圧設備が必要であり、内圧付与に時間がかかるという問題がある。また、圧縮充填法では、予備発泡粒子を圧縮して充填するための装置が必要であり、既存の成型機の改造が必要となるという問題がある。
これらの問題があるために、ポリオレフィン系樹脂予備発泡粒子をそのまま前処理無しに内部圧力が大気圧とほぼ等しい状態で用いて型内発泡成形を行う方法もとられる場合がある。
However, the internal pressure application method requires a large-scale pressurization facility and has a problem that it takes time to apply the internal pressure. In addition, the compression filling method requires a device for compressing and filling the pre-foamed particles, and there is a problem that modification of an existing molding machine is required.
Because of these problems, there is a case where a method in which in-mold foam molding is performed using the polyolefin resin pre-expanded particles as they are without pretreatment in a state where the internal pressure is almost equal to the atmospheric pressure is sometimes used.

ところで、型内発泡成形法にて成形した成形体は、成形時に蒸気で発泡体内部が充満されていることから、成形後に常温放置すると蒸気が凝集し、急激に収縮、変形する場合がある。   By the way, the molded body molded by the in-mold foam molding method is filled with steam inside the foam at the time of molding. Therefore, when the molded body is left at room temperature after molding, the steam may be condensed and rapidly contracted or deformed.

内圧付与法や圧縮充填法を用いた場合においても、成形体の密度や成形時の条件などにより成形後に大きく変形することもあるが、特にそのまま前処理無しに用いて型内発泡成形を行う場合には、成形後に変形しやすいために乾燥後もヒケや皺が残る、乾燥しても収縮が戻らないなど、表面美麗な成形体を得ることが難しいという問題点がある。   Even when the internal pressure application method or compression filling method is used, it may deform greatly after molding depending on the density of the molded body or molding conditions, etc., especially when performing in-mold foam molding without using pretreatment as it is However, there is a problem that it is difficult to obtain a molded article having a beautiful surface, such as sink marks and wrinkles remaining after drying because it is easily deformed after molding, and shrinkage does not return even after drying.

これらの成形後の変形、収縮問題を解決するために、これまでにも種々のポリオレフィン系樹脂型内発泡成形体を養生する方法が検討されてきている。
特許文献1では、ポリオレフィン系樹脂型内発泡成形体を取り出した後、成形体の体積が金型内容積の70〜110%の間に、基材樹脂の融点より25〜55℃低い温度雰囲気中に静置して養生する方法が開示されている。
特許文献2では、雰囲気温度90〜120℃の台車付養生装置で、ポリオレフィン系樹脂型内発泡成形体を養生させる方法が開示されている。
特許文献3では、養生初期温度を発泡成形体の溶融温度よりも15℃以下で、且つ、高温に保ち、それ以降は養生初期よりも10℃低く、且つ、75〜85℃の温度で養生する方法が開示されている。
In order to solve these deformation and shrinkage problems after molding, methods for curing various polyolefin resin in-mold foam molded products have been studied so far.
In Patent Document 1, after taking out the polyolefin-based resin in-mold foam molded article, the temperature of the molded body is 25 to 55 ° C. lower than the melting point of the base resin while the volume of the molded article is 70 to 110% of the mold inner volume. A method of standing and curing is disclosed.
Patent Document 2 discloses a method for curing a polyolefin resin-in-mold foam-molded body using a cart-based curing device having an atmospheric temperature of 90 to 120 ° C.
In Patent Document 3, the curing initial temperature is kept at 15 ° C. or lower and higher than the melting temperature of the foamed molded article, and thereafter, curing is performed at a temperature of 75 to 85 ° C. 10 ° C. lower than the curing initial stage. A method is disclosed.

特開昭60−166442号公報JP-A-60-166442 特開平2−130135号公報JP-A-2-130135 特開2000−212320号公報JP 2000-212320 A

ポリオレフィン系樹脂型内発泡成形体の乾燥には、通常60〜80℃の乾燥室が用いられており、一定の温度で保たれている。また、通常、成形体取り出し後から乾燥するまでの間、まとめて乾燥させるために、室温下で一定時間放置されることになる。
従って、特許文献1〜3の方法を実施するためには、成形後の一定時間内に乾燥室に入れる必要がある、特別な装置が必要であるといった問題点がある。
A drying chamber of 60 to 80 ° C. is usually used to dry the polyolefin resin-in-mold foam-molded product, and the temperature is kept at a constant temperature. Further, usually, after the molded body is taken out and dried, it is left to stand at room temperature for a certain period of time in order to dry collectively.
Therefore, in order to implement the method of patent documents 1-3, there exists a problem that it is necessary to put in a drying chamber within the fixed time after shaping | molding, and a special apparatus is required.

そこで、本発明は、上記問題点を有する養生工程において、特殊な温度コントロールの実施や、特殊な装置を使用することなく、簡易な方法にて型内発泡成形後の変形、収縮問題を解決することを目的としている。   Therefore, the present invention solves the deformation and shrinkage problems after in-mold foam molding by a simple method without performing special temperature control or using a special device in the curing process having the above-mentioned problems. The purpose is that.

本発明者は、前記課題を解決すべく鋭意検討を行った結果、ポリオレフィン系樹脂予備発泡粒子から変形や収縮が生じやすい条件にて成形されたポリオレフィン系樹脂型内発泡成形体を、金型から取り出し後、大気分圧よりも高い炭酸ガス濃度の雰囲気下で、より好ましくは炭酸ガス濃度20体積%以上の雰囲気で、養生することにより、型内発泡成形体の収縮が小さく、表面美麗になることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventor has obtained a polyolefin resin-in-mold foam-molded body molded from a mold based on the polyolefin resin pre-foamed particles under conditions where deformation and shrinkage easily occur. After taking out, by curing in an atmosphere of carbon dioxide concentration higher than the atmospheric partial pressure, more preferably in an atmosphere of carbon dioxide concentration of 20% by volume or more, the shrinkage of the in-mold foam molded product is small and the surface becomes beautiful. As a result, the present invention has been completed.

