JP2012248824A - Full-color image thin film solar cell and manufacturing method therefor - Google Patents

Full-color image thin film solar cell and manufacturing method therefor Download PDF

Info

Publication number
JP2012248824A
JP2012248824A JP2012007961A JP2012007961A JP2012248824A JP 2012248824 A JP2012248824 A JP 2012248824A JP 2012007961 A JP2012007961 A JP 2012007961A JP 2012007961 A JP2012007961 A JP 2012007961A JP 2012248824 A JP2012248824 A JP 2012248824A
Authority
JP
Japan
Prior art keywords
substrate
solar cell
photoelectric conversion
color image
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007961A
Other languages
Japanese (ja)
Other versions
JP5372184B2 (en
Inventor
Shui-Yang Lien
水養 連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2012248824A publication Critical patent/JP2012248824A/en
Application granted granted Critical
Publication of JP5372184B2 publication Critical patent/JP5372184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a full-color image thin film solar cell and a manufacturing method therefor.SOLUTION: The solar cell includes a first substrate 10, a photoelectric conversion film 20 formed on the surface of the first substrate 10, a second substrate 50, and a sealing resin film 60 and a color pattern layer 70 interposed between the second substrate 50 and the photoelectric conversion film 20. A through region 24 is formed in the surface of the photoelectric conversion film 20 by combining the laser with a patterned mask and fusing the photoelectric conversion film 20. The color pattern layer 70 is formed by coloring with a color pigment, and a color pattern can be developed by combining the color pattern layer 70 with the through region 24.

Description

本発明は一種の薄膜太陽電池に係り、特にフルカラー画像薄膜太陽電池及びその製造方法に関する。   The present invention relates to a kind of thin film solar cell, and more particularly to a full color image thin film solar cell and a method for manufacturing the same.

近年、益々エネルギー資源が足らなくなる問題を解決し、並びにエネルギー資源が地球に対して発生する汚染問題を減らすため、グリーンエネルギーが積極的に開発、使用される中で、太陽電池はその設置地点に制限がなく、且つエネルギーソース取得が容易であり、このため積極的に発展させられている。そのうち、薄膜太陽電池は、その低コストと大量製造の特性を有することから、市場において急速に成長している。薄膜太陽電池は価格が低廉なガラス、プラスチック、セラミック、グラファイト、金属板等の異なる材料を基板として製造でき、電圧を生成可能な薄膜厚さは僅かに数ミクロンであり、且つ薄膜はフレキシブル基板に使用できることから、応用の自由度が高い。周知の薄膜太陽電池は、ガラスを基板として使用でき、並びに庇、遮光カバー、屋根、及びビルの窓等への使用がよく見受けられ、これにより、発電の効果を発生し、これにより大量の電気代を節約し、並びに有効に省エネと二酸化炭素削減の効果を達成する。   In recent years, as green energy has been actively developed and used in order to solve the problem of increasing energy resource shortage and to reduce the pollution problem that energy resource occurs to the earth, There is no limit and it is easy to obtain an energy source, which is why it is actively developed. Among them, thin film solar cells are growing rapidly in the market because of their low cost and mass production characteristics. Thin film solar cells can be manufactured using inexpensive materials such as glass, plastic, ceramic, graphite, and metal plate as substrates, and the thin film thickness that can generate voltage is only a few microns. Since it can be used, the degree of freedom of application is high. Known thin-film solar cells can use glass as a substrate, and are often used for fences, light-shielding covers, roofs, building windows, etc., thereby generating power generation effects, thereby producing large amounts of electricity. To save money, and effectively achieve the effects of energy saving and carbon dioxide reduction.

薄膜太陽電池の窓への応用の付加価値と室内採光性をアップするため、レーザーを利用して該太陽電池に対して溶融を実行してパターンを有する表示領域が形成される。これにより、該表示領域を利用して全体の窓の見た目と芸術価値をアップするほか、さらに表示領域はその他の領域に較べて高い光透過性を有するため、室内の採光度がアップする。ただし、一般にレーザーはコンピュータでビームのオンオフが制御されることで、薄膜太陽電池に対して溶融を実行して該表示領域を形成するが、これは解析度が不良となるのみならず、何度もレーザービームのオンオフを繰り返すことで、レーザーの損壊を形成しやすく、このためレーザーの使用寿命に影響が生じる。このほか、オンオフ方式で制御されるレーザーは、僅かに黒白パターンの表示しか形成できず、並びにグレースケールパターン表示の機能は達成できない。ゆえに、さらには薄膜太陽電池上にカラー表示パターンを形成できれば、その付加価値と使用意欲をアップすることができるであろう。総合すると、パターン表示の解析度をアップし、いかにカラーを表示するかは、薄膜太陽電池の改良の目標の一つである。   In order to increase the added value of the application to the window of the thin film solar cell and the indoor lighting, the display region having a pattern is formed by performing melting on the solar cell using a laser. As a result, the appearance and artistic value of the entire window are increased using the display area, and the display area has higher light transmittance than other areas, so that the indoor lighting is increased. However, in general, a laser is controlled by a computer to turn on and off the beam, so that the thin film solar cell is melted to form the display region. However, by repeatedly turning on and off the laser beam, it is easy to form damage to the laser, which affects the service life of the laser. In addition, the laser controlled by the on / off method can form only a black and white pattern display, and cannot achieve the function of displaying a gray scale pattern. Therefore, if a color display pattern can be formed on a thin film solar cell, the added value and willingness to use can be improved. Overall, one of the goals of improving thin film solar cells is how to improve the pattern display resolution and how to display colors.

