JP2013100554A - Pre-expanded particle of polyolefin resin, and method for producing the same - Google Patents

Pre-expanded particle of polyolefin resin, and method for producing the same Download PDF

Info

Publication number
JP2013100554A
JP2013100554A JP2013037770A JP2013037770A JP2013100554A JP 2013100554 A JP2013100554 A JP 2013100554A JP 2013037770 A JP2013037770 A JP 2013037770A JP 2013037770 A JP2013037770 A JP 2013037770A JP 2013100554 A JP2013100554 A JP 2013100554A
Authority
JP
Japan
Prior art keywords
expanded particles
polyolefin resin
weight
stage
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013037770A
Other languages
Japanese (ja)
Other versions
JP5591965B2 (en
Inventor
Atsushi Fukuzawa
淳 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013037770A priority Critical patent/JP5591965B2/en
Publication of JP2013100554A publication Critical patent/JP2013100554A/en
Application granted granted Critical
Publication of JP5591965B2 publication Critical patent/JP5591965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide two-step expanded particles of polyolefin resin, which are reduced in impairment of productivity and restriction on facilities, and also reduced in magnification variations between expanded particles and bubble variations, and can provide, when used for in-mold expansion molding, an in-mold expansion molded product excellent in fusion bonding between two-step expanded particles, surface properties and dimensional accuracy.SOLUTION: The two-step expanded particles of polyolefin resin are obtained by expanding polyolefin resin particles composed of (a) a polyolefin resin containing, relative to 100 pts.wt. thereof, 0.2 pts.wt. or more and 5 pts.wt. or less of (b) a polyolefin-polyether block copolymer and 0.005 pts.wt. or more and 2 pts.wt. or less of (c) a foaming core agent to obtain first-step expanded particles; and further expanding the first-step expanded particles by pressuring them with an inorganic gas such as air in a pressure tight container to give an internal pressure thereto followed by vapor-heating.

Description

本発明はポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)、およびその製造方法に関する。さらに詳しくは、たとえば型内発泡成形体の原料として好適に使用し得るポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)、およびその製造方法に関する。   The present invention relates to polyolefin resin pre-expanded particles (two-stage expanded particles) and a method for producing the same. More specifically, for example, the present invention relates to a polyolefin resin pre-expanded particle (two-stage expanded particle) that can be suitably used as a raw material for an in-mold expanded molded article, and a method for producing the same.

ポリオレフィン系樹脂予備発泡粒子を金型内に充填し、水蒸気等で加熱成形して得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴を持つ。この型内発泡成形体は、ポリスチレン系樹脂発泡粒子を用いて得られる型内発泡成形体に比べて、耐薬品性、耐熱性、圧縮後の歪回復率に優れている。断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材など様々な用途に好適に用いられる。   In-mold foam molded products obtained by filling polyolefin resin pre-expanded particles in a mold and heat-molding with water vapor, etc., are the advantages of in-mold foam molded products, lightness, heat insulation, etc. With the characteristics of. This in-mold foam molded article is superior in chemical resistance, heat resistance, and strain recovery rate after compression, compared to an in-mold foam molded article obtained using polystyrene resin foam particles. It is suitably used for various applications such as a heat insulating material, a cushioning packaging material, an automobile interior member, and a core material for an automobile bumper.

従来、ポリオレフィン系樹脂粒子を発泡剤とともに水系分散媒に分散させ、昇温して一定圧力、一定温度として樹脂粒子中に発泡剤を含浸させたのち、低圧雰囲気下に放出して予備発泡粒子を得る除圧発泡方法が知られている。発泡剤としては、プロパン、ブタンといった揮発性有機発泡剤を使用する方法(例えば、特許文献1)、炭酸ガス、窒素、空気などの無機ガスを使用する方法(例えば、特許文献2,3)が開示されている。   Conventionally, polyolefin resin particles are dispersed in a water-based dispersion medium together with a foaming agent, and the temperature is raised and the resin particles are impregnated with the foaming agent at a constant pressure and constant temperature. There are known depressurization foaming methods to obtain. Examples of the blowing agent include a method using a volatile organic blowing agent such as propane and butane (for example, Patent Document 1) and a method using an inorganic gas such as carbon dioxide, nitrogen, and air (for example, Patent Documents 2 and 3). It is disclosed.

しかしながら、揮発性有機発泡剤は、地球温暖化係数が炭酸ガスよりも大きい物質であり、また、プロパン、ブタンなどの揮発性有機発泡剤は、水への溶解性が乏しい為に、水中に分散させたポリオレフィン系樹脂粒子に均一に含浸させることが難しく、予備発泡粒子の発泡倍率および結晶状態のコントロールが難しい。また、可燃性物質であるため、設備の防爆化が必要となるために、設備コスト高となる欠点を有している。   However, volatile organic blowing agents are substances that have a greater global warming potential than carbon dioxide, and volatile organic blowing agents such as propane and butane are poorly soluble in water, so they are dispersed in water. It is difficult to uniformly impregnate the polyolefin-based resin particles, and it is difficult to control the expansion ratio and crystal state of the pre-expanded particles. In addition, since it is a flammable substance, it is necessary to make the equipment explosion-proof, which has the disadvantage of increasing the equipment cost.

一方、窒素、空気などの無機ガスを使用する場合は、熱可塑性樹脂への含浸能が非常に低く、高い圧力としても高発泡化に充分な含浸量が得られない問題があった。   On the other hand, when an inorganic gas such as nitrogen or air is used, the impregnation ability into the thermoplastic resin is very low, and there is a problem that a sufficient impregnation amount for high foaming cannot be obtained even at high pressure.

これらの欠点を解決し、型内発泡成形体の製造に好適に使用しうるポリオレフィン系樹脂予備発泡粒子を経済的に製造する方法として、分散媒に使用する水を発泡剤として利用する方法が提案されている。   As a method for economically producing polyolefin resin pre-foamed particles that can be used suitably for the production of in-mold foam molded products, a method that uses water used as a dispersion medium as a foaming agent is proposed. Has been.

例えば特許文献4、5には水を発泡剤として使用して予備発泡粒子を製造する際に、樹脂中の含浸水分量を増加させるため親水性ポリマーが添加されたポリプロピレン樹脂を原料樹脂として使用する方法が開示されている。親水性物質としてアイオノマー樹脂、架橋ポリビニルアルコール、架橋ポリエチレンオキサイド系重合体などが使用でき、特にアイオノマー樹脂が好適に使用されると開示されている。しかし、一般に親水性ポリマーがポリオレフィン系樹脂中での分散性に乏しいため、一般的な単軸押出機にてフルフライトスクリューを使用してアイオノマー樹脂を含むポリオレフィン系樹脂粒子を作製した場合、分散が悪い為に予備発泡粒子間の倍率バラツキが大きいこと、さらに気泡バラツキが大きくなる傾向があった。このため型内発泡成形体を得た際に重量バラツキが生じること、色むらが酷いといった問題があった。混練性の高いダルメージスクリューを使用して樹脂粒子を作製することにより、ある程度バラツキは改善されるが完全ではなく、さらに最大吐出量が低下し生産性が大きく悪化してしまう問題もあった。また、アイオノマー樹脂の含水率が低いために高倍率を得ようとすると多量添加が必要となり、型内発泡成形体の強度低下や型内発泡成形体の表面シワが発生し寸法収縮があること、高コストといった問題があった。
特公昭56−1344号公報 特公平4−64332号公報 特公平4−64334号公報 国際公開WO97/38048号公報 特開平10−152574号公報
For example, Patent Documents 4 and 5 use, as a raw material resin, a polypropylene resin to which a hydrophilic polymer is added in order to increase the amount of water impregnated in the resin when pre-expanded particles are produced using water as a foaming agent. A method is disclosed. It is disclosed that ionomer resins, cross-linked polyvinyl alcohol, cross-linked polyethylene oxide polymers and the like can be used as hydrophilic substances, and that ionomer resins are particularly preferably used. However, since the hydrophilic polymer is generally poorly dispersible in the polyolefin resin, when a polyolefin resin particle containing an ionomer resin is produced using a full flight screw in a general single screw extruder, the dispersion is not achieved. Because of the poorness, there was a tendency that the variation in the magnification between the pre-expanded particles was large, and the bubble variation was also large. For this reason, when obtaining the in-mold foam-molded product, there are problems that weight variation occurs and color unevenness is severe. By producing resin particles using a dalmage screw having high kneadability, the dispersion is improved to some extent, but it is not perfect, and there is also a problem that the maximum discharge amount is lowered and the productivity is greatly deteriorated. In addition, since the water content of the ionomer resin is low, it is necessary to add a large amount when trying to obtain a high magnification, and there is a reduction in strength of the in-mold foam molded body and surface wrinkles of the in-mold foam molded body, resulting in dimensional shrinkage, There was a problem of high cost.
Japanese Patent Publication No.56-1344 Japanese Patent Publication No. 4-64332 Japanese Examined Patent Publication No. 4-64334 International Publication No. WO 97/38048 Japanese Patent Laid-Open No. 10-152574

本発明の課題は、ポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)に関し、生産性を損なうことや設備の制約が少なく、予備発泡粒子(一段発泡粒子)間の倍率バラツキ、気泡バラツキが小さく、型内発泡成形に用いた場合に、型内発泡成形体の予備発泡粒子(二段発泡粒子)間の融着、表面性、寸法精度に優れる型内発泡成形体が得られるポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)を提供することである。   The subject of the present invention relates to polyolefin resin pre-expanded particles (two-stage expanded particles), which impairs productivity and has few restrictions on facilities, and has small magnification variation between the pre-expanded particles (single-stage expanded particles) and small bubble variation. Polyolefin-based resin pre-foaming that can be used for in-mold foam molding to obtain in-mold foam molded products with excellent fusion, surface properties and dimensional accuracy between pre-foamed particles (two-stage foam particles) It is to provide particles (two-stage expanded particles).

本発明者らは鋭意研究の結果、ポリオレフィン系樹脂100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体0.2重量部以上5重量部未満と発泡核剤を含有するポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を使用することで、上記課題が解決することを見出し、本発明の完成に至った。   As a result of diligent research, the present inventors have determined from a polyolefin resin composition containing 0.2 to 5 parts by weight of a polyolefin / polyether block copolymer and a foam nucleating agent for 100 parts by weight of a polyolefin resin. It has been found that the above-mentioned problems can be solved by using the polyolefin resin particles, and the present invention has been completed.

すなわち本発明の第1は、ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満と、発泡核剤(c)0.005重量部以上2重量部以下を含有するポリオレフィン系樹脂からなるポリオレフィン系樹脂粒子を発泡させて一段発泡粒子を得、さらに、一段発泡粒子を、耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させてなる、ポリオレフィン系樹脂二段発泡粒子に関する。   That is, the first of the present invention is that the polyolefin-polyether block copolymer (b) is 0.2 parts by weight or more and less than 5 parts by weight with respect to 100 parts by weight of the polyolefin resin (a), and the foam nucleating agent (c) 0 Polyolefin resin particles composed of a polyolefin resin containing 0.005 parts by weight or more and 2 parts by weight or less are expanded to obtain single-stage expanded particles, and the single-stage expanded particles are added with an inorganic gas such as air in a pressure-resistant container. The present invention relates to a polyolefin resin two-stage expanded particle that is further foamed by applying pressure and applying an internal pressure, followed by steam heating.

好ましい態様として、
(1)ポリオレフィン系樹脂(a)が、ポリプロピレン系樹脂である、
(2)ポリオレフィン・ポリエーテルブロック共重合体(b)のポリエーテル部がポリエチレングリコールからなる、
(3)発泡倍率が6倍以上50倍以下、平均気泡径が50μm以上800μm以下である、
(4)ポリオレフィン系樹脂に、ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)を含んでなる、
(5)ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)が、メラミン、グリセロール類およびホウ酸亜鉛よりなる群から選ばれる少なくとも1種1重量部以下である、
前記記載のポリオレフィン系樹脂二段発泡粒子に関する。
As a preferred embodiment,
(1) The polyolefin resin (a) is a polypropylene resin.
(2) The polyether part of the polyolefin / polyether block copolymer (b) is made of polyethylene glycol,
(3) The expansion ratio is 6 to 50 times, and the average cell diameter is 50 to 800 μm.
(4) The polyolefin resin comprises a hydrophilic substance (d) other than the polyolefin / polyether block copolymer,
(5) The hydrophilic substance (d) other than the polyolefin / polyether block copolymer is at least one selected from the group consisting of melamine, glycerols, and zinc borate, in an amount of 1 part by weight or less.
It relates to the polyolefin resin two-stage expanded particles described above.

