JP2012248569A - Polishing agent and polishing method - Google Patents

Polishing agent and polishing method Download PDF

Info

Publication number
JP2012248569A
JP2012248569A JP2011116882A JP2011116882A JP2012248569A JP 2012248569 A JP2012248569 A JP 2012248569A JP 2011116882 A JP2011116882 A JP 2011116882A JP 2011116882 A JP2011116882 A JP 2011116882A JP 2012248569 A JP2012248569 A JP 2012248569A
Authority
JP
Japan
Prior art keywords
polishing
single crystal
abrasive
crystal substrate
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011116882A
Other languages
Japanese (ja)
Inventor
Iori Yoshida
伊織 吉田
Satoshi Takemiya
聡 竹宮
Hiroyuki Tomonaga
浩之 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011116882A priority Critical patent/JP2012248569A/en
Publication of JP2012248569A publication Critical patent/JP2012248569A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To polish a non-oxide single crystal substrate, such as a silicon carbide single crystal substrate, with high polishing speed, thereby obtaining a high quality surface smooth and excellent in surface characteristics even at an atomic level of a crystal.SOLUTION: A polishing agent for chemically mechanically polishing a non-oxide single crystal substrate contains: an oxidant including transition metal having an oxidation reduction potential of 0.5 V or greater; a cerium oxide particle having an average secondary particle size of 0.5 μm or less; and a dispersion medium. In the polishing agent of the present invention, the oxidant is preferably a permanganate ion. The polishing agent has preferably a pH of 11 or less.

Description

本発明は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤および研磨方法に関する。より詳しくは、炭化ケイ素単結晶基板等の仕上げ研磨に適した研磨剤、およびそれを用いた研磨方法に関する。   The present invention relates to an abrasive and a polishing method for chemically and mechanically polishing a non-oxide single crystal substrate. More specifically, the present invention relates to an abrasive suitable for finish polishing of a silicon carbide single crystal substrate or the like, and a polishing method using the same.

炭化ケイ素(SiC)半導体は、シリコン半導体よりも絶縁破壊電界、電子の飽和ドリフト速度および熱伝導率が大きいため、炭化ケイ素半導体を用いて、従来のシリコンデバイスよりも高温、高速で動作が可能なパワーデバイスを実現する研究・開発がなされている。なかでも、電動二輪車、電気自動車やハイブリッドカー等のモータを駆動するための電源に使用する高効率なスイッチング素子の開発が注目されている。このようなパワーデバイスを実現するためには、高品質な炭化ケイ素半導体層をエピタキシャル成長させるための表面平滑な炭化ケイ素単結晶基板が必要である。   Silicon carbide (SiC) semiconductors have a higher breakdown electric field, electron saturation drift velocity, and thermal conductivity than silicon semiconductors, so silicon carbide semiconductors can be operated at higher temperatures and higher speeds than conventional silicon devices. Research and development to realize power devices has been conducted. In particular, the development of a highly efficient switching element used as a power source for driving a motor of an electric motorcycle, an electric vehicle, a hybrid car or the like has attracted attention. In order to realize such a power device, a silicon carbide single crystal substrate having a smooth surface for epitaxial growth of a high-quality silicon carbide semiconductor layer is required.

また、高密度で情報を記録するための光源として、青色レーザダイオードが注目されており、さらに、蛍光灯や電球に替わる光源としての白色ダイオードへのニーズが高まっている。このような発光素子は窒化ガリウム(GaN)半導体を用いて作製され、高品質な窒化ガリウム半導体層を形成するための基板として、炭化ケイ素単結晶基板が使用されている。   Also, blue laser diodes are attracting attention as light sources for recording information at high density, and there is an increasing need for white diodes as light sources that replace fluorescent lamps and light bulbs. Such a light-emitting element is manufactured using a gallium nitride (GaN) semiconductor, and a silicon carbide single crystal substrate is used as a substrate for forming a high-quality gallium nitride semiconductor layer.

こうした用途のための炭化ケイ素単結晶基板には、基板の平坦度、基板表面の平滑性等において高い加工精度が要求される。しかし、炭化ケイ素単結晶は硬度が極めて高く、かつ耐腐食性に優れるため、基板を作製する場合の加工性が悪く、平滑性の高い炭化ケイ素単結晶基板を得ることは難しい。   A silicon carbide single crystal substrate for such applications requires high processing accuracy in terms of the flatness of the substrate, the smoothness of the substrate surface, and the like. However, since the silicon carbide single crystal has extremely high hardness and excellent corrosion resistance, the workability in producing a substrate is poor, and it is difficult to obtain a silicon carbide single crystal substrate having high smoothness.

一般に、半導体単結晶基板の平滑な面は研磨によって形成される。炭化ケイ素単結晶を研磨する場合、炭化ケイ素よりも硬いダイヤモンド等の砥粒を研磨材として表面を機械的に研磨し、平坦な面を形成するが、ダイヤモンド砥粒で研磨した炭化ケイ素単結晶基板の表面には、ダイヤモンド砥粒の粒径に応じた微小なスクラッチが導入される。また、機械的な歪みを有する加工変質層が表面に生じるため、そのままでは炭化ケイ素単結晶基板の表面の平滑性が十分ではない。   In general, a smooth surface of a semiconductor single crystal substrate is formed by polishing. When polishing a silicon carbide single crystal, the surface is mechanically polished using abrasive grains such as diamond harder than silicon carbide as an abrasive to form a flat surface, but a silicon carbide single crystal substrate polished with diamond abrasive grains A minute scratch corresponding to the grain size of the diamond abrasive grains is introduced on the surface of the. In addition, since a work-affected layer having mechanical strain is generated on the surface, the smoothness of the surface of the silicon carbide single crystal substrate is not sufficient as it is.

半導体単結晶基板の製造では、機械研磨後の半導体基板の表面を平滑にする方法として、化学的機械的研磨(Chemical Mechanical Polishing:以下、CMPということがある。)技術が用いられる。CMPは、酸化等の化学反応を利用して被加工物を酸化物等に変え、生成した酸化物を、被加工物よりも硬度の低い砥粒を用いて除去することにより、表面を研磨する方法である。この方法は、被加工物の表面に歪みを生じさせることなく、極めて平滑な面を形成できるという利点を有する。   In the manufacture of a semiconductor single crystal substrate, a chemical mechanical polishing (hereinafter sometimes referred to as CMP) technique is used as a method of smoothing the surface of a semiconductor substrate after mechanical polishing. CMP uses a chemical reaction such as oxidation to convert a workpiece into an oxide or the like, and polishes the surface by removing the generated oxide using abrasive grains having a hardness lower than that of the workpiece. Is the method. This method has the advantage that an extremely smooth surface can be formed without causing distortion on the surface of the workpiece.

従来から、炭化ケイ素単結晶基板の表面をCMPにより平滑に研磨するための研磨剤として、コロイダルシリカを含有するpH4〜9の研磨用組成物が知られている(例えば、特許文献1参照)。また、シリカ砥粒と過酸化水素のような酸化剤(酸素供与剤)とバナジン酸塩とを含む研磨用組成物も提案されている(例えば、特許文献2参照)。   Conventionally, a polishing composition having a pH of 4 to 9 containing colloidal silica is known as an abrasive for smoothly polishing the surface of a silicon carbide single crystal substrate by CMP (see, for example, Patent Document 1). A polishing composition containing silica abrasive grains, an oxidizing agent (oxygen donor) such as hydrogen peroxide, and a vanadate has also been proposed (see, for example, Patent Document 2).

しかしながら、特許文献1の研磨用組成物による炭化ケイ素単結晶基板の研磨速度は低く、研磨に要する時間が非常に長くなるというという問題があった。
また、特許文献2の研磨用組成物を使用した場合も、研磨速度が十分でなく、研磨に時間がかかるという問題があった。さらに、特許文献2の研磨用組成物を使用した場合には、研磨後の炭化ケイ素単結晶基板の表面性状を顕微鏡で観察すると、結晶の原子ステップのフロント部に凹凸やえぐれなどのダメージが見られるという問題があった。さらに、酸化性の研磨液の存在下において、酸化ケイ素(シリカ)および酸化セリウム(セリア)砥粒を用いて炭化ケイ素単結晶基板等の表面を平滑に研磨する方法が提案されている(例えば、非特許文献1参照)。しかしながら、非特許文献1に記載された方法では、粒子径の非常に大きな砥粒による強い機械的作用により、表面に傷や歪み等のダメージが入るという問題があった。
However, there has been a problem that the polishing rate of the silicon carbide single crystal substrate by the polishing composition of Patent Document 1 is low and the time required for polishing becomes very long.
In addition, when the polishing composition of Patent Document 2 is used, there is a problem that the polishing rate is not sufficient and the polishing takes time. Furthermore, when the polishing composition of Patent Document 2 is used, when the surface properties of the polished silicon carbide single crystal substrate are observed with a microscope, damage such as irregularities and burrows is observed at the front part of the atomic step of the crystal. There was a problem of being. Furthermore, a method of smoothly polishing the surface of a silicon carbide single crystal substrate or the like using silicon oxide (silica) and cerium oxide (ceria) abrasive grains in the presence of an oxidizing polishing liquid has been proposed (for example, Non-patent document 1). However, the method described in Non-Patent Document 1 has a problem that damage such as scratches and distortions is caused on the surface due to the strong mechanical action of the abrasive grains having a very large particle diameter.