本発明の主要な目的は、周知の技術の薄膜太陽電池がカラーでパターン表示できない問題を解決し、並びに周知の技術の薄膜太陽電池の表示パターン解析度が低い問題を解決し、及び、レーザーのオンオフで溶融を実行することでレーザー寿命が短縮される問題を解決することにある。   The main object of the present invention is to solve the problem that the thin film solar cell of the known technology cannot display the pattern in color, and to solve the problem that the display pattern resolution of the thin film solar cell of the known technology is low, and The object is to solve the problem of shortening the laser lifetime by performing melting on and off.

上述の目的を達成するため、本発明は一種のフルカラー画像薄膜太陽電池を提供し、それは、第1基板、該第1基板の表面に形成された光電変換膜、第2基板、及び該第2基板と該光電変換膜の間に設置された封止樹脂膜及びカラーパターン層を包含する。レーザーにパターンが形成されたマスクを組み合わせ、該光電変換膜に対して溶融を行ない該光電変換膜の表面に貫通領域を形成する。該カラーパターン層はカラー顔料を塗布し且つ該貫通領域に対応するように該第1基板と該第2基板の間に設置され、該第2基板は該封止樹脂膜を介して該第1基板と結合され、並びに光線照射の後に、該封止樹脂膜上のカラーパターン層は該貫通領域を通して現出させられる。   To achieve the above object, the present invention provides a kind of full-color image thin film solar cell, which includes a first substrate, a photoelectric conversion film formed on the surface of the first substrate, a second substrate, and the second substrate. It includes a sealing resin film and a color pattern layer disposed between the substrate and the photoelectric conversion film. A mask on which a pattern is formed is combined with a laser, and the photoelectric conversion film is melted to form a penetrating region on the surface of the photoelectric conversion film. The color pattern layer is applied between the first substrate and the second substrate so as to correspond to the penetrating region by applying a color pigment, and the second substrate is interposed between the first resin layer and the first resin layer through the sealing resin film. After being bonded to the substrate and after light irradiation, the color pattern layer on the sealing resin film is exposed through the through region.

このほか、本発明はフルカラー画像薄膜太陽電池の製作方法を提供し、それは、以下のステップ、すなわち、
S1:第1基板表面に光電変換膜を形成するステップ、
S2:該光電変換膜上にパターンが形成されたマスクを設置するステップ、
S3:光束を該マスクを通して該光電変換膜に照射して該光電変換膜を溶融させ並びに該光電変換膜に貫通領域を形成するステップ、
S4:第2基板と、該第1基板と該第2基板との間に設置する封止樹脂膜を製造するステップ、
S5:カラー顔料を利用して該第1基板と該第2基板の間の該貫通領域に対応する位置に色付けし、並びにカラーパターン層を形成するステップ、
S6:該封止樹脂膜を介して該第1基板と該第2基板を結合し、すなわち、該第1基板の該光電変換膜が接続された一面に、該封止樹脂膜を介して該第2基板と結合固定し、以上で太陽電池を形成するステップ、
以上を包含する。
In addition, the present invention provides a method for making a full color image thin film solar cell, which comprises the following steps:
S1: forming a photoelectric conversion film on the first substrate surface;
S2: installing a mask having a pattern formed on the photoelectric conversion film;
S3: irradiating the photoelectric conversion film with a light beam through the mask to melt the photoelectric conversion film and forming a penetration region in the photoelectric conversion film;
S4: producing a sealing resin film to be installed between the second substrate and the first substrate and the second substrate;
S5: coloring a position corresponding to the penetrating region between the first substrate and the second substrate using a color pigment, and forming a color pattern layer;
S6: The first substrate and the second substrate are bonded through the sealing resin film, that is, the one surface of the first substrate to which the photoelectric conversion film is connected is inserted through the sealing resin film. The step of bonding and fixing to the second substrate to form the solar cell as described above,
Including the above.