すなわち、本発明は、以下の構成よりなる。
[1] ポリオレフィン系樹脂予備発泡粒子を用いて型内発泡成形法により成形されてなるポリオレフィン系樹脂型内発泡成形体を、金型から取り出し後、大気分圧よりも高い炭酸ガス濃度の雰囲気下で養生することを特徴する、ポリオレフィン系樹脂型内発泡成形体の養生方法。
[2] 前記炭酸ガス濃度雰囲気下が、炭酸ガス濃度20体積%以上であることを特徴とする、[1]記載のポリオレフィン系樹脂型内発泡成形体の養生方法。
[3] 型内発泡成形体を金型から取り出し後、前記炭酸ガス濃度雰囲気下の養生を開始する迄の時間が5分以下であることを特徴とする、[1]または[2]記載のポリオレフィン系樹脂型内発泡成形体の養生方法。
[4] 型内発泡成形体の乾燥工程を始める直前まで、前記前記炭酸ガス濃度雰囲気下で養生することを特徴とする、[1]〜[3]のいずれかに記載のポリオレフィン系樹脂型内発泡成形体の養生方法。
[5] 型内発泡成形にて充填されるポリオレフィン系樹脂予備発泡粒子の内部圧力が大気圧とほぼ等しいことを特徴とする、[1]〜[4]のいずれかに記載のポリオレフィン系樹脂型内発泡成形体の養生方法。
That is, this invention consists of the following structures.
[1] A polyolefin-based resin in-mold foam molded product formed by in-mold foam molding using polyolefin-based resin pre-expanded particles is taken out from the mold, and then in an atmosphere having a carbon dioxide gas concentration higher than the atmospheric partial pressure. Curing method of polyolefin resin in-mold foam-molded product, characterized by curing with
[2] The polyolefin resin-in-mold foam molded article curing method according to [1], wherein the carbon dioxide gas concentration atmosphere has a carbon dioxide gas concentration of 20% by volume or more.
[3] The time according to [1] or [2], wherein the time from the removal of the in-mold foam molded product from the mold until the start of curing in the carbon dioxide gas concentration atmosphere is 5 minutes or less. Curing method for foamed molded product in polyolefin resin mold.
[4] The polyolefin resin mold according to any one of [1] to [3], wherein the mold is cured in the carbon dioxide gas concentration atmosphere until just before the drying process of the in-mold foam molded body is started. Curing method for foamed molded products.
[5] The polyolefin resin mold according to any one of [1] to [4], wherein the internal pressure of the polyolefin resin pre-expanded particles filled by in-mold foam molding is substantially equal to the atmospheric pressure. Curing method for inner foam molding.

本発明によれば、ポリオレフィン系樹脂型内発泡成形体を、炭酸ガス濃度が調整された雰囲気下で養生することにより、特殊な温度コントロールを実施しなくとも、型内発泡成形後の収縮、変形を抑制することができる。   According to the present invention, the polyolefin resin in-mold foam-molded body is cured under an atmosphere in which the carbon dioxide gas concentration is adjusted, so that shrinkage and deformation after in-mold foam molding can be performed without performing special temperature control. Can be suppressed.

本発明のポリオレフィン系樹脂予備発泡粒子を示差走査熱量計(DSC)にて、40℃〜220℃まで10℃/分の速度で昇温したときに得られるDSC曲線の一例である。低温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量がQl、DSC曲線の高温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量がQhである。It is an example of a DSC curve obtained when the polyolefin resin pre-expanded particles of the present invention are heated at a rate of 10 ° C./min from 40 ° C. to 220 ° C. with a differential scanning calorimeter (DSC). The low-temperature side melting peak, the low-temperature side melting peak calorie, which is the amount of heat enclosed by the tangent to the melting start baseline from the maximum point between the low-temperature side peak and the high-temperature side peak, is Ql, and the high-temperature side melting peak of the DSC curve Qh is the high-temperature side melting peak calorie, which is the amount of heat surrounded by the tangent line from the local maximum point between the low-temperature side peak and the high-temperature side peak to the melting end baseline. ヒケの状態を評価する為の測定方法を説明する図面である。(a)は、ヒケ状態を測定する位置である、板状型内発泡成形体の長さ方向の中点を示している。(b)は、該位置における断面図を示しており、発泡成形体の端部での厚みL1および、端部より5cm内側での厚みL2を、デジタルノギスを用いて測定する。本発明の評価では、端部と内部での厚みの差L1−L2を「ヒケ量」とした。It is drawing explaining the measuring method for evaluating the state of sink. (A) has shown the midpoint of the length direction of the plate-shaped in-mold foaming body which is a position which measures a sink state. (B) has shown sectional drawing in this position, and measures thickness L1 in the edge part of a foaming molding, and thickness L2 inside 5 cm from an edge part using a digital caliper. In the evaluation of the present invention, the difference in thickness L1-L2 between the end portion and the inside is defined as “sink amount”.

本発明における型内発泡成形法とは、ポリオレフィン系樹脂予備発泡粒子を2つの金型よりなる閉鎖しうるが密閉し得ない成形空間内に充填し、水蒸気などを加熱媒体として0.10〜0.4MPa(G)程度の加熱水蒸気圧で3〜60秒程度の加熱時間で成形し、ポリオレフィン系樹脂予備発泡粒子同士を融着させ、このあと金型を水冷により冷却した後、金型を開き、ポリオレフィン系樹脂型内発泡成形体を得る方法である。   The in-mold foam molding method in the present invention is a method in which polyolefin resin pre-expanded particles are filled in a molding space that can be closed but cannot be sealed by two molds, and water vapor is used as a heating medium. Molded at a heating steam pressure of about 4 MPa (G) for about 3 to 60 seconds, fused the polyolefin resin pre-foamed particles together, then cooled the mold by water cooling, then opened the mold This is a method for obtaining a polyolefin resin-in-mold foam-molded product.