特開2005−117027号公報Japanese Patent Laid-Open No. 2005-117027 特開2008−179655号公報JP 2008-179655 A

砥粒加工学会誌Vol.53 No.7 2009 7月 417-420Abrasives Processing Journal Vol.53 No.7 2009 Jul 417-420

本発明は、このような問題を解決するためになされたもので、炭化ケイ素単結晶基板等の硬度が高く化学的安定性が高い非酸化物単結晶基板を、高い研磨速度で研磨し、平滑で結晶の原子レベルにおいても表面性状に優れた高品質な表面を得るための研磨剤、および研磨方法を提供することを目的とする。   The present invention has been made to solve such problems. A non-oxide single crystal substrate having a high hardness and high chemical stability, such as a silicon carbide single crystal substrate, is polished at a high polishing rate and smoothed. An object of the present invention is to provide a polishing agent and a polishing method for obtaining a high-quality surface excellent in surface properties even at the atomic level of crystals.

本発明の研磨剤は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、酸化還元電位が0.5V以上の遷移金属を含む酸化剤と、平均2次粒子径が0.5μm以下の酸化セリウム粒子と、分散媒とを含有することを特徴とする。   The polishing agent of the present invention is a polishing agent for chemically and mechanically polishing a non-oxide single crystal substrate, and includes an oxidizing agent containing a transition metal having a redox potential of 0.5 V or more, and average secondary particles. It contains cerium oxide particles having a diameter of 0.5 μm or less and a dispersion medium.

本発明の研磨剤において、前記酸化剤は、過マンガン酸イオンであることが好ましい。そして、前記過マンガン酸イオンの含有量は0.015質量%以上5質量%以下であることが好ましい。また、前記酸化セリウム粒子の平均2次粒子径は、0.2μm以下であることが好ましい。そして、前記酸化セリウム粒子の含有量は、0.01質量%以上10質量%以下であることが好ましい。   In the polishing agent of the present invention, the oxidizing agent is preferably a permanganate ion. And it is preferable that content of the said permanganate ion is 0.015 mass% or more and 5 mass% or less. Moreover, it is preferable that the average secondary particle diameter of the said cerium oxide particle is 0.2 micrometer or less. And it is preferable that content of the said cerium oxide particle is 0.01 mass% or more and 10 mass% or less.

さらに、本発明の研磨剤は、pHが11以下であることが好ましく、5以下であることがより好ましい。またさらに、前記非酸化物単結晶基板は、炭化ケイ素単結晶基板または窒化ガリウム単結晶基板とすることができる。   Furthermore, the abrasive of the present invention has a pH of preferably 11 or less, and more preferably 5 or less. Furthermore, the non-oxide single crystal substrate can be a silicon carbide single crystal substrate or a gallium nitride single crystal substrate.

本発明の研磨剤方法は、研磨剤を研磨パッドに供給し、研磨対象物である非酸化物単結晶基板の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する方法であって、前記研磨剤として前記本発明の研磨剤を使用することを特徴とする。   In the polishing method of the present invention, a polishing agent is supplied to a polishing pad, the surface to be polished of a non-oxide single crystal substrate that is an object to be polished is brought into contact with the polishing pad, and polishing is performed by relative movement between the two. In the method, the abrasive according to the present invention is used as the abrasive.

本発明の研磨剤およびこれを用いた研磨方法によれば、炭化ケイ素単結晶基板や窒化ガリウム単結晶基板のような硬度が高く化学的安定性が高い非酸化物単結晶基板の被研磨面を、高い研磨速度で研磨することができ、平坦かつ平滑で原子レベルにおいても表面性状に優れた被研磨面が得られる。
なお、本発明において、「被研磨面」とは研磨対象物の研磨される面であり、例えば表面を意味する。
According to the polishing agent of the present invention and the polishing method using the same, the surface to be polished of a non-oxide single crystal substrate having high hardness and high chemical stability such as a silicon carbide single crystal substrate or a gallium nitride single crystal substrate can be obtained. The surface to be polished can be polished at a high polishing rate, and the surface to be polished is flat and smooth and excellent in surface properties even at the atomic level.
In the present invention, the “surface to be polished” is a surface to be polished of an object to be polished, such as a surface.

本発明の研磨方法の実施形態に使用可能な研磨装置の一例を示す図である。It is a figure which shows an example of the grinding | polishing apparatus which can be used for embodiment of the grinding | polishing method of this invention. 研磨後の基板における結晶原子レベルの表面性状を模式的に示す平面図である。It is a top view which shows typically the surface property of the crystal atom level in the board | substrate after grinding | polishing.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

[研磨剤]
本発明の研磨剤は、非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、酸化還元電位が0.5V以上の遷移金属を含む酸化剤と、砥粒である平均2次粒子径が0.5μm以下の酸化セリウム粒子と、分散媒とを含有し、スラリーの形状を有する。
[Abrasive]
The abrasive of the present invention is an abrasive for chemically and mechanically polishing a non-oxide single crystal substrate, and is an oxidizer containing a transition metal having a redox potential of 0.5 V or more, and abrasive grains. It contains cerium oxide particles having an average secondary particle size of 0.5 μm or less and a dispersion medium, and has a slurry shape.

本発明の研磨剤は、酸化還元電位が0.5V以上の遷移金属を含む酸化剤と、平均2次粒子径が0.5μm以下の酸化セリウム粒子を含有しているので、SiC単結晶基板のような硬度が高く化学的安定性が高い研磨対象物の被研磨面を、高い研磨速度で研磨でき、平坦かつ平滑で結晶の原子レベルでの表面性状に優れた表面が得られる。   The abrasive of the present invention contains an oxidant containing a transition metal having a redox potential of 0.5 V or more and cerium oxide particles having an average secondary particle diameter of 0.5 μm or less. Such a polished surface of an object to be polished having high hardness and high chemical stability can be polished at a high polishing rate, and a surface that is flat and smooth and excellent in surface properties at the atomic level of crystals can be obtained.

なお、本発明の研磨剤はpHを11以下とすることが好ましい。pHを11以下に調整するために、pH調整剤を添加できる。研磨剤のpHを11以下とした場合には、酸化剤が効果的に作用するため研磨特性が良好であり、かつ砥粒である酸化セリウム粒子の分散安定性にも優れている。以下、本発明の研磨剤の各成分およびpHについて詳述する。   In addition, it is preferable that pH of the abrasive | polishing agent of this invention shall be 11 or less. In order to adjust the pH to 11 or less, a pH adjuster can be added. When the pH of the abrasive is 11 or less, the oxidizing agent acts effectively so that the polishing characteristics are good and the dispersion stability of the cerium oxide particles as the abrasive grains is also excellent. Hereinafter, each component and pH of the abrasive | polishing agent of this invention are explained in full detail.

(酸化剤)
本発明の研磨剤に含有される酸化剤は、後述する研磨対象物(例えば、SiC単結晶基板やGaN単結晶基板)の被研磨面に酸化層を形成するものである。この酸化層を機械的な力で被研磨面から除去することにより、研磨対象物の研磨が促進される。すなわち、SiCやGaN等の化合物半導体は非酸化物であり、難研磨材料であるが、研磨剤中の酸化剤により表面に酸化層を形成できる。形成された酸化層は、研磨対象物に比べて硬度が低く研磨されやすいので、砥粒である酸化セリウム粒子により効果的に除去できる。その結果、高い研磨速度が発現する。
(Oxidant)
The oxidizing agent contained in the polishing agent of the present invention is to form an oxide layer on the surface to be polished of an object to be described later (for example, a SiC single crystal substrate or a GaN single crystal substrate). By removing this oxide layer from the surface to be polished by mechanical force, polishing of the object to be polished is promoted. That is, compound semiconductors such as SiC and GaN are non-oxides and are difficult to polish, but an oxide layer can be formed on the surface by an oxidizing agent in the polishing agent. Since the formed oxide layer has a lower hardness than the object to be polished and is easily polished, it can be effectively removed by cerium oxide particles that are abrasive grains. As a result, a high polishing rate appears.

本発明の研磨剤に含有される酸化剤は、酸化還元電位が0.5V以上の遷移金属を含むものである。酸化還元電位が0.5V以上の遷移金属を含む酸化剤としては、例えば、過マンガン酸イオン、バナジン酸イオン、二クロム酸イオン、硝酸セリウムアンモニウム、硝酸鉄(III)九水和物、硝酸銀、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、リンタングストモリブデン酸、リンバナドモリブデン酸等を挙げることができ、特に過マンガン酸イオンが好ましい。過マンガン酸イオンの供給源としては、過マンガン酸カリウムや過マンガン酸ナトリウム等の過マンガン酸塩が好ましい。   The oxidizing agent contained in the abrasive of the present invention contains a transition metal having a redox potential of 0.5 V or more. Examples of the oxidizing agent containing a transition metal having a redox potential of 0.5 V or more include permanganate ion, vanadate ion, dichromate ion, cerium ammonium nitrate, iron (III) nitrate nonahydrate, silver nitrate, Examples thereof include phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, phosphotungstomolybdic acid, and phosphovanadomolybdic acid. Permanganate ions are particularly preferred. As a source of permanganate ions, permanganate such as potassium permanganate and sodium permanganate is preferable.