本発明の第2は、ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満と、発泡核剤(c)0.005重量部以上2重量部以下を含有するポリオレフィン系樹脂からなるポリオレフィン系樹脂粒子を、水系分散媒に発泡剤と共に密閉容器内に分散させ、ポリオレフィン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出し、ポリオレフィン系樹脂粒子を発泡させ一段発泡粒子を得、さらに、一段発泡粒子を、耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させてなることを特徴とする前記記載のポリオレフィン系樹脂二段発泡粒子の製造方法に関し、好ましい態様としては、発泡剤として炭酸ガスを使用する前記記載のポリオレフィン系樹脂二段発泡粒子の製造方法に関する。   The second aspect of the present invention is that the polyolefin-polyether block copolymer (b) is 0.2 parts by weight or more and less than 5 parts by weight with respect to 100 parts by weight of the polyolefin resin (a), and the foaming nucleating agent (c) 0. Polyolefin resin particles comprising polyolefin resin containing 005 parts by weight or more and 2 parts by weight or less are dispersed in an airtight dispersion medium together with a foaming agent in a hermetic container, and heated to a temperature equal to or higher than the softening temperature of the polyolefin resin particles. After the pressure is released, the pressure is released to a pressure range lower than the internal pressure of the sealed container, the polyolefin resin particles are expanded to obtain single-stage expanded particles, and the single-stage expanded particles are added with an inorganic gas such as air in the pressure-resistant container. The method for producing a polyolefin resin two-stage foamed particle as described above, wherein the foam is further foamed by steam heating after applying pressure and applying an internal pressure. The have aspect, a method for producing a polyolefin resin bunk expanded particles of the described the use of carbon dioxide as a blowing agent.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)は、ポリオレフィン系予備発泡粒子(一段発泡粒子)間の倍率バラツキ、気泡バラツキが小さい。また、本発明のポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)を型内発泡成形に用いた場合には、型内発泡成形体の発泡粒子間の融着、表面性、寸法精度に優れる型内発泡成形体が得られる。   The polyolefin resin pre-expanded particles (single-stage expanded particles) of the present invention have small magnification variation and bubble variation between polyolefin pre-expanded particles (single-stage expanded particles). Further, when the polyolefin resin pre-expanded particles (two-stage expanded particles) of the present invention are used for in-mold foam molding, the mold is excellent in fusion between the foam particles of the in-mold foam molded article, surface property, and dimensional accuracy. An inner foamed molded product is obtained.

本発明のポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)の製造方法は、生産性を損なうことなく、かつ水系分散媒への有機物の溶出を抑えることで環境負荷を軽減させることが出来る。   The method for producing polyolefin resin pre-expanded particles (two-stage expanded particles) according to the present invention can reduce the environmental burden without impairing productivity and suppressing elution of organic substances into the aqueous dispersion medium.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)は、ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満と、発泡核剤(c)0.005重量部以上2重量部以下を含有するポリオレフィン系樹脂からなるポリオレフィン系樹脂粒子を発泡させてなる。 The polyolefin resin pre-expanded particles (one-stage expanded particles) of the present invention have a polyolefin-polyether block copolymer (b) of 0.2 parts by weight or more and less than 5 parts by weight with respect to 100 parts by weight of the polyolefin resin (a). The foaming nucleating agent (c) is made by foaming polyolefin resin particles comprising a polyolefin resin containing 0.005 part by weight or more and 2 parts by weight or less .

本発明に用いるポリオレフィン・ポリエーテルブロック共重合体(b)は、ポリエチレングリコールやポリプロピレングリコール等からなるポリエーテル部とポリエチレンやポリプロピレン等からなるポリオレフィン部が交互に結合したブロック共重合体であり、一般的に入手できるものを適宜選択して用いることができる。   The polyolefin / polyether block copolymer (b) used in the present invention is a block copolymer in which a polyether portion composed of polyethylene glycol or polypropylene glycol and a polyolefin portion composed of polyethylene or polypropylene are alternately bonded, Can be appropriately selected and used.

一般的に入手できるポリオレフィン・ポリエーテルブロック共重合体としては、ポリオレフィン部の構成単位構造及び重合分子量、ポリエーテル部の構成単位構造及び重合分子量、ポリオレフィン部とポリエーテル部の交互結合の繰返し数といった各要素の異なったものが提供されている。これらポリオレフィン・ポリエーテルブロック共重合体を特徴づける各要素に特に限定はないが、ポリオレフィン・ポリエーテルブロック共重合体(b)のポリエーテル部がポリエチレングリコールからなることが予備発泡粒子(一段発泡粒子)の倍率バラツキを低減し、得られた予備発泡粒子(二段発泡粒子)を型内成形に用いた際の融着不良を招くことがないため好ましい。   Polyolefin / polyether block copolymers that are generally available include the constitutional unit structure and polymerization molecular weight of the polyolefin part, the constitutional unit structure and polymerization molecular weight of the polyether part, and the repetition number of alternating bonds between the polyolefin part and the polyether part. Different versions of each element are provided. There are no particular limitations on the elements that characterize these polyolefin / polyether block copolymers, but the pre-expanded particles (single-stage expanded particles) that the polyether portion of the polyolefin / polyether block copolymer (b) is made of polyethylene glycol. ) Is reduced, and the resulting pre-expanded particles (two-stage expanded particles) are preferable because they do not cause poor fusion when used for in-mold molding.

ポリオレフィン・ポリエーテルブロック共重合体の融点は、ポリオレフィン系樹脂粒子のベースとするポリオレフィン系樹脂の融点−50℃以上ポリオレフィン系樹脂の融点+40℃以下であることが好ましく、より好ましくはポリオレフィン系樹脂の融点−40℃〜ポリオレフィン系樹脂の融点+20℃、更に好ましくはポリオレフィン系樹脂の融点−30℃〜ポリオレフィン系樹脂の融点+10℃の範囲内であることが好ましい。融点が上記範囲内でないと、ベースとするポリオレフィン系樹脂へのポリオレフィン・ポリエーテルブロック共重合体の分散性が悪く、予備発泡粒子(一段発泡粒子)の倍率バラツキの低減効果、気泡バラツキの低減効果が得られなくなる傾向がある。   The melting point of the polyolefin / polyether block copolymer is preferably not less than the melting point of the polyolefin resin used as the base of the polyolefin resin particles −50 ° C. or higher and the melting point of the polyolefin resin + 40 ° C. or lower, more preferably the polyolefin resin. The melting point is preferably in the range of −40 ° C. to the melting point of the polyolefin resin + 20 ° C., more preferably the melting point of the polyolefin resin −30 ° C. to the melting point of the polyolefin resin + 10 ° C. If the melting point is not within the above range, the dispersibility of the polyolefin / polyether block copolymer in the base polyolefin resin is poor, and the effect of reducing the pre-expanded particle (single-stage expanded particle) variation in magnification and the effect of reducing bubble variation Tends to be lost.

ポリオレフィン・ポリエーテルブロック共重合体の数平均分子量(Mn)は、2000以上60000以下であることが好ましく、より好ましくは、4000以上40000以下、更に好ましくは5000以上30000以下である。当該範囲内であると、得られる型内発泡成形体の耐熱性が良好になる傾向がある。   The number average molecular weight (Mn) of the polyolefin / polyether block copolymer is preferably 2000 or more and 60000 or less, more preferably 4000 or more and 40000 or less, and further preferably 5000 or more and 30000 or less. Within the said range, there exists a tendency for the heat resistance of the in-mold foaming molding obtained to become favorable.

また、ポリオレフィン・ポリエーテルブロック共重合体として、ポリオレフィン・ポリエーテルブロック共重合体に金属塩を含んだ物質も使用することが出来る。このような物質は一般的に帯電防止性能を有しており、ポリオレフィン・ポリエーテルブロック共重合体系帯電防止剤として市販されている。   Further, as the polyolefin / polyether block copolymer, a substance containing a metal salt in the polyolefin / polyether block copolymer can also be used. Such materials generally have antistatic properties and are commercially available as polyolefin / polyether block copolymer antistatic agents.

このようなポリオレフィン・ポリエーテルブロック共重合体としては、例えば、三洋化成工業(株)製の「ペレスタット330」「ペレスタット300」「ペレスタット230」が挙げられる。   Examples of such a polyolefin / polyether block copolymer include “Pelestat 330”, “Pelestat 300”, and “Pelestat 230” manufactured by Sanyo Chemical Industries, Ltd.

ポリオレフィン・ポリエーテルブロック共重合体の使用量は、ポリオレフィン系樹脂100重量部に対して0.2重量部以上5重量部以下であり、好ましくは0.3重量部以上2重量部以下である。ポリオレフィン・ポリエーテルブロック共重合体の使用量が0.2重量部未満では、低い発泡倍率のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)しか得られず、従来の親水性物質を併用して高倍率の予備発泡粒子(一段発泡粒子)を得ようとする場合は、その他の親水性物質の使用量を減らすことができなくなる。ポリオレフィン・ポリエーテルブロック共重合体の使用量が5重量部を超える場合は、得られるポリオレフィン系予備発泡粒子(一段発泡粒子)の白色度が低下してしまうことや、強度が低下するために予備発泡粒子(一段発泡粒子)に発泡させた直後に収縮を生じ易く、型内発泡成形体の強度も低下傾向となること、またコスト高となる。   The amount of the polyolefin-polyether block copolymer used is 0.2 to 5 parts by weight, preferably 0.3 to 2 parts by weight, based on 100 parts by weight of the polyolefin resin. If the amount of polyolefin / polyether block copolymer used is less than 0.2 parts by weight, only polyolefin resin pre-expanded particles (single-stage expanded particles) with a low expansion ratio can be obtained. When trying to obtain pre-expanded particles (single-stage expanded particles) at a magnification, the amount of other hydrophilic substances used cannot be reduced. If the amount of the polyolefin / polyether block copolymer used exceeds 5 parts by weight, the whiteness of the resulting polyolefin-based pre-expanded particles (single-stage expanded particles) will decrease, and the strength will decrease. Shrinkage tends to occur immediately after the foamed particles (first-stage foamed particles) are foamed, and the strength of the in-mold foam molded product tends to decrease, and the cost increases.

本発明では、ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)を併用しても良い。親水性物質とは、発泡粒子を製造する際に、樹脂中の含浸水分量を増加させる物質であり、ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)の具体例として、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、ホウ砂、ホウ酸カルシウム、ホウ酸亜鉛等の水溶性無機物;メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物等の吸水性有機物;グリセリン、ジグリセリン、ポリエチレングリコールなどのグリセロール類、ペンタエリスリトール、セチルアルコール、ステアリルアルコールといったC12〜C18の脂肪アルコール類等の親水性重合体が挙げられる。更に、国際公開WO97/38048号公報、特開平10−152574号公報に記載されている親水性物質も使用しうる。これら、水溶性無機物、吸水性有機物や親水性重合体等の親水性物質を2種以上併用してもよい。 In the present invention, a hydrophilic substance (d) other than the polyolefin / polyether block copolymer may be used in combination. The hydrophilic substance is a substance that increases the amount of impregnated moisture in the resin when producing expanded particles. As a specific example of the hydrophilic substance (d) other than the polyolefin / polyether block copolymer, sodium chloride is used. Water-soluble inorganic substances such as calcium chloride, magnesium chloride, borax, calcium borate, zinc borate; water-absorbing organic substances such as melamine, isocyanuric acid, melamine / isocyanuric acid condensate; And hydrophilic polymers such as C 12 to C 18 fatty alcohols such as pentaerythritol, cetyl alcohol and stearyl alcohol. Furthermore, hydrophilic substances described in International Publication No. WO97 / 38048 and JP-A-10-152574 can also be used. Two or more of these hydrophilic substances such as water-soluble inorganic substances, water-absorbing organic substances and hydrophilic polymers may be used in combination.

中でも、メラミン、グリセロール類、ホウ酸亜鉛を使用することが、少量添加でも高発泡倍率を得易いため、予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の気泡の均一性や、型内発泡成形性を損うことがなく好ましい。   Among them, the use of melamine, glycerols, and zinc borate makes it easy to obtain a high expansion ratio even when added in small amounts. It is preferable without impairing moldability.

ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)の添加量は、ポリオレフィン系樹脂1重量部以下とすることが望ましく、好ましくは0.7重量部以下、更に好ましくは0.5重量部以下である。ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)の添加量が1重量部を超えると、得られるポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の気泡が不均一になり、型内発泡成形性が不良となることがある。   The addition amount of the hydrophilic substance (d) other than the polyolefin / polyether block copolymer is desirably 1 part by weight or less of the polyolefin-based resin, preferably 0.7 part by weight or less, and more preferably 0.5 part by weight. Or less. When the amount of the hydrophilic substance (d) other than the polyolefin / polyether block copolymer exceeds 1 part by weight, the resulting pre-expanded polyolefin resin particles (one-stage or two-stage foam) have non-uniform cells. And in-mold foam moldability may be poor.

より好ましくは、ポリオレフィン系樹脂100重量部に対し、メラミン、グリセロール類およびホウ酸亜鉛よりなる群から選ばれる少なくとも1種を1重量部以下添加することである。   More preferably, 1 part by weight or less of at least one selected from the group consisting of melamine, glycerols and zinc borate is added to 100 parts by weight of the polyolefin resin.

本発明で使用する発泡核剤(c)とは、発泡の時に気泡核の形成を促す物質を言い、たとえば、タルク、炭酸カルシウム、シリカ、カオリン、硫酸バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ゼオライト等の無機物質、ステアリン酸カルシウム、ステアリン酸バリウムなどの脂肪酸金属塩などが挙げられる。これらの発泡核剤は、単独で用いてもよく、2種以上を併用しても良い。これらの中でも、タルク、炭酸カルシウム、ステアリン酸カルシウムが、ポリオレフィン・ポリエーテルブロック共重合体と併用する場合において均一気泡を得易いことから好ましい。   The foam nucleating agent (c) used in the present invention refers to a substance that promotes the formation of bubble nuclei during foaming. For example, talc, calcium carbonate, silica, kaolin, barium sulfate, magnesium hydroxide, calcium hydroxide, water Examples thereof include inorganic substances such as aluminum oxide, aluminum oxide, titanium oxide and zeolite, and fatty acid metal salts such as calcium stearate and barium stearate. These foam nucleating agents may be used alone or in combination of two or more. Among these, talc, calcium carbonate, and calcium stearate are preferable because uniform bubbles can be easily obtained when used in combination with the polyolefin / polyether block copolymer.

発泡核剤(c)の添加量は使用する発泡核剤によって異なり、一概には決めることが出来ないが、ポリオレフィン系樹脂100重量部に対して、0.005重量部以上2重量部以下であり、0.01重量部以上1重量部以下であることが好ましい。また、たとえば発泡核剤としてタルクを使用する場合、ポリオレフィン系樹脂100重量部に対して、0.005重量部以上1重量部以下であることが好ましく、さらに好ましくは0.01重量部以上0.5重量部以下、より好ましくは0.02重量部以上0.2重量部以下である。   The amount of the foam nucleating agent (c) varies depending on the foam nucleating agent to be used and cannot be generally determined, but is 0.005 to 2 parts by weight with respect to 100 parts by weight of the polyolefin resin. The content is preferably 0.01 parts by weight or more and 1 part by weight or less. For example, when talc is used as the foam nucleating agent, the amount is preferably 0.005 parts by weight or more and 1 part by weight or less, more preferably 0.01 parts by weight or more and 0.001 part by weight or less with respect to 100 parts by weight of the polyolefin resin. 5 parts by weight or less, more preferably 0.02 parts by weight or more and 0.2 parts by weight or less.

発泡核剤の添加量が0.005重量部より少ない場合は、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)の発泡倍率を大きくすることができない、気泡の均一性が低下するという問題がある。発泡核剤の添加量が2重量部より多い場合はポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)の平均気泡径が小さくなり過ぎ、予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の2次発泡性が低下し、型内発泡成形性が不良となる。   When the addition amount of the foam nucleating agent is less than 0.005 parts by weight, there is a problem that the expansion ratio of the polyolefin resin pre-expanded particles (single-stage expanded particles) cannot be increased and the uniformity of the bubbles is lowered. When the amount of the foam nucleating agent added is more than 2 parts by weight, the average cell diameter of the polyolefin resin pre-expanded particles (single-stage expanded particles) becomes too small, and the secondary foam of the pre-expanded particles (single-stage expanded particles or two-stage expanded particles) Foamability is lowered and in-mold foam moldability becomes poor.

また、相溶化剤、帯電防止剤、着色剤、安定剤、耐候剤、難燃剤などの各種添加剤は本発明の効果を損なわない程度に適宜添加可能である。   Various additives such as a compatibilizer, an antistatic agent, a colorant, a stabilizer, a weathering agent, and a flame retardant can be appropriately added to such an extent that the effects of the present invention are not impaired.

本発明で用いられるポリオレフィン系樹脂としては従来から用いられているポリオレフィン系樹脂でよく、例えばポリプロピレン系樹脂やポリエチレン系樹脂等が挙げられる。   The polyolefin resin used in the present invention may be a polyolefin resin conventionally used, and examples thereof include a polypropylene resin and a polyethylene resin.

ポリプロピレン系樹脂としては、プロピレンホモポリマー、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体などが挙げられる。α−オレフィンとしては炭素数2,4〜15のα−オレフィンなどが挙げられ、これらは、単独で用いてもよく、2種以上併用してもよい。また、前述のプロピレンホモポリマー、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体を2種以上併用してもよい。   Examples of the polypropylene resin include a propylene homopolymer, a propylene-α-olefin random copolymer, and a propylene-α-olefin block copolymer. Examples of the α-olefin include α-olefins having 2 to 15 carbon atoms, and these may be used alone or in combination of two or more. Further, two or more of the aforementioned propylene homopolymer, propylene-α-olefin random copolymer, and propylene-α-olefin block copolymer may be used in combination.

この中でも、特に、プロピレン−エチレンランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体、プロピレン−ブテン−1ランダム共重合体であって、プロピレン以外のコモノマー含量が1〜5重量%である場合に良好な発泡性を示し、好適に使用し得る。   Among these, in particular, a propylene-ethylene random copolymer, a propylene-ethylene-butene-1 random copolymer, and a propylene-butene-1 random copolymer, and the comonomer content other than propylene is 1 to 5% by weight. In some cases, it exhibits good foaming properties and can be suitably used.

本発明で用いることが出来るポリプロピレン系樹脂の融点は、130〜160℃であることが好ましく、更には135℃〜150℃のものが好ましい。融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が160℃を超える場合、型内発泡成形時の融着を確保することが難しくなる傾向がある。また、低融点樹脂を併用することで型内成形時の予備発泡粒子(二段発泡粒子)どうしの融着を高めることや、高融点樹脂を併用することで型内成形直後の形状を保持し易くすることも可能である。   The melting point of the polypropylene resin that can be used in the present invention is preferably 130 to 160 ° C, more preferably 135 to 150 ° C. When the melting point is less than 130 ° C., heat resistance and mechanical strength tend to be insufficient. Moreover, when melting | fusing point exceeds 160 degreeC, there exists a tendency for it to become difficult to ensure the fusion | fusion at the time of in-mold foam molding. In addition, the low-melting point resin can be used together to increase the fusion of pre-expanded particles (two-stage expanded particles) during in-mold molding, and the high melting point resin can be used together to maintain the shape immediately after in-mold molding. It can also be made easier.

ここで、融点とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   Here, the melting point is 1 to 10 mg of polypropylene resin is heated from 40 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter, and then cooled to 40 ° C. at a rate of 10 ° C./min. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is raised again to 220 ° C. at a rate of 10 ° C./min.

前記、ポリプロピレン系樹脂のメルトインデックス(以下、MI値)は、0.5〜30g/10分であることが好ましく、更には2〜20g/10分のものが好ましい。   The melt index (hereinafter referred to as MI value) of the polypropylene resin is preferably 0.5 to 30 g / 10 minutes, and more preferably 2 to 20 g / 10 minutes.

MI値が0.5g/10分未満の場合、高発泡倍率のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)が得られにくく、30g/10分を超える場合、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の気泡が破泡し易く、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の連泡率が高くなる傾向にある。   When the MI value is less than 0.5 g / 10 minutes, it is difficult to obtain high-expanding polyolefin resin pre-expanded particles (single-stage expanded particles or double-stage expanded particles). Bubbles of the expanded particles (one-stage expanded particles or two-stage expanded particles) tend to break, and the open-cell ratio of the polyolefin resin pre-expanded particles (first-stage expanded particles or two-stage expanded particles) tends to increase.

なお、本発明において、MI値とはJIS K7210に準拠し、温度230℃、荷重2.16kgで測定した値である。   In the present invention, the MI value is a value measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.

また、ポリプロピレン系樹脂の以外に、他の熱可塑性樹脂、例えば低密度ポリエチレン、直鎖状密度ポリエチレン、ポリスチレン、ポリブテン、アイオノマー等をポリプロプレン系樹脂の特性が失われない範囲で混合使用しても良い。   In addition to polypropylene resins, other thermoplastic resins such as low density polyethylene, linear density polyethylene, polystyrene, polybutene, and ionomer may be mixed and used as long as the properties of the polypropylene resin are not lost. good.

ポリエチレン系樹脂としては、高密度ポリエチレン系樹脂、低密度ポリエチレン系樹脂、直鎖状低密度ポリエチレン系樹脂などが挙げられ、エチレンホモポリマー、エチレン−α−オレフィンランダム共重合体、エチレン−α−オレフィンブロック共重合体などが挙げられる。α−オレフィンとしては炭素数3〜15のα−オレフィンなどが挙げられ、これらは、単独で用いてもよく、2種以上併用してもよい。また、前述のエチレンホモポリマー、エチレン−α−オレフィンランダム共重合体、エチレン−α−オレフィンブロック共重合体を2種以上併用してもよい。   Examples of polyethylene resins include high density polyethylene resins, low density polyethylene resins, linear low density polyethylene resins, ethylene homopolymers, ethylene-α-olefin random copolymers, ethylene-α-olefins. Examples thereof include block copolymers. Examples of the α-olefin include α-olefins having 3 to 15 carbon atoms, and these may be used alone or in combination of two or more. Further, two or more of the aforementioned ethylene homopolymer, ethylene-α-olefin random copolymer, and ethylene-α-olefin block copolymer may be used in combination.

この中でも、特に、エチレン−プロピレンランダム共重合体、エチレン−オクテン−1ランダム共重合体、エチレン−4−メチル−1−ペンテンランダム共重合体が良好な発泡性を示し、好適に使用し得る。また共重合体ポリマーでは、ホモポリマーに比較して、本発明で併用する炭酸ガスの含浸がし易い特性も有しており、好適である。   Among these, in particular, an ethylene-propylene random copolymer, an ethylene-octene-1 random copolymer, and an ethylene-4-methyl-1-pentene random copolymer exhibit good foaming properties and can be suitably used. Further, the copolymer polymer is preferable because it has a characteristic that it can be easily impregnated with the carbon dioxide gas used in the present invention as compared with the homopolymer.

上記ポリオレフィン系樹脂は通常、予備発泡粒子(一段発泡粒子)を製造し易いように、押出機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状等の樹脂粒子形状に加工しておくことが好ましい。樹脂粒子の大きさは、一粒の重量が0.1mg〜30mgであることが好ましく、0.3mg〜10mgがより好ましい。樹脂粒子の一粒の重量は、樹脂粒子をランダムに100粒から得られる平均樹脂粒子重量であり、mg/粒で表示する。   The polyolefin resin is usually melted using an extruder, kneader, Banbury mixer, roll, etc. so that pre-expanded particles (single-stage expanded particles) can be easily produced. It is preferably processed into a resin particle shape such as a shape. As for the size of the resin particles, the weight of one particle is preferably 0.1 mg to 30 mg, and more preferably 0.3 mg to 10 mg. The weight of one resin particle is an average resin particle weight obtained from 100 resin particles randomly, and is expressed in mg / particle.

本発明においては、発泡剤として水を使用する。本発明において、「水を発泡剤として用いる」とは、例えば含水率を測定することにより判別することが出来る。また他の方法として、発泡直後の予備発泡粒子(一段発泡粒子)をポリマー用水分計、あるいはカールフィッシャー水分計などで測定することも可能である。   In the present invention, water is used as the foaming agent. In the present invention, “use water as a foaming agent” can be determined, for example, by measuring the water content. As another method, it is also possible to measure pre-expanded particles (single-stage expanded particles) immediately after expansion with a polymer moisture meter or a Karl Fischer moisture meter.