上述の説明から分かるように、本発明は以下の特徴を有している。
一.マスクに光束を組み合わせて光電変換膜を溶融させることで、周知の技術における、長期にわたり何度もレーザーのオンオフを繰り返すことでレーザー寿命が短縮されすぐに損壊してしまう問題を回避する。
二.マスクに光束を組み合わせて光電変換膜を溶融させることで、グレースケールパターン表示の目的を達成し、並びに解析度をアップできる。
三.カラーパターン層の形成を組み合わせ、貫通領域を組み合わせることで、薄膜太陽電池にカラー画像表示を行え、薄膜太陽電池の窓への応用の付加価値と芸術性をアップする。
As can be seen from the above description, the present invention has the following features.
one. By combining the light flux with the mask and melting the photoelectric conversion film, a problem in a known technique that the laser life is shortened by repeatedly turning the laser on and off over a long period of time is avoided.
two. By combining the light flux with the mask and melting the photoelectric conversion film, the purpose of gray scale pattern display can be achieved, and the degree of analysis can be improved.
three. By combining the formation of the color pattern layer and the penetrating region, a color image can be displayed on the thin film solar cell, and the added value and artistry of application to the window of the thin film solar cell are improved.

本発明の好ましい実施例のステップフローチャートである。4 is a step flow chart of a preferred embodiment of the present invention. 本発明の好ましい実施例の製造ステップ表示図である。FIG. 4 is a manufacturing step display diagram of a preferred embodiment of the present invention. 本発明の好ましい実施例のレーザーによる溶融表示図である。FIG. 3 is a fusion display diagram of a laser according to a preferred embodiment of the present invention. 本発明の第1実施例の構造分解図である。It is a structure exploded view of the first embodiment of the present invention. 本発明の第2実施例の構造分解図である。It is a structure exploded view of 2nd Example of this invention. 本発明の第3実施例の構造分解図である。It is a structural exploded view of the third embodiment of the present invention.

本発明の技術内容、構造特徴、達成する目的を詳細に説明するため、以下に実施例を挙げ並びに図面を組み合わせて説明する。   In order to describe in detail the technical contents, structural features, and objects to be achieved of the present invention, examples will be described below in combination with the drawings.

図1及び図2に示されるように、本発明は一種のフルカラー画像薄膜太陽電池の製造方法を提供し、それは以下のステップを包含する。   As shown in FIGS. 1 and 2, the present invention provides a method for manufacturing a kind of full-color image thin film solar cell, which includes the following steps.

S1:光電変換膜(20)形成ステップ。このステップにおいて、第1基板(10)の表面に光電変換膜(20)を形成し、さらに説明すると、図2を特に参照されたいが、該光電変換膜(20)は以下のステップにより完成する。   S1: Photoelectric conversion film (20) formation step. In this step, a photoelectric conversion film (20) is formed on the surface of the first substrate (10), and will be further described. With particular reference to FIG. 2, the photoelectric conversion film (20) is completed by the following steps. .

S1A:表面粗化処理ステップ。このステップにおいて、第1基板(10)の表面を粗化処理し、粗化表面を形成し、これにより光線反射の形成する損失を減らし、該第1基板(10)の採光率を増す。
S1B:透明導電層(21)形成ステップ。このステップにおいて、該粗化表面に該透明導電層(21)を形成し、且つその材質は酸化インジウム錫或いは酸化亜鉛ガリウム等とする。
S1C:半導体層(22)形成ステップ。このステップにおいて、該透明導電層(21)の、該第1基板(10)と反対の一側に該半導体層(22)を形成し、該半導体層(22)は、光線を吸収して電気エネルギーに変換するのに用いられ、該半導体層(22)はPIN半導体とされ得て、光線の吸収と電気エネルギーへの変換を行える。
S1D:金属層(23)形成ステップ。このステップにおいて、該半導体層(22)の該透明導電層(21)と反対の一側に該金属層(23)を形成し、該金属層(23)の材質は銀或いはアルミニウム等とされ、該金属層(23)と該透明導電層(21)は、該半導体層(22)が変換した後の電気エネルギーの受け取りと伝導に用いられる。
S1A: Surface roughening treatment step. In this step, the surface of the first substrate (10) is roughened to form a roughened surface, thereby reducing the loss of light reflection and increasing the lighting rate of the first substrate (10).
S1B: Transparent conductive layer (21) formation step. In this step, the transparent conductive layer (21) is formed on the roughened surface, and the material thereof is indium tin oxide or zinc gallium oxide.
S1C: Semiconductor layer (22) formation step. In this step, the semiconductor layer (22) is formed on one side of the transparent conductive layer (21) opposite to the first substrate (10), and the semiconductor layer (22) absorbs light to electrically Used to convert to energy, the semiconductor layer (22) can be a PIN semiconductor that can absorb light and convert to electrical energy.
S1D: Metal layer (23) formation step. In this step, the metal layer (23) is formed on one side of the semiconductor layer (22) opposite to the transparent conductive layer (21), and the material of the metal layer (23) is silver or aluminum, The metal layer (23) and the transparent conductive layer (21) are used for receiving and conducting electric energy after the semiconductor layer (22) is converted.

続いて、図3に示されるように、ステップS1の完成の後、ステップS2が実行される。すなわち、
S2:マスク(30)設置ステップ。このステップにおいて、該光電変換膜(20)上にパターンが形成されたマスク(30)を設置する。
Subsequently, as shown in FIG. 3, after completion of step S1, step S2 is executed. That is,
S2: Mask (30) installation step. In this step, a mask (30) on which a pattern is formed is placed on the photoelectric conversion film (20).