SiC単結晶基板の研磨における酸化剤として、過マンガン酸イオンが特に好ましい理由を以下に示す。
(1)過マンガン酸イオンは、SiC単結晶を酸化する酸化力が強い。
酸化剤の酸化力が弱すぎると、SiC単結晶基板の被研磨面との反応が不十分となり、その結果十分に平滑な表面を得られない。酸化剤が物質を酸化する酸化力の指標として、酸化還元電位が用いられる。過マンガン酸イオンの酸化還元電位は1.70Vであり、酸化剤として一般に用いられる過塩素酸カリウム(KClO)(酸化還元電位1.20V)や次亜塩素酸ナトリウム(NaClO)(酸化還元電位1.63V)に比べて、酸化還元電位が高い。
(2)過マンガン酸イオンは反応速度が大きい。
過マンガン酸イオンは、酸化力の強い酸化剤として知られている過酸化水素(酸化還元電位1.76V)に比べて、酸化反応の反応速度が大きいので、酸化力の強さを速やかに発揮することができる。
(3)過マンガン酸イオンは、環境負荷が小さい。
(4)過マンガン酸塩は、後述する分散媒(水)に完全に溶解する。したがって、溶解残渣が基板の平滑性に悪影響を与えることがない。
The reason why permanganate ions are particularly preferable as an oxidizing agent in polishing a SiC single crystal substrate is shown below.
(1) Permanganate ions have strong oxidizing power to oxidize SiC single crystals.
If the oxidizing power of the oxidizing agent is too weak, the reaction with the polished surface of the SiC single crystal substrate becomes insufficient, and as a result, a sufficiently smooth surface cannot be obtained. An oxidation-reduction potential is used as an index of the oxidizing power with which an oxidizing agent oxidizes a substance. The redox potential of permanganate ions is 1.70 V, and potassium perchlorate (KClO 4 ) (redox potential 1.20 V) or sodium hypochlorite (NaClO) (redox potential) generally used as an oxidizing agent. Compared with 1.63 V), the redox potential is high.
(2) Permanganate ion has a high reaction rate.
Since permanganate ions have a higher oxidation reaction rate than hydrogen peroxide (oxidation-reduction potential: 1.76 V), which is known as an oxidizing agent with a strong oxidizing power, the oxidizing power is exerted quickly. can do.
(3) Permanganate ions have a low environmental impact.
(4) The permanganate is completely dissolved in the dispersion medium (water) described later. Therefore, the dissolution residue does not adversely affect the smoothness of the substrate.

研磨速度向上の効果を得るために、研磨剤中の過マンガン酸イオンの含有割合(濃度)は、0.015質量%以上5質量%以下が好ましい。0.015質量%未満では、酸化剤としての効果が期待できず、研磨により平滑な面を形成するのに非常に長時間を要したり、あるいは被研磨面にスクラッチが発生するおそれがある。過マンガン酸イオンの含有割合が5質量%を超えると、研磨液の温度によっては、過マンガン酸塩が完全に溶解しきれずに析出し、固体の過マンガン酸塩が被研磨面と接触することによりスクラッチが発生するおそれがある。研磨剤に含まれる過マンガン酸イオンの含有割合は、0.02質量%以上4質量%以下がさらに好ましく、0.05質量%以上3質量%以下が特に好ましい。   In order to obtain the effect of improving the polishing rate, the content (concentration) of permanganate ions in the abrasive is preferably 0.015% by mass or more and 5% by mass or less. If it is less than 0.015% by mass, the effect as an oxidizing agent cannot be expected, and it may take a very long time to form a smooth surface by polishing, or scratches may occur on the surface to be polished. When the content of permanganate ions exceeds 5% by mass, depending on the temperature of the polishing liquid, the permanganate may not be completely dissolved and precipitates, and the solid permanganate comes into contact with the surface to be polished. May cause scratches. The content of permanganate ions contained in the abrasive is more preferably 0.02% by mass to 4% by mass, and particularly preferably 0.05% by mass to 3% by mass.

(研磨砥粒)
本発明の研磨剤に含有される砥粒である平均2次粒子径0.5μm以下の酸化セリウム(セリア)粒子は、前記酸化剤により被研磨面に形成される酸化層を除去するものである。この酸化層を化学的および機械的作用により研磨することで、研磨が促進される。また、平均2次粒子径0.5μm以下の粒子を使用することで、被研磨面への機械的なダメージによるスクラッチ等を低減できる。酸化セリウム粒子の平均2次粒子径は、0.2μm以下がより好ましい。
(Abrasive grains)
The cerium oxide (ceria) particles having an average secondary particle diameter of 0.5 μm or less, which are abrasive grains contained in the abrasive of the present invention, remove an oxide layer formed on the surface to be polished by the oxidant. . Polishing is promoted by polishing this oxide layer by chemical and mechanical action. Further, by using particles having an average secondary particle diameter of 0.5 μm or less, scratches due to mechanical damage to the surface to be polished can be reduced. The average secondary particle diameter of the cerium oxide particles is more preferably 0.2 μm or less.

SiC単結晶基板の研磨において、前記した酸化剤とともに酸化セリウム粒子を使用した場合には、シリカ砥粒を使用した場合と比べて、化学的および機械的作用により研磨速度が高くなり、かつ表面粗さが小さくて平滑な表面が得られる。酸化セリウム粒子が特に好ましい理由は定かではないが、酸化セリウム粒子は、ガラスやCVD(Chemical Vapor Deposition)製膜法による酸化ケイ素膜に対し、化学的な反応を介することで高い研磨速度を示すことが知られている。SiC単結晶基板では、前記酸化剤により被研磨面にケイ素と酸素からなる酸化層が形成されることが予想されるため、ガラスやCVD製膜法による酸化ケイ素膜と同様に、酸化セリウム粒子と形成された酸化層との間で化学的な反応が起きることが考えられ、この反応により研磨促進効果が期待されるという利点がある。   In the polishing of the SiC single crystal substrate, when the cerium oxide particles are used together with the above-described oxidizing agent, the polishing rate is increased due to chemical and mechanical action and the surface roughness is higher than when the silica abrasive grains are used. A smooth and smooth surface can be obtained. The reason why cerium oxide particles are particularly preferred is not clear, but cerium oxide particles exhibit a high polishing rate through a chemical reaction with respect to silicon oxide films formed by glass or CVD (Chemical Vapor Deposition). It has been known. In the SiC single crystal substrate, an oxide layer composed of silicon and oxygen is expected to be formed on the surface to be polished by the oxidizing agent, so that the cerium oxide particles and the silicon oxide film by the glass or CVD film forming method are used. It is conceivable that a chemical reaction occurs with the formed oxide layer, and this reaction has an advantage that a polishing promoting effect is expected.

また、砥粒として、前記平均2次粒子径の範囲を超える酸化セリウム粒子を使用した場合には、SiC単結晶基板の被研磨面に与えるダメージが大きく、平滑で高品質な表面が得られない。すなわち、平均2次粒子径が0.5μmを超える酸化セリウム粒子を含む研磨剤を用いて研磨した場合には、研磨後のSiC単結晶基板の結晶原子のステップラインに湾曲や歪み等の、過度な機械的作用によるダメージが見られる。したがって、研磨後の表面にエピタキシャル成長させて形成された炭化ケイ素半導体等の膜に、結晶欠陥等が生じるおそれがある。   Further, when cerium oxide particles exceeding the range of the average secondary particle diameter are used as the abrasive grains, damage to the polished surface of the SiC single crystal substrate is large, and a smooth and high-quality surface cannot be obtained. . That is, when polishing is performed using an abrasive containing cerium oxide particles having an average secondary particle diameter of more than 0.5 μm, the step line of crystal atoms of the polished SiC single crystal substrate may be excessively curved or distorted. Damage due to mechanical action. Therefore, there is a possibility that crystal defects or the like may occur in a film such as a silicon carbide semiconductor formed by epitaxial growth on the polished surface.

なお、砥粒として含有される酸化セリウム粒子は、通常は研磨剤中で1次粒子が凝集した凝集粒子(2次粒子)として存在しているので、酸化セリウム粒子の好ましい粒子径を、平均2次粒子径(平均凝集粒径)で表すものとする。平均2次粒子径は、研磨剤中の酸化セリウム粒子を、例えば動的光散乱を用いた粒度分布計を用いて測定して得られる。   In addition, since the cerium oxide particles contained as abrasive grains are usually present as aggregated particles (secondary particles) in which primary particles are aggregated in an abrasive, the average particle diameter of cerium oxide particles is preferably 2 It shall represent with the next particle diameter (average aggregate particle diameter). The average secondary particle diameter is obtained by measuring the cerium oxide particles in the abrasive using, for example, a particle size distribution meter using dynamic light scattering.

本発明の研磨剤中の酸化セリウム粒子の含有割合(濃度)は、十分な研磨速度を得るために、0.01質量%以上10.0質量%以下とすることが好ましい。酸化セリウム粒子の含有割合が0.01質量%未満では、十分な研磨速度を得ることが難しく、10.0%質量%を超えると分散性が低下により、研磨面でスクラッチが発生するおそれがある。また、スラリーコストが上昇する問題がある。より好ましい含有割合は0.02〜5.0質量%であり、さらに好ましい含有割合は0.03〜2.0質量%である。   The content ratio (concentration) of the cerium oxide particles in the abrasive of the present invention is preferably 0.01% by mass or more and 10.0% by mass or less in order to obtain a sufficient polishing rate. When the content ratio of the cerium oxide particles is less than 0.01% by mass, it is difficult to obtain a sufficient polishing rate, and when it exceeds 10.0% by mass, the dispersibility is lowered and scratches may occur on the polished surface. . Moreover, there is a problem that the slurry cost increases. A more preferable content rate is 0.02-5.0 mass%, and a more preferable content rate is 0.03-2.0 mass%.

(pHおよびpH調整剤)
本発明に係る研磨剤のpHは、研磨特性および砥粒である酸化セリウム粒子の分散安定性の点から、11以下が好ましく、5以下がより好ましく、3以下が特に好ましい。pHが11以上では、酸化セリウム粒子の分散性の低下により、被研磨面の平滑性が悪化するおそれがある。
(PH and pH adjuster)
The pH of the abrasive according to the present invention is preferably 11 or less, more preferably 5 or less, and particularly preferably 3 or less, from the viewpoint of polishing characteristics and dispersion stability of cerium oxide particles as abrasive grains. When the pH is 11 or more, the smoothness of the surface to be polished may be deteriorated due to a decrease in dispersibility of the cerium oxide particles.

本発明の研磨剤のpHは、pH調整剤である酸または塩基性化合物の添加・配合により調整することができる。酸としては、硝酸、硫酸、リン酸、塩酸のような無機酸、ギ酸、酢酸、プロピオン酸、酪酸等の飽和カルボン酸、乳酸、リンゴ酸、クエン酸等のヒドロキシ酸、フタル酸、サリチル酸等の芳香族カルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等のジカルボン酸、アミノ酸、複素環系のカルボン酸のような有機酸を使用できる。硝酸およびリン酸の使用が好ましく、中でも硝酸の使用が特に好ましい。塩基性化合物としては、アンモニア、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、テトラメチルアンモニウム等の4級アンモニウム化合物、モノエタノールアミン、エチルエタノールアミン、ジエタノールアミン、プロピレンジアミン等の有機アミンを使用できる。水酸化カリウム、水酸化ナトリウムの使用が好ましく、中でも水酸化カリウムが特に好ましい。   The pH of the abrasive of the present invention can be adjusted by adding or blending an acid or basic compound that is a pH adjuster. Examples of acids include inorganic acids such as nitric acid, sulfuric acid, phosphoric acid and hydrochloric acid, saturated carboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid, hydroxy acids such as lactic acid, malic acid and citric acid, phthalic acid and salicylic acid. Organic acids such as aromatic carboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and other dicarboxylic acids, amino acids, and heterocyclic carboxylic acids can be used. The use of nitric acid and phosphoric acid is preferred, and the use of nitric acid is particularly preferred. As the basic compound, quaternary ammonium compounds such as ammonia, lithium hydroxide, potassium hydroxide, sodium hydroxide and tetramethylammonium, and organic amines such as monoethanolamine, ethylethanolamine, diethanolamine and propylenediamine can be used. Use of potassium hydroxide and sodium hydroxide is preferable, and potassium hydroxide is particularly preferable.

これらの酸または塩基性化合物の含有割合(濃度)は、研磨剤のpHを所定の範囲(pH11以下、より好ましくは5以下)に調整する量とする。   The content ratio (concentration) of these acids or basic compounds is an amount that adjusts the pH of the abrasive to a predetermined range (pH 11 or less, more preferably 5 or less).

(分散媒)
本発明の研磨剤においては、分散媒として水が含有される。水は、酸化セリウム粒子を安定に分散させるとともに、酸化剤および必要に応じて添加される後述する任意成分を分散・溶解するための媒体である。水については、特に制限はないが、配合成分に対する影響、不純物の混入、pH等への影響の観点から、純水、超純水、イオン交換水(脱イオン水)が好ましい。
(Dispersion medium)
In the abrasive | polishing agent of this invention, water contains as a dispersion medium. Water is a medium for stably dispersing cerium oxide particles and dispersing / dissolving an oxidizing agent and optional components to be added as necessary. Although there is no restriction | limiting in particular about water, From a viewpoint of the influence with respect to a mixing | blending component, mixing of an impurity, pH, etc., pure water, ultrapure water, and ion-exchange water (deionized water) are preferable.

(研磨剤の調製および任意成分)
本発明の研磨剤は、前記した成分が前記所定の割合で含有され、酸化セリウム粒子については均一に分散し、それ以外の成分については均一に溶解した混合状態になるように調製され使用される。混合には、研磨剤の製造に通常用いられる撹拌混合方法、例えば、超音波分散機、ホモジナイザー等による撹拌混合方法を採れる。本発明に係る研磨剤は、必ずしも予め構成する研磨成分をすべて混合したものとして研磨の場に供給する必要はない。研磨の場に供給する際に、研磨成分が混合されて研磨剤の組成になってもよい。
(Preparation of abrasive and optional components)
The abrasive of the present invention is prepared and used so that the above-described components are contained in the predetermined ratio, the cerium oxide particles are uniformly dispersed, and the other components are uniformly dissolved. . For mixing, a stirring and mixing method usually used in the production of abrasives, for example, a stirring and mixing method using an ultrasonic disperser, a homogenizer or the like can be employed. The abrasive according to the present invention does not necessarily have to be supplied to the polishing site as a mixture of all of the pre-configured polishing components. When supplying to the place of grinding | polishing, a grinding | polishing component may be mixed and it may become a composition of an abrasive | polishing agent.

本発明の研磨剤には、本発明の趣旨に反しない限り、凝集防止剤または分散剤、潤滑剤、キレート化剤、還元剤、粘性付与剤または粘度調節剤、防錆剤等を必要に応じて適宜含有させることができる。ただし、これらの添加剤が、酸化剤、酸または塩基性化合物の機能を有する場合は、酸化剤、酸または塩基性化合物として扱うものとする。   The abrasive of the present invention may contain an anti-aggregation agent or dispersant, a lubricant, a chelating agent, a reducing agent, a viscosity-imparting agent or a viscosity modifier, a rust inhibitor, etc. Can be appropriately contained. However, when these additives have the function of an oxidizing agent, an acid, or a basic compound, they are handled as an oxidizing agent, an acid, or a basic compound.

分散剤とは、砥粒である酸化セリウム粒子を純水等の分散媒中に安定的に分散させるために添加するものである。また、潤滑剤は、研磨対象物との間に生じる研磨応力を適度に調整し、安定した研磨を可能とする。分散剤および潤滑剤としては、アニオン性、カチオン性、ノニオン性、両性の界面活性剤、多糖類、水溶性高分子等を使用できる。界面活性剤としては、疎水基として脂肪族炭化水素基、芳香族炭化水素基を有し、またそれら疎水基内にエステル、エーテル、アミド等の結合基、アシル基、アルコキシル基等の連結基を1つ以上導入したもの、親水基として、カルボン酸、スルホン酸、硫酸エステル、リン酸、リン酸エステル、アミノ酸からなるものを使用できる。多糖類としては、アルギン酸、ペクチン、カルボキシメチルセルロース、カードラン、プルラン、キサンタンガム、カラギナン、ジェランガム、ローカストビーンガム、アラビアガム、タマリンド、サイリウム等を使用できる。水溶性高分子としては、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリメタクリル酸、ポリアクリルアミド、ポリアスパラギン酸、ポリグルタミン酸、ポリエチレンイミン、ポリアリルアミン、ポリスチレンスルホン酸等を使用できる。分散剤および潤滑剤を使用する場合、その含有割合は、研磨剤の全質量に対して0.001〜5質量%の範囲とすることが好ましい。   The dispersant is added to stably disperse cerium oxide particles as abrasive grains in a dispersion medium such as pure water. In addition, the lubricant appropriately adjusts the polishing stress generated between the object to be polished and enables stable polishing. As the dispersant and lubricant, anionic, cationic, nonionic, amphoteric surfactants, polysaccharides, water-soluble polymers and the like can be used. As the surfactant, there are an aliphatic hydrocarbon group and an aromatic hydrocarbon group as a hydrophobic group, and a linking group such as an ester, ether, amide, etc., an acyl group, an alkoxyl group, etc. is included in the hydrophobic group. One having one or more introduced groups and one having a carboxylic acid, a sulfonic acid, a sulfate ester, a phosphoric acid, a phosphate ester or an amino acid can be used as the hydrophilic group. Examples of polysaccharides that can be used include alginic acid, pectin, carboxymethylcellulose, curdlan, pullulan, xanthan gum, carrageenan, gellan gum, locust bean gum, gum arabic, tamarind, and psyllium. As the water-soluble polymer, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, polymethacrylic acid, polyacrylamide, polyaspartic acid, polyglutamic acid, polyethyleneimine, polyallylamine, polystyrene sulfonic acid and the like can be used. When using a dispersant and a lubricant, the content is preferably in the range of 0.001 to 5 mass% with respect to the total mass of the abrasive.

[研磨対象物]
本発明の研磨剤が研磨する研磨対象物は、非酸化物単結晶基板である。非酸化物単結晶基板としては、SiC単結晶基板やGaN単結晶基板のような化合物半導体基板が挙げられる。特に、前記SiC単結晶基板やGaN単結晶基板のような、修正モース硬度が10以上の単結晶基板の研磨に本発明の研磨剤を用いることで、高速研磨の効果をよりいっそう得ることができる。
[Polishing object]
The polishing object to be polished by the polishing agent of the present invention is a non-oxide single crystal substrate. Examples of non-oxide single crystal substrates include compound semiconductor substrates such as SiC single crystal substrates and GaN single crystal substrates. In particular, by using the abrasive of the present invention for polishing a single crystal substrate having a modified Mohs hardness of 10 or more, such as the SiC single crystal substrate or the GaN single crystal substrate, the effect of high-speed polishing can be further obtained. .

[研磨方法]
本発明の研磨剤を用いて、研磨対象物である非酸化物単結晶基板を研磨する方法としては、研磨剤を研磨パッドに供給しながら、研磨対象物の被研磨面と研磨パッドとを接触させ、両者間の相対運動により研磨を行う研磨方法が好ましい。
[Polishing method]
As a method of polishing a non-oxide single crystal substrate which is a polishing object using the polishing agent of the present invention, the surface to be polished of the polishing object and the polishing pad are brought into contact while supplying the polishing agent to the polishing pad. A polishing method in which polishing is performed by relative movement between the two is preferable.

上記研磨方法において、研磨装置としては従来公知の研磨装置を使用することができる。
図1に、本発明の実施形態に使用可能な研磨装置の一例を示すが、本発明の実施形態に使用される研磨装置はこのような構造のものに限定されるものではない。
In the above polishing method, a conventionally known polishing apparatus can be used as the polishing apparatus.
FIG. 1 shows an example of a polishing apparatus that can be used in the embodiment of the present invention, but the polishing apparatus used in the embodiment of the present invention is not limited to such a structure.

図1に示す研磨装置10においては、研磨定盤1がその垂直な軸心C1の回りに回転可能に支持された状態で設けられており、この研磨定盤1は、定盤駆動モータ2により、図に矢印で示す方向に回転駆動されるようになっている。この研磨定盤1の上面には、公知の研磨パッド3が貼り着けられている。   In the polishing apparatus 10 shown in FIG. 1, a polishing surface plate 1 is provided in a state of being rotatably supported around a vertical axis C 1, and this polishing surface plate 1 is supported by a surface plate driving motor 2. , And is driven to rotate in the direction indicated by the arrow in the figure. A known polishing pad 3 is attached to the upper surface of the polishing surface plate 1.

一方、研磨定盤1上の軸心C1から偏心した位置には、下面においてSiC単結晶基板等の研磨対象物4を吸着または保持枠等を用いて保持する基板保持部材(キャリヤ)5が、その軸心C2の回りに回転可能でかつ軸心C2方向に移動可能に支持されている。この基板保持部材5は、図示しないワーク駆動モータにより、あるいは上記研磨定盤1から受ける回転モーメントにより、矢印で示す方向に回転されるように構成されている。基板保持部材5の下面、すなわち上記研磨パッド3と対向する面には、研磨対象物4が保持されている。研磨対象物4は、所定の荷重で研磨パッド3に押圧されるようになっている。   On the other hand, a substrate holding member (carrier) 5 for holding a polishing object 4 such as a SiC single crystal substrate on the lower surface by suction or using a holding frame is provided at a position eccentric from the axis C1 on the polishing surface plate 1. It is supported so as to be rotatable about the axis C2 and movable in the direction of the axis C2. The substrate holding member 5 is configured to be rotated in a direction indicated by an arrow by a work drive motor (not shown) or by a rotational moment received from the polishing surface plate 1. A polishing object 4 is held on the lower surface of the substrate holding member 5, that is, the surface facing the polishing pad 3. The polishing object 4 is pressed against the polishing pad 3 with a predetermined load.

また、基板保持部材5の近傍には、滴下ノズル6等が設けられており、図示しないタンクから送出された本発明の研磨剤7が研磨定盤1上に供給されるようになっている。   A dripping nozzle 6 is provided in the vicinity of the substrate holding member 5 so that the abrasive 7 of the present invention fed from a tank (not shown) is supplied onto the polishing surface plate 1.

このような研磨装置10による研磨に際しては、研磨定盤1およびそれに貼り着けられた研磨パッド3と、基板保持部材5およびその下面に保持された研磨対象物4とが、定盤駆動モータ2およびワーク駆動モータによりそれぞれの軸心の回りに回転駆動された状態で、滴下ノズル6等から研磨剤7が研磨パッド3の表面に供給されつつ、基板保持部材5に保持された研磨対象物4がその研磨パッド3に押し付けられる。それにより、研磨対象物4の被研磨面、すなわち研磨パッド3に対向する面が化学的機械的に研磨される。   When polishing by such a polishing apparatus 10, the polishing platen 1 and the polishing pad 3 attached thereto, the substrate holding member 5 and the polishing object 4 held on the lower surface of the polishing platen 1, The polishing object 4 held on the substrate holding member 5 is supplied to the surface of the polishing pad 3 while the polishing agent 7 is supplied to the surface of the polishing pad 3 from the dropping nozzle 6 or the like while being rotated around each axis by the work drive motor. It is pressed against the polishing pad 3. Thereby, the surface to be polished of the polishing object 4, that is, the surface facing the polishing pad 3 is chemically and mechanically polished.

基板保持部材5は、回転運動だけでなく直線運動をしてもよい。また、研磨定盤1および研磨パッド3も回転運動を行うものでなくてもよく、例えばベルト式で一方向に移動するものであってもよい。   The substrate holding member 5 may perform a linear motion as well as a rotational motion. Further, the polishing surface plate 1 and the polishing pad 3 do not have to rotate, and may move in one direction, for example, by a belt type.

このような研磨装置10による研磨条件には特に制限はないが、基板保持部材5に荷重をかけて研磨パッド3に押し付けることでより研磨圧力を高め、研磨速度を向上させることが可能である。研磨圧力は5〜80kPa程度が好ましく、被研磨面内における研磨速度の均一性、平坦性、スクラッチ等の研磨欠陥防止の観点から、10〜50kPa程度がより好ましい。研磨定盤1および基板保持部材5の回転数は、50〜500rpm程度が好ましいがこれに限定されない。また、研磨剤7の供給量については、被研磨面の構成材料や研磨液の組成、上記研磨条件等により適宜調整され選択される。   The polishing conditions by the polishing apparatus 10 are not particularly limited, but it is possible to increase the polishing pressure and improve the polishing rate by applying a load to the substrate holding member 5 and pressing it against the polishing pad 3. The polishing pressure is preferably about 5 to 80 kPa, and more preferably about 10 to 50 kPa from the viewpoint of polishing rate uniformity in the polished surface, flatness, and prevention of polishing defects such as scratches. The rotation speed of the polishing surface plate 1 and the substrate holding member 5 is preferably about 50 to 500 rpm, but is not limited thereto. The supply amount of the abrasive 7 is appropriately adjusted and selected depending on the constituent material of the surface to be polished, the composition of the polishing liquid, the above polishing conditions, and the like.

研磨パッド3としては、一般的な不織布、発泡ポリウレタン、多孔質樹脂、非多孔質樹脂等からなるものを使用できる。また、研磨パッド3への研磨液7の供給を促進し、あるいは研磨パッド3に研磨液7が一定量溜まるようにするために、研磨パッド3の表面に格子状、同心円状、らせん状などの溝加工が施されていてもよい。さらに、必要により、パッドコンディショナーを研磨パッド3の表面に接触させて、研磨パッド3表面のコンディショニングを行いながら研磨してもよい。   As the polishing pad 3, one made of a general nonwoven fabric, foamed polyurethane, porous resin, non-porous resin or the like can be used. Further, in order to promote the supply of the polishing liquid 7 to the polishing pad 3 or to collect a certain amount of the polishing liquid 7 on the polishing pad 3, the surface of the polishing pad 3 has a lattice shape, a concentric circle shape, a spiral shape, or the like. Groove processing may be performed. Further, if necessary, polishing may be performed while bringing the pad conditioner into contact with the surface of the polishing pad 3 and conditioning the surface of the polishing pad 3.

以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。例1〜16は本発明の実施例であり、例17〜23は比較例である。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples. Examples 1 to 16 are examples of the present invention, and Examples 17 to 23 are comparative examples.

(1)研磨剤の調製
(1−1)
例1〜16の各研磨剤を、以下に示すようにして調製した。まず、表1に示す酸化剤である過マンガン酸カリウムに純水を加え、撹拌翼を用いて10分間撹拌した。次いで、この液に、砥粒である平均2次粒子径が0.18μmの酸化セリウム粒子加え、撹拌翼を用いて10分間撹拌した後、pH調整剤として、リン酸、硝酸、水酸化カリウム、水酸化ナトリウムを撹拌しながら徐々に添加して、表1に示す所定のpHに調整し、研磨剤を得た。各実施例において使用した各成分の研磨剤全体に対する含有割合(濃度;質量%)を表1に示す。なお、表1における酸化剤濃度は、イオンである過マンガン酸イオンの濃度ではなく、過マンガン酸カリウムの濃度である。
(1) Preparation of abrasive (1-1)
Each abrasive | polishing agent of Examples 1-16 was prepared as shown below. First, pure water was added to potassium permanganate, which is an oxidizing agent shown in Table 1, and the mixture was stirred for 10 minutes using a stirring blade. Next, cerium oxide particles having an average secondary particle size of 0.18 μm as abrasive grains were added to this liquid, and after stirring for 10 minutes using a stirring blade, phosphoric acid, nitric acid, potassium hydroxide, Sodium hydroxide was gradually added while stirring to adjust the predetermined pH shown in Table 1 to obtain an abrasive. Table 1 shows the content (concentration: mass%) of each component used in each example with respect to the entire abrasive. In addition, the oxidizing agent density | concentration in Table 1 is not the density | concentration of the permanganate ion which is ion, but the density | concentration of potassium permanganate.

(1−2)
例17〜23の各研磨剤を、以下に示すようにして調製した。例17においては、1次粒子径が0.04μm、平均2次粒子径が約0.07μmのシリカ固形分が約40質量%のコロイダルシリカ分散液に、純水を加え、撹拌翼を用いて10分間撹拌した。次いで、この液に、金属塩としてバナジン酸アンモニウムを撹拌しながら加え、最後に過酸化水素水を添加して30分間撹拌し、表1に示す所定の各成分濃度に調整された研磨剤を得た。例18,19においては、平均2次粒子径が0.18μmの酸化セリウム粒子を純水に加え、撹拌翼を用いて10分間撹拌した。次いで、pH調整剤として、リン酸、硝酸を徐々に添加して表1に示す所定のpHに調整し、研磨剤を得た。例20においては、平均2次粒子径が1.3μmの酸化セリウム粒子を使用した以外は、例3と同様の方法で調整し、研磨剤を得た。例21〜23においては、それぞれ酸化剤である過硫酸アンモニウム、過硫酸カリウム、過酸化水素に純水を加え、撹拌翼を用いて10分間撹拌した。次いで、この液に、平均2次粒子径が0.18μmの酸化セリウム粒子を加え、撹拌翼を用いて10分間撹拌した。pH調整剤として、水酸化カリウムを必要に応じて添加し、表1に示す所定のpHに調整し、研磨剤を得た。各比較例において使用した各成分の研磨剤全体に対する含有割合(濃度;質量%)を、表1に示す。なお、表1における酸化剤濃度は、イオンである過マンガン酸イオンの濃度ではなく、過マンガン酸カリウムの濃度である。
(1-2)
Each abrasive of Examples 17-23 was prepared as shown below. In Example 17, pure water was added to a colloidal silica dispersion having a primary particle diameter of 0.04 μm and an average secondary particle diameter of about 0.07 μm and a silica solid content of about 40% by mass, and a stirring blade was used. Stir for 10 minutes. Next, ammonium vanadate as a metal salt is added to this solution while stirring. Finally, hydrogen peroxide solution is added and stirred for 30 minutes to obtain a polishing agent adjusted to the prescribed component concentrations shown in Table 1. It was. In Examples 18 and 19, cerium oxide particles having an average secondary particle size of 0.18 μm were added to pure water and stirred for 10 minutes using a stirring blade. Subsequently, phosphoric acid and nitric acid were gradually added as a pH adjuster to adjust to a predetermined pH shown in Table 1 to obtain an abrasive. In Example 20, an abrasive was obtained by adjusting in the same manner as in Example 3 except that cerium oxide particles having an average secondary particle size of 1.3 μm were used. In Examples 21 to 23, pure water was added to each of oxidizing agents ammonium persulfate, potassium persulfate, and hydrogen peroxide, and the mixture was stirred for 10 minutes using a stirring blade. Next, cerium oxide particles having an average secondary particle size of 0.18 μm were added to this liquid, and the mixture was stirred for 10 minutes using a stirring blade. As a pH adjuster, potassium hydroxide was added as necessary, and adjusted to a predetermined pH shown in Table 1 to obtain an abrasive. Table 1 shows the content ratio (concentration: mass%) of each component used in each comparative example with respect to the entire abrasive. In addition, the oxidizing agent density | concentration in Table 1 is not the density | concentration of the permanganate ion which is ion, but the density | concentration of potassium permanganate.

なお、例17で配合されるシリカ粒子の1次粒子径については、BET法で得られた比表面積から換算して求め、平均2次粒子径については、マイクロトラックUPA(日機装社製)により測定した。それ以外の各研磨剤については、平均2次粒子径のみをLA920(堀場製作所製)により測定した。   In addition, about the primary particle diameter of the silica particle mix | blended in Example 17, it calculates | requires in conversion from the specific surface area obtained by BET method, and average secondary particle diameter is measured by Microtrac UPA (made by Nikkiso Co., Ltd.). did. About each abrasive | polishing agent other than that, only the average secondary particle diameter was measured by LA920 (made by Horiba Seisakusho).

(1−2)pHの測定
例1〜23で得られた各研磨剤のpHを、横河電機社製のpH81−11を使用し25℃で測定した。測定結果を表1に示す。
(1-2) Measurement of pH The pH of each abrasive obtained in Examples 1 to 23 was measured at 25 ° C. using pH81-11 manufactured by Yokogawa Electric Corporation. The measurement results are shown in Table 1.

(2)研磨剤の研磨特性の評価
例1〜23で得られた各研磨剤について、以下の方法で研磨特性の評価を行った。
(2−1)研磨条件
研磨機としては、MAT社製の研磨装置を使用した。研磨パッドとしては、SUBA800−XY−groove(ニッタハース社製)を使用し、研磨前にダイヤディスクを用いてコンディショニングを行った。また、研磨剤の供給速度を25ml/分、研磨定盤の回転数を68rpm、基板保持部材の回転数を68rpm、研磨圧を5psi(34.5kPa)として、30分間研磨を行った。
(2) Evaluation of abrasive properties of abrasives Each abrasive obtained in Examples 1 to 23 was evaluated for abrasive properties by the following method.
(2-1) Polishing conditions As a polishing machine, a polishing apparatus manufactured by MAT was used. As a polishing pad, SUBA800-XY-groove (manufactured by Nitta Haas) was used, and conditioning was performed using a diamond disk before polishing. Further, the polishing was performed for 30 minutes with the supply rate of the abrasive being 25 ml / min, the rotation speed of the polishing platen being 68 rpm, the rotation speed of the substrate holding member being 68 rpm, and the polishing pressure being 5 psi (34.5 kPa).

(2−2)被研磨物
被研磨物として、ダイヤモンド砥粒を用いて予備研磨処理を行った3インチ径の4H−SiC基板を使用し、主面(0001)がC軸に対して0°+0.25°以内のSiC単結晶基板(On-axis基板)と、主面のC軸に対するオフ角が4°±0.5°以内のSiC単結晶基板をそれぞれ使用し、Si面側を研磨し評価した。
(2-2) To-be-polished object As a to-be-polished object, a 3 inch diameter 4H-SiC substrate that was pre-polished using diamond abrasive grains was used, and the principal surface (0001) was 0 ° with respect to the C axis. Use a SiC single crystal substrate (On-axis substrate) within + 0.25 ° and an SiC single crystal substrate with an off angle of 4 ° ± 0.5 ° with respect to the C axis of the main surface, respectively, and polish the Si surface side And evaluated.

(2−3)研磨速度の測定
研磨速度は、前記SiC単結晶基板の単位時間当たりの厚さの変化量(nm/hr)で評価した。具体的には、厚さが既知の未研磨基板の質量と各時間研磨した後の基板の質量とを測定し、その差から質量変化を求めた。そして、この質量変化から求めた基板の厚さの時間当たりの変化を、下記の式を用いて算出した。研磨速度の算出結果を表1に示す。
(研磨速度(V)の計算式)
Δm=m0−m1
V=Δm/m0 × T0 × 60/t
(式中、Δm(g)は研磨前後の質量変化、m0(g)は未研磨基板の初期質量、m1(g)は研磨後基板の質量、Vは研磨速度(nm/hr)、T0は未研磨基板の厚さ(nm)、tは研磨時間(min)を表す。)
(2-3) Measurement of polishing rate The polishing rate was evaluated by the amount of change in thickness (nm / hr) per unit time of the SiC single crystal substrate. Specifically, the mass of an unpolished substrate with a known thickness and the mass of the substrate after polishing for each time were measured, and the mass change was determined from the difference. And the change per time of the thickness of the board | substrate calculated | required from this mass change was computed using the following formula. Table 1 shows the calculation results of the polishing rate.
(Calculation formula of polishing rate (V))
Δm = m0−m1
V = Δm / m0 × T0 × 60 / t
(Where, Δm (g) is the mass change before and after polishing, m0 (g) is the initial mass of the unpolished substrate, m1 (g) is the mass of the substrate after polishing, V is the polishing rate (nm / hr), and T0 is (The thickness (nm) of the unpolished substrate and t represents the polishing time (min).)

(2−4)原子ステップテラス幅分布の測定
例3および例20の各研磨剤により研磨されたOn−axis基板において、研磨後の表面の幅2μm、高さ1μmの範囲をAFMで測定した。図2に示すように、各原子ステップのテラス幅を0.2μm間隔で測定し、テラス幅の最大値と最小値の差、および標準偏差を求めた。
(2-4) Measurement of atomic step terrace width distribution In the On-axis substrate polished with the abrasives of Example 3 and Example 20, the range of the polished surface having a width of 2 μm and a height of 1 μm was measured by AFM. As shown in FIG. 2, the terrace width of each atomic step was measured at 0.2 μm intervals, and the difference between the maximum value and the minimum value of the terrace width and the standard deviation were obtained.

(2−5)原子ステップフロント部平均粗さの測定
例3および例17の各研磨剤により研磨されたOn−axis基板において、研磨後の表面の幅2μm、高さ1μmの範囲をAFMで測定した。図2に示すように、各原子ステップのフロント部の断面形状について、粗さ(Ra)を測定しその平均値を求めた。
(2-5) Measurement of average roughness of atomic step front part In the On-axis substrate polished with the abrasives of Example 3 and Example 17, the range of the polished surface width of 2 μm and height of 1 μm was measured by AFM. did. As shown in FIG. 2, the roughness (Ra) was measured for the cross-sectional shape of the front part of each atomic step, and the average value was obtained.

Figure 2012248569
Figure 2012248569

表1からわかるように、例1〜16の研磨剤を使用した場合は、On−axis基板およびオフ角が4°以内のSiC単結晶基板の両方に対して、高い研磨速度が得られており、高速研磨が可能である。また、AFM測定から得られた原子ステップラインに湾曲が見られず、直線性を維持しており、各原子ステップのテラス幅が均一でかつ原子ステップのフロント部の形状もえぐれ等がなく、平均Raも小さく良好であった。   As can be seen from Table 1, when the abrasives of Examples 1 to 16 were used, a high polishing rate was obtained for both the On-axis substrate and the SiC single crystal substrate having an off angle of 4 ° or less. High-speed polishing is possible. In addition, the atomic step line obtained from the AFM measurement shows no curvature and maintains linearity, the terrace width of each atomic step is uniform, the shape of the front part of the atomic step is not flared, the average Ra was also small and good.

これに対して、コロイダルシリカと過酸化水素およびバナジン酸アンモニウムを含有する例17の研磨剤を使用した場合は、実施例である例1〜16の研磨剤を使用した場合に比べて研磨速度が低くなっている。さらに、AFM測定で得られる原子ステップフロント部にえぐれが確認され、平均Raが実施例である例3と比較して大きく、原子レベルでの表面性状が不良であった。酸化剤を含まない例18,19の研磨剤を使用した場合は、実施例と比較して研磨速度が著しく低下した。   On the other hand, when the abrasive | polishing agent of Example 17 containing colloidal silica, hydrogen peroxide, and ammonium vanadate is used, a grinding | polishing rate is compared with the case where the abrasive | polishing agent of Examples 1-16 which are an Example is used. It is low. Further, the atomic step front portion obtained by the AFM measurement was confirmed to have a gap, the average Ra was larger than that of Example 3 as an example, and the surface property at the atomic level was poor. When the abrasives of Examples 18 and 19 containing no oxidizing agent were used, the polishing rate was remarkably reduced as compared with the Examples.

また、酸化剤として過マンガン酸カリウムを含有し、砥粒として平均2次粒子径が1.3μmの酸化セリウム粒子を含有する例20の研磨剤を使用した場合は、高い研磨速度を示すが、AFM測定から、過度な機械的作用による原子ステップの湾曲により、各原子ステップテラス幅のばらつきが大きく、原子レベルでの表面性状が不良であることがわかった。さらに、酸化剤に過マンガン酸カリウム以外の酸化剤を用いた例21〜23の研磨剤を使用した場合は、実施例に比べて研磨速度が著しく低下した。   In addition, when the abrasive of Example 20 containing potassium permanganate as an oxidizer and containing cerium oxide particles having an average secondary particle size of 1.3 μm as an abrasive is used, a high polishing rate is exhibited. From the AFM measurement, it was found that due to the curvature of the atomic step due to excessive mechanical action, the variation in the width of each atomic step terrace was large, and the surface properties at the atomic level were poor. Furthermore, when the abrasive | polishing agent of Examples 21-23 which used oxidizing agents other than potassium permanganate as an oxidizing agent was used, the grinding | polishing rate fell remarkably compared with the Example.

本発明によれば、非酸化物単結晶基板、特にSiC単結晶基板やGaN単結晶基板等の硬度が高く化学的安定性の高い化合物半導体基板の高速研磨が可能となり、かつキズがなく平坦性および平滑性に優れた研磨面を得ることが可能となる。したがって、それらの基板の生産性の向上に寄与できる。   According to the present invention, non-oxide single crystal substrates, particularly SiC single crystal substrates and GaN single crystal substrates, which are high in hardness and high in chemical stability, can be polished at high speed, and are flat with no scratches. In addition, it is possible to obtain a polished surface excellent in smoothness. Therefore, it can contribute to the improvement of productivity of those substrates.

1…研磨定盤、2…定盤駆動モータ、3…研磨パッド、4…研磨対象物、5…基板保持部材、6…滴下ノズル、7…研磨剤、10…研磨装置。   DESCRIPTION OF SYMBOLS 1 ... Polishing surface plate, 2 ... Surface plate drive motor, 3 ... Polishing pad, 4 ... Polishing target object, 5 ... Substrate holding member, 6 ... Dropping nozzle, 7 ... Polishing agent, 10 ... Polishing apparatus.

Claims (9)

非酸化物単結晶基板を化学的機械的に研磨するための研磨剤であって、
酸化還元電位が0.5V以上の遷移金属を含む酸化剤と、平均2次粒子径が0.5μm以下の酸化セリウム粒子と、分散媒とを含有することを特徴とする研磨剤。
An abrasive for chemically and mechanically polishing a non-oxide single crystal substrate,
A polishing agent comprising an oxidizing agent containing a transition metal having a redox potential of 0.5 V or more, cerium oxide particles having an average secondary particle diameter of 0.5 μm or less, and a dispersion medium.
前記酸化剤は、過マンガン酸イオンである請求項1に記載の研磨剤。   The abrasive according to claim 1, wherein the oxidizing agent is a permanganate ion. 前記過マンガン酸イオンの含有量は0.015質量%以上5質量%以下である請求項2に記載の研磨剤。   The abrasive according to claim 2, wherein the content of the permanganate ion is 0.015 mass% or more and 5 mass% or less. 前記酸化セリウム粒子の平均2次粒子径は、0.2μm以下である請求項1〜3のいずれか1項に記載の研磨剤。   4. The abrasive according to claim 1, wherein an average secondary particle diameter of the cerium oxide particles is 0.2 μm or less. 前記酸化セリウム粒子の含有量は、0.01質量%以上10質量%以下である請求項1〜4のいずれか1項に記載の研磨剤。   The abrasive according to any one of claims 1 to 4, wherein the content of the cerium oxide particles is 0.01 mass% or more and 10 mass% or less. pHが11以下である請求項1〜5のいずれか1項に記載の研磨剤。   The abrasive according to any one of claims 1 to 5, which has a pH of 11 or less. pHが5以下である請求項6に記載の研磨剤。   The abrasive according to claim 6, having a pH of 5 or less. 前記非酸化物単結晶基板は、炭化ケイ素(SiC)単結晶基板または窒化ガリウム(GaN)単結晶基板である請求項1〜7のいずれか1項に記載の研磨剤。   The abrasive according to any one of claims 1 to 7, wherein the non-oxide single crystal substrate is a silicon carbide (SiC) single crystal substrate or a gallium nitride (GaN) single crystal substrate. 研磨剤を研磨パッドに供給し、研磨対象物である非酸化物単結晶基板の被研磨面と前記研磨パッドとを接触させて、両者間の相対運動により研磨する方法であって、前記研磨剤として請求項1〜8のいずれか1項に記載の研磨剤を使用する研磨方法。   A method of supplying a polishing agent to a polishing pad, bringing a polishing target surface of a non-oxide single crystal substrate, which is an object to be polished, into contact with the polishing pad, and polishing by relative motion between the two, A polishing method using the abrasive according to any one of claims 1 to 8.
JP2011116882A 2011-05-25 2011-05-25 Polishing agent and polishing method Withdrawn JP2012248569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116882A JP2012248569A (en) 2011-05-25 2011-05-25 Polishing agent and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116882A JP2012248569A (en) 2011-05-25 2011-05-25 Polishing agent and polishing method

Publications (1)

Publication Number Publication Date
JP2012248569A true JP2012248569A (en) 2012-12-13

Family

ID=47468795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116882A Withdrawn JP2012248569A (en) 2011-05-25 2011-05-25 Polishing agent and polishing method

Country Status (1)

Country Link
JP (1) JP2012248569A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065232A (en) * 2013-09-24 2015-04-09 三井金属鉱業株式会社 Polishing material slurry and method for manufacturing substrate using the same
WO2015059987A1 (en) * 2013-10-22 2015-04-30 株式会社ノリタケカンパニーリミテド Polishing composition and polishing processing method using same
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
KR20170081191A (en) 2014-11-07 2017-07-11 가부시키가이샤 후지미인코퍼레이티드 Polishing method and composition for polishing
WO2017138308A1 (en) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 Polishing slurry and polishing material
JP6280678B1 (en) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 Polishing liquid and polishing method
WO2018116521A1 (en) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 Polishing liquid and polishing method
WO2018123875A1 (en) 2016-12-26 2018-07-05 株式会社フジミインコーポレーテッド Polishing composition and polishing method
JP2019072817A (en) * 2017-10-18 2019-05-16 三光合成株式会社 Abrasive material mixed liquid polishing device, polishing method with use thereof, and laminated wire mesh filter for separation of abrasive grain in abrasive material mixed liquid polishing device
JP2019535146A (en) * 2016-09-23 2019-12-05 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Chemical mechanical planarization slurry and method for forming the same
CN117304814A (en) * 2023-11-29 2023-12-29 北京青禾晶元半导体科技有限责任公司 Polycrystalline silicon carbide substrate polishing agent, polishing method and polycrystalline silicon carbide substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117027A (en) * 2003-09-16 2005-04-28 Matsushita Electric Ind Co Ltd Method of manufacturing sic substrate
JP2007103457A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd Polishing slurry, surface treatment method of group iii nitride crystal, group iii nitride crystal substrate, group iii nitride crystal substrate with epitaxial layer, semiconductor device and its fabrication process
JP2008068390A (en) * 2006-09-15 2008-03-27 Noritake Co Ltd Crystal material polishing method
JP2008179655A (en) * 2007-01-23 2008-08-07 Fujimi Inc Polishing composition
JP2009238891A (en) * 2008-03-26 2009-10-15 Hitachi Metals Ltd Method of manufacturing sic single-crystal substrate
US20100279506A1 (en) * 2009-05-04 2010-11-04 Michael White Polishing silicon carbide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117027A (en) * 2003-09-16 2005-04-28 Matsushita Electric Ind Co Ltd Method of manufacturing sic substrate
JP2007103457A (en) * 2005-09-30 2007-04-19 Sumitomo Electric Ind Ltd Polishing slurry, surface treatment method of group iii nitride crystal, group iii nitride crystal substrate, group iii nitride crystal substrate with epitaxial layer, semiconductor device and its fabrication process
JP2008068390A (en) * 2006-09-15 2008-03-27 Noritake Co Ltd Crystal material polishing method
JP2008179655A (en) * 2007-01-23 2008-08-07 Fujimi Inc Polishing composition
JP2009238891A (en) * 2008-03-26 2009-10-15 Hitachi Metals Ltd Method of manufacturing sic single-crystal substrate
US20100279506A1 (en) * 2009-05-04 2010-11-04 Michael White Polishing silicon carbide

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065232A (en) * 2013-09-24 2015-04-09 三井金属鉱業株式会社 Polishing material slurry and method for manufacturing substrate using the same
JPWO2015059987A1 (en) * 2013-10-22 2017-03-09 株式会社ノリタケカンパニーリミテド Polishing composition and polishing method using the same
WO2015059987A1 (en) * 2013-10-22 2015-04-30 株式会社ノリタケカンパニーリミテド Polishing composition and polishing processing method using same
EP3263277A2 (en) 2014-11-07 2018-01-03 Fujimi Incorporated Polishing method and polishing composition
EP3800229A1 (en) 2014-11-07 2021-04-07 Fujimi Incorporated Polishing composition
US10759981B2 (en) 2014-11-07 2020-09-01 Fujimi Incorporated Polishing method and polishing composition
EP4163057A1 (en) 2014-11-07 2023-04-12 Fujimi Incorporated Polishing method and polishing composition
KR20170081191A (en) 2014-11-07 2017-07-11 가부시키가이샤 후지미인코퍼레이티드 Polishing method and composition for polishing
US10227517B2 (en) 2014-11-07 2019-03-12 Fujimi Incorporated Polishing method and polishing composition
US11015098B2 (en) 2014-11-07 2021-05-25 Fujimi Incorporated Polishing composition
EP3792000A1 (en) 2014-11-07 2021-03-17 Fujimi Incorporated Polishing method and polishing composition
JPWO2016084561A1 (en) * 2014-11-27 2017-09-07 住友電気工業株式会社 Silicon carbide substrate, method of manufacturing the same, and method of manufacturing silicon carbide semiconductor device
US10030319B2 (en) 2014-11-27 2018-07-24 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
US10221501B2 (en) 2014-11-27 2019-03-05 Sumitomo Electric Industries, Ltd. Silicon carbide substrate
JP2019178062A (en) * 2014-11-27 2019-10-17 住友電気工業株式会社 Silicon carbide substrate, manufacturing method thereof, and manufacturing method of silicon carbide semiconductor device
CN107002280A (en) * 2014-11-27 2017-08-01 住友电气工业株式会社 Silicon carbide substrate, its manufacture method and the method for manufacturing manufacturing silicon carbide semiconductor device
CN107002280B (en) * 2014-11-27 2019-06-18 住友电气工业株式会社 Silicon carbide substrate, its manufacturing method and the method for manufacturing manufacturing silicon carbide semiconductor device
US11015086B2 (en) 2016-02-09 2021-05-25 Mitsui Mining & Smelting Co., Ltd. Polishing slurry and polishing material
WO2017138308A1 (en) * 2016-02-09 2017-08-17 三井金属鉱業株式会社 Polishing slurry and polishing material
JPWO2017138308A1 (en) * 2016-02-09 2018-11-29 三井金属鉱業株式会社 Abrasive slurry and abrasive
JP2019535146A (en) * 2016-09-23 2019-12-05 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Chemical mechanical planarization slurry and method for forming the same
KR20210040453A (en) * 2016-09-23 2021-04-13 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Chemical mechanical planarization slurry and method for forming same
KR102371795B1 (en) 2016-09-23 2022-03-08 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Chemical mechanical planarization slurry and method for forming same
US11339309B2 (en) 2016-12-22 2022-05-24 Mitsui Mining & Smelting Co., Ltd. Polishing liquid and polishing method
WO2018116521A1 (en) * 2016-12-22 2018-06-28 三井金属鉱業株式会社 Polishing liquid and polishing method
JP6280678B1 (en) * 2016-12-22 2018-02-14 三井金属鉱業株式会社 Polishing liquid and polishing method
WO2018123875A1 (en) 2016-12-26 2018-07-05 株式会社フジミインコーポレーテッド Polishing composition and polishing method
US11781039B2 (en) 2016-12-26 2023-10-10 Fujimi Incorporated Polishing composition and polishing method
JP7083213B2 (en) 2017-10-18 2022-06-10 三光合成株式会社 Abrasive mixed liquid polishing device, polishing method using it, and laminated wire mesh filter for abrasive grain separation of abrasive mixed liquid polishing device
JP2019072817A (en) * 2017-10-18 2019-05-16 三光合成株式会社 Abrasive material mixed liquid polishing device, polishing method with use thereof, and laminated wire mesh filter for separation of abrasive grain in abrasive material mixed liquid polishing device
CN117304814A (en) * 2023-11-29 2023-12-29 北京青禾晶元半导体科技有限责任公司 Polycrystalline silicon carbide substrate polishing agent, polishing method and polycrystalline silicon carbide substrate
CN117304814B (en) * 2023-11-29 2024-03-12 北京青禾晶元半导体科技有限责任公司 Polycrystalline silicon carbide substrate polishing agent, polishing method and polycrystalline silicon carbide substrate

Similar Documents

Publication Publication Date Title
JP5614498B2 (en) Polishing method of non-oxide single crystal substrate
WO2012165376A1 (en) Polishing agent and polishing method
JP5935865B2 (en) Method for manufacturing silicon carbide single crystal substrate
WO2013035539A1 (en) Polishing agent and polishing method
JP2012248569A (en) Polishing agent and polishing method
WO2012005142A1 (en) Polishing agent and polishing method
JP2015229750A (en) Cmp polishing liquid
WO2012036087A1 (en) Polishing agent and polishing method
JP6042407B2 (en) Polishing composition and method for producing compound semiconductor substrate using the polishing composition
JP2014168067A (en) Polishing method of non-oxide single crystal substrate
JP2011161570A (en) Abrasive and polishing method
JP2014160833A (en) Polishing method of non-oxide single crystal substrate
JP2015074707A (en) Polishing composition, method for producing the polishing composition, and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150210