ポリオレフィン系樹脂予備発泡粒子を型内発泡成形に用いる場合には、
(1)予めポリオレフィン系樹脂予備発泡粒子中に空気等の無機ガスを圧入し、型内発泡成形に用いる方法、
(2)ポリオレフィン系樹脂予備発泡粒子を圧縮状態で金型内に充填し型内発泡成形する方法、
(3)ポリオレフィン系樹脂予備発泡粒子をそのまま前処理無しに内部圧力が大気圧とほぼ等しい状態で用いる方法、など従来既知の方法が使用しうる。
特に、3)ポリオレフィン系樹脂予備発泡粒子をそのまま前処理無しに内部圧力が大気圧とほぼ等しい状態で用いる方法は、成形後の収縮、変形が大きいため、本発明の適用が有用である。
When using polyolefin resin pre-expanded particles for in-mold foam molding,
(1) A method of injecting an inorganic gas such as air into polyolefin resin pre-foamed particles in advance and using it for in-mold foam molding,
(2) A method in which polyolefin resin pre-expanded particles are filled in a mold in a compressed state and foamed in-mold
(3) Conventionally known methods such as a method of using polyolefin resin pre-expanded particles as they are without pretreatment in a state where the internal pressure is substantially equal to the atmospheric pressure can be used.
In particular, 3) the method of using the polyolefin resin pre-expanded particles as they are without pretreatment in a state in which the internal pressure is almost equal to the atmospheric pressure is greatly applied to the present invention because of the large shrinkage and deformation after molding.

本発明でのポリオレフィン系樹脂型内発泡成形体の養生方法は、型内発泡成形体を金型から取り出した後、大気分圧よりも高い炭酸ガス濃度の雰囲気下で養生することにより、特殊な温度コントロールを実施しなくとも、型内発泡成形体の対金型収縮性および変形を抑制することができる。   The curing method of the polyolefin resin in-mold foam molded product according to the present invention is a special method in which the in-mold foam molded product is removed from the mold and then cured in an atmosphere having a carbon dioxide gas concentration higher than the atmospheric partial pressure. Even if temperature control is not performed, mold shrinkage and deformation of the in-mold foamed molded product can be suppressed.

本発明における養生時雰囲気の炭酸ガス濃度としては、20体積%以上がより好ましく、30体積%以上がさらに好ましく、50体積%以上が特に好ましい。
なお、養生時雰囲気の炭酸ガス濃度は、例えば、炭酸ガス用高濃度ガス検知器[新コスモス電機(株)製、XP−3140]を用いて、測定した値である。
The carbon dioxide gas concentration in the curing atmosphere in the present invention is more preferably 20% by volume or more, further preferably 30% by volume or more, and particularly preferably 50% by volume or more.
The carbon dioxide gas concentration in the curing atmosphere is a value measured using, for example, a high-concentration gas detector for carbon dioxide gas (manufactured by Shin Cosmos Electric Co., Ltd., XP-3140).

本発明において、炭酸ガス濃度を調整された雰囲気下で養生する方法については、特に限定は無いが、例えば、
予め炭酸ガス濃度に調整した密閉可能なコンテナ、容器、袋等に、型内発泡成形体を入れる、
型内発泡成形体を入れたコンテナ、容器、袋に炭酸ガスを注入して、炭酸ガス濃度を調整する、
などの方法が挙げられる。
In the present invention, there is no particular limitation on the method of curing in an atmosphere in which the carbon dioxide concentration is adjusted, for example,
Place the in-mold foam molding in a sealable container, container, bag, etc., adjusted to the carbon dioxide concentration in advance.
Inject carbon dioxide into containers, containers, and bags containing in-mold foam moldings to adjust the carbon dioxide concentration.
And the like.

本発明の炭酸ガス濃度の調整された雰囲気下で型内発泡成形体を養生する方法は、炭酸ガスボンベ、ドライアイスなどを用いてコンテナ、容器、袋等に炭酸ガスを充填するだけでよいことから、特別な装置などは必要なく、非常に簡便な方法である。   The method of curing an in-mold foamed molded article in an atmosphere in which the concentration of carbon dioxide gas of the present invention is adjusted is because it is only necessary to fill a container, container, bag, etc. with carbon dioxide gas using a carbon dioxide cylinder, dry ice, or the like. No special equipment is required, and this is a very simple method.

本発明の型内発泡成形体の養生方法において、金型から取り出した後、前記炭酸ガス濃度雰囲気下の養生を開始する迄の時間は、5分以下であることが望ましく、2分以下であることがより望ましい。
前記炭酸ガス濃度雰囲気下の養生を開始する迄の時間が5分を超える場合には、収縮、変形の抑制効果が小さくなる傾向がある。
In the curing method for an in-mold foam molded body of the present invention, it is desirable that the time until the curing under the carbon dioxide gas concentration atmosphere is started is 5 minutes or less after taking out from the mold, and is 2 minutes or less. It is more desirable.
When the time until the curing under the carbon dioxide gas concentration starts exceeds 5 minutes, the effect of suppressing shrinkage and deformation tends to be small.