図4を参照されたい。続いてステップS3が実行される。すなわち、
S3:貫通領域(24)の形成ステップ。このステップにおいて、レーザービーム(40)或いはその他の破壊性を有する光束を該マスク(30)を通して該光電変換膜(20)に照射して該光電変換膜(20)を溶融させ、並びに該光電変換膜(20)上に該貫通領域(24)を形成する。説明が必要であることは、該マスク(30)の阻止により、レーザービーム(40)はただ逐一該マスク(30)をスウィープするだけでよく、該マスク(30)上のグレースケールパターン設計により、該マスク(30)を透過した後のレーザービーム(40)の強度を制御でき、これによりグレースケールパターンを有する表示を達成する。このほか、パターン表示の形状の違いに合わせて、溶融させられる面積も異なり、実験により分かったことは、レーザービーム(40)で該光電変換膜(20)の面積の約20%を溶融させると、明らかな透光と光照明の効果を達成でき、溶融前に較べると、本発明はもとの変換効率の90%以上を維持できる。ただし、溶融前に較べると、室内全体の光照度は明らかにアップする。
Please refer to FIG. Subsequently, step S3 is executed. That is,
S3: Step of forming the through region (24). In this step, the photoelectric conversion film (20) is irradiated with a laser beam (40) or other destructive light flux through the mask (30) to melt the photoelectric conversion film (20), and the photoelectric conversion The through region (24) is formed on the membrane (20). What needs to be explained is that by blocking the mask (30), the laser beam (40) only needs to sweep the mask (30) one by one, and by the grayscale pattern design on the mask (30), The intensity of the laser beam (40) after passing through the mask (30) can be controlled, thereby achieving a display having a gray scale pattern. In addition, the area to be melted differs according to the difference in pattern display shape, and it has been found from experiments that about 20% of the area of the photoelectric conversion film (20) is melted by the laser beam (40). The effect of clear light transmission and light illumination can be achieved, and the present invention can maintain 90% or more of the original conversion efficiency as compared with before melting. However, the light intensity of the entire room is clearly increased compared to before melting.

S4:第2基板(50)と封止樹脂膜(60)を製造するステップ。このステップにおいて、該封止樹脂膜(60)は該第1基板(10)と該第2基板(50)の間に設置され、その材質は弾性ゴム或いは熱可塑性樹脂とされ、弾性ゴムはたとえば、エチレン−酢酸ビニル共重合体、流し込みポリウレタン樹脂、シリコーン樹脂等とされ、熱可塑性樹脂は、たとえば熱可塑性ポリウレタン樹脂(Thermoplastic polyurethane,TPU)、ポリ塩化ビニル、酸変性ポリオレフィン等とされる。   S4: A step of manufacturing the second substrate (50) and the sealing resin film (60). In this step, the sealing resin film (60) is placed between the first substrate (10) and the second substrate (50), and the material thereof is an elastic rubber or a thermoplastic resin. , Ethylene-vinyl acetate copolymer, cast polyurethane resin, silicone resin, and the like, and thermoplastic resin such as thermoplastic polyurethane resin (TPU), polyvinyl chloride, acid-modified polyolefin, and the like.

S5:色付けステップ。このステップにおいて、カラー顔料を利用して該第1基板(10)と該第2基板(50)の間の該貫通領域(24)に対応する位置に色付けし、並びにカラーパターン層(70)を形成する。本実施例では、該カラー顔料は、該貫通領域(24)に対応する位置において、該封止樹脂膜(60)に対して色付けして、カラーパターン層(70)を形成する。このほか、図5に示されるように、色付けの位置は、封止樹脂膜(60)の表面に限定されるわけではなく、該カラー顔料で直接貫通領域(24)を有する該光電変換膜(20)の表面に色付けしてもよい。このほか、図6に示されるように、該カラー顔料で、該第2基板(50)に色付けしてもよい。該カラー顔料は、印刷、インクジェット、レーザー或いは手作業による色付けの方式で、該光電変換膜(20)或いは該封止樹脂膜(60)に対して色付けされ、該カラーパターン層(70)が形成される。   S5: Coloring step. In this step, a color pigment is used to color a position corresponding to the through region (24) between the first substrate (10) and the second substrate (50), and a color pattern layer (70) is provided. Form. In this embodiment, the color pigment is colored with respect to the sealing resin film (60) at a position corresponding to the penetrating region (24) to form a color pattern layer (70). In addition, as shown in FIG. 5, the coloring position is not limited to the surface of the sealing resin film (60), but the photoelectric conversion film ( The surface of 20) may be colored. In addition, as shown in FIG. 6, the second substrate (50) may be colored with the color pigment. The color pigment is colored on the photoelectric conversion film (20) or the sealing resin film (60) by printing, ink-jet, laser, or manual coloring method to form the color pattern layer (70). Is done.