本発明では水を発泡剤として使用し、他の物理発泡剤を併用してもよい。他の物理発泡剤としては、プロパン、ブタン、ペンタン等の飽和炭化水素類、ジメチルエーテル等のエーテル類、沸点が発泡可能温度以下であるメタノール、エタノール等のアルコール類、空気、窒素、炭酸ガス等の無機ガスが挙げられる。中でも特に環境負荷が小さく、燃焼危険性も無いことから、炭酸ガスを使用することが望ましい。   In the present invention, water may be used as a foaming agent, and other physical foaming agents may be used in combination. Other physical blowing agents include saturated hydrocarbons such as propane, butane and pentane, ethers such as dimethyl ether, alcohols such as methanol and ethanol whose boiling point is lower than the foamable temperature, air, nitrogen, carbon dioxide, etc. An inorganic gas is mentioned. Among them, it is desirable to use carbon dioxide gas because it has a particularly low environmental load and no danger of combustion.

水と炭酸ガスを併用することで、発泡力を大きくし易いことから、高発泡倍率を得る際においても、発泡核剤の添加量を少なくすることができ、結果として平均気泡径が大きい予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)が得られ、2次発泡性も良好なものとなる傾向がある。   By using water and carbon dioxide in combination, it is easy to increase the foaming power, so even when obtaining a high expansion ratio, the amount of foam nucleating agent added can be reduced, resulting in preliminary foaming with a large average cell diameter. Particles (single-stage foam particles or double-stage foam particles) are obtained, and the secondary foamability tends to be good.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)は、例えば、ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満、発泡核剤(c)0.005重量部以上2重量部以下、および必要に応じてポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)を含有させたポリオレフィン系樹脂粒子を、密閉容器内の水系分散媒に発泡剤と共に分散させ、ポリオレフィン系樹脂の軟化温度以上の温度まで加熱、加圧後、密閉容器の内圧よりも低い圧力域に放出してポリオレフィン系樹脂粒子を発泡させることで得られるが、分散媒である水が発泡剤として作用する。また、低圧域に放出する前に窒素もしくは空気を圧入することで密閉容器内の内圧を高め、発泡時の圧力開放速度を調節し、発泡倍率や平均気泡径の調整を行うことができる。また炭酸ガスなどの常温で気体の物理発泡剤を併用する場合は、ポリオレフィン系樹脂粒子と水を密閉容器に投入したのち、炭酸ガスなどの物理発泡剤を容器内に導入すれば良い。   The polyolefin resin pre-expanded particles (one-stage expanded particles) of the present invention are, for example, 0.2 parts by weight or more and 5 parts by weight of a polyolefin / polyether block copolymer (b) with respect to 100 parts by weight of the polyolefin resin (a). Less than, foaming nucleating agent (c) 0.005 parts by weight or more and 2 parts by weight or less, and polyolefin resin particles containing a hydrophilic substance (d) other than the polyolefin / polyether block copolymer as necessary, Disperse together with a foaming agent in an aqueous dispersion medium in a sealed container, heat and pressurize to a temperature higher than the softening temperature of the polyolefin resin, and then release it to a pressure range lower than the internal pressure of the sealed container to foam the polyolefin resin particles. Although it is obtained by this, the water which is a dispersion medium acts as a foaming agent. In addition, nitrogen or air is injected before releasing into the low pressure region, thereby increasing the internal pressure in the sealed container, adjusting the pressure release speed during foaming, and adjusting the foaming ratio and the average cell diameter. When a gaseous physical foaming agent such as carbon dioxide gas is used at room temperature, the polyolefin resin particles and water are introduced into a sealed container, and then a physical foaming agent such as carbon dioxide gas is introduced into the container.

具体的には、例えば以下の手順で行うことが出来る。   Specifically, for example, the following procedure can be used.

密閉容器にポリオレフィン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて、密閉容器内を真空引きした後、密閉容器内圧が1〜3MPa程度となる炭酸ガスを導入し、ポリオレフィン系樹脂の軟化温度以上の温度まで加熱する。加熱することによって密閉容器内の圧力が約1.5MPa〜4MPa程度まで上がる。発泡温度付近にてさらに炭酸ガスを追加して所望の発泡圧力に調整、さらに温度調整を行った後、密閉容器の内圧よりも低い圧力域に放出してポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)を得る。   Carbon dioxide gas in which the internal pressure of the sealed container becomes about 1 to 3 MPa after the polyolefin container is charged with polyolefin resin particles, an aqueous dispersion medium, and a dispersant as necessary, and then the inside of the sealed container is evacuated as necessary. And heated to a temperature equal to or higher than the softening temperature of the polyolefin resin. By heating, the pressure in the sealed container rises to about 1.5 MPa to 4 MPa. Carbon dioxide is added near the foaming temperature to adjust the foaming pressure to the desired level, and after adjusting the temperature, it is discharged into a pressure range lower than the internal pressure of the sealed container to give polyolefin resin pre-expanded particles (single-stage expanded particles) )

或いは、密閉容器にポリオレフィン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、必要に応じて密閉容器内を真空引きした後、ポリオレフィン系樹脂の軟化温度以上の温度まで加熱しながら炭酸ガスを導入してもよい。   Alternatively, after preparing polyolefin resin particles, aqueous dispersion medium, and dispersing agent if necessary in an airtight container, the inside of the airtight container is evacuated and then heated to a temperature equal to or higher than the softening temperature of the polyolefin resin. Carbon dioxide gas may be introduced while being introduced.

また、密閉容器にポリオレフィン系樹脂粒子、水系分散媒、必要に応じて分散剤等を仕込んだ後、発泡温度付近まで加熱した後、さらに空気や窒素等を導入した後、発泡温度とし、密閉容器の内圧よりも低い圧力域に放出してポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)を得る。   In addition, after preparing polyolefin resin particles, aqueous dispersion medium, and dispersing agent if necessary in a closed container, heating to near the foaming temperature, introducing air or nitrogen, etc., and setting the foaming temperature, the sealed container The polyolefin resin pre-expanded particles (single-stage expanded particles) are obtained by discharging into a pressure range lower than the internal pressure.

本発明の製造方法により得られるポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)の発泡倍率は6倍以上50倍以下であることが好ましく、さらに好ましくは10倍以上25倍以下であり、より好ましくは10倍以上20倍以下である。   The expansion ratio of the polyolefin resin pre-expanded particles (single-stage expanded particles) obtained by the production method of the present invention is preferably 6 to 50 times, more preferably 10 to 25 times, and more preferably. It is 10 times or more and 20 times or less.

発泡倍率が6倍未満の場合は、軽量化のメリットが得られず、また得られる型内発泡成形体の柔軟性、緩衝特性などが不充分となる傾向があり、50倍を越える場合は得られる型内発泡成形体の寸法精度、機械的強度、耐熱性などが不充分となる傾向がある。   If the expansion ratio is less than 6 times, the advantage of weight reduction cannot be obtained, and the flexibility and buffering properties of the obtained in-mold foam molded product tend to be insufficient. There is a tendency that the dimensional accuracy, mechanical strength, heat resistance and the like of the in-mold foam-molded product are insufficient.

本発明においては、上述の方法によって得られたポリオレフィン系樹脂予備発泡粒子(一段発泡粒子)を耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させ、さらに高倍化してもよい。   In the present invention, the polyolefin resin pre-expanded particles (single-stage expanded particles) obtained by the above-mentioned method are pressurized with an inorganic gas such as air in a pressure-resistant container, and after applying internal pressure, steam heating is performed. Further foaming may be used to further increase the magnification.

なお、本発明においては、ポリオレフィン系樹脂粒子を密閉容器内の水系分散媒に分散させ、高温、高圧下にて発泡剤を含浸させ、密閉容器の内圧よりも低い圧力域に放出させて発泡させることを「一段発泡」と称し、一段発泡により得られるポリオレフィン系樹脂予備発泡粒子を「一段発泡粒子」と呼ぶ場合がある。   In the present invention, the polyolefin resin particles are dispersed in an aqueous dispersion medium in a sealed container, impregnated with a foaming agent at high temperature and high pressure, and released into a pressure region lower than the internal pressure of the sealed container for foaming. This is called “single-stage foaming”, and the polyolefin resin pre-foamed particles obtained by single-stage foaming may be called “single-stage foamed particles”.

さらに、一段発泡粒子を、例えば耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させることを「二段発泡」と称し、二段発泡によって得られたポリオレフィン系樹脂予備発泡粒子を「二段発泡粒子」と呼ぶ場合がある。   Furthermore, pressurizing the single-stage expanded particles with an inorganic gas such as air in a pressure vessel, for example, applying internal pressure, and further foaming by steam heating is referred to as “two-stage expansion”. The polyolefin resin pre-expanded particles obtained by foaming may be referred to as “two-stage expanded particles”.

本発明においては、発泡倍率20倍以上のポリオレフィン系樹脂予備発泡粒子を得ようとする際は、一段発泡にて得られた一段発泡粒子をさらに二段発泡を行うことが出来る。   In the present invention, when the polyolefin resin pre-expanded particles having an expansion ratio of 20 times or more are to be obtained, the first-stage expanded particles obtained by the first-stage expansion can be further two-stage expanded.

なお本発明において、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の発泡倍率とは、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の重量w(g)を測定後、水没法にて体積v(cm)を測定し、ポリオレフィン系樹脂発泡粒子の真比重ρb=w/vを求め、発泡前のポリオレフィン系樹脂粒子の密度ρrとの比である。 In the present invention, the expansion ratio of the polyolefin resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) is the weight w (g) of the polyolefin resin pre-expanded particles (single-stage expanded particles or two-stage expanded particles). After the measurement, the volume v (cm 3 ) is measured by a submerging method to determine the true specific gravity ρb = w / v of the polyolefin resin foamed particles, which is a ratio with the density ρr of the polyolefin resin particles before foaming.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の平均気泡径は50μm以上800μm以下であることが好ましく、より好ましくは100μm以上600μm以下、さらに好ましくは200μm以上500μm以下である。平均気泡径が50μm未満の場合、得られる型内発泡成形体の形状が歪む、表面にしわが発生するなどの問題が生じる場合があり、800μmを越える場合、得られる型内発泡成形体の緩衝特性が低下する場合がある。   The average cell diameter of the polyolefin resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) of the present invention is preferably 50 μm or more and 800 μm or less, more preferably 100 μm or more and 600 μm or less, and further preferably 200 μm or more and 500 μm or less. is there. When the average cell diameter is less than 50 μm, there are cases where the shape of the obtained in-mold foam molded product is distorted and the surface is wrinkled. When the average cell diameter exceeds 800 μm, the buffer properties of the in-mold foam molded product to be obtained May decrease.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の連泡率は0〜12%であることが好ましく、より好ましくは0〜8%、さらに好ましくは0〜5%である。連泡率が12%を超えては、型内成形に用いた際に発泡粒子の型内での蒸気加熱時の発泡性に劣り、得られた型内発泡成形体は収縮してしまう傾向にある。   The open cell ratio of the polyolefin resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) of the present invention is preferably 0 to 12%, more preferably 0 to 8%, still more preferably 0 to 5%. is there. When the open cell ratio exceeds 12%, when used for in-mold molding, the foamed particles are inferior in foamability during steam heating in the mold, and the obtained in-mold foam molded product tends to shrink. is there.

本発明のポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)は、示差走査熱量測定によって得られるDSC曲線において、2つ以上の融解ピークを有するものが好ましい。2つ以上の融解ピークを有するポリオレフィン系樹脂発泡粒子の場合、型内発泡成形性が良く、機械的強度や耐熱性の良好な型内発泡成形体が得られる傾向にある。   The polyolefin resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) of the present invention preferably have two or more melting peaks in a DSC curve obtained by differential scanning calorimetry. In the case of polyolefin-based resin foamed particles having two or more melting peaks, in-mold foam moldability is good, and an in-mold foam molded article having good mechanical strength and heat resistance tends to be obtained.

ここで、ポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の示差走査熱量測定によって得られるDSC曲線とは、ポリオレフィン系樹脂発泡粒子1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。   Here, the DSC curve obtained by differential scanning calorimetry of polyolefin-based resin pre-expanded particles (single-stage expanded particles or double-stage expanded particles) is 1-10 mg of polyolefin-based resin expanded particles measured at 10 ° C./min with a differential scanning calorimeter. DSC curve obtained when the temperature is raised from 40 ° C. to 220 ° C.