本発明の型内発泡成形体の養生方法においては、所定の炭酸ガス濃度雰囲気下での養生工程の後に、水分除去、形状回復などを目的として、室温で放置された型内発泡成形体を60℃〜80℃程度の温度で加熱(いわゆる、乾燥工程)しても良い。
乾燥時間に特に制限は無いが、望ましくは4時間以上48時間以下である。乾燥時間が4時間未満の場合には、目的の効果が乏しい傾向があり、48時間を越える場合には著しく生産性が低下するため望ましくない。
乾燥工程においては、炭酸ガス濃度が調整された雰囲気下である必要はないが、炭酸ガス濃度が調整された雰囲気下のままの状態で乾燥させてもよい。
In the curing method for an in-mold foam molded body of the present invention, after the curing step under a predetermined carbon dioxide gas concentration atmosphere, the in-mold foam molded body left at room temperature for the purpose of water removal, shape recovery, etc. You may heat (what is called a drying process) at the temperature of about -80 degreeC.
Although there is no restriction | limiting in particular in drying time, Preferably it is 4 to 48 hours. If the drying time is less than 4 hours, the desired effect tends to be poor, and if it exceeds 48 hours, the productivity is remarkably lowered, which is not desirable.
In the drying step, it is not necessary to be in an atmosphere in which the carbon dioxide concentration is adjusted, but drying may be performed in an atmosphere in which the carbon dioxide concentration is adjusted.

本発明を適用するポリオレフィン系樹脂型内発泡成形体の密度は、10kg/m以上300kg/m以下であることが好ましい。特に、密度が10kg/m以上45kg/m以下である発泡倍率の高い成形体においては、変形が生じやすいことから、本発明の適用が有効である。 The density of the polyolefin resin-in-mold foam-molded product to which the present invention is applied is preferably 10 kg / m 3 or more and 300 kg / m 3 or less. In particular, in a molded body having a high foaming ratio and having a density of 10 kg / m 3 or more and 45 kg / m 3 or less, deformation is likely to occur, and therefore the application of the present invention is effective.

本発明における型内発泡成形体を構成する樹脂としてはポリオレフィン系樹脂が採用される。型内発泡成形にはポリスチレン系の樹脂なども利用されているが、ポリオレフィン系樹脂は剛性が低く、型内発泡成形後の収縮、変形が顕著であることから、本発明の養生方法の適用が有用である。   As the resin constituting the in-mold foam molded body in the present invention, a polyolefin resin is employed. Polystyrene resins and the like are also used for in-mold foam molding, but polyolefin resins have low rigidity, and the shrinkage and deformation after in-mold foam molding are significant. Useful.

本発明において用いられるポリオレフィン系樹脂は、オレフィン系単量体75重量%以上含んでなる重合体である。   The polyolefin resin used in the present invention is a polymer containing 75% by weight or more of an olefin monomer.

オレフィン系単量体の具体例としては、例えば、エチレン、プロピレン、ブテン−1、イソブテン、ペンテン−1、3−メチル−ブテン−1、ヘキセン−1、4−メチル−ペンテン−1、3,4−ジメチル−ブテン−1、へプテン−1、3−メチル−ヘキセン−1、オクテン−1、デセン−1などの炭素数2〜12のα−オレフィンなどがあげられる。これらは単独で用いてもよく2種以上を組み合わせて用いてもよい。
また、前記オレフィン系単量体と共重合性を有するその他の単量体の具体例としては、例えば、シクロペンテン、ノルボルネン、1,4,5,8−ジメタノ−1,2,3,4,4a,8,8a,6−オクタヒドロナフタレンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエンなどがあげられる。これらは単独で用いてもよく2種以上を組み合わせて用いてもよい。
Specific examples of the olefin monomer include, for example, ethylene, propylene, butene-1, isobutene, pentene-1, 3-methyl-butene-1, hexene-1, 4-methyl-pentene-1, 3, 4 Examples thereof include α-olefins having 2 to 12 carbon atoms such as dimethyl-butene-1, heptene-1, 3-methyl-hexene-1, octene-1, and decene-1. These may be used alone or in combination of two or more.
Specific examples of other monomers copolymerizable with the olefinic monomer include, for example, cyclopentene, norbornene, 1,4,5,8-dimethano-1,2,3,4,4a. , 8,8a, 6-octahydronaphthalene and the like, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1 , 6-octadiene and the like. These may be used alone or in combination of two or more.

本発明において用いられるポリオレフィン系樹脂の具体例としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのエチレンを主成分とするポリエチレン系樹脂、プロピレンを主成分とするポリプロピレン系樹脂が挙げられる。
これらのポリオレフィン系樹脂は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the polyolefin resin used in the present invention include, for example, polyethylene resins mainly composed of ethylene, such as high density polyethylene, medium density polyethylene, low density polyethylene, and linear low density polyethylene, and propylene as a major component. And a polypropylene-based resin.
These polyolefin resins may be used alone or in combination of two or more.

ポリプロピレン系樹脂としては、単量体の主成分としてプロピレンを含んでいれば、特に限定はなく、例えば、プロピレンホモポリマー、α−オレフィン−プロピレンランダム共重合体、α−オレフィン−プロピレンブロック共重合体などが挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。
特に、α−オレフィンがエチレンである、エチレンを共重合単量体成分として含有するポリプロピレン系樹脂が、入手が容易であり、加工成形性に優れていることから、型内発泡成形への使用が好まれる。
The polypropylene resin is not particularly limited as long as it contains propylene as a main component of the monomer. For example, propylene homopolymer, α-olefin-propylene random copolymer, α-olefin-propylene block copolymer Etc. These may be used alone or in combination of two or more.
In particular, since the α-olefin is ethylene, a polypropylene-based resin containing ethylene as a comonomer component is easily available and excellent in process moldability, so that it can be used for in-mold foam molding. Liked.

ポリプロピレン系樹脂としては、単量体の主成分としてプロピレンを含んでいれば、特に限定はなく、例えば、プロピレンホモポリマー、オレフィン−プロピレンランダム共重合体、オレフィン−プロピレンブロック共重合体などが挙げられる。
これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polypropylene resin is not particularly limited as long as it contains propylene as a main component of the monomer, and examples thereof include a propylene homopolymer, an olefin-propylene random copolymer, and an olefin-propylene block copolymer. .
These may be used alone or in combination of two or more.

本発明において用いられるポリエチレン系樹脂としては、エチレンホモポリマー、エチレン−α−オレフィンランダム共重合体、エチレン−α−オレフィンブロック共重合体、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどが挙げられる。ここで言う、α−オレフィンとしては、炭素数3〜15のα−オレフィンなどが挙げられ、これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらのポリエチレン系樹脂の中でも、エチレン−α−オレフィンブロック共重合体であってエチレン以外のコモノマー含量が1〜10重量%である場合、あるいは直鎖状低密度ポリエチレンである場合に良好な発泡性を示し、型内発泡成形に好適に使用し得る。
Examples of the polyethylene resin used in the present invention include ethylene homopolymer, ethylene-α-olefin random copolymer, ethylene-α-olefin block copolymer, low density polyethylene, high density polyethylene, and linear low density polyethylene. Is mentioned. The α-olefin referred to herein includes α-olefins having 3 to 15 carbon atoms, and these may be used alone or in combination of two or more.
Among these polyethylene-based resins, good foamability when ethylene-α-olefin block copolymer has a comonomer content other than ethylene of 1 to 10% by weight or is a linear low density polyethylene And can be suitably used for in-mold foam molding.

本発明において用いられるポリオレフィン系樹脂は、さらに必要に応じて、タルク等のセル造核剤を始め、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤、または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、無機系顔料、有機系顔料、導電性改良剤、難燃性改良剤、界面活性剤型もしくは高分子型の帯電防止剤等の添加剤が添加されたポリオレフィン系樹脂組成物として使用されうる。   The polyolefin-based resin used in the present invention further includes a cell nucleating agent such as talc, an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, and a fluorescence as necessary. Brighteners, stabilizers such as metal soaps, or crosslinking agents, chain transfer agents, lubricants, plasticizers, fillers, reinforcing agents, inorganic pigments, organic pigments, conductivity improvers, flame retardant improvers, interfaces It can be used as a polyolefin resin composition to which an additive such as an activator type or a polymer type antistatic agent is added.

本発明において用いられるポリオレフィン系樹脂組成物は、通常、予備発泡に利用されやすいように予め押出機、ニーダー、バンバリミキサー、ロール等を用いてポリオレフィン系樹脂を、必要に応じて前記添加剤と共に溶融混合し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状のポリオレフィン系樹脂粒子に成形加工される。   The polyolefin resin composition used in the present invention is usually melted with an additive, if necessary, with a polyolefin resin in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for pre-foaming. The mixture is mixed and molded into a polyolefin resin particle having a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, or the like.

本発明に用いられるポリオレフィン系樹脂予備発泡粒子を製造する方法には、特に限定はないが、密閉容器内にポリオレフィン系樹脂粒子を発泡剤存在下、分散剤等と共に分散媒中に分散させ、加圧下で所定の発泡温度まで加熱するとともに発泡剤を樹脂粒子に含浸させた後、容器内の温度、圧力を一定に保持しながら、密閉容器内の分散物を低圧域に放出・発泡させる方法、いわゆる除圧発泡が好ましい。   The method for producing the polyolefin resin pre-expanded particles used in the present invention is not particularly limited, but the polyolefin resin particles are dispersed in a dispersion medium together with a dispersant in the presence of a foaming agent in an airtight container. A method of releasing and foaming the dispersion in a sealed container to a low pressure region while maintaining the temperature and pressure in the container constant, after heating to a predetermined foaming temperature under pressure and impregnating the resin particles with a foaming agent, So-called decompression foaming is preferred.

密閉容器内の加熱温度は、好ましくはポリオレフィン系樹脂粒子の融点−25℃以上ポリオレフィン系樹脂粒子の融点+25℃以下、更に好ましくはポリオレフィン系樹脂粒子の融点−15℃以上ポリオレフィン系樹脂粒子の融点+15℃以下の範囲の温度である。当該温度に加熱し、加圧して、ポリオレフィン系樹脂粒子内に発泡剤を含浸させたのち、密閉容器の一端を開放してポリオレフィン系樹脂粒子を密閉容器内よりも低圧の雰囲気中に放出することによりポリオレフィン系樹脂予備発泡粒子を製造することができる。   The heating temperature in the sealed container is preferably the melting point of polyolefin resin particles −25 ° C. or higher and the melting point of polyolefin resin particles + 25 ° C. or lower, more preferably the melting point of polyolefin resin particles −15 ° C. or higher and the melting point of polyolefin resin particles +15. The temperature is in the range of ℃ or less. After heating and pressurizing to this temperature and impregnating the foaming agent into the polyolefin resin particles, one end of the sealed container is opened to release the polyolefin resin particles into a lower pressure atmosphere than in the sealed container. Thus, polyolefin resin pre-expanded particles can be produced.

ポリオレフィン系樹脂予備発泡粒子を製造するに当たり、発泡剤に特に制限はなく、例えば、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素;空気、窒素、二酸化炭素等の無機ガス;水等およびこれらの混合物を用いることができる。   In producing the polyolefin resin pre-expanded particles, the blowing agent is not particularly limited. For example, aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane; inorganic gases such as air, nitrogen, and carbon dioxide; Water or the like and a mixture thereof can be used.

本発明において用いられるポリオレフィン系樹脂予備発泡粒子は、示差走査熱量計法による測定において、ポリオレフィン系樹脂予備発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線において2つの融解ピークを有していることが好ましい。   The polyolefin resin pre-expanded particles used in the present invention are heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min in 5-6 mg of polyolefin resin pre-expanded particles as measured by differential scanning calorimetry. It is preferred to have two melting peaks in the resulting DSC curve.