S6:結合ステップ。このステップにおいて、該封止樹脂膜(60)を介して該第1基板(10)と該第2基板(50)を結合する。すなわち、該第1基板(10)の該光電変換膜(20)が接続された一面を、該封止樹脂膜(60)を介して該第2基板(50)と結合固定し、以上で太陽電池を形成する。   S6: Joining step. In this step, the first substrate (10) and the second substrate (50) are bonded via the sealing resin film (60). That is, one surface of the first substrate (10) to which the photoelectric conversion film (20) is connected is bonded and fixed to the second substrate (50) through the sealing resin film (60). Form a battery.

本発明はさらに一種のフルカラー画像薄膜太陽電池を開示し、それは、第1基板(10)、該第1基板(10)の表面に形成された光電変換膜(20)、第2基板(50)及び該第2基板(50)と該光電変換膜(20)の間に設置された封止樹脂膜(60)とカラーパターン層(70)を包含する。該光電変換膜(20)は該第1基板(10)と接続された透明導電層(21)、金属層(23)及び該透明導電層(21)と該金属層(23)の間に形成された半導体層(22)を包含する。該封止樹脂膜(60)は弾性ゴム或いは熱可塑性樹脂とされる。該弾性ゴムは、エチレン−酢酸ビニル共重合体、流し込みポリウレタン樹脂、シリコーン樹脂等とされ、熱可塑性樹脂は、たとえば熱可塑性ポリウレタン樹脂(Thermoplastic polyurethane,TPU)、ポリ塩化ビニル、酸変性ポリオレフィン等とされる。   The present invention further discloses a kind of full-color image thin film solar cell, which includes a first substrate (10), a photoelectric conversion film (20) formed on the surface of the first substrate (10), and a second substrate (50). And a sealing resin film (60) and a color pattern layer (70) disposed between the second substrate (50) and the photoelectric conversion film (20). The photoelectric conversion film (20) is formed between the transparent conductive layer (21) connected to the first substrate (10), the metal layer (23), and the transparent conductive layer (21) and the metal layer (23). A patterned semiconductor layer (22). The sealing resin film (60) is made of elastic rubber or thermoplastic resin. The elastic rubber is an ethylene-vinyl acetate copolymer, a cast polyurethane resin, a silicone resin, or the like, and the thermoplastic resin is, for example, a thermoplastic polyurethane resin (TPU), polyvinyl chloride, an acid-modified polyolefin, or the like. The

レーザービーム(40)をパターンを形成したマスク(30)に組み合わせて該光電変換膜(20)に照射して溶融させ、該光電変換膜(20)の表面に貫通領域(24)を形成する。特に説明すべきことは、該カラーパターン層(70)は、カラー顔料で色付けしてなり且つ該貫通領域(24)に対応して該第1基板(10)と該第2基板(50)の間に設置され、図4に示されるようであり、該カラーパターン層(70)は、印刷、インクジェット、レーザー、或いは手作業による色付けの方式で該封止樹脂膜(60)の表面に形成される。このほか、また、図5に示されるように、該カラー顔料を利用して該光電変換膜(20)に対して色付けして、該カラーパターン層(70)を形成してもよい。また、図6の第3の実施例のように、該第2基板(50)に対して色付けして該カラーパターン層(70)を形成してもよい。該第2基板(50)は該封止樹脂膜(60)を介して該第1基板(10)に結合され、並びに光線(80)の照射後、該封止樹脂膜(60)上のカラーパターン層(70)は、該貫通領域(24)を通して現出される。   A laser beam (40) is combined with a patterned mask (30) to irradiate and melt the photoelectric conversion film (20) to form a penetrating region (24) on the surface of the photoelectric conversion film (20). It should be particularly explained that the color pattern layer (70) is colored with a color pigment and corresponds to the through region (24) and is formed on the first substrate (10) and the second substrate (50). As shown in FIG. 4, the color pattern layer (70) is formed on the surface of the sealing resin film (60) by printing, inkjet, laser, or manual coloring method. The In addition, as shown in FIG. 5, the color conversion layer (70) may be formed by coloring the photoelectric conversion film (20) using the color pigment. Further, as in the third embodiment of FIG. 6, the color pattern layer (70) may be formed by coloring the second substrate (50). The second substrate (50) is bonded to the first substrate (10) through the sealing resin film (60), and after irradiation with light rays (80), the color on the sealing resin film (60). The pattern layer (70) is exposed through the through region (24).