前記のごとく2つの融解ピークを有するポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)は、一段発泡時の密閉容器内温度を適切な値に設定することにより容易に得られる。ポリオレフィン系樹脂がポリオレフィン系樹脂の場合、発泡剤を含浸したポリオレフィン系樹脂粒子の軟化温度は、通常、基材となるポリオレフィン系樹脂の融点以上、好ましくは融点+3℃以上、融解終了温度未満、好ましくは融解終了温度−2℃以下の温度から選定される。   As described above, the polyolefin resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) having two melting peaks can be easily obtained by setting the temperature in the sealed container at the time of the first stage expansion to an appropriate value. When the polyolefin resin is a polyolefin resin, the softening temperature of the polyolefin resin particles impregnated with the foaming agent is usually not less than the melting point of the polyolefin resin serving as the base material, preferably not less than the melting point + 3 ° C., preferably less than the melting end temperature. Is selected from a melting end temperature of −2 ° C. or lower.

ここで、前記融解終了温度とは、示差走査熱量計によってポリオレフィン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線の融解ピークのすそが高温側でベースラインの位置に戻ったときの温度である。   Here, the melting end temperature is 1 to 10 mg of polyolefin resin by a differential scanning calorimeter at a rate of 10 ° C./min from 40 ° C. to 220 ° C., and then at a rate of 10 ° C./min to 40 ° C. This is the temperature when the bottom of the melting peak of the DSC curve obtained when the temperature is cooled and raised again to 220 ° C. at a rate of 10 ° C./min returns to the baseline position on the high temperature side.

本発明で得られるポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)を型内発泡成形に用いる場合には次のような従来既知の方法が使用しうる。イ)そのまま用いる方法、ロ)あらかじめ二段発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)二段発泡粒子を圧縮状態で金型内に充填し成形する方法。   When the polyolefin resin pre-expanded particles (two-stage expanded particles) obtained in the present invention are used for in-mold foam molding, the following conventionally known methods can be used. B) A method for use as it is, b) A method for injecting an inorganic gas such as air into the two-stage foamed particles in advance to give foaming ability, and c) A method for filling the two-stage foamed particles into a mold in a compressed state and molding. .

これらの中でも、あらかじめ予備発泡粒子(二段発泡粒子)中に空気等の無機ガスを圧入し、発泡能を付与するロ)の方法が好適である。具体的には次の型内発泡成形法によって型内発泡成形体を得ることが出来る。
1)ポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)を耐圧容器内で空気加圧し、ポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)中に空気を圧入することにより発泡能を付与する。
2)得られたポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)を2つの金型からなる、閉鎖しうるが密閉し得ない成形空間内に充填する。
3)水蒸気などを加熱媒体として0.2〜0.4MPa(G)程度の水蒸気圧で3〜30秒程度の加熱時間で成形し、ポリオレフィン系樹脂予備発泡粒子(二段発泡粒子)同士を融着させる。
4)金型を水冷する。
5)金型を開いて、型内発泡成形体を取り出す。
Among these, the method (b) in which an inorganic gas such as air is press-fitted into pre-expanded particles (two-stage expanded particles) in advance to impart foaming ability is preferable. Specifically, an in-mold foam molded product can be obtained by the following in-mold foam molding method.
1) The polyolefin resin pre-expanded particles (two-stage expanded particles) are pressurized with air in a pressure-resistant container, and the foaming ability is imparted by press-fitting air into the polyolefin-based resin pre-expanded particles (two-stage expanded particles).
2) The obtained polyolefin resin pre-expanded particles (two-stage expanded particles) are filled into a molding space consisting of two molds that can be closed but cannot be sealed.
3) Molding with a water vapor pressure of about 0.2 to 0.4 MPa (G) and a heating time of about 3 to 30 seconds using water vapor or the like as a heating medium to melt the polyolefin resin pre-expanded particles (two-stage expanded particles). Put on.
4) Cool the mold with water.
5) Open the mold and take out the in-mold foam molding.

本発明で得られるポリプロピレン系樹脂予備発泡粒子(二段発泡粒子)を用いた型内発泡成形体は、断熱材、緩衝包装材、自動車内装部材、自動車バンパー用芯材などの用途に用いることができる。高発泡倍率の型内発泡成形体が使用されることが多い緩衝包装材に、本発明で得られる予備発泡粒子(二段発泡粒子)を用いた発泡体を使用することは、特に望ましい使用法である。   The in-mold expanded molded article using the polypropylene resin pre-expanded particles (two-stage expanded particles) obtained in the present invention can be used for applications such as a heat insulating material, a buffer packaging material, an automobile interior member, and a core material for an automobile bumper. it can. It is particularly desirable to use a foam using the pre-expanded particles (two-stage expanded particles) obtained in the present invention for a shock-absorbing packaging material in which an in-mold expanded molded body with a high expansion ratio is often used. It is.

以下、実施例および比較例をあげて、本発明をさらに具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、実施例および比較例における評価は、つぎの方法により行なった。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to such examples. In addition, evaluation in Examples and Comparative Examples was performed by the following method.

(発泡倍率)
予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)3〜10g程度を取り、60℃で6時間乾燥したのち重量w(g)を測定後、水没法にて体積v(cm)を測定し、予備発泡粒子の真比重ρb=w/vを求め、発泡前のポリオレフィン系樹脂粒子の密度ρrとの比から発泡倍率K=ρr/ρbを求めた。
(Foaming ratio)
Take 3 to 10 g of pre-expanded particles (single-stage expanded particles or double-stage expanded particles), dry at 60 ° C. for 6 hours, measure the weight w (g), and then measure the volume v (cm 3 ) by the submersion method. The true specific gravity ρb = w / v of the pre-expanded particles was determined, and the expansion ratio K = ρr / ρb was determined from the ratio to the density ρr of the polyolefin resin particles before foaming.

(倍率バラツキR)
ポリオレフィン系樹脂発泡粒子1kgを、JIS Z8801(1994)付表2記載の標準篩(呼び寸法1、1.18、1.4、1.7、2、2.36、2.8、3.35、4、4.75、5.6の11種の篩)で篩い分けした。各篩に残るポリオレフィン系樹脂予備発泡粒子の重量分率Wi、発泡倍率Kiを測定し、下記の式(1)から平均発泡倍率Kavを算出する。
(Magnification variation R)
1 kg of the polyolefin-based resin expanded particles was added to a standard sieve (nominal dimensions 1, 1.18, 1.4, 1.7, 2, 2.36, 2.8, 3.35, JIS Z8801 (1994) attached table 2. 11 sieves (4, 4.75, 5.6). The weight fraction Wi and the expansion ratio Ki of the polyolefin resin pre-expanded particles remaining on each sieve are measured, and the average expansion ratio Kav is calculated from the following formula (1).

次に重量分率Wi、発泡倍率Kiと平均発泡倍率Kavを用いて式(2) Next, using the weight fraction Wi, the expansion ratio Ki, and the average expansion ratio Kav, the formula (2)

から発泡倍率の標準偏差σmを計算し、式(3) Calculate the standard deviation σm of the foaming ratio from the equation (3)

から倍率バラツキR(%)を求めた。 From this, the magnification variation R (%) was determined.

なお、各篩に残るポリオレフィン系樹脂予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の発泡倍率Kiは、次のようにして求めた。各篩に残るポリオレフィン系樹脂発泡粒子の重量Giを0.001gまで正確に秤量し(小数点以下4桁目を四捨五入)、次いで秤量された重量既知のポリオレフィン系樹脂予備発泡粒子を23℃の水100mlが収容されたメスシリンダー内の水に水没させたときに上昇した目盛りから、ポリオレフィン系樹脂発泡粒子の体積yi(cm)を読み取り、ポリオレフィン系樹脂発泡粒子の重量Gi(g)をポリオレフィン系樹脂発泡粒子の体積yi(cm)で除し、これをg/L単位に換算することにより各篩いのポリオレフィン系樹脂予備発泡粒子の見かけ密度di求める。最後に基材樹脂の密度ds(=900g/L)との比から発泡倍率Ki=ds/diを求めた。
◎:Rの値が5%未満
○:Rの値が5%以上8%未満
△:Rの値が8%以上10%未満
×:Rの値が10%以上15%未満
××:Rの値が15%以上
The expansion ratio Ki of the polyolefin-based resin pre-expanded particles (one-stage expanded particles or two-stage expanded particles) remaining on each sieve was determined as follows. The weight Gi of polyolefin resin foam particles remaining on each sieve is accurately weighed to 0.001 g (rounded off to the fourth decimal place), and then the weighed polyolefin resin pre-foamed particles of known weight are added to 100 ml of water at 23 ° C. The volume yi (cm 3 ) of the polyolefin resin foamed particles is read from the scale that rises when submerged in the water in the graduated cylinder in which the polyolefin resin is contained, and the weight Gi (g) of the polyolefin resin foamed particles is calculated as the polyolefin resin. The apparent density di of the polyolefin resin pre-expanded particles of each sieve is obtained by dividing by the volume yi (cm 3 ) of the expanded particles and converting this to g / L units. Finally, the expansion ratio Ki = ds / di was determined from the ratio with the density ds (= 900 g / L) of the base resin.
A: R value is less than 5% B: R value is 5% or more and less than 8% Δ: R value is 8% or more and less than 10% X: R value is 10% or more and less than 15% XX: R Value is over 15%

(気泡の均一性、平均気泡径)
気泡膜が破壊されないように充分注意して発泡粒子をほぼ中央で切断し、その切断面をマイクロスコープで拡大し、予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の表面から予備発泡粒子の直径の5%に相当する厚さの表層部を除く部分(A)に関して次の測定をおこなった。ある任意の方向をx方向とし、それに直交する方向をy方向とした時に、ある1個のセルのx、y方向のフェレ径dx、dyを測定し、次式によりその1個の気泡径diを求める。
di=(dx+dy)/(2×0.785)
(Bubble uniformity, average bubble diameter)
Carefully pay attention not to break the bubble film, cut the expanded particles almost at the center, expand the cut surface with a microscope, and remove the pre-expanded particles from the surface of the pre-expanded particles (single-stage expanded particles or double-stage expanded particles). The following measurement was performed on the portion (A) excluding the surface layer portion having a thickness corresponding to 5% of the diameter. When an arbitrary direction is an x direction and a direction orthogonal to the x direction is a y direction, the ferret diameters dx and dy of a cell are measured in the x and y directions. Ask for.
di = (dx + dy) / (2 × 0.785)

部分(A)内で半径方向に偏りのない様に、連続して隣り合う40個以上の気泡についてdiを測定する。1個の予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)の平均気泡径d、及び気泡径の変動係数uを次式により算出する。但し、nはdiを測定した気泡の個数、σは気泡径の標準偏差である。
d=Σ(di)/n
u=σ/d×100
3個以上の予備発泡粒子(一段発泡粒子あるいは二段発泡粒子)についてuを求め、その平均をUとする。気泡の均一性を次の基準により評価した。
◎:Uが30以下
〇:Uが30を越えて35以下
×:Uが35超
The di is measured for 40 or more consecutively adjacent bubbles so that there is no deviation in the radial direction in the portion (A). The average bubble diameter d and the variation coefficient u of the bubble diameter of one pre-expanded particle (one-stage expanded particle or two-stage expanded particle) are calculated by the following equations. Here, n is the number of bubbles measured for di, and σ is the standard deviation of the bubble diameter.
d = Σ (di) / n
u = σ / d × 100
U is determined for three or more pre-expanded particles (single-stage expanded particles or double-stage expanded particles), and the average is U. Bubble uniformity was evaluated according to the following criteria.
◎: U is 30 or less ○: U exceeds 30 and 35 or less ×: U is more than 35

(成形性)
成形評価では、型内発泡成形体設計外形寸法が400mm×300mm×20mmの金型を用いた。
(Formability)
In the molding evaluation, a mold having an in-mold foam molded body design outer dimension of 400 mm × 300 mm × 20 mm was used.

(成形体融着率)
型内発泡成形体の表面にナイフで約5mmの深さのクラックを入れたのち、このクラックに沿って型内発泡成形体を割り、破断面を観察し、破断面の全粒子数に対する破壊粒子数の割合を求め、成形体融着率とした。
(Molded product fusion rate)
After a crack with a depth of about 5 mm is made with a knife on the surface of the in-mold foam molded body, the in-mold foam molded body is divided along the crack, the fracture surface is observed, and the fracture particles for the total number of particles in the fracture surface The ratio of the number was determined and used as the compact fusion rate.