本発明において用いられるポリオレフィン系樹脂予備発泡粒子は、DSC比が7%以上60%以下であることが好ましい。特に、7%以上35%以下の低いDSC比である場合、変形が顕著になりやすいことから、本発明の適用が有効である。
なお、DSC比とは、図1に示すように、DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点からDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた低温側部分を低温側の融解ピーク熱量Qとし、高温側部分を高温側の融解ピーク熱量Qとした際に、これらから算出される高温側の融解ピークの比率[Q/(Q+Q)×100]である。
The polyolefin resin pre-expanded particles used in the present invention preferably have a DSC ratio of 7% to 60%. In particular, in the case of a low DSC ratio of 7% or more and 35% or less, the deformation is likely to be remarkable, so that the application of the present invention is effective.
As shown in FIG. 1, the DSC ratio is a low temperature surrounded by the tangent line and the DSC curve by drawing a tangent line to the DSC curve from the point where the endothermic amount is the smallest between the two melting peaks of the DSC curve. When the side portion is the low-temperature side melting peak calorie Q l and the high-temperature side portion is the high-temperature side melting peak calorie Q h , the ratio of the high-temperature side melting peak calculated from these [Q h / (Q l + Q h ) × 100].

以下に、実施例および比較例をあげて説明するが、これによって、本発明は制限されるものではない。   Examples and comparative examples will be described below, but the present invention is not limited thereby.

実施例および比較例において、使用した物質は、以下のとおりであるが、特に精製等は行わずに使用した。
●ポリプロピレン系樹脂:エチレン−プロピレンランダム共重合体[エチレン含量2.8%、MFR=7.0g/10min、融点145℃]
●パウダー状塩基性第3リン酸カルシウム[太平化学産業(株)製]
●n−パラフィンスルホン酸ソーダ[花王(株)製、ラムテルPS]
In the examples and comparative examples, the substances used were as follows, but were used without any particular purification.
● Polypropylene resin: ethylene-propylene random copolymer [ethylene content 2.8%, MFR = 7.0 g / 10 min, melting point 145 ° C.]
● Powdered basic tricalcium phosphate [manufactured by Taihei Chemical Industry Co., Ltd.]
N-Paraffinsulfonic acid soda [Ramtel PS, manufactured by Kao Corporation]

実施例および比較例における評価は、以下のように行った。   Evaluation in Examples and Comparative Examples was performed as follows.

(DSC比)
示差走査熱量計を用いて、ポリオレフィン系樹脂予備発泡粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから次式により算出した。
DSC比=Qh/(Ql+Qh)×100
(DSC ratio)
In a DSC curve (illustrated in FIG. 1) obtained when the polyolefin resin pre-expanded particles 5 to 6 mg are heated from 40 ° C. to 220 ° C. at a temperature rising rate of 10 ° C./min using a differential scanning calorimeter, Two melting peaks were calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peak by the following equation.
DSC ratio = Qh / (Ql + Qh) × 100

(発泡倍率)
ポリオレフィン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前のポリオレフィン系樹脂粒子の密度d(g/cm)から、次式により求めた。
発泡倍率=d×v/w
(Foaming ratio)
The weight w (g) and ethanol submerged volume v (cm 3 ) of the polyolefin resin pre-foamed particles were determined, and the density d (g / cm 3 ) of the polyolefin resin particles before foaming was determined by the following equation.
Foaming ratio = d × v / w

(成形体密度)
得られた型内発泡成形体の寸法、重量W(kg)を測定し、寸法から体積V(kg/m)を計算し、次式により求めた。
成形体密度=V/W
(Molded body density)
The dimension and weight W (kg) of the obtained in-mold foam molded article were measured, and the volume V (kg / m 3 ) was calculated from the dimension, and was obtained by the following formula.
Compact density = V / W

(表面皺)
得られた型内発泡成形体表面を目視で観察し、下記の基準で評価した。
○:表面に皺がほとんどない。
△:目立つほどではないが、表面に小さな皺が存在する。
×:表面に目立つような大きな皺が存在する。
(Surface)
The surface of the obtained in-mold foam molding was visually observed and evaluated according to the following criteria.
○: There are almost no wrinkles on the surface.
Δ: Not so noticeable, but there are small wrinkles on the surface.
X: Large wrinkles that stand out on the surface are present.

(体積収縮率)
養生後の型内発泡成形体の縦、横、厚みをデジタルノギス[ミツトヨ製]にて測定し、その値から体積を算出した。
体積収縮率は、得られた成形体体積の、金型寸法(長さ400mm×幅300mm×高さ50mm)より計算される体積に対する比率を求め、小数点以下第2位を四捨五入した。
(Volume shrinkage)
The length, width, and thickness of the in-mold foam molded product after curing were measured with a digital caliper [manufactured by Mitutoyo], and the volume was calculated from the values.
For the volume shrinkage, the ratio of the obtained molded body volume to the volume calculated from the mold dimensions (length 400 mm × width 300 mm × height 50 mm) was obtained, and the second decimal place was rounded off.

(ヒケ量)
図2に示すように、得られた成形体の長さ方向の中点での断面において、端部厚みL1と、端部から5cm内側での厚みL2をデジタルノギス[ミツトヨ製]を用いて測定した。
ヒケ量は、端部と内部での厚みの差L1−L2として、評価した。
(Sink amount)
As shown in FIG. 2, in the cross section at the midpoint of the length direction of the obtained molded body, the end thickness L1 and the thickness L2 inside 5 cm from the end are measured using a digital caliper [Mitutoyo]. did.
The amount of sink marks was evaluated as a difference in thickness L1−L2 between the end portion and the inside.