総合すると、周知技術と比較して、本発明は以下のような特徴を有している。
一.マスク(30)にレーザービーム(40)を組み合わせて光電変換膜(20)を溶融させることで、周知の技術における、長期にわたり何度もレーザーのオンオフを繰り返すことでレーザー寿命が短縮されすぐに損壊してしまう問題を回避する。
二.マスク(30)に光束を組み合わせて溶融させることで、グレースケールパターン表示の目的を達成し、並びに解析度をアップできる。
三.カラーパターン層(70)により、並びに貫通領域(24)が組み合わされることで、薄膜太陽電池にカラー画像表示を行わせられ、薄膜太陽電池の窓への応用の付加価値と芸術性をアップする。
四.簡単な印刷或いはインクジェットの方式でカラーパターン表示の目的を達成でき、その製造工程は簡易であり、製造に便利で、コストが低い長所を有し、これにより大量製造に適用可能である。
In summary, the present invention has the following characteristics as compared with known techniques.
one. By combining the laser beam (40) with the mask (30) and melting the photoelectric conversion film (20), the laser life is shortened by repeating the laser on and off over a long period of time in a well-known technique, and it is immediately damaged. To avoid the problem.
two. By combining and melting the luminous flux on the mask (30), the purpose of gray scale pattern display can be achieved, and the degree of analysis can be improved.
three. The color pattern layer (70) and the penetrating region (24) are combined to allow the thin film solar cell to display a color image, thereby enhancing the added value and artistry of application to the thin film solar cell window.
Four. The purpose of color pattern display can be achieved by a simple printing or ink jet method, and the manufacturing process is simple, convenient for manufacturing, and has the advantages of low cost, and can be applied to mass production.

(10)第1基板
(20)光電変換膜
(21)透明導電層
(22)半導体層
(23)金属層
(24)貫通領域
(30)マスク
(40)レーザービーム
(50)第2基板
(60)封止樹脂膜
(70)カラーパターン層
(80)光線
(10) first substrate (20) photoelectric conversion film (21) transparent conductive layer (22) semiconductor layer (23) metal layer (24) penetrating region (30) mask (40) laser beam (50) second substrate (60) ) Sealing resin film (70) Color pattern layer (80) Light beam

Claims (9)