(成形体の表面性)
成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の表面について以下の基準で評価した。
◎:しわ、粒間少なく、美麗
〇:僅かなしわ、粒間あるが良好
×:しわ、ヒケがあり外観不良
(Surface properties of molded products)
After molding, the mixture was allowed to stand at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then allowed to stand in a room at 23 ° C. for 4 hours. .
◎: Wrinkles, less intergranular, beautiful ○: Slight wrinkles, intergranular but good x: Wrinkles, sink marks and poor appearance

(成形体の寸法収縮率)
成形後、23℃で2時間静置し、つぎに65℃で6時間養生したのち、23℃の室内に4時間放置して得られた型内発泡成形体の長手寸法を測定し、対応する金型寸法に対する、金型寸法と型内発泡成形体の寸法との差の割合を対金型寸法収縮率とし、以下の基準で評価した。
◎:対金型寸法収縮率が4%以下
〇:対金型寸法収縮率が4%を超えて7%以下
×:対金型寸法収縮率が7%より大きい
(Dimension shrinkage of molded product)
After molding, it is allowed to stand at 23 ° C. for 2 hours, then cured at 65 ° C. for 6 hours, and then measured for the longitudinal dimension of the in-mold foam molded product obtained by leaving it in a room at 23 ° C. for 4 hours. The ratio of the difference between the mold dimension and the dimension of the in-mold foam molded body with respect to the mold dimension was defined as the mold dimension shrinkage rate, and was evaluated according to the following criteria.
◎: Dimensional shrinkage ratio against mold is 4% or less ○: Dimensional shrinkage ratio against mold exceeds 4% and 7% or less ×: Dimensional shrinkage ratio against mold is larger than 7%

(実施例1)
ポリプロピレン系樹脂(プロピレン−エチレンランダム共重合体:エチレン含有率3.0%、MI=6g/10分、融点143℃)100重量部に対し、ポリプロピレン・ポリエチレングリコールブロック共重合体(三洋化成(株)製、ペレスタット303、融点135℃)を0.5重量部、タルク(林化成(株)製、タルカンパウダーPK−S)0.1重量部を加えドライブレンドした。50mmのフルフライトスクリューを具備した単軸押出機に供給し、溶融混練したのち、直径1.8mmの円筒ダイより押出し、水冷後、カッターで切断し、円柱状のポリオレフィン系樹脂粒子(1.2mg/粒)を得た。
Example 1
Polypropylene-polyethylene glycol block copolymer (Sanyo Kasei Co., Ltd.) with respect to 100 parts by weight of polypropylene resin (propylene-ethylene random copolymer: ethylene content 3.0%, MI = 6 g / 10 min, melting point 143 ° C.) ), Pelestat 303, melting point 135 ° C.) and 0.5 parts by weight of talc (manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-S) were added and dry blended. After feeding to a single screw extruder equipped with a 50 mm full flight screw, melt kneading, extruding from a cylindrical die having a diameter of 1.8 mm, water cooling, cutting with a cutter, and cylindrical polyolefin resin particles (1.2 mg / Grain) was obtained.

得られたポリオレフィン系樹脂粒子100重量部を、純水200重量部、第3リン酸カルシウム0.5重量部およびドデシルベンゼンスルホン酸ソーダ0.03重量部とともに耐圧密閉容器に投入したのち、脱気し、攪拌しながら炭酸ガス6重量部を密閉容器内に入れ、148℃に加熱した。このときの圧力は3MPaであった。すぐに密閉容器下部のバルブを開いて、水分散物(樹脂粒子および水系分散媒)を直径4mmのオリフィスを通じて大気圧下に放出して予備発泡粒子(一段発泡粒子)を得た。この際、放出中は容器内の圧力が低下しないように、炭酸ガスで圧力を保持した。   100 parts by weight of the obtained polyolefin resin particles were put into a pressure-resistant sealed container together with 200 parts by weight of pure water, 0.5 part by weight of tricalcium phosphate and 0.03 part by weight of sodium dodecylbenzenesulfonate, and then deaerated. While stirring, 6 parts by weight of carbon dioxide gas was placed in a sealed container and heated to 148 ° C. The pressure at this time was 3 MPa. Immediately after opening the valve at the bottom of the sealed container, the aqueous dispersion (resin particles and aqueous dispersion medium) was discharged under atmospheric pressure through an orifice having a diameter of 4 mm to obtain pre-expanded particles (single-stage expanded particles). At this time, during discharge, the pressure was maintained with carbon dioxide gas so that the pressure in the container did not decrease.

得られた一段発泡粒子は示差走査熱量計測定において、136℃と156℃に2つの融点を示し、発泡倍率は9倍と比較例1、2、6の場合に比べて高い倍率が得られた。気泡の均一性は優れ、平均気泡径194μm、倍率バラツキRは7と優れていた。ここで得た一段発泡粒子を60℃にて6時間乾燥させたのち、耐圧容器内にて、加圧空気を含浸させて、内圧を約0.4MPaにしたのち、約0.09MPaの蒸気と接触させることで二段発泡させ、発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径289μmで気泡の均一性に優れていた。二段発泡させた予備発泡粒子表面を電子顕微鏡にて観察した結果、表面部分の気泡径が均一で、かつ表面の粗れがない二段発泡粒子であった。次に、二段発泡させた予備発泡粒子を再度、耐圧容器内にて空気で加圧し、約0.19MPaの空気内圧とし、型内発泡成形を行った。得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。   The obtained first-stage expanded particles showed two melting points at 136 ° C. and 156 ° C. in differential scanning calorimetry, and the expansion ratio was 9 times, which was higher than in the case of Comparative Examples 1, 2 and 6. . The uniformity of the bubbles was excellent, the average bubble diameter was 194 μm, and the magnification variation R was 7. The single-stage expanded particles obtained here were dried at 60 ° C. for 6 hours, then impregnated with pressurized air in a pressure-resistant container to set the internal pressure to about 0.4 MPa, and about 0.09 MPa of steam and Two-stage foaming was carried out by contacting to obtain two-stage foamed particles having an expansion ratio of 30 times. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had an average bubble diameter of 289 μm and excellent bubble uniformity. As a result of observing the surface of the two-stage expanded pre-expanded particles with an electron microscope, it was a two-stage expanded particle having a uniform cell diameter and no surface roughness. Next, the pre-expanded particles that had been two-stage expanded were again pressurized with air in a pressure resistant container to an air pressure of about 0.19 MPa, and in-mold foam molding was performed. The surface of the molded in-mold foamed product has excellent smoothness, no wrinkles, small dimensional shrinkage of the molded product, little distortion of the molded product, excellent fusion between particles, and beautiful in-mold foaming It was a molded body.


(実施例2)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.75重量部、タルクを0.1重量部とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡粒子は2つの融点を示し、発泡倍率11倍、気泡の均一性に優れ、平均気泡径234μm、倍率バラツキRは4と優れていた。次に、実施例1と同様に発泡倍率30倍の2段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径327μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。

(Example 2)
Foaming, two-stage foaming, and in-mold molding were performed in the same manner as in Example 1 except that 0.75 parts by weight of the polypropylene / polyethylene glycol block copolymer as an additive and 0.1 parts by weight of talc were used. The first-stage expanded particles had two melting points, an expansion ratio of 11 times, excellent bubble uniformity, an average cell diameter of 234 μm, and a ratio variation R of 4 was excellent. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, had an average cell diameter of 327 μm and excellent cell uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例3)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を1重量部とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率12倍、気泡の均一性に優れ、平均気泡径246μmであった。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、気泡の均一性に優れ、平均気泡径333μm、倍率バラツキRは4と優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 3)
Foaming, two-stage foaming, and in-mold molding were performed in the same manner as in Example 1 except that 1 part by weight of the polypropylene / polyethylene glycol block copolymer as an additive was used. The single-stage expanded particles obtained by the single-stage expansion exhibited two melting points, the expansion ratio was 12 times, the bubble uniformity was excellent, and the average bubble diameter was 246 μm. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, had excellent bubble uniformity, an average bubble diameter of 333 μm, and a magnification variation R of 4. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例4)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を4.5重量部とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率19倍、平均気泡径288μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。倍率バラツキRは2と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径335μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
Example 4
Foaming, two-stage foaming, and in-mold molding were performed in the same manner as in Example 1 except that the additive polypropylene / polyethylene glycol block copolymer was 4.5 parts by weight. The single-stage expanded particles obtained by the single-stage expansion showed two melting points, the expansion ratio was 19 times, and the average cell diameter was 288 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The magnification variation R was 2 and excellent. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, had an average cell diameter of 335 μm, and had excellent cell uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例5)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.5重量部、他の親水性添加剤としてメラミン(日産化学工業(株)製)0.2重量部、タルク0.03重量部とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率9倍、平均気泡径380μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。倍率バラツキRは7と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径567μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 5)
0.5 parts by weight of polypropylene / polyethylene glycol block copolymer as an additive, 0.2 parts by weight of melamine (manufactured by Nissan Chemical Industries, Ltd.) and 0.03 parts by weight of talc as other hydrophilic additives Was foamed, two-stage foamed and molded in-mold as in Example 1. The first-stage expanded particles obtained by the first-stage expansion exhibited two melting points, the expansion ratio was 9 times, and the average cell diameter was 380 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The magnification variation R was as excellent as 7. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had an average bubble diameter of 567 μm and excellent bubble uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例6)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.5重量部、他の親水性添加剤としてメラミン(日産化学工業(株)製)0.2重量部、タルク0.2重量部とした他は実施例1と同様に発泡、2段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率16倍、平均気泡径252μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。倍率バラツキRは3と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。2段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径311μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 6)
0.5 parts by weight of polypropylene / polyethylene glycol block copolymer as additive, 0.2 parts by weight of melamine (manufactured by Nissan Chemical Industries, Ltd.) and 0.2 part by weight of talc as other hydrophilic additives In the same manner as in Example 1, foaming, two-stage foaming, and in-mold molding were performed. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 16 times, and the average cell diameter was 252 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The magnification variation R was as excellent as 3. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles exhibited two melting points in the differential scanning calorimeter measurement, and had an average cell diameter of 311 μm and excellent bubble uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例7)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.5重量部、他の親水性添加剤としてポリエチレングリコール(ライオン(株)製、#300)0.2重量部、タルク0.1重量部とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率17倍、平均気泡径301μmであった。気泡の均一性に優れていた。倍率バラツキRは1と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径364μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 7)
0.5 parts by weight of an additive polypropylene / polyethylene glycol block copolymer, 0.2 parts by weight of polyethylene glycol (manufactured by Lion Corporation, # 300) as a hydrophilic additive, 0.1 part by weight of talc In the same manner as in Example 1, foaming, two-stage foaming, and in-mold molding were performed. Single-stage expanded particles obtained by single-stage expansion showed two melting points, an expansion ratio of 17 times, and an average cell diameter of 301 μm. Excellent uniformity of bubbles. The magnification variation R was excellent at 1. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had an average cell diameter of 364 μm and excellent bubble uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例8)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を1重量部、他の親水性添加剤としてポリエチレングリコール(ライオン(株)製、ポリエチレングリコール#300)0.5重量部、タルク0.1重量部とした他は実施例1と同様に発泡、2段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率19倍、平均気泡径309μmであった。気泡の均一性に優れていた。倍率バラツキRは1と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径359μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 8)
1 part by weight of a polypropylene / polyethylene glycol block copolymer as an additive, 0.5 parts by weight of polyethylene glycol (manufactured by Lion Corporation, polyethylene glycol # 300) as a hydrophilic additive, 0.1 part by weight of talc In the same manner as in Example 1, foaming, two-stage foaming, and in-mold molding were performed. The single-stage expanded particles obtained by the single-stage expansion showed two melting points, the expansion ratio was 19 times, and the average cell diameter was 309 μm. Excellent uniformity of bubbles. The magnification variation R was excellent at 1. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had excellent bubble uniformity with an average bubble diameter of 359 μm. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例9)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.5重量部、他の親水性添加剤としてホウ酸亜鉛(富田製薬(株)製、ホウ酸亜鉛2335)0.1重量部、タルク無添加とした他は実施例1と同様に発泡、二段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率15倍、平均気泡径189μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。倍率バラツキRは3と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径238μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も無く、成形体の寸法収縮が小さく、成形体の歪が少なく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
Example 9
0.5 parts by weight of the additive polypropylene / polyethylene glycol block copolymer, 0.1 parts by weight of zinc borate (Zinc Borate 2335, manufactured by Tomita Pharmaceutical Co., Ltd.) as other hydrophilic additives, no talc added Otherwise, foaming, two-stage foaming, and in-mold molding were performed in the same manner as in Example 1. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 15 times, and the average cell diameter was 189 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The magnification variation R was as excellent as 3. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had an average cell diameter of 238 μm and excellent bubble uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded article is excellent in smoothness, no wrinkles are generated, dimensional shrinkage of the molded body is small, distortion of the molded body is small, and the particles are fused. It was an excellent and beautiful in-mold foam molding.