(実施例1〜8)
[樹脂粒子の作製]
ポリプロピレン系樹脂100重量部に対して、造核剤としてタルク0.03重量部を添加・混合し、50mmφ単軸押出機で混練した後、造粒し、粒子重量約1.8mg/粒のポリプロピレン系樹脂粒子を製造した。
[予備発泡粒子の作製]
得られた樹脂粒子100重量部およびイソブタン14重量部を、水300重量部、パウダー状塩基性第3リン酸カルシウム1.6重量部およびn−パラフィンスルホン酸ソーダ0.03重量部と共に、10L密閉容器に仕込み、該容器内部を142.5℃に加熱した。
次いで、温度を保持させながら、イソブタンを圧入して、容器内圧力を1.85MPaとなるように調整した。その後、容器内圧力を窒素で保持しつつ、密閉容器下部のバルブを開いて、水分散物を開孔径4.0mmφのオリフィス板を通して大気圧下に放出することにより、ポリプロピレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子のDSC比は25%、発泡倍率は20倍であった。
[型内成形発泡体の作製]
得られたポリプロピレン系樹脂予備発泡粒子を、内圧付与および圧縮充填の前処理を行うことなく、長さ400mm×幅300mm×高さ50mmの金型に充填した。その後、18秒間かけて水蒸気圧力0.30MPa(G)まで昇圧し、そのまま5秒間加熱、該予備発泡粒子同士を融着させ、50秒間水冷した後、金型から取り出し、型内発泡成形体を得た。得られた成形体密度は、32kg/mであった。
(Examples 1-8)
[Production of resin particles]
Addition and mixing of 0.03 parts by weight of talc as a nucleating agent to 100 parts by weight of a polypropylene resin, kneading with a 50 mmφ single screw extruder, granulation, and polypropylene with a particle weight of about 1.8 mg / grain Type resin particles were produced.
[Preparation of pre-expanded particles]
100 parts by weight of the obtained resin particles and 14 parts by weight of isobutane were mixed with 300 parts by weight of water, 1.6 parts by weight of powdered basic tribasic calcium phosphate and 0.03 parts by weight of sodium n-paraffin sulfonate in a 10 L sealed container. First, the inside of the container was heated to 142.5 ° C.
Next, while maintaining the temperature, isobutane was injected to adjust the internal pressure of the container to 1.85 MPa. Thereafter, while maintaining the internal pressure of the container with nitrogen, the valve at the bottom of the closed container is opened, and the aqueous dispersion is discharged under an atmospheric pressure through an orifice plate having an opening diameter of 4.0 mmφ to obtain polypropylene resin pre-expanded particles. Obtained. The pre-expanded particles obtained had a DSC ratio of 25% and an expansion ratio of 20 times.
[Production of in-mold molded foam]
The obtained polypropylene resin pre-expanded particles were filled into a mold having a length of 400 mm, a width of 300 mm, and a height of 50 mm without applying internal pressure and pre-processing for compression filling. Thereafter, the water vapor pressure is increased to 0.30 MPa (G) over 18 seconds, heated as it is for 5 seconds, the pre-expanded particles are fused together, water-cooled for 50 seconds, taken out from the mold, and the in-mold foam-molded product is obtained. Obtained. The resulting molded body density was 32 kg / m 3 .

[成形発泡体の養生]
得られた型内発泡成形体を、炭酸ガス濃度雰囲気に調整されたポリエチレン製袋へ入れ、室温(23℃)にて1時間放置した。この際、成形体の取り出しから袋へ入れるまでの放置時間、および、袋内の炭酸ガス濃度を表1に示す。
なお、炭酸ガス雰囲気の調整方法は、ポリエチレン製袋中に、炭酸ガスボンベ[エアウォーター製]から炭酸ガスを注入し、袋の口を紐で縛ることにより密閉し、炭酸ガスで充満した袋とした。その後、炭酸ガス用高濃度ガス検知器[新コスモス電機社製、XP−3140]を用いて、炭酸ガス濃度を測定しながら、炭酸ガスで充満した袋に空気を入れることにより、所定の炭酸ガス濃度に調整した。
[成形発泡体の乾燥]
該成形体をビニル袋から取り出し、乾燥室にて75℃の乾燥室にて18時間乾燥させた。得られた成形体を23℃で4時間放置して状態調整した後、表面皺、体積収縮率、ヒケ量の評価を行った。評価結果を、表1に示す。
[Curing of molded foam]
The obtained in-mold foam-molded product was placed in a polyethylene bag adjusted to a carbon dioxide gas concentration atmosphere and left at room temperature (23 ° C.) for 1 hour. At this time, the standing time from taking out the molded body to putting it into the bag and the carbon dioxide concentration in the bag are shown in Table 1.
The carbon dioxide atmosphere was adjusted by injecting carbon dioxide into a polyethylene bag from a carbon dioxide cylinder [manufactured by Air Water], sealing the bag mouth with a string, and filling the bag with carbon dioxide. . Then, using a high-concentration gas detector for carbon dioxide [manufactured by Shin Cosmos Electric Co., Ltd., XP-3140], while measuring the carbon dioxide concentration, air is introduced into a bag filled with carbon dioxide, thereby giving a predetermined carbon dioxide gas. The concentration was adjusted.
[Drying molded foam]
The molded body was taken out from the vinyl bag and dried in a drying room at 75 ° C. for 18 hours. The obtained molded body was allowed to stand at 23 ° C. for 4 hours for condition adjustment, and then the surface wrinkles, volume shrinkage rate, and sink amount were evaluated. The evaluation results are shown in Table 1.

(実施例9)
乾燥室にて75℃の乾燥室にて18時間乾燥させた際も、型内発泡成形体を炭酸ガス雰囲気に調整された袋に入れたままとした以外は、実施例1と同様にして、成形体を得た。得られた成形体を23℃で4時間放置して状態調整した後、表面皺、体積収縮率、ヒケ量の評価を行った。評価結果を、表1に示す。
Example 9
Even when it was dried in a drying chamber at 75 ° C. for 18 hours in the drying chamber, the foamed molded product in the mold was kept in a bag adjusted to a carbon dioxide atmosphere, as in Example 1, A molded body was obtained. The obtained molded body was allowed to stand at 23 ° C. for 4 hours for condition adjustment, and then the surface wrinkles, volume shrinkage rate, and sink amount were evaluated. The evaluation results are shown in Table 1.

(比較例1)
得られた型内発泡成形体を室温にて1時間放置した後、75℃の乾燥室にて18時間乾燥させた。乾燥室から取出し後、23℃で4時間放置した後に、表面皺、体積収縮率、ヒケ量の評価を行った。評価結果を、表1に示す。
(Comparative Example 1)
The obtained in-mold foam-molded product was allowed to stand at room temperature for 1 hour and then dried in a 75 ° C. drying room for 18 hours. After taking out from the drying chamber and leaving at 23 ° C. for 4 hours, the surface wrinkles, volume shrinkage, and sink amount were evaluated. The evaluation results are shown in Table 1.

Figure 2012255082
Figure 2012255082

表1より明らかなように、一定濃度以上の炭酸ガス雰囲気で養生することにより、皺が改善し、収縮も小さくなっていることがわかる。また、変形の指標となるヒケ量も半分以下にすることも可能であった。   As is clear from Table 1, it can be seen that by curing in an atmosphere of carbon dioxide gas at a certain concentration or higher, wrinkles are improved and shrinkage is reduced. In addition, the amount of sink marks as an index of deformation could be reduced to half or less.

Claims (5)

ポリオレフィン系樹脂予備発泡粒子を用いて型内発泡成形法により成形されてなるポリオレフィン系樹脂型内発泡成形体を、金型から取り出し後、大気分圧よりも高い炭酸ガス濃度の雰囲気下で養生することを特徴する、ポリオレフィン系樹脂型内発泡成形体の養生方法。   The polyolefin resin in-mold foam molded product formed by the in-mold foam molding method using the polyolefin resin pre-expanded particles is removed from the mold and then cured under an atmosphere of carbon dioxide concentration higher than the atmospheric partial pressure. A method for curing a foamed molded product in a polyolefin-based resin mold, characterized in that. 前記養生時雰囲気の炭酸ガス濃度が、炭酸ガス濃度20体積%以上であることを特徴とする、請求項1記載のポリオレフィン系樹脂型内発泡成形体の養生方法。   The method for curing a polyolefin resin-in-mold foam-molded article according to claim 1, wherein the carbon dioxide gas concentration in the curing atmosphere is 20% by volume or more of carbon dioxide gas. 成形体を金型から取り出し後、前記炭酸ガス濃度雰囲気下の養生を開始する迄の時間が5分以下であることを特徴とする、請求項1または2記載のポリオレフィン系樹脂型内発泡成形体の養生方法。   3. The polyolefin resin in-mold foam-molded product according to claim 1 or 2, wherein the time from when the molded product is taken out of the mold until the curing under the carbon dioxide gas concentration atmosphere is started is 5 minutes or less. Curing method. 型内発泡成形体を乾燥温度に上昇させ始める直前まで、前記炭酸ガス濃度雰囲気下で養生することを特徴とする、請求項1〜3のいずれかに記載のポリオレフィン系樹脂型内発泡成形体の養生方法。   The polyolefin resin-in-mold foam-molded article according to any one of claims 1 to 3, wherein the foam-molded article in the mold is cured in the carbon dioxide gas concentration atmosphere until immediately before the mold-molded foam-molded body starts to rise to a drying temperature. Curing method. 型内発泡成形にて充填されるポリオレフィン系樹脂予備発泡粒子の内部圧力が大気圧とほぼ等しい、請求項1〜4のいずれかに記載のポリオレフィン系樹脂型内発泡成形体の養生方法。   The method for curing a polyolefin resin in-mold foam molded product according to any one of claims 1 to 4, wherein the internal pressure of the polyolefin resin pre-expanded particles filled by in-mold foam molding is substantially equal to atmospheric pressure.
JP2011128717A 2011-06-08 2011-06-08 Curing method of polyolefin resin in-mold expansion molded product Withdrawn JP2012255082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128717A JP2012255082A (en) 2011-06-08 2011-06-08 Curing method of polyolefin resin in-mold expansion molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128717A JP2012255082A (en) 2011-06-08 2011-06-08 Curing method of polyolefin resin in-mold expansion molded product

Publications (1)

Publication Number Publication Date
JP2012255082A true JP2012255082A (en) 2012-12-27

Family

ID=47526944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128717A Withdrawn JP2012255082A (en) 2011-06-08 2011-06-08 Curing method of polyolefin resin in-mold expansion molded product

Country Status (1)

Country Link
JP (1) JP2012255082A (en)

Similar Documents

Publication Publication Date Title
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
WO2011086937A1 (en) Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
JPWO2017030124A1 (en) Polypropylene-based resin foamed particles, method for producing polypropylene-based resin foamed particles, method for producing polypropylene-based resin-molded in-mold foam, and polypropylene-based resin-molded in-mold foam
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JP5188144B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2009126914A (en) Polypropylene-based resin pre-expandable beads, method for producing the same, and in-mold expansion-molded form
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
WO2016098698A1 (en) Polypropylene resin foamed particles
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
JP2009221451A (en) Method for manufacturing polypropylene resin foam particle, foam particle and foam molded body
JP5910626B2 (en) Polypropylene-based resin pre-expanded particles, polypropylene-based in-mold foam-molded article, and method for producing the same
KR100738266B1 (en) Expanded polypropylene resin bead and process of producing same
JP2013100554A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP5475149B2 (en) Polypropylene resin pre-expanded particles without friction noise
JP2012255082A (en) Curing method of polyolefin resin in-mold expansion molded product
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5216353B2 (en) Method for producing expanded polypropylene resin particles
JP2019156872A (en) Polyethylene-based resin foamed particle, and method for producing polyethylene-based resin in-mold foamed molded product
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP5154194B2 (en) Polypropylene resin foam particles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902