フルカラー画像薄膜太陽電池において、
第1基板(10)、
該第1基板(10)の表面に形成された光電変換膜(20)であって、レーザーにパターンを形成したマスク(30)を組み合わせて該光電変換膜(20)に対して溶融が実行されて該光電変換膜(20)の表面に貫通領域(24)が形成された上記光電変換膜(20)、
第2基板(50)であって、該光電変換膜(20)の該第1基板(10)と反対の一側に設置された上記第2基板(50)、
該第2基板(50)と該光電変換膜(20)の間に設置された封止樹脂膜(60)であって、該封止樹脂膜(60)により該光電変換膜(20)が設置された該第1基板(10)と該第2基板(50)が結合される上記封止樹脂膜(60)、
カラーパターン層(70)であって、該第1基板(10)と該第2基板(50)の間に設置され、並びに該貫通領域(24)の位置と形状に対応する上記カラーパターン層(70)、
以上を包含することを特徴とする、フルカラー画像薄膜太陽電池。
In full-color image thin film solar cells,
A first substrate (10),
A photoelectric conversion film (20) formed on the surface of the first substrate (10), wherein a mask (30) in which a pattern is formed on a laser is combined to melt the photoelectric conversion film (20). The photoelectric conversion film (20) having a penetrating region (24) formed on the surface of the photoelectric conversion film (20),
A second substrate (50), the second substrate (50) installed on one side of the photoelectric conversion film (20) opposite to the first substrate (10);
A sealing resin film (60) disposed between the second substrate (50) and the photoelectric conversion film (20), wherein the photoelectric conversion film (20) is disposed by the sealing resin film (60). The sealing resin film (60) to which the first substrate (10) and the second substrate (50) are bonded,
A color pattern layer (70), which is disposed between the first substrate (10) and the second substrate (50), and corresponds to the position and shape of the penetrating region (24) ( 70),
The full color image thin film solar cell characterized by including the above.
請求項1記載のフルカラー画像薄膜太陽電池において、該カラーパターン層(70)は印刷、インクジェット、レーザー或いは手作業による色付けの方式で、該封止樹脂膜(60)の表面に形成されることを特徴とする、フルカラー画像薄膜太陽電池。   The full-color image thin-film solar cell according to claim 1, wherein the color pattern layer (70) is formed on the surface of the sealing resin film (60) by printing, inkjet, laser, or manual coloring. A full color image thin film solar cell, which is characterized. 請求項1記載のフルカラー画像薄膜太陽電池において、該封止樹脂膜(60)は弾性ゴム或いは熱可塑性樹脂とされることを特徴とする、フルカラー画像薄膜太陽電池。   2. The full color image thin film solar cell according to claim 1, wherein the sealing resin film (60) is made of an elastic rubber or a thermoplastic resin. 請求項1記載のフルカラー画像薄膜太陽電池において、該光電変換膜(20)は該第1基板(10)と接続された透明導電層(21)、金属層(23)、及び該透明導電層(21)と該金属層(23)の間に形成された半導体層(22)を包含することを特徴とする、フルカラー画像薄膜太陽電池。   The full color image thin film solar cell according to claim 1, wherein the photoelectric conversion film (20) includes a transparent conductive layer (21) connected to the first substrate (10), a metal layer (23), and the transparent conductive layer ( A full color image thin film solar cell comprising a semiconductor layer (22) formed between 21) and the metal layer (23). フルカラー画像薄膜太陽電池の製造方法において、
S1:第1基板(10)の表面に光電変換膜(20)を形成するステップ、
S2:該光電変換膜(20)上にパターンが形成されたマスク(30)を設置するステップ、
S3:光束を該マスク(30)を組み合わせて該光電変換膜(20)に照射して該光電変換膜(20)を溶融させ並びに該光電変換膜(20)に貫通領域(24)を形成するステップ、
S4:第2基板(50)と、該第1基板(10)と該第2基板(50)との間に設置する封止樹脂膜(60)を製造するステップ、
S5:カラー顔料を利用して該第1基板(10)と該第2基板(50)の間の該貫通領域(24)に対応する位置に色付けしてカラーパターン層(70)を形成するステップ、 S6:該封止樹脂膜(60)を介して該第1基板(10)と該第2基板(50)を結合し、すなわち、該第1基板(10)の該光電変換膜(20)が設けられた一面に、該封止樹脂膜(60)を介して該第2基板(50)を結合固定し、以上で太陽電池を形成するステップ、
以上を包含することを特徴とする、フルカラー画像薄膜太陽電池の製造方法。
In the method for producing a full color image thin film solar cell,
S1: forming a photoelectric conversion film (20) on the surface of the first substrate (10);
S2: installing a mask (30) having a pattern formed on the photoelectric conversion film (20);
S3: Combine the mask (30) with the light beam and irradiate the photoelectric conversion film (20) to melt the photoelectric conversion film (20) and form a through region (24) in the photoelectric conversion film (20). Step,
S4: producing a second substrate (50) and a sealing resin film (60) to be installed between the first substrate (10) and the second substrate (50);
S5: forming a color pattern layer (70) by coloring a position corresponding to the through region (24) between the first substrate (10) and the second substrate (50) using a color pigment. S6: The first substrate (10) and the second substrate (50) are bonded through the sealing resin film (60), that is, the photoelectric conversion film (20) of the first substrate (10). The second substrate (50) is bonded and fixed to the one surface provided with the sealing resin film (60), and a solar cell is formed as described above.
The manufacturing method of the full-color image thin film solar cell characterized by including the above.
請求項5記載のフルカラー画像薄膜太陽電池の製造方法において、ステップS5中、該カラー顔料で、該封止樹脂膜(60)に対して色付けして該カラーパターン層(70)を形成することを特徴とする、フルカラー画像薄膜太陽電池の製造方法。   In the manufacturing method of the full-color image thin-film solar cell according to claim 5, forming the color pattern layer (70) by coloring the sealing resin film (60) with the color pigment in step S5. A method for producing a full-color image thin film solar cell, which is characterized. 請求項5記載のフルカラー画像薄膜太陽電池の製造方法において、ステップS4で製造される該封止樹脂膜(60)は弾性ゴム或いは熱可塑性樹脂とされることを特徴とする、フルカラー画像薄膜太陽電池の製造方法。   6. The full color image thin film solar cell according to claim 5, wherein the sealing resin film (60) produced in step S4 is an elastic rubber or a thermoplastic resin. Manufacturing method. 請求項5記載のフルカラー画像薄膜太陽電池の製造方法において、ステップS5中、該カラー顔料を印刷、インクジェット、レーザー或いは手作業による色付けの方式で色付けすることで該カラーパターン層(70)を形成することを特徴とする、フルカラー画像薄膜太陽電池の製造方法。   6. The method of manufacturing a full color image thin film solar cell according to claim 5, wherein the color pattern layer (70) is formed by coloring the color pigment by a printing, ink jet, laser, or manual coloring method in step S5. A method for producing a full-color image thin-film solar cell. 請求項5記載のフルカラー画像薄膜太陽電池の製造方法において、ステップS1は更に、
S1A:該第1基板(10)の表面を粗化処理し、粗化表面を形成するステップ、
S1B:該粗化表面に透明導電層(21)を形成するステップ、
S1C:該透明導電層(21)の、該第1基板(10)と反対の一側に、光線を吸収して電気エネルギーに変換するための半導体層(22)を形成するステップ、
S1D:該半導体層(22)の該透明導電層(21)と反対の一側に、該半導体層(22)が変換した後の電気エネルギーの受け取りと伝導のために金属層(23)を形成するステップ、
を包含することを特徴とする、フルカラー画像薄膜太陽電池の製造方法。
6. The method of manufacturing a full color image thin film solar cell according to claim 5, wherein step S1 further comprises:
S1A: roughening the surface of the first substrate (10) to form a roughened surface;
S1B: forming a transparent conductive layer (21) on the roughened surface;
S1C: forming a semiconductor layer (22) for absorbing light and converting it into electrical energy on one side of the transparent conductive layer (21) opposite to the first substrate (10);
S1D: A metal layer (23) is formed on one side of the semiconductor layer (22) opposite to the transparent conductive layer (21) for receiving and conducting electric energy after the semiconductor layer (22) is converted. Step to do,
A method for producing a full-color image thin-film solar cell.
JP2012007961A 2011-05-26 2012-01-18 Full-color image thin film solar cell and manufacturing method thereof Expired - Fee Related JP5372184B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100118452 2011-05-26
TW100118452A TW201248888A (en) 2011-05-26 2011-05-26 Full color picture thin-film solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012248824A true JP2012248824A (en) 2012-12-13
JP5372184B2 JP5372184B2 (en) 2013-12-18