(実施例10)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を1重量部、タルク0.1重量部とし、発泡剤の炭酸ガスは使用せず、窒素ガスを容器内へ導入し、151℃に加熱した。その他は実施例1と同様に一段発泡、二段発泡、型内成形評価した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率10倍、平均気泡径144μmであった。気泡の均一性は実施例1〜3に比較するとやや劣るもののほぼ均一であった。倍率バラツキRは7と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径208μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も僅かであり、成形体の寸法収縮が小さく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 10)
1 part by weight of polypropylene / polyethylene glycol block copolymer as an additive and 0.1 part by weight of talc were used. Carbon dioxide gas as a blowing agent was not used, nitrogen gas was introduced into the container and heated to 151 ° C. Others were evaluated in the same manner as in Example 1, one-stage foaming, two-stage foaming, and in-mold molding. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 10 times, and the average cell diameter was 144 μm. The uniformity of the bubbles was almost uniform, although somewhat inferior to Examples 1-3. The magnification variation R was as excellent as 7. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had an average bubble diameter of 208 μm and excellent bubble uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded body is excellent in smoothness, little wrinkles are generated, small dimensional shrinkage of the molded body, excellent fusion of particles, and beautiful mold It was an inner foamed molded product.

(実施例11)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体(b−2)(三洋化成(株)製、ペレスタット300、融点135℃)を1重量部に変更し、タルク0.1重量部とした他は実施例1と同様に発泡、2段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率12倍、平均気泡径241μmであった。気泡の均一性は優れていた。倍率バラツキRは4と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径327μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も僅かであり、成形体の寸法収縮が小さく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 11)
Other than changing the additive polypropylene-polyethylene glycol block copolymer (b-2) (manufactured by Sanyo Kasei Co., Ltd., Pelestat 300, melting point 135 ° C.) to 1 part by weight to make 0.1 parts by weight of talc In the same manner as in Example 1, foaming, two-stage foaming, and in-mold molding were performed. The first-stage expanded particles obtained by the first-stage expansion showed two melting points, the expansion ratio was 12 times, and the average cell diameter was 241 μm. The uniformity of the bubbles was excellent. The magnification variation R was as excellent as 4. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, had an average cell diameter of 327 μm and excellent cell uniformity. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded body is excellent in smoothness, little wrinkles are generated, small dimensional shrinkage of the molded body, excellent fusion of particles, and beautiful mold It was an inner foamed molded product.

(実施例12)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体(b−3)(三洋化成(株)製、ペレスタット230、融点163℃)を1重量部に変更し、タルク0.1重量部とした他は実施例1と同様に発泡、2段発泡、型内成形した。一段発泡にて得られた一段発泡粒子は2つの融点を示し、発泡倍率11倍、平均気泡径195μmであった。気泡の均一性は優れていた。倍率バラツキRは4と優れていた。次に、実施例1と同様に発泡倍率30倍の二段発泡粒子を得た。二段発泡粒子は、示差走査熱量計測定において2つの融点を示し、平均気泡径272μmで気泡の均一性に優れていた。型内成形評価の結果、得られた型内発泡成形体の表面は平滑性に優れ、しわの発生も僅かであり、成形体の寸法収縮が小さく、粒子どうしの融着に優れ、美麗な型内発泡成形体であった。
(Example 12)
Other than changing the additive polypropylene-polyethylene glycol block copolymer (b-3) (manufactured by Sanyo Kasei Co., Ltd., Pelestat 230, melting point 163 ° C.) to 1 part by weight to make 0.1 part by weight of talc In the same manner as in Example 1, foaming, two-stage foaming, and in-mold molding were performed. The single-stage expanded particles obtained by single-stage expansion exhibited two melting points, an expansion ratio of 11 times, and an average cell diameter of 195 μm. The uniformity of the bubbles was excellent. The magnification variation R was as excellent as 4. Next, two-stage expanded particles having an expansion ratio of 30 times were obtained in the same manner as in Example 1. The two-stage expanded particles showed two melting points in the differential scanning calorimeter measurement, and had excellent bubble uniformity with an average bubble diameter of 272 μm. As a result of in-mold molding evaluation, the surface of the obtained in-mold foam molded body is excellent in smoothness, little wrinkles are generated, small dimensional shrinkage of the molded body, excellent fusion of particles, and beautiful mold It was an inner foamed molded product.

(比較例1)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を使用せず、タルク0.1重量部のみとした以外は実施例1と同様に発泡させた。発泡倍率7倍と低い倍率しか得られず、平均気泡径135μmと小さいものであった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、予備発泡粒子(二段発泡粒子)どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。
(Comparative Example 1)
Foaming was performed in the same manner as in Example 1 except that the additive polypropylene / polyethylene glycol block copolymer was not used and only 0.1 part by weight of talc was used. Only a low expansion ratio of 7 times was obtained, and the average bubble diameter was as small as 135 μm. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which pre-foamed particles (two-stage foamed particles) are adhered were observed. When the two-stage foamed particles were used and subjected to in-mold foam molding, the resulting in-mold foam molded article had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor.





(比較例2)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.1重量部、タルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率8倍と低い倍率しか得られず、平均気泡径153μm、倍率バラツキRが11と大きかった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、予備発泡粒子(二段発泡粒子)どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。




(Comparative Example 2)
Foaming was carried out in the same manner as in Example 1 except that the additive polypropylene / polyethylene glycol block copolymer was 0.1 parts by weight and talc was 0.1 parts by weight. Only a low expansion ratio of 8 times was obtained, the average bubble diameter was 153 μm, and the magnification variation R was as large as 11. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which pre-foamed particles (two-stage foamed particles) are adhered were observed. When the two-stage foamed particles were used and subjected to in-mold foam molding, the resulting in-mold foam molded article had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor.

(比較例3)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を0.1重量部、他の親水性物質としてメラミン(日産化学工業(株)製)0.2重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率13倍、平均気泡径189μm、大きな気泡と小さな気泡が混在し均一性に劣るものであった。倍率バラツキRは9と大きかった。二段発泡により発泡倍率30倍にすることに問題はなかったが、その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。
(Comparative Example 3)
0.1 parts by weight of an additive polypropylene / polyethylene glycol block copolymer, 0.2 parts by weight of melamine (manufactured by Nissan Chemical Industries, Ltd.) as another hydrophilic substance, and 0.1 parts by weight of talc as a foam nucleating agent Except that, foaming was performed in the same manner as in Example 1. The expansion ratio was 13 times, the average bubble diameter was 189 μm, and large and small bubbles were mixed, resulting in poor uniformity. The magnification variation R was as large as 9. There was no problem in expanding the expansion ratio to 30 times by the two-stage foaming, but the dimensional shrinkage ratio of the in-mold foam molding obtained by using the two-stage foamed particles and performing the foam molding in the mold was large. Occurrence was seen and the appearance was inferior.

(比較例4)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体を30重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率16倍、平均気泡径245μm、予備発泡粒子(一段発泡粒子)の中心側が小さな気泡で、表層側は大きな気泡となる不均一なものであった。倍率バラツキは8と発泡倍率16倍としては大きいものであった。二段発泡により発泡倍率30倍にすることに問題はなかったが、その二段発泡粒子を使用し、型内発泡成形したところ得られた型内発泡成形体の寸法収縮率が少し大きく、しわや表面の凹凸が見られ、外観の劣るものであった。
(Comparative Example 4)
Foaming was carried out in the same manner as in Example 1 except that 30 parts by weight of the polypropylene / polyethylene glycol block copolymer as an additive and 0.1 parts by weight of talc as a foam nucleating agent were used. The expansion ratio was 16 times, the average cell diameter was 245 μm, the center side of the pre-expanded particles (single-stage expanded particles) was a small bubble, and the surface layer side was a non-uniform one that became a large bubble. The variation in magnification was as large as 8 and the expansion ratio was 16 times. Although there was no problem in increasing the expansion ratio to 30 times by two-stage foaming, the dimensional shrinkage ratio of the in-mold foam molding obtained by using the two-stage foamed particles and foam-molding in the mold was a little large, and wrinkles And surface irregularities were observed, and the appearance was poor.

(比較例5)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体は使用せず、エチレン−(メタ)アクリル酸共重合体をナトリウムイオン架橋したエチレン系アイオノマー樹脂(三井デュポンポリケミカル社製、ハイミラン1707、融点89℃)を1重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率11倍となり、平均気泡径180μmであった。倍率バラツキRは16とかなり大きく、気泡のバラツキも大きかった。二段発泡では特に問題はなかったが、二段発泡粒子を使用し、型内発泡成形したところ、成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。混練性の低い押出機にてアイオノマー樹脂を含むポリオレフィン系樹脂粒子を作成しており、アイオノマー樹脂の分散不良が発生していると考えられた。また型内発泡成形体の表面にしわが発生し、寸法収縮も小さかったことは、アイオノマー樹脂が発泡時の温度降下による粘度上昇が大きい樹脂であるために不良を引き起こしており、実施例に示したポリプロピレン・ポリエチレングリコールブロック共重合体を使用した場合では問題が無いことがわかる。
(Comparative Example 5)
Polyethylene / polyethylene glycol block copolymer as additive is not used, ethylene ionomer resin (Mitsui DuPont Polychemical, Himiran 1707, melting point 89 ° C.) obtained by sodium ion crosslinking of ethylene- (meth) acrylic acid copolymer Was foamed in the same manner as in Example 1 except that 0.1 part by weight of talc was used as the foam nucleating agent. The expansion ratio was 11 times, and the average bubble diameter was 180 μm. The magnification variation R was as large as 16, and the variation in bubbles was also large. Although there was no particular problem in the two-stage foaming, when the two-stage foamed particles were used and foamed in-mold, the dimensional shrinkage ratio of the molded body was large, wrinkles were observed, and the appearance was inferior. Polyolefin resin particles containing an ionomer resin were prepared by an extruder having low kneadability, and it was considered that poor dispersion of the ionomer resin occurred. In addition, wrinkles were generated on the surface of the in-mold foam molded product, and the dimensional shrinkage was small, which caused defects because the ionomer resin was a resin with a large increase in viscosity due to a temperature drop during foaming. It can be seen that there is no problem when a polypropylene / polyethylene glycol block copolymer is used.

(比較例6)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体は使用せず、ポリエーテルエステルアミド(b’−1)(チバ・スペシャリティー・ケミカルズ(株)製、IRGASTAT P18、融点180℃)を1重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率10倍と低倍率となり、平均気泡径126μmと小さいものであった。倍率バラツキRは12とかなり大きく、気泡のバラツキも大きいものであり、ポリエーテルエステルアミド分散不良となっていると見られた。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、予備発泡粒子(二段発泡粒子)どうしが付着するスティックの発生が見られた。その二段発泡粒子を使用し、型内発泡成形したところ、成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。
(Comparative Example 6)
Polypropylene ester amide (b′-1) (manufactured by Ciba Specialty Chemicals, IRGASTAT P18, melting point 180 ° C.) is used in an amount of 1 part by weight. Foaming was performed in the same manner as in Example 1 except that 0.1 part by weight of talc was used as the foam nucleating agent. The expansion ratio was as low as 10 times, and the average bubble diameter was as small as 126 μm. The magnification variation R was as large as 12, and the bubble variation was large, and it was considered that the polyether ester amide dispersion was poor. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and generation of sticks to which the pre-expanded particles (two-stage expanded particles) are adhered was observed. When the two-stage expanded particles were used and subjected to in-mold foam molding, the compact had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor.

(比較例7)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体は使用せず、マレイン酸変性ポリプロピレン(東洋化成工業(株)製、トーヨータック、融点150℃)を1重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率8倍と低倍率となり、平均気泡径130μmと小さいものであった。倍率バラツキRは11と大きかった。二段発泡においては、発泡倍率30倍にするには高い蒸気圧が必要となり、予備発泡粒子(二段発泡粒子)どうしが付着するスティックの発生が多数見られた。その二段発泡粒子を使用し、型内発泡成形したところ、成形体の寸法収縮率が大きく、しわの発生が見られ、外観の劣るものであった。また融着に劣るものであった。
(Comparative Example 7)
No additive polypropylene / polyethylene glycol block copolymer is used, 1 part by weight of maleic acid-modified polypropylene (manufactured by Toyo Kasei Kogyo Co., Ltd., Toyotack, melting point 150 ° C.), 0.1% by weight of talc as a foam nucleating agent It was made to foam like Example 1 except having set it as the part. The expansion ratio was as low as 8 times, and the average bubble diameter was as small as 130 μm. The magnification variation R was as large as 11. In the two-stage foaming, a high vapor pressure is required to increase the expansion ratio to 30 times, and many sticks to which pre-foamed particles (two-stage foamed particles) are adhered were observed. When the two-stage expanded particles were used and subjected to in-mold foam molding, the compact had a large dimensional shrinkage, wrinkles were observed, and the appearance was poor. Moreover, it was inferior to melt | fusion.

(比較例8)
添加剤のポリプロピレン・ポリエチレングリコールブロック共重合体は使用せず、親水性ポリマーとして架橋ポリアルキレンオキサイド(住友精化社製、アクアコークTWB−P、融点60℃)を1重量部、発泡核剤としてタルク0.1重量部とした以外は実施例1と同様に発泡させた。発泡倍率11倍となり、平均気泡径320μmであった。倍率バラツキRが13と大きく、成形体の寸法収縮率が大きく、融着が低い点で劣っていた。
(Comparative Example 8)
No additive polypropylene / polyethylene glycol block copolymer is used, and 1 part by weight of a crosslinked polyalkylene oxide (Sumitomo Seika Co., Ltd., Aqua Coke TWB-P, melting point 60 ° C.) is used as a hydrophilic polymer. Foaming was performed in the same manner as in Example 1 except that 0.1 part by weight of talc was used. The expansion ratio was 11 times, and the average bubble diameter was 320 μm. The magnification variation R was as large as 13, the dimensional shrinkage ratio of the molded body was large, and the fusion was poor.

比較例5〜8と実施例との比較により親水性ポリマーの種類によって発泡粒子の倍率バラツキや気泡バラツキ、更には型内発泡成形体の表面性や寸法精度、融着に劣る結果となっており、ポリプロピレン・ポリエチレングリコールブロック共重合体を使用することでそれらが改善され、かつ発泡倍率を向上させることが可能となっていることがわかる。
Comparison between Comparative Examples 5 to 8 and Examples shows the result of inferior surface magnification, dimensional accuracy, and fusion of the foamed molded article in the mold depending on the type of hydrophilic polymer and the variation in magnification of foamed particles and bubbles. It can be seen that the use of the polypropylene / polyethylene glycol block copolymer has improved them and the expansion ratio can be improved.

Claims (8)

ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満と、発泡核剤(c)0.005重量部以上2重量部以下を含有するポリオレフィン系樹脂からなるポリオレフィン系樹脂粒子を発泡させて一段発泡粒子を得、さらに、一段発泡粒子を、耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させてなる、ポリオレフィン系樹脂二段発泡粒子。   Polyolefin-polyether block copolymer (b) 0.2 part by weight or more and less than 5 parts by weight and foaming nucleating agent (c) 0.005 part by weight or more and 2 parts by weight with respect to 100 parts by weight of polyolefin resin (a) Polyolefin resin particles made of polyolefin resin containing the following were expanded to obtain single-stage expanded particles, and the single-stage expanded particles were pressurized with an inorganic gas such as air in a pressure-resistant container to give an internal pressure. Later, polyolefin resin two-stage expanded particles that are further foamed by steam heating. ポリオレフィン系樹脂(a)が、ポリプロピレン系樹脂である、請求項1記載のポリオレフィン系樹脂二段発泡粒子。   The polyolefin resin two-stage expanded particles according to claim 1, wherein the polyolefin resin (a) is a polypropylene resin. ポリオレフィン・ポリエーテルブロック共重合体(b)のポリエーテル部がポリエチレングリコールからなる、請求項1または2記載のポリオレフィン系樹脂二段発泡粒子。   The polyolefin resin two-stage expanded particles according to claim 1 or 2, wherein the polyether part of the polyolefin-polyether block copolymer (b) is made of polyethylene glycol. 発泡倍率が6倍以上50倍以下、平均気泡径が50μm以上800μm以下である、請求項1〜3の何れか一項に記載のポリオレフィン系樹脂二段発泡粒子。   The polyolefin resin two-stage expanded particles according to any one of claims 1 to 3, which have an expansion ratio of 6 to 50 times and an average cell diameter of 50 to 800 µm. ポリオレフィン系樹脂に、ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)を含んでなる、請求項1〜4の何れか一項に記載のポリオレフィン系樹脂二段発泡粒子。   The polyolefin resin two-stage expanded particles according to any one of claims 1 to 4, wherein the polyolefin resin comprises a hydrophilic substance (d) other than the polyolefin / polyether block copolymer. ポリオレフィン・ポリエーテルブロック共重合体以外の親水性物質(d)が、メラミン、グリセロール類およびホウ酸亜鉛よりなる群から選ばれる少なくとも1種1重量部以下である、請求項5記載のポリオレフィン系樹脂二段発泡粒子。   The polyolefin resin according to claim 5, wherein the hydrophilic substance (d) other than the polyolefin / polyether block copolymer is at least one part by weight selected from the group consisting of melamine, glycerols and zinc borate. Two-stage expanded particles. ポリオレフィン系樹脂(a)100重量部に対し、ポリオレフィン・ポリエーテルブロック共重合体(b)0.2重量部以上5重量部未満と、発泡核剤(c)0.005重量部以上2重量部以下を含有するポリオレフィン系樹脂からなるポリオレフィン系樹脂粒子を、水系分散媒に発泡剤と共に密閉容器内に分散させ、ポリオレフィン系樹脂粒子の軟化温度以上の温度まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出し、ポリオレフィン系樹脂粒子を発泡させる一段発泡粒子を得、さらに、一段発泡粒子を、耐圧容器内にて空気等の無機ガスにて加圧し、内圧を付与させたのち、蒸気加熱することでさらに発泡させてなる、請求項1〜6の何れかに記載のポリオレフィン系樹脂二段発泡粒子の製造方法。   Polyolefin-polyether block copolymer (b) 0.2 part by weight or more and less than 5 parts by weight and foaming nucleating agent (c) 0.005 part by weight or more and 2 parts by weight with respect to 100 parts by weight of polyolefin resin (a) Polyolefin resin particles comprising a polyolefin resin containing the following are dispersed in an airtight dispersion medium together with a foaming agent in an aqueous dispersion medium, heated and pressurized to a temperature equal to or higher than the softening temperature of the polyolefin resin particles, Released into a pressure range lower than the internal pressure to obtain single-stage expanded particles that foam the polyolefin resin particles, and further, the single-stage expanded particles were pressurized with an inorganic gas such as air in a pressure-resistant container to give an internal pressure. The method for producing the polyolefin resin two-stage expanded particles according to any one of claims 1 to 6, which is further foamed by steam heating. 発泡剤として炭酸ガスを使用する、請求項7記載のポリオレフィン系樹脂二段発泡粒子の製造方法。
The method for producing polyolefin resin two-stage expanded particles according to claim 7, wherein carbon dioxide gas is used as a foaming agent.
JP2013037770A 2013-02-27 2013-02-27 Polyolefin resin pre-expanded particles and method for producing the same Active JP5591965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013037770A JP5591965B2 (en) 2013-02-27 2013-02-27 Polyolefin resin pre-expanded particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013037770A JP5591965B2 (en) 2013-02-27 2013-02-27 Polyolefin resin pre-expanded particles and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008155465A Division JP5220486B2 (en) 2008-06-13 2008-06-13 Polyolefin resin pre-expanded particles and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014017375A Division JP5630591B2 (en) 2014-01-31 2014-01-31 Polyolefin resin pre-expanded particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013100554A true JP2013100554A (en) 2013-05-23
JP5591965B2 JP5591965B2 (en) 2014-09-17

Family

ID=48621416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013037770A Active JP5591965B2 (en) 2013-02-27 2013-02-27 Polyolefin resin pre-expanded particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5591965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162371A (en) * 2017-03-24 2018-10-18 株式会社カネカ Method for producing polypropylene-based resin black foamed particle
JP2018162369A (en) * 2017-03-24 2018-10-18 株式会社カネカ Method for producing polypropylene-based resin black foamed particle
EP3659785A1 (en) * 2018-11-29 2020-06-03 Ricoh Company, Ltd. Powder for forming three-dimensional object, forming device, forming method, and powder
CN112848024A (en) * 2020-12-18 2021-05-28 杭州海虹精细化工有限公司 Method for preparing foaming material by near-melting temperature continuous variable-pressure-bearing reaming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH10152574A (en) * 1996-11-25 1998-06-09 Kanegafuchi Chem Ind Co Ltd Production of polyolefin-based resin prefoaming particle
WO2009001645A1 (en) * 2007-06-22 2008-12-31 Kaneka Corporation Polyolefin resin pre-foamed particle having antistatic property, and molded article produced from the particle
JP2009167236A (en) * 2008-01-11 2009-07-30 Kaneka Corp Process for producing expanded polypropylene-based resin bead and expanded polypropylene-based resin bead

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997038048A1 (en) * 1996-04-05 1997-10-16 Kaneka Corporation Hydrous polyolefin resin composition, preexpanded particles produced therefrom, process for producing the same, and expanded moldings
JPH10152574A (en) * 1996-11-25 1998-06-09 Kanegafuchi Chem Ind Co Ltd Production of polyolefin-based resin prefoaming particle
WO2009001645A1 (en) * 2007-06-22 2008-12-31 Kaneka Corporation Polyolefin resin pre-foamed particle having antistatic property, and molded article produced from the particle
JP2009167236A (en) * 2008-01-11 2009-07-30 Kaneka Corp Process for producing expanded polypropylene-based resin bead and expanded polypropylene-based resin bead

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162371A (en) * 2017-03-24 2018-10-18 株式会社カネカ Method for producing polypropylene-based resin black foamed particle
JP2018162369A (en) * 2017-03-24 2018-10-18 株式会社カネカ Method for producing polypropylene-based resin black foamed particle
EP3659785A1 (en) * 2018-11-29 2020-06-03 Ricoh Company, Ltd. Powder for forming three-dimensional object, forming device, forming method, and powder
CN112848024A (en) * 2020-12-18 2021-05-28 杭州海虹精细化工有限公司 Method for preparing foaming material by near-melting temperature continuous variable-pressure-bearing reaming
CN112848024B (en) * 2020-12-18 2022-09-27 杭州海虹精细化工有限公司 Method for preparing foaming material by near-melting temperature continuous variable-pressure load reaming

Also Published As

Publication number Publication date
JP5591965B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2015098619A1 (en) Polyolefin resin foam particles, and polyolefin resin in-mold expansion molded article
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
US10351688B2 (en) Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP6730979B2 (en) Expanded polypropylene resin particles and method for producing the same
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
JP6961607B2 (en) Foamed particle molded product
JP2022096231A (en) Polypropylene-based resin foam particle, and foam particle molding
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2016158686A1 (en) Method for manufacturing polyethylene resin foam molded article
CN108291048B (en) Method for producing polypropylene resin expanded beads, and in-mold foamed molded article
JP6625472B2 (en) Foamed polypropylene resin particles, foamed molded article in polypropylene resin mold, and method for producing the same
CN108884261B (en) Method for producing polyethylene resin foamed particles and method for producing polyethylene resin in-mold foamed molded article
JP5253123B2 (en) Method for producing foamed molded article in polypropylene resin mold by compression filling method
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
US11952474B2 (en) Foam particles
WO2016147775A1 (en) Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same
JP5364289B2 (en) Method for producing expanded polypropylene resin particles
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
US20160137805A1 (en) Polypropylene resin foamed particles and polypropylene resin in-mold foam molded article having excellent flame retardancy and electric conductivity
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP2019156872A (en) Polyethylene-based resin foamed particle, and method for producing polyethylene-based resin in-mold foamed molded product
JP7162051B2 (en) Method for producing expanded polypropylene resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250