Family

ID=47140542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007961A Expired - Fee Related JP5372184B2 (en) 2011-05-26 2012-01-18 Full-color image thin film solar cell and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5372184B2 (en)
KR (1) KR101485490B1 (en)
DE (1) DE102012101073A1 (en)
TW (1) TW201248888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021893A (en) * 2017-07-19 2019-02-07 海力雅集成股▲分▼有限公司 Solar module
CN117080302A (en) * 2023-08-21 2023-11-17 新源劲吾(北京)科技有限公司 Preparation method of full-color photovoltaic module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301537A (en) * 2011-06-23 2013-01-01 Life Renewable Energy Co Ltd Thin film solar cell with hologram

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168357A (en) * 1999-12-08 2001-06-22 Sharp Corp Thin-film solar battery module and method of manufacturing the same
JP2001326373A (en) * 2000-05-15 2001-11-22 Sharp Corp Solar battery module
JP2002319694A (en) * 2001-04-20 2002-10-31 Sharp Corp Solar battery module having light-gathering laminated glass structure and solar battery module having light gathering type double-layered structure
JP2002343998A (en) * 2001-05-21 2002-11-29 Sharp Corp Thin-film solar cell module and panel thereof
US20090133739A1 (en) * 2007-11-07 2009-05-28 Ming-Liang Shiao Photovoltaic Roofing Elements and Roofs Using Them

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287894A (en) * 2006-04-17 2007-11-01 Showa Shell Sekiyu Kk Cis thin-film solar module with pattern display function, and its manufacturing method
KR100951778B1 (en) * 2008-05-28 2010-04-08 연세대학교 산학협력단 Method for patterning thin film by laser printing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168357A (en) * 1999-12-08 2001-06-22 Sharp Corp Thin-film solar battery module and method of manufacturing the same
JP2001326373A (en) * 2000-05-15 2001-11-22 Sharp Corp Solar battery module
JP2002319694A (en) * 2001-04-20 2002-10-31 Sharp Corp Solar battery module having light-gathering laminated glass structure and solar battery module having light gathering type double-layered structure
JP2002343998A (en) * 2001-05-21 2002-11-29 Sharp Corp Thin-film solar cell module and panel thereof
US20090133739A1 (en) * 2007-11-07 2009-05-28 Ming-Liang Shiao Photovoltaic Roofing Elements and Roofs Using Them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021893A (en) * 2017-07-19 2019-02-07 海力雅集成股▲分▼有限公司 Solar module
CN117080302A (en) * 2023-08-21 2023-11-17 新源劲吾(北京)科技有限公司 Preparation method of full-color photovoltaic module
CN117080302B (en) * 2023-08-21 2024-01-16 新源劲吾(北京)科技有限公司 Preparation method of full-color photovoltaic module

Also Published As

Publication number Publication date
TW201248888A (en) 2012-12-01
KR101485490B1 (en) 2015-01-26
KR20120132309A (en) 2012-12-05
DE102012101073A1 (en) 2012-11-29
JP5372184B2 (en) 2013-12-18
TWI445191B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
WO2018129688A1 (en) Color solar energy module and fabrication method therefor
CN205406538U (en) Dual -glass photovoltaic assembly
JP2008085128A (en) Cis based thin film solar cell module and its manufacturing method
CN212323009U (en) Colored photovoltaic module and photovoltaic system
AU2018101583A4 (en) Solar cell module
JP5372184B2 (en) Full-color image thin film solar cell and manufacturing method thereof
CN111164765A (en) Photovoltaic module
TWI587533B (en) Colorful solar power module and manufacturing method thereof
TW201225319A (en) Package structure of solar photovoltaic module and method of manufacturing the same
CN201994317U (en) Arc crystalline silicon dual-glass photovoltaic component
CN206115111U (en) Novel coated glass discolours
WO2009038091A1 (en) Solar battery manufacturing method
CN112331640A (en) Display equipment capable of generating power and manufacturing method thereof
CN202949381U (en) Photovoltaic cell device for photovoltaic solar building integration
WO2014180019A1 (en) Solar module
CN105978444A (en) Building material type photovoltaic component with characteristic of light modulation and photovoltaic system
CN107154443A (en) A kind of solar cell module encapsulating structure
CN102097035B (en) Display module as well as solar cell, electronic book and outdoor billboard employing same
CN109118974A (en) Photovoltaic shows that curtain wall component and photovoltaic show curtain wall system
TWM556910U (en) Coloured solar power module with glassless 3D graph thereof
CN205985023U (en) Photovoltaic assembly
TWM556970U (en) Chromatic solar power module
TW201804724A (en) Glassless 3D graphed coloured solar power module and manufacturing method thereof
CN203377239U (en) Welding strip for crystalline silica solar battery
KR101062700B1 (en) Dye-sensitized solar cell module with double protection of grid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5372184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees