JP2012247523A - Vibration device and optical scanner - Google Patents

Vibration device and optical scanner Download PDF

Info

Publication number
JP2012247523A
JP2012247523A JP2011117667A JP2011117667A JP2012247523A JP 2012247523 A JP2012247523 A JP 2012247523A JP 2011117667 A JP2011117667 A JP 2011117667A JP 2011117667 A JP2011117667 A JP 2011117667A JP 2012247523 A JP2012247523 A JP 2012247523A
Authority
JP
Japan
Prior art keywords
wire
electrode
piezoelectric element
optical scanner
neck portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011117667A
Other languages
Japanese (ja)
Inventor
Hisao Akita
久雄 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2011117667A priority Critical patent/JP2012247523A/en
Publication of JP2012247523A publication Critical patent/JP2012247523A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration device which prevents a lead wire breakage due to a load applied to a joint part between the lead wire and an electrode resulting from the expansion and contraction of a piezoelectric element under voltage application, and an optical scanner.SOLUTION: A vibration device having a piezoelectric element which expands or contracts under voltage application, a first electrode disposed at the piezoelectric element, a second electrode disposed at a body separated from the piezoelectric element, to which voltage is applied from a power source, and a lead wire which electrically connects the first electrode and the second electrode comprises a neck part which is disposed at least at one of a first connection part for connecting the lead wire and the first electrode and a second connection part for connecting the lead wire and the second electrode, with the lead wire having thickness increasing toward the connection part, and a reinforcing member disposed at the boundary of the neck part which displaces in response to the expansion or contraction of the piezoelectric element.

Description

本発明は、電極に接合されたワイヤを介して電力が加えられることにより、圧電素子が伸縮して駆動する振動装置に関するものである。   The present invention relates to a vibration device in which a piezoelectric element expands and contracts when electric power is applied via a wire bonded to an electrode.

従来、基板上に配置された複数の電子部品を電気的に接続する方法に、ワイヤボンディング方法がある。ワイヤボンディング方法は、導線のワイヤの両端部を溶融させて、基板に形成された電極と導体とに接合し、それらを電気的に接続する方法である。例えば、特許文献1には、ワイヤによって、セラミック基板に形成された半導体チップの電極と配線電極とを、電気的に接続するワイヤボンディング方法が記載されている。具体的には、1次ボンディング工程において、ワイヤが半導体チップの電極に接合され、2次ボンディング工程において、ワイヤが配線電極に接合される。この結果、半導体チップと配線電極とが、電気的に接続される。ワイヤボンディング方法による電気的な接続が行われるとき、ワイヤの先端に、溶融されることによるボール溜が形成される。そして、溶融されたワイヤのボール溜が各電極に接合される。ワイヤのボール溜は、接合される電極の接合部分において、その径が、ワイヤの他の部分より太くなるように接合される。   Conventionally, there is a wire bonding method as a method of electrically connecting a plurality of electronic components arranged on a substrate. The wire bonding method is a method in which both ends of a wire of a conducting wire are melted, joined to an electrode and a conductor formed on a substrate, and they are electrically connected. For example, Patent Literature 1 describes a wire bonding method in which an electrode of a semiconductor chip formed on a ceramic substrate and a wiring electrode are electrically connected by a wire. Specifically, the wire is bonded to the electrode of the semiconductor chip in the primary bonding process, and the wire is bonded to the wiring electrode in the secondary bonding process. As a result, the semiconductor chip and the wiring electrode are electrically connected. When electrical connection is made by the wire bonding method, a ball reservoir is formed by melting at the tip of the wire. Then, a ball reservoir of molten wire is joined to each electrode. The ball reservoir of the wire is bonded so that the diameter of the ball pool is larger than that of the other portion of the wire.

このようなワイヤボンディング方法は、接合対象の電極が小さく、接合に精度を必要とする場合に用いられる。例えば、小型の振動装置に電気的な接続を行う場合、ワイヤボンディング方法により、ワイヤが、振動装置の圧電素子に設けられた電極と、電源に接続された電極とに接合される。圧電素子は、電源に接続された電極に接合されたワイヤを介して、電圧が印加されると、伸縮する。   Such a wire bonding method is used when an electrode to be bonded is small and accuracy is required for bonding. For example, when an electrical connection is made to a small vibration device, the wire is bonded to an electrode provided on a piezoelectric element of the vibration device and an electrode connected to a power source by a wire bonding method. The piezoelectric element expands and contracts when a voltage is applied via a wire bonded to an electrode connected to a power source.

特開2004−147193号公報JP 2004-147193 A

振動装置の圧電素子に設けられた電極には、ワイヤボンディング方法により接合されるワイヤを介して、電力が供給される。圧電素子の電極に接合されたワイヤは、接合部分において太くなるように接合される。圧電素子に設けられた電極に電圧が印加されると、圧電素子が伸縮する。圧電素子が伸縮することにより電極が振動するため、電極に接合されたワイヤは、太さが変化する接合部分に大きな負荷がかかり、断線するおそれがある。ワイヤが断線した振動装置は、製品不良となり、使用が不可能になる。また、ワイヤが断線した振動装置を再使用する場合は、改めて電気接続が必要になる。   Electric power is supplied to the electrodes provided in the piezoelectric element of the vibration device via a wire bonded by a wire bonding method. The wire bonded to the electrode of the piezoelectric element is bonded so as to be thick at the bonded portion. When a voltage is applied to the electrode provided on the piezoelectric element, the piezoelectric element expands and contracts. Since the electrode vibrates due to expansion and contraction of the piezoelectric element, the wire bonded to the electrode may be subjected to a large load on the bonded portion where the thickness changes, and may be disconnected. The vibration device in which the wire is disconnected becomes a defective product and cannot be used. Moreover, when reusing the vibration device in which the wire is disconnected, electrical connection is required again.

本発明は、上述した問題点を解決するためになされたものである。本発明は、電圧が印加されて圧電素子が伸縮することにより、圧電素子に電力を供給する導線と電極との接合部分に負荷が加わり、導線が切断されることがないような振動装置及び光スキャナを提供することを目的とする。   The present invention has been made to solve the above-described problems. The present invention relates to a vibration device and an optical device in which a voltage is applied and a piezoelectric element expands and contracts, whereby a load is applied to a joint portion between a lead wire that supplies power to the piezoelectric element and an electrode, and the lead wire is not cut. An object is to provide a scanner.

この目的を達成するために、請求項1記載の振動装置は、電圧が印加されて伸縮する圧電素子と、前記圧電素子に設けられる第1電極と、前記圧電素子と別体に設けられ、電源からの電圧が印加される第2電極と、前記第1電極と前記第2電極とを電気的に接続する導線と、を備える振動装置であって、前記導線と前記第1電極との接続部分である第1接続部分と、前記導線と前記第2電極との接続部分である第2接続部分との少なくとも一方に設けられ、前記導線の太さが、前記接続部分に向けて太くなるネック部と、前記圧電素子による伸縮に伴って変位する前記ネック部の境界に設けられる補強材と、を備えることを特徴とする。   In order to achieve this object, the vibration device according to claim 1 is provided with a piezoelectric element that expands and contracts when a voltage is applied thereto, a first electrode provided on the piezoelectric element, and a piezoelectric element that is provided separately from the piezoelectric element. A vibration device comprising: a second electrode to which a voltage is applied; and a conductive wire that electrically connects the first electrode and the second electrode, wherein the connection portion between the conductive wire and the first electrode A neck portion that is provided on at least one of the first connection portion and the second connection portion that is a connection portion between the conductive wire and the second electrode, and the thickness of the conductive wire increases toward the connection portion. And a reinforcing material provided at a boundary of the neck portion that is displaced along with expansion and contraction by the piezoelectric element.

請求項2記載の振動装置を備える光スキャナは、入射される光を反射するミラーを有し、前記圧電素子が載置される載置部と、前記載置部に隣接し、支持される支持部と、を備える基板を備え、前記基板は、前記圧電素子が伸縮することにより、前記支持部と前記載置部とを繋ぐ線上を中心軸として振動し、前記ミラーを走査させるものであり、前記補強材は、前記導線において、前記ネック部の前記第1接合部分と前記第2接合部分とを結ぶ線上に設けられることを特徴とする。   An optical scanner comprising the vibration device according to claim 2 includes a mirror that reflects incident light, and a support part on which the piezoelectric element is placed and a support that is adjacent to and supported by the placement part. And the substrate, the substrate vibrates about a line connecting the support portion and the mounting portion as a central axis when the piezoelectric element expands and contracts, and scans the mirror. The reinforcing material is provided on a line connecting the first joint portion and the second joint portion of the neck portion in the conductive wire.

請求項3記載の振動装置を備える光スキャナは、前記圧電素子は、伸縮することにより前記ミラーが駆動される前記基板の面に平行な方向であり、且つ、前記中心軸方向と交差する方向に少なくとも伸縮するものであり、前記補強材は、さらに、前記導線において、前記ネック部の前記中心軸に平行する線上に設けられることを特徴とする。   An optical scanner comprising the vibration device according to claim 3, wherein the piezoelectric element is in a direction parallel to a surface of the substrate on which the mirror is driven by extending and contracting, and in a direction intersecting the central axis direction. The reinforcing material is further provided on a line parallel to the central axis of the neck portion in the conductive wire.

請求項4記載の振動装置を備える光スキャナは、前記補強材は、前記導線の前記ネック部の前記境界と、前記第1電極とを覆うように設けられることを特徴とする。   The optical scanner including the vibration device according to claim 4 is characterized in that the reinforcing material is provided so as to cover the boundary of the neck portion of the conducting wire and the first electrode.

請求項5記載の振動装置を備える光スキャナは、前記補強材は、弾性率が1GPaから10GPaの範囲である樹脂製の材料が用いられることを特徴とする。   An optical scanner including the vibration device according to claim 5 is characterized in that a resin material having an elastic modulus in a range of 1 GPa to 10 GPa is used as the reinforcing member.

請求項1記載の振動装置は、2つの電極を電気的に接続する導線において、接続部分に向けて太さが太くなるネック部に、補強材が設けられる。振動装置は、第1電極と第2電極とが電気的に接続されたとき、導線が、第1接続部分または第2接続部分に向けて太くなる形状である。このような振動装置において、導線の太さが変化するネック部に補強材を設けることにより、圧電素子が伸縮することによって導線にかかる負荷が分散し、ネック部の切断を防ぐことができる。   In the vibration device according to claim 1, a reinforcing member is provided in a neck portion whose thickness increases toward a connection portion in a conductive wire that electrically connects two electrodes. The vibration device has a shape in which, when the first electrode and the second electrode are electrically connected, the conductive wire becomes thicker toward the first connection portion or the second connection portion. In such a vibration device, by providing the reinforcing member at the neck portion where the thickness of the conducting wire changes, the load applied to the conducting wire is dispersed by the expansion and contraction of the piezoelectric element, and the neck portion can be prevented from being cut.

請求項2記載の振動装置を備える光スキャナは、補強材が、導線において、ネック部の第1接続部分と第2接続部分とを結ぶ線上に設けられる。光スキャナでは、電圧が印加された圧電素子が伸縮し、基板が振動すると、導線に基板の振動に起因する負荷がかかる。光スキャナの導線は、第1接続部分と第2接続部分とが固定された所定の長さで配線されている。そのため、基板が振動すると、配線方向に大きな負荷がかかる。そこで、導線の太さが太くなるネック部の配線方向に沿った方向に、補強材を設け、大きな負荷がかかるネック部の配線方向を補強する。この構成により、基板の振動に起因して導線に負荷がかかる場合であっても、配線方向にかかる負荷によるネック部の切断を防ぐことができる。   In the optical scanner including the vibration device according to claim 2, the reinforcing material is provided on a line connecting the first connection portion and the second connection portion of the neck portion in the conductive wire. In an optical scanner, when a piezoelectric element to which a voltage is applied expands and contracts and the substrate vibrates, a load caused by the vibration of the substrate is applied to the conducting wire. The lead wire of the optical scanner is wired with a predetermined length in which the first connection portion and the second connection portion are fixed. Therefore, when the substrate vibrates, a large load is applied in the wiring direction. Therefore, a reinforcing material is provided in a direction along the wiring direction of the neck portion where the thickness of the conducting wire is increased, and the wiring direction of the neck portion to which a large load is applied is reinforced. With this configuration, even when a load is applied to the conducting wire due to the vibration of the substrate, the neck portion can be prevented from being cut by the load applied in the wiring direction.

請求項3記載の振動装置を備える光スキャナは、さらに、導線のネック部において、基板の中心軸に平行する線上に、補強材が設けられる。圧電素子が伸縮することにより、基板が中心軸を中心に振動し、ミラーを走査させる。このとき、導線には、基板が振動することによる負荷がかかる。ネック部に補強材を設ける構成により、基板が振動することに起因して、導線にかかる負荷によるネック部の切断を防ぐことができる。   The optical scanner including the vibration device according to claim 3 is further provided with a reinforcing material on a line parallel to the central axis of the substrate in the neck portion of the conducting wire. As the piezoelectric element expands and contracts, the substrate vibrates around the central axis, and scans the mirror. At this time, a load is applied to the conducting wire due to the vibration of the substrate. With the configuration in which the reinforcing member is provided in the neck portion, it is possible to prevent the neck portion from being cut by a load applied to the conductive wire due to the vibration of the substrate.

請求項4記載の振動装置を備える光スキャナは、ネック部の境界と第1電極とを覆うように、補強材が設けられる。圧電素子が伸縮することにより、導線と圧電素子に設けられる第1電極との接続部分にも負荷がかかる。補強材が、ネック部の境界と第1電極とを覆うように設けられることにより、導線が、接続される第1電極から剥離することを防ぐことができる。   The optical scanner including the vibration device according to claim 4 is provided with a reinforcing material so as to cover the boundary of the neck portion and the first electrode. When the piezoelectric element expands and contracts, a load is also applied to the connection portion between the conducting wire and the first electrode provided on the piezoelectric element. By providing the reinforcing material so as to cover the boundary of the neck portion and the first electrode, it is possible to prevent the conductive wire from being separated from the connected first electrode.

請求項5記載の振動装置を備える光スキャナは、補強材として、弾性率が1GPaから10GPaの範囲内の樹脂材料が用いられる。所定の範囲内の弾性率である補強材を用いることにより、ネック部を確実に補強し、圧電素子が伸縮することにより導線にかかる負荷を抑え、ネック部の破損を防ぐことができる。   In the optical scanner including the vibration device according to claim 5, a resin material having an elastic modulus in the range of 1 GPa to 10 GPa is used as the reinforcing material. By using a reinforcing material having an elastic modulus within a predetermined range, the neck portion can be reliably reinforced, and the load applied to the conducting wire can be suppressed by the expansion and contraction of the piezoelectric element, thereby preventing the neck portion from being damaged.

本実施形態における光スキャナ1の全体斜視図である。1 is an overall perspective view of an optical scanner 1 in the present embodiment. 光スキャナ1のボンディング方法の各工程を示す説明図である。It is explanatory drawing which shows each process of the bonding method of the optical scanner. 光スキャナ1のボンディングワイヤ50と圧電素子22の電極パッド22aとの接合部分の断面拡大図である。3 is an enlarged cross-sectional view of a bonding portion between a bonding wire 50 of the optical scanner 1 and an electrode pad 22a of the piezoelectric element 22. FIG. 光スキャナ1のボンディングワイヤ50のネック部50aにおける応力分布を示す拡大図である。3 is an enlarged view showing a stress distribution in a neck portion 50a of a bonding wire 50 of the optical scanner 1. FIG. 光スキャナ1の補強材60が設けられたワイヤ50と電極35及び電極パッド22aとの接合部分の断面拡大図である。FIG. 4 is an enlarged cross-sectional view of a joint portion between a wire 50 provided with a reinforcing member 60 of the optical scanner 1, an electrode 35, and an electrode pad 22a. 光スキャナ1の補強材60が設けられたワイヤ50のネック部50aにおける応力分布を示す拡大図である。4 is an enlarged view showing a stress distribution in a neck portion 50a of a wire 50 provided with a reinforcing member 60 of the optical scanner 1. FIG. 光スキャナ1のワイヤ50のネック部50aにかかる応力と補強材60の性質との相関関係を示す図である。FIG. 6 is a diagram showing a correlation between stress applied to the neck portion 50a of the wire 50 of the optical scanner 1 and the properties of the reinforcing material 60.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1を用いて、本発明の実施形態に係る光スキャナ1の構造を説明する。図1は、光スキャナ1の全体を示す斜視図である。光スキャナ1は、走査ユニット20と、固定台座30により構成される。固定台座30は、走査ユニット20を固定する。尚、本実施形態の光スキャナ1において、図1に示すように上下方向、左右方向及び前後方向を設定し、以下を説明する。   The structure of the optical scanner 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view showing the entire optical scanner 1. The optical scanner 1 includes a scanning unit 20 and a fixed base 30. The fixed base 30 fixes the scanning unit 20. In the optical scanner 1 of the present embodiment, the vertical direction, the horizontal direction, and the front-rear direction are set as shown in FIG.

図1に示す走査ユニット20は、外形が四角形状である薄い板状の駆動基板21を有する。駆動基板21は、弾性を有する導電性材料、具体的にはSUS304やSUS430等のステンレス、チタン及び鉄等の金属材料を用いて形成される。駆動基板21は、後方側において、固定台座30に固定されている被固定部21aと、前方側に略正方形状の走査部21bを備える。被固定部21aと走査部21bとは、弾性部21cを介して対向する辺の中央が接合されている。   The scanning unit 20 shown in FIG. 1 has a thin plate-like drive substrate 21 whose outer shape is a quadrangular shape. The drive substrate 21 is formed using a conductive material having elasticity, specifically, a metal material such as stainless steel such as SUS304 or SUS430, titanium, or iron. The drive substrate 21 includes a fixed portion 21a fixed to the fixed base 30 on the rear side and a substantially square-shaped scanning portion 21b on the front side. The fixed part 21a and the scanning part 21b are joined at the center of the opposite sides via the elastic part 21c.

走査部21bの上面には、圧電素子22が載置される。圧電素子22は、圧電体を2枚の電極で挟んだ構成である。駆動基板21の走査部21bに載置される圧電素子22の上面には、電極パッド22aが配置される。走査部21bの前方には、左右方向に延びる棒状の梁23が設けられ、梁23の左右方向の中央に、丸形状のミラー24が設けられる。駆動基板21の弾性部21cと、梁23及びミラー24は、長方形の金属板をエッチング又はプレス加工することにより形成される。   The piezoelectric element 22 is placed on the upper surface of the scanning unit 21b. The piezoelectric element 22 has a configuration in which a piezoelectric body is sandwiched between two electrodes. An electrode pad 22 a is disposed on the upper surface of the piezoelectric element 22 placed on the scanning unit 21 b of the drive substrate 21. A rod-like beam 23 extending in the left-right direction is provided in front of the scanning unit 21b, and a round mirror 24 is provided in the center of the beam 23 in the left-right direction. The elastic portion 21c, the beam 23, and the mirror 24 of the drive substrate 21 are formed by etching or pressing a rectangular metal plate.

次に、図1を用いて、固定台座30の構造を説明する。図1に示す固定台座30は、駆動基板21よりやや大きい四角形状であり、駆動基板21と同様の材質の材料を用いて形成された平板状の底板部31を備える。さらに、固定台座30は、底板部31の平板から、一辺が上方向に隆起した隆起部32を備える。隆起部32には、駆動基板21の被固定部21aが固定される。   Next, the structure of the fixed base 30 will be described with reference to FIG. The fixed base 30 shown in FIG. 1 has a rectangular shape that is slightly larger than the drive substrate 21 and includes a flat bottom plate portion 31 formed using a material similar to that of the drive substrate 21. Further, the fixed base 30 includes a raised portion 32 whose one side is raised upward from the flat plate of the bottom plate portion 31. The fixed portion 21 a of the drive substrate 21 is fixed to the raised portion 32.

固定台座30の隆起部32の上面側に、駆動基板21の被固定部21aの下面側が取り付けられることによって、走査ユニット20が固定される。駆動基板21と隆起部32とは、例えばレーザ溶接法により取り付けられる。被固定部21aが隆起部32に取り付けられると、駆動基板21の走査部21bは、底板部31との間に空間が設けられる状態に配置される。   The scanning unit 20 is fixed by attaching the lower surface side of the fixed portion 21 a of the drive substrate 21 to the upper surface side of the raised portion 32 of the fixed base 30. The drive substrate 21 and the raised portion 32 are attached by, for example, a laser welding method. When the fixed portion 21 a is attached to the raised portion 32, the scanning portion 21 b of the driving substrate 21 is arranged in a state where a space is provided between the bottom portion 31.

また、固定台座30には、隆起部32と隣接する領域に、電極基板34が配置される。更に、電極基板34の上側の面には、電極35が配置される。本実施形態において、電極35は、図1に示すように、駆動基板21の圧電素子22が配置される位置に平行して、圧電素子22の右側に配置される。電極35は、電極基板34に形成された非図示の配線を介して、非図示の交流電源と接続されている。   In addition, an electrode substrate 34 is disposed on the fixed base 30 in a region adjacent to the raised portion 32. Further, an electrode 35 is disposed on the upper surface of the electrode substrate 34. In the present embodiment, as shown in FIG. 1, the electrode 35 is disposed on the right side of the piezoelectric element 22 in parallel with the position where the piezoelectric element 22 of the driving substrate 21 is disposed. The electrode 35 is connected to an AC power supply (not shown) via a wiring (not shown) formed on the electrode substrate 34.

圧電素子22と電極35とは、図1に示すようにワイヤ50により接合されて、電気的に接続される。具体的には、ワイヤ50は、図1に示す駆動基板21に載置された圧電素子22の電極パッド22aから、右方向に延びるようにして、駆動基板21の右側に設けられた電極35に接合される。光スキャナ1は、ワイヤ50が接合されると、駆動可能となる。光スキャナ1は、非図示の交流電源から、固定台座30の電極基板34の図示外の配線を介して、電極35に電力が供給される。電極35に供給された電力は、ワイヤ50により電極パッド22aに供給され、圧電素子22を伸縮させる。   The piezoelectric element 22 and the electrode 35 are joined by a wire 50 and electrically connected as shown in FIG. Specifically, the wire 50 extends to the electrode 35 provided on the right side of the drive substrate 21 so as to extend rightward from the electrode pad 22a of the piezoelectric element 22 placed on the drive substrate 21 shown in FIG. Be joined. The optical scanner 1 can be driven when the wire 50 is bonded. In the optical scanner 1, electric power is supplied to the electrode 35 from an AC power supply (not shown) via a wiring (not shown) of the electrode substrate 34 of the fixed base 30. The electric power supplied to the electrode 35 is supplied to the electrode pad 22a through the wire 50 and causes the piezoelectric element 22 to expand and contract.

ワイヤ50は、例えば金などの導線を用いてワイヤボンディング方法により接合される。本実施形態では、ワイヤ50に、径が37[μm]の導線を用いる。このとき、ワイヤ50は、図示外のボンディング装置により、圧電素子22の電極パッド22aに熱と加重と超音波が加えられ、圧力と摩擦と熱を利用して接合される。光スキャナ1の電極パッド22aと、電極35とにワイヤ50を接合するワイヤボンディング方法を、図2を用いて詳細に説明する。図2は、本実施形態において、光スキャナ1に行われるワイヤボンディング方法を説明する状態遷移図である。図2は、ワイヤ50を側面方向から見た図である。本実施形態では、まず、光スキャナ1において、圧電素子22の電極パッド22aにワイヤ50が接合される1次ボンディング工程が行われる。電極パッド22aに1次ボンディング工程が行われたワイヤ50は、引き延ばされて、固定台座30の電極35に接合される2次ボンディング工程が行われる。   The wire 50 is bonded by a wire bonding method using a conductive wire such as gold. In the present embodiment, a conductive wire having a diameter of 37 [μm] is used for the wire 50. At this time, the wire 50 is bonded by using heat, weight, and ultrasonic waves to the electrode pad 22a of the piezoelectric element 22 by a bonding apparatus (not shown) and using pressure, friction, and heat. A wire bonding method for bonding the wire 50 to the electrode pad 22a and the electrode 35 of the optical scanner 1 will be described in detail with reference to FIG. FIG. 2 is a state transition diagram illustrating a wire bonding method performed on the optical scanner 1 in the present embodiment. FIG. 2 is a view of the wire 50 as viewed from the side. In the present embodiment, first, in the optical scanner 1, a primary bonding process is performed in which the wire 50 is bonded to the electrode pad 22 a of the piezoelectric element 22. The wire 50 that has been subjected to the primary bonding process on the electrode pad 22 a is stretched and a secondary bonding process is performed in which the wire 50 is bonded to the electrode 35 of the fixed base 30.

まず、1次ボンディング工程において、圧電素子22の電極パッド22aにワイヤ50を接合するとき、ワイヤ50の先端に熱が加えられる。ワイヤ50は、先端が加熱され、溶融したボール溜が形成される(図2(a))。ボール溜は、直径がワイヤ50の他の位置の太さより大きい球形状である。   First, in the primary bonding process, when the wire 50 is bonded to the electrode pad 22a of the piezoelectric element 22, heat is applied to the tip of the wire 50. The tip of the wire 50 is heated to form a molten ball reservoir (FIG. 2A). The ball reservoir has a spherical shape whose diameter is larger than the thickness of other positions of the wire 50.

ワイヤ50のボール溜は、熱と加重と超音波とによって、圧電素子22の電極パッド22aの上面に圧着される。そして、ワイヤ50の先端のボール溜が、電極パッド22aに接合される(図2(b))。これにより、ワイヤ50を、走査ユニット20の圧電素子22の電極パッド22aと接合する1次ボンディング工程が完了する。1次ボンディング工程において、電極パッド22aには、ワイヤ50の太さより直径が大きいボール溜が接合される。これにより、ワイヤ50の電極パッド22aとの接合部分には、段差形状のネック部50aが形成される。ワイヤ50のネック部50aの径は、ワイヤ50のボール溜が形成されない他の位置の径より大きい。   The ball reservoir of the wire 50 is pressure-bonded to the upper surface of the electrode pad 22a of the piezoelectric element 22 by heat, weight, and ultrasonic waves. Then, the ball reservoir at the tip of the wire 50 is joined to the electrode pad 22a (FIG. 2B). Thereby, the primary bonding process which joins the wire 50 with the electrode pad 22a of the piezoelectric element 22 of the scanning unit 20 is completed. In the primary bonding step, a ball reservoir having a diameter larger than the thickness of the wire 50 is bonded to the electrode pad 22a. As a result, a stepped neck portion 50a is formed at the joint portion of the wire 50 with the electrode pad 22a. The diameter of the neck 50a of the wire 50 is larger than the diameter of the other position where the ball reservoir of the wire 50 is not formed.

1次ボンディング工程によりワイヤ50の先端が電極パッド22aに接合されたあと、固定台座30の電極35へ2次ボンディング工程が行われる。2次ボンディング工程が行われるとき、電極パッド22aに接合されたワイヤ50が、電極パッド22aから固定台座30の電極35に引き延ばされる。そして、引き延ばされたワイヤ50が、電極35に接合される(図2(c))。2次ボンディング工程において、ワイヤ50が電極35に接合されるとき、電極35に接合するワイヤ50の箇所には、1次ボンディング工程と同様に熱が加えられる。熱が加えられて溶融したワイヤ50が、熱と加重と超音波とによって電極35に接合される。このとき、ワイヤ50の電極35との接合部分は、1次ボンディング工程による電極パッド22aとの接合部分と同様に、ワイヤ50の熱が加えられない他の位置より径が大きい段差形状になる。これにより、ワイヤ50を電極35に接合する2次ボンディング工程が完了する(図2(d))。   After the tip of the wire 50 is bonded to the electrode pad 22a by the primary bonding process, the secondary bonding process is performed on the electrode 35 of the fixed base 30. When the secondary bonding process is performed, the wire 50 bonded to the electrode pad 22a is extended from the electrode pad 22a to the electrode 35 of the fixed base 30. Then, the stretched wire 50 is joined to the electrode 35 (FIG. 2C). In the secondary bonding step, when the wire 50 is bonded to the electrode 35, heat is applied to the portion of the wire 50 to be bonded to the electrode 35 in the same manner as in the primary bonding step. The wire 50 melted by application of heat is joined to the electrode 35 by heat, load, and ultrasonic waves. At this time, the joint portion of the wire 50 with the electrode 35 has a stepped shape having a larger diameter than other portions where the heat of the wire 50 is not applied, similarly to the joint portion with the electrode pad 22a in the primary bonding step. Thereby, the secondary bonding process which joins the wire 50 to the electrode 35 is completed (FIG.2 (d)).

ワイヤ50が、1次ボンディング及び2次ボンディングの工程を経て、圧電素子22の電極パッド22aと電極35とに接合されることにより、光スキャナ1の圧電素子22が、非図示の交流電源と電気的に接続される。   The wire 50 is bonded to the electrode pad 22a and the electrode 35 of the piezoelectric element 22 through the steps of primary bonding and secondary bonding, so that the piezoelectric element 22 of the optical scanner 1 is connected to an AC power supply (not shown) and an electric power. Connected.

上述したワイヤボンディング方法の各工程が行われると、ワイヤ50が、左右方向に延びるように、圧電素子22の電極パッド22aと電極35とが接続される。圧電素子22は、交流電源から電極35及びワイヤ50を介して電力が供給され、伸縮する。圧電素子22が伸縮すると、圧電素子22が載置された駆動基板21が、図1の前後方向に延びる中心軸Xを軸として、上下方向に振動する。図1に示すように、駆動基板21は、中心軸Xが、駆動基板21の左右方向の中心となるように、被固定部21aが固定台座30の隆起部32に設けられる。   When each step of the wire bonding method described above is performed, the electrode pad 22a of the piezoelectric element 22 and the electrode 35 are connected so that the wire 50 extends in the left-right direction. The piezoelectric element 22 expands and contracts when electric power is supplied from the AC power source through the electrode 35 and the wire 50. When the piezoelectric element 22 expands and contracts, the drive substrate 21 on which the piezoelectric element 22 is placed vibrates in the vertical direction about the central axis X extending in the front-rear direction of FIG. As shown in FIG. 1, the fixed portion 21 a of the drive substrate 21 is provided on the raised portion 32 of the fixed base 30 so that the central axis X is the center in the left-right direction of the drive substrate 21.

圧電素子22に電圧が印加され、圧電素子22が伸縮すると、駆動基板21に振動が伝えられて、駆動基板21の全体が振動する。駆動基板21が振動すると、梁23に振動が伝えられる。梁23は、その振動を捻り駆動に変換して、ミラー24を捻り駆動させる。ミラー24は、捻り向きに応じて、図示外のレーザ光源からミラー24の面に入射されるレーザ光を反射して走査し、所望の画像を形成する。   When a voltage is applied to the piezoelectric element 22 and the piezoelectric element 22 expands and contracts, vibration is transmitted to the drive substrate 21 and the entire drive substrate 21 vibrates. When the drive substrate 21 vibrates, the vibration is transmitted to the beam 23. The beam 23 converts the vibration into torsional driving, and drives the mirror 24 torsionally. The mirror 24 reflects and scans laser light incident on the surface of the mirror 24 from a laser light source (not shown) according to the twist direction, thereby forming a desired image.

ワイヤ50を介して電極パッド22aに電力が供給されると、圧電素子22が左右方向に伸縮する。圧電素子22の左右方向の伸縮が駆動基板21に伝えられると、駆動基板21が上下方向に振動する。その一方で、光スキャナ1において、ワイヤ50は、左右方向に延びる配置がされている。すなわち、ワイヤ50の配置されている左右方向に対し、駆動基板21は交差する上下方向に振動する。駆動基板21が振動すると、ワイヤ50が接合された位置の電極パッド22aも移動するため、圧電素子22と電極35に接合されるワイヤ50が配置されている状態が変化する。この結果、ワイヤ50の電極パッド22a及び電極35の接合部分に負荷が生じる。特にワイヤ50の接合部分のネック部50aは、ワイヤ50の太さと径が異なる段差形状となっているため、負荷がかかると、ワイヤ50が切断しやすい状態である。   When electric power is supplied to the electrode pad 22a through the wire 50, the piezoelectric element 22 expands and contracts in the left-right direction. When the expansion / contraction of the piezoelectric element 22 in the left-right direction is transmitted to the drive substrate 21, the drive substrate 21 vibrates in the vertical direction. On the other hand, in the optical scanner 1, the wire 50 is arranged to extend in the left-right direction. That is, the drive substrate 21 vibrates in the up and down direction intersecting the left and right direction in which the wires 50 are arranged. When the drive substrate 21 vibrates, the electrode pad 22a at the position where the wire 50 is bonded also moves, so that the state in which the wire 50 bonded to the piezoelectric element 22 and the electrode 35 is arranged changes. As a result, a load is generated at the joint between the electrode pad 22a of the wire 50 and the electrode 35. In particular, the neck portion 50a at the joining portion of the wire 50 has a stepped shape having a diameter and a diameter different from each other, so that the wire 50 is easily cut when a load is applied.

その点について、図3A及び図3Bを用いて、走査ユニット20と固定台座30とを、ワイヤ50により電気的に接続した光スキャナ1を説明する。図3Aは、図1に示す光スキャナ1をA−A線で切断し、矢視方向から見た断面図である。図3Bは、図3Aに占めす光スキャナ1のワイヤ50に生じる負荷応力を示す図である。図3A及び図3Bは、後述に示す図4A及び図4Bとは異なり、走査ユニット20及び固定台座30のワイヤ50の接続部分に、補強材60が設けられていない状態の光スキャナ1を示す図である。   In this regard, an optical scanner 1 in which the scanning unit 20 and the fixed base 30 are electrically connected by a wire 50 will be described with reference to FIGS. 3A and 3B. 3A is a cross-sectional view of the optical scanner 1 shown in FIG. 1 taken along line AA and viewed from the direction of the arrows. FIG. 3B is a diagram illustrating a load stress generated in the wire 50 of the optical scanner 1 occupying FIG. 3A. 3A and 3B are views showing the optical scanner 1 in a state in which the reinforcing member 60 is not provided at the connection portion of the wire 50 of the scanning unit 20 and the fixed base 30, unlike FIGS. 4A and 4B described later. It is.

まず、図3A及び図3Bを用いて、ワイヤ50に、補強材60が設けられていない状態の光スキャナ1を説明する。図3Aは、走査ユニット20及び固定台座30とのワイヤ50の接続部分に、補強材60が設けられていない状態の光スキャナ1のA−A線で切断した断面図である。図3Bは、図3Aに示す光スキャナ1が駆動するとき、図3Aに示すワイヤ50のネック部50aに生じる負荷応力の分布を示す拡大図である。図3Bに示すワイヤ50には、後述に説明する図4Aのような補強材60が設けられていない。光スキャナ1のワイヤ50には、圧電素子22に電力が供給され、駆動基板21が振動するときに大きな負荷がかかる構成である。   First, the optical scanner 1 in a state where the reinforcing material 60 is not provided on the wire 50 will be described with reference to FIGS. 3A and 3B. FIG. 3A is a cross-sectional view taken along the line AA of the optical scanner 1 in a state where the reinforcing member 60 is not provided at the connection portion of the wire 50 to the scanning unit 20 and the fixed base 30. FIG. 3B is an enlarged view showing a distribution of load stress generated in the neck portion 50a of the wire 50 shown in FIG. 3A when the optical scanner 1 shown in FIG. 3A is driven. The wire 50 shown in FIG. 3B is not provided with the reinforcing member 60 as shown in FIG. 4A described later. The wire 50 of the optical scanner 1 is configured such that a large load is applied when electric power is supplied to the piezoelectric element 22 and the drive substrate 21 vibrates.

本実施形態の光スキャナ1は、ワイヤ50から電力が供給されると、圧電素子22が伸縮する。このとき、圧電素子22は、左右方向に大きく伸縮する。これにより、駆動基板21の走査部21bは、左右方向に捻り駆動し、上下動する。ワイヤ50は、その一端が、駆動基板21の走査部21bの上面に載置される圧電素子22の電極パッド22aに接合され、他端が、固定台座30の電極35に接合され、固定された状態で左右方向に配線されている。圧電素子22が伸縮すると、駆動基板21が振動するため、ワイヤ50の圧電素子22との接合点の位置が変化する。その一方、ワイヤ50の電極35との接合点の位置は変化しない。このように、圧電素子22が伸縮すると、駆動基板21のみが振動するため、ワイヤ50の電極35と圧電素子22との間の配置状態が変化する。ワイヤ50には、配線方向である左右方向に、駆動基板21が振動することでかかる負荷を逃がそうとする力が生じる。   In the optical scanner 1 of this embodiment, when electric power is supplied from the wire 50, the piezoelectric element 22 expands and contracts. At this time, the piezoelectric element 22 greatly expands and contracts in the left-right direction. Thereby, the scanning part 21b of the drive substrate 21 is twisted in the left-right direction and moved up and down. One end of the wire 50 is bonded to the electrode pad 22a of the piezoelectric element 22 placed on the upper surface of the scanning unit 21b of the drive substrate 21, and the other end is bonded to the electrode 35 of the fixed base 30 and fixed. In the state, it is wired in the left-right direction. When the piezoelectric element 22 expands and contracts, the drive substrate 21 vibrates, so that the position of the joint point between the wire 50 and the piezoelectric element 22 changes. On the other hand, the position of the junction point of the wire 50 with the electrode 35 does not change. Thus, when the piezoelectric element 22 expands and contracts, only the drive substrate 21 vibrates, so that the arrangement state between the electrode 35 of the wire 50 and the piezoelectric element 22 changes. In the wire 50, a force for releasing the load is generated when the drive substrate 21 vibrates in the left-right direction which is the wiring direction.

特に、図3Aに示すように、ワイヤ50は、圧電素子22の電極パッド22aとの接合部分及び電極35との接合部分とが、段差形状である。そのため、駆動基板21が振動するとき、ワイヤ50の接合部分のネック部50aには負荷がかかる。駆動基板21が振動すると、ワイヤ50の圧電素子22の電極パッド22aとの接合部分のネック部50aには、図3Bに示すように、特に左右方向に大きく負荷がかかる。図3Bにおいては、図1に示す中心軸Xを走査ユニット20の駆動の中心として、駆動基板21が振動するときに、ワイヤ50のネック部50aに生じる負荷応力の強度を示す指標として、応力強度を3段階に分別して表示する。具体的には、ワイヤ50のネック部50aの断面において、かかる負荷応力が小さい領域を縦線で示し、負荷応力が中程度の領域を横線で示し、負荷応力が大きい領域を縦横線で示す。図3Bでは、中心軸Xに平行なワイヤ50の前後方向を中心として、中心から3割の領域に、負荷応力が小さい領域が分布する。また、ワイヤ50の負荷応力が小さい領域から外側の4割に、負荷応力が中程度の領域が分布する。さらに、負荷応力が中程度の領域より外側の最外周の3割に、負荷応力が大きい領域が分布する。   In particular, as shown in FIG. 3A, the wire 50 has a stepped shape at the bonding portion between the piezoelectric element 22 and the electrode pad 22 a and the bonding portion with the electrode 35. Therefore, when the drive substrate 21 vibrates, a load is applied to the neck portion 50a of the joint portion of the wire 50. When the drive substrate 21 vibrates, a large load is applied to the neck portion 50a at the joint portion of the wire 50 with the electrode pad 22a of the piezoelectric element 22 particularly in the left-right direction as shown in FIG. 3B. In FIG. 3B, the stress intensity is used as an index indicating the strength of the load stress generated in the neck portion 50a of the wire 50 when the drive substrate 21 vibrates with the central axis X shown in FIG. Are displayed in three stages. Specifically, in the cross section of the neck portion 50a of the wire 50, a region where the load stress is small is indicated by a vertical line, a region where the load stress is medium is indicated by a horizontal line, and a region where the load stress is high is indicated by a vertical and horizontal line. In FIG. 3B, a region where the load stress is small is distributed in a region 30% from the center centering on the front-rear direction of the wire 50 parallel to the central axis X. Moreover, the area | region where load stress is medium is distributed from the area | region where the load stress of the wire 50 is small to 40% outside. Furthermore, a region where the load stress is large is distributed in 30% of the outermost periphery outside the region where the load stress is medium.

そこで、本実施形態では、光スキャナ1のワイヤ50の接合部分に、補強材60を設ける。光スキャナ1において、駆動基板21が振動することにより、図3Bに示すようにワイヤ50にかかる負荷を抑えるため、ワイヤ50の接合部分に補強材60を設ける。補強材60を設けることにより、光スキャナ1の走査ユニット20の駆動基板21が振動することに起因して、ワイヤ50の接合部分にかかる負荷を低減し、ワイヤ50の切断を防ぐ。   Therefore, in the present embodiment, the reinforcing member 60 is provided at the joint portion of the wire 50 of the optical scanner 1. In the optical scanner 1, the reinforcing member 60 is provided at the joint portion of the wire 50 in order to suppress the load applied to the wire 50 as shown in FIG. 3B when the drive substrate 21 vibrates. Providing the reinforcing member 60 reduces the load applied to the joint portion of the wire 50 due to the vibration of the drive substrate 21 of the scanning unit 20 of the optical scanner 1 and prevents the wire 50 from being cut.

このようにして、光スキャナ1にワイヤ50の接合部分に補強材60を設けた構成を、図4A及び図4Bを用いて説明する。図4Aは、ワイヤ50の走査ユニット20及び固定台座30との接合部分に、補強材60が設けられた本実施形態の光スキャナ1を示す断面図である。図4Bは、図4Aに示す光スキャナ1が駆動するとき、ワイヤ50のネック部50aにかかる負荷応力の分布を示す拡大図である。図4A及び図4Bは、光スキャナ1の走査ユニット20及び固定台座30において、ワイヤ50の接合部分に、補強材60が設けられている点で、図3A及び図3Bと異なる。   Thus, the structure which provided the reinforcing material 60 in the junction part of the wire 50 in the optical scanner 1 is demonstrated using FIG. 4A and FIG. 4B. FIG. 4A is a cross-sectional view showing the optical scanner 1 of the present embodiment in which a reinforcing material 60 is provided at a joint portion between the scanning unit 20 and the fixed base 30 of the wire 50. 4B is an enlarged view showing a distribution of load stress applied to the neck portion 50a of the wire 50 when the optical scanner 1 shown in FIG. 4A is driven. 4A and 4B are different from FIGS. 3A and 3B in that a reinforcing member 60 is provided at a joint portion of the wire 50 in the scanning unit 20 and the fixed base 30 of the optical scanner 1.

本実施形態において、図4Aに示すように光スキャナ1のワイヤ50は、電極パッド22aとの接合部分及び電極35との接合部分が段差形状に形成される。そのため、補強材60を、図4Aに示すように、ワイヤ50のネック部50aの周囲と、電極パッド22a及び電極35との接合部分の周囲とを覆うように設ける。   In the present embodiment, as shown in FIG. 4A, the wire 50 of the optical scanner 1 is formed in a stepped shape at the junction with the electrode pad 22a and the junction with the electrode 35. Therefore, as shown in FIG. 4A, the reinforcing member 60 is provided so as to cover the periphery of the neck portion 50a of the wire 50 and the periphery of the joint portion between the electrode pad 22a and the electrode 35.

本実施形態の光スキャナ1では、図4Aに示すようにワイヤ50の接合部分に補強材60が設けられている。図4Bにおいては、図1に示す中心軸Xを走査ユニット20の駆動の中心として、駆動基板21が振動するときに、ワイヤ50のネック部50aに生じる負荷応力の強度を3段階に分別して表示する。具体的には、応力が小さい領域を縦線で示し、応力が中程度の領域を横線で示し、応力が大きい領域を縦横線で示す。図4Bでは、中心軸Xに平行なワイヤ50の前後方向を中心として、中心から7割は応力が小さい領域、応力が小さい領域より外側の2割は応力が中程度の領域、最外周の1割に応力が大きい領域の分布となる。図4Bに示すように、補強材60を設けることにより、圧電素子22の伸縮によりワイヤ50のネック部50aにおいて、左右方向にかかる負荷を低減することができる。   In the optical scanner 1 of the present embodiment, a reinforcing member 60 is provided at the joint portion of the wire 50 as shown in FIG. 4A. In FIG. 4B, the intensity of the load stress generated in the neck portion 50a of the wire 50 when the drive substrate 21 vibrates is displayed in three stages with the central axis X shown in FIG. To do. Specifically, a region where the stress is low is indicated by a vertical line, a region where the stress is moderate is indicated by a horizontal line, and a region where the stress is high is indicated by a vertical and horizontal line. In FIG. 4B, centering on the front-rear direction of the wire 50 parallel to the central axis X, 70% from the center is an area where the stress is low, 20% outside the area where the stress is low is an area where the stress is medium, and the outermost 1 The distribution of the area where the stress is relatively large. As shown in FIG. 4B, by providing the reinforcing member 60, it is possible to reduce the load in the left-right direction at the neck portion 50a of the wire 50 due to the expansion and contraction of the piezoelectric element 22.

図3Bと図4Bとの負荷分布図を比較すると、図4Bに示す補強材60が設けられたネック部50aは、図3Bに示す補強材60がないネック部50aと比べ、生じる負荷応力が小さい領域が大きく、負荷応力が大きい領域が小さい。この結果、ネック部50aの周囲に補強材60が設けられている場合は、補強材60が設けられていないネック部50aに比べ、かかる負荷が小さくなり、ワイヤ50が切断されるおそれが少ない。   Comparing the load distribution diagrams of FIG. 3B and FIG. 4B, the neck portion 50a provided with the reinforcing member 60 shown in FIG. 4B has a smaller load stress than the neck portion 50a without the reinforcing member 60 shown in FIG. 3B. The area is large and the area where the load stress is large is small. As a result, when the reinforcing material 60 is provided around the neck portion 50a, the load is reduced and the wire 50 is less likely to be cut than the neck portion 50a where the reinforcing material 60 is not provided.

特に、補強材60を、ワイヤ50のネック部50aの左右方向に設けることにより、圧電素子22の伸縮に起因するワイヤ50の負荷にかかるネック部50aの切断を防ぐことができる。また、補強材60を、ワイヤ50のネック部50aの左右方向のみでなく、周囲に設けることによって、駆動基板21の振動による負荷がかかり切断し易い構成である段差形状のネック部50aを補強し、ネック部50aが切断するおそれを防ぐことができる。   In particular, by providing the reinforcing member 60 in the left-right direction of the neck portion 50 a of the wire 50, it is possible to prevent the neck portion 50 a from being cut due to the load of the wire 50 due to the expansion and contraction of the piezoelectric element 22. Further, by providing the reinforcing member 60 not only in the left-right direction of the neck portion 50a of the wire 50 but also in the periphery, the step-shaped neck portion 50a that is easily cut by being loaded by the vibration of the drive substrate 21 is reinforced. The possibility that the neck portion 50a is cut can be prevented.

また、ワイヤ50の電極パッド22aとの接合面においても、圧電素子22の左右方向への伸縮に起因して、大きな負荷が生じることが考えられる。この結果、ワイヤ50が、電極パッド22aから剥離するおそれがある。そこで、補強材60を、駆動基板21との接合部分の周囲に設けることにより、ワイヤ50の剥離を防ぐことができる。本実施形態では、補強材60を、電極パッド22aと接合されるワイヤ50の左右方向に設けることにより、圧電素子22の伸縮によりワイヤ50にかかる負荷による破損を防ぐことができる。また、補強材60を設けることにより、光スキャナ1の耐久性が向上する。   Further, it is conceivable that a large load is generated on the bonding surface of the wire 50 with the electrode pad 22a due to the expansion and contraction of the piezoelectric element 22 in the left-right direction. As a result, the wire 50 may be peeled off from the electrode pad 22a. Therefore, by providing the reinforcing material 60 around the joint portion with the drive substrate 21, the peeling of the wire 50 can be prevented. In the present embodiment, by providing the reinforcing member 60 in the left-right direction of the wire 50 joined to the electrode pad 22a, damage due to the load applied to the wire 50 due to expansion / contraction of the piezoelectric element 22 can be prevented. Moreover, the durability of the optical scanner 1 is improved by providing the reinforcing member 60.

また、光スキャナ1は、圧電素子22の伸縮に従って、駆動基板21が上下方向に振動し、ミラー24を駆動させる。駆動基板21が振動することにより、ワイヤ50と電極パッド22aとの間には、上下方向の負荷が生じる。そのため、ワイヤ50が、電極パッド22aから剥離する、または切断するおそれがある。そこで、補強材60を、電極パッド22aと接合されるワイヤ50の左右方向のみでなく、ワイヤ50の周にわたって設ける。この構成により、駆動基板21が振動することに起因してワイヤ50にかかる負荷によって、ワイヤ50が切断するおそれを防ぐことができる。また、補強材60を、ワイヤ50の電極パッド22aとの接合部分に設けることにより、圧電素子22の伸縮と駆動基板21の振動とによる、ワイヤ50の電極パッド22aからの剥離またはワイヤ50の切断を防ぐことができる。   Further, in the optical scanner 1, the drive substrate 21 vibrates in the vertical direction according to the expansion and contraction of the piezoelectric element 22 to drive the mirror 24. When the drive substrate 21 vibrates, a load in the vertical direction is generated between the wire 50 and the electrode pad 22a. Therefore, the wire 50 may be peeled off from the electrode pad 22a or may be cut. Therefore, the reinforcing member 60 is provided not only in the left-right direction of the wire 50 joined to the electrode pad 22a but also around the wire 50. With this configuration, it is possible to prevent the wire 50 from being cut by a load applied to the wire 50 due to the vibration of the drive substrate 21. Further, by providing the reinforcing material 60 at the joint portion of the wire 50 with the electrode pad 22a, the wire 50 is peeled off from the electrode pad 22a or the wire 50 is cut due to expansion / contraction of the piezoelectric element 22 and vibration of the drive substrate 21. Can be prevented.

補強材60は、例えば、エポキシ系樹脂や、アクリル系樹脂等の樹脂接着剤が用いられる。本実施形態において、補強材60は、所定の弾性率の範囲内の材質が用いられることが望ましい。図5は、本実施形態の光スキャナ1においてワイヤ50に設けられる補強材60の材質に応じて、ワイヤ50にかかる応力を数値化したシミュレーション結果である。図5は、ミラー24が振れ角±6.25度で揺動するように、周波数を33[kHz]で光スキャナ1を駆動させたシミュレーション結果である。図5に示すグラフでは、補強材60の弾性率を、補強材60の材質の特徴として示す。図5では、補強材60が設けられない状態の光スキャナ1において、ワイヤ50のネック部50aにかかる応力を線αに示す。補強材60が設けられないワイヤ50のネック部50aには、図5の線αで示す45[MPa]の応力がかかる。また、補強材60が設けられた状態の光スキャナ1にいて、ワイヤ50のネック部50aにかかる応力を線βに示す。図5によれば、補強材60をワイヤ50に設けた場合は、設けない場合に比べ、ネック部50aにかかる応力を小さくすることができる。また、ワイヤ50のネック部50aにかかる応力は、補強材60の弾性率によっても異なる。例えば、ネック部50aに弾性率が1[Gpa]の補強材60を設けた場合、約27.5[MPa]の応力がかかる。また、弾性率が10[Gpa]の補強材60を設けた場合、約11[MPa]の応力がかかる。   As the reinforcing material 60, for example, a resin adhesive such as an epoxy resin or an acrylic resin is used. In the present embodiment, it is desirable that the reinforcing material 60 is made of a material having a predetermined elastic modulus. FIG. 5 is a simulation result in which the stress applied to the wire 50 is quantified according to the material of the reinforcing member 60 provided on the wire 50 in the optical scanner 1 of the present embodiment. FIG. 5 shows a simulation result in which the optical scanner 1 is driven at a frequency of 33 [kHz] so that the mirror 24 swings at a swing angle of ± 6.25 degrees. In the graph shown in FIG. 5, the elastic modulus of the reinforcing material 60 is shown as a characteristic of the material of the reinforcing material 60. In FIG. 5, the stress applied to the neck 50 a of the wire 50 in the optical scanner 1 in a state where the reinforcing material 60 is not provided is indicated by a line α. A stress of 45 [MPa] indicated by a line α in FIG. 5 is applied to the neck portion 50a of the wire 50 where the reinforcing material 60 is not provided. Further, in the optical scanner 1 in a state where the reinforcing material 60 is provided, the stress applied to the neck portion 50a of the wire 50 is indicated by a line β. According to FIG. 5, when the reinforcing member 60 is provided on the wire 50, the stress applied to the neck portion 50a can be reduced as compared with the case where the reinforcing member 60 is not provided. Further, the stress applied to the neck portion 50 a of the wire 50 varies depending on the elastic modulus of the reinforcing material 60. For example, when the reinforcing member 60 having an elastic modulus of 1 [Gpa] is provided on the neck portion 50a, a stress of about 27.5 [MPa] is applied. Further, when the reinforcing member 60 having an elastic modulus of 10 [Gpa] is provided, a stress of about 11 [MPa] is applied.

図5に示すように、弾性率が高い補強材60を設けるほど、ワイヤ50のネック部50aにかかる応力を小さくすることができる。特に、補強材60は、その弾性率を1[GPa]以上とすることが望ましい。しかしながら、補強材60は、樹脂製の材料であるとき、弾性率が高すぎると、流動しやすいことが考えられる。弾性率が大きい補強材60を、補強したいワイヤ50のネック部50aに塗布しても、補強材60が固化する前に流動し、ネック部50aを補強することができないおそれがある。そのため、補強材60は、弾性率を10[GPa]以下とすることが望ましい。また、例えば、弾性率が10[GPa]より大きい金属製の材料を用いると、ワイヤ50のネック部50aにかかる負荷応力を軽減させることはできるが、ワイヤ50の金属製の補強材との境界に大きな負荷がかかる。その結果、ワイヤ50の金属製の補強材との境界が断線するおそれがある。   As shown in FIG. 5, the stress applied to the neck portion 50 a of the wire 50 can be reduced as the reinforcing material 60 having a higher elastic modulus is provided. In particular, the reinforcing member 60 desirably has an elastic modulus of 1 [GPa] or more. However, when the reinforcing material 60 is a resin material, it is considered that the reinforcing material 60 tends to flow if the elastic modulus is too high. Even if the reinforcing material 60 having a large elastic modulus is applied to the neck portion 50a of the wire 50 to be reinforced, the reinforcing material 60 may flow before solidifying, and the neck portion 50a may not be reinforced. Therefore, it is desirable that the reinforcing material 60 has an elastic modulus of 10 [GPa] or less. For example, when a metal material having an elastic modulus larger than 10 [GPa] is used, the load stress applied to the neck portion 50a of the wire 50 can be reduced, but the boundary between the wire 50 and the metal reinforcing material A heavy load is applied. As a result, the boundary between the wire 50 and the metal reinforcing material may be broken.

(本発明の構成との関係)
本実施形態の電極パッド22aが、本発明の第1電極の一例である。本実施形態の電極35が、本発明の第2電極の一例である。本実施形態におけるワイヤ50が電極パッド22aに接続される部分が、本発明の第1接続部分の一例である。本実施形態におけるワイヤ50が電極35に接続される部分が、本発明の第2接続部分の一例である。
(Relationship with the configuration of the present invention)
The electrode pad 22a of this embodiment is an example of the first electrode of the present invention. The electrode 35 of the present embodiment is an example of the second electrode of the present invention. The portion where the wire 50 in this embodiment is connected to the electrode pad 22a is an example of the first connection portion of the present invention. The portion where the wire 50 in this embodiment is connected to the electrode 35 is an example of the second connection portion of the present invention.

また、本実施形態における駆動基板21の走査部21bが、本発明の基板の載置部の一例である。本実施形態における駆動基板21の被固定部21aが、本発明の基板の支持部の一例である。尚、本実施形態において、圧電素子22は、左右方向に大きく伸縮する構成である。本実施形態の圧電素子22が大きく伸縮する左右方向が、本発明における圧電素子が伸縮する方向に相当する。また、本実施形態において駆動基板21は、被固定部21aが固定され、左右方向の中心である中心軸Xを中心に、振動する。本実施形態において、図1の中心軸Xが延びる左右方向の中心が、本発明の中心軸に相当する。   Moreover, the scanning part 21b of the drive substrate 21 in this embodiment is an example of the board | substrate mounting part of this invention. The fixed portion 21a of the drive substrate 21 in the present embodiment is an example of the substrate support portion of the present invention. In the present embodiment, the piezoelectric element 22 is configured to greatly expand and contract in the left-right direction. The left-right direction in which the piezoelectric element 22 of the present embodiment greatly expands and contracts corresponds to the direction in which the piezoelectric element of the present invention expands and contracts. Further, in the present embodiment, the fixed portion 21a is fixed to the drive substrate 21 and vibrates around the central axis X that is the center in the left-right direction. In the present embodiment, the center in the left-right direction in which the central axis X in FIG. 1 extends corresponds to the central axis of the present invention.

(変形例)
本実施形態において、補強材60は、ワイヤ50と電極パッド22aとの接続部分のネック部及びワイヤ50と電極35との接続部分のネック部50aに設けられている。しかしながら、ワイヤ50に設けられる補強材60は、ワイヤ50と電極パッド22aとの接続部分、またはワイヤ50と電極35との接続部分のいずれか一方であっても良い。また、補強材60は、少なくともワイヤ50と電極パッド22aとの接続部分のネック部50aに設けられていればよい。これにより、圧電素子22が伸縮するとき、負荷が大きくかかる電極パッド22aとの接続部分のネック部50aの切断を防ぐことができる。
(Modification)
In the present embodiment, the reinforcing member 60 is provided at the neck portion of the connection portion between the wire 50 and the electrode pad 22 a and the neck portion 50 a of the connection portion between the wire 50 and the electrode 35. However, the reinforcing member 60 provided on the wire 50 may be one of a connection portion between the wire 50 and the electrode pad 22 a or a connection portion between the wire 50 and the electrode 35. Moreover, the reinforcing material 60 should just be provided in the neck part 50a of the connection part of the wire 50 and the electrode pad 22a at least. Thereby, when the piezoelectric element 22 expands and contracts, it is possible to prevent the neck portion 50a at the connection portion with the electrode pad 22a that is heavily loaded from being cut.

補強材60は、伸縮する圧電素子22からワイヤ50にかかる力の位置に応じて、部分的に塗布してもよい。また、ネック部50aに設けられる補強材60は、圧電素子22からワイヤ50にかかる力の大きさに応じて、部分的に塗布量を増減してもよい。   The reinforcing material 60 may be partially applied according to the position of the force applied to the wire 50 from the expanding and contracting piezoelectric element 22. Further, the reinforcing material 60 provided in the neck portion 50a may partially increase or decrease the coating amount according to the magnitude of the force applied from the piezoelectric element 22 to the wire 50.

1 光スキャナ
20 走査ユニット
21 駆動基板
22 圧電素子
22a 電極パッド
24 ミラー
30 固定台座
34 電極基板
35 電極
50 ワイヤ
50a ネック部
60 補強材
DESCRIPTION OF SYMBOLS 1 Optical scanner 20 Scanning unit 21 Drive board 22 Piezoelectric element 22a Electrode pad 24 Mirror 30 Fixed base 34 Electrode board 35 Electrode 50 Wire 50a Neck part 60 Reinforcement material

Claims (5)

電圧が印加されて伸縮する圧電素子と、
前記圧電素子に設けられる第1電極と、
前記圧電素子と別体に設けられ、電源からの電圧が印加される第2電極と、
前記第1電極と前記第2電極とを電気的に接続する導線と、
を備える振動装置であって、
前記導線と前記第1電極との接続部分である第1接続部分と、前記導線と前記第2電極との接続部分である第2接続部分との少なくとも一方に設けられ、前記導線の太さが、前記接続部分に向けて太くなるネック部と、
前記圧電素子による伸縮に伴って変位する前記ネック部の境界に設けられる補強材と、を備えることを特徴とする振動装置。
A piezoelectric element that expands and contracts when a voltage is applied;
A first electrode provided on the piezoelectric element;
A second electrode provided separately from the piezoelectric element, to which a voltage from a power source is applied;
A conducting wire electrically connecting the first electrode and the second electrode;
A vibration device comprising:
Provided in at least one of a first connection portion that is a connection portion between the conductive wire and the first electrode and a second connection portion that is a connection portion between the conductive wire and the second electrode, and the thickness of the conductive wire is , A neck portion that thickens toward the connection portion;
And a reinforcing member provided at a boundary of the neck portion that is displaced along with expansion and contraction by the piezoelectric element.
入射される光を反射するミラーを有し、前記圧電素子が載置される載置部と、前記載置部に隣接し、支持される支持部と、を備える基板を備え、
前記基板は、前記圧電素子が伸縮することにより、前記支持部と前記載置部とを繋ぐ線上を中心軸として振動し、前記ミラーを走査させるものであり、
前記補強材は、前記導線において、前記ネック部の前記第1接合部分と前記第2接合部分とを結ぶ線上に設けられることを特徴とする請求項1に記載の振動装置を備える光スキャナ。
A substrate that includes a mirror that reflects incident light, the mounting unit on which the piezoelectric element is mounted, and a support unit that is adjacent to and supported by the mounting unit;
The substrate vibrates about a line connecting the support portion and the mounting portion as a central axis when the piezoelectric element expands and contracts, and scans the mirror.
2. The optical scanner including the vibration device according to claim 1, wherein the reinforcing material is provided on a line connecting the first joint portion and the second joint portion of the neck portion in the conductive wire.
前記圧電素子は、伸縮することにより前記ミラーが駆動される前記基板の面に平行な方向であり、且つ、前記中心軸方向と交差する方向に少なくとも伸縮するものであり、
前記補強材は、さらに、前記導線において、前記ネック部の前記中心軸に平行する線上に設けられることを特徴とする請求項2に記載の振動装置を備える光スキャナ。
The piezoelectric element is a direction parallel to the surface of the substrate on which the mirror is driven by expanding and contracting, and at least expands and contracts in a direction intersecting the central axis direction,
The optical scanner having the vibration device according to claim 2, wherein the reinforcing material is further provided on a line parallel to the central axis of the neck portion in the conducting wire.
前記補強材は、前記導線の前記ネック部の前記境界と、前記第1電極とを覆うように設けられることを特徴とする請求項1〜3に記載の振動装置を備える光スキャナ。   The optical scanner provided with the vibration device according to claim 1, wherein the reinforcing material is provided so as to cover the boundary of the neck portion of the conducting wire and the first electrode. 前記補強材は、弾性率が1GPaから10GPaの範囲である樹脂材料を用いることを特徴とする請求項1〜4に記載の振動装置を備える光スキャナ。   The optical scanner including the vibration device according to claim 1, wherein the reinforcing material is a resin material having an elastic modulus in a range of 1 GPa to 10 GPa.
JP2011117667A 2011-05-26 2011-05-26 Vibration device and optical scanner Withdrawn JP2012247523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117667A JP2012247523A (en) 2011-05-26 2011-05-26 Vibration device and optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117667A JP2012247523A (en) 2011-05-26 2011-05-26 Vibration device and optical scanner

Publications (1)

Publication Number Publication Date
JP2012247523A true JP2012247523A (en) 2012-12-13

Family

ID=47468026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117667A Withdrawn JP2012247523A (en) 2011-05-26 2011-05-26 Vibration device and optical scanner

Country Status (1)

Country Link
JP (1) JP2012247523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741027A (en) * 2020-05-27 2021-12-03 成都理想境界科技有限公司 Grating type scanning actuator and optical fiber scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741027A (en) * 2020-05-27 2021-12-03 成都理想境界科技有限公司 Grating type scanning actuator and optical fiber scanner
CN113741027B (en) * 2020-05-27 2024-03-08 成都理想境界科技有限公司 Grating type scanning actuator and optical fiber scanner

Similar Documents

Publication Publication Date Title
JP2007173583A (en) Laminated mounting structure
WO2008041484A1 (en) Elastic contact and method for bonding between metal terminals using the same
US20120138662A1 (en) Wire bonding method
JP2012247523A (en) Vibration device and optical scanner
JPWO2014077044A1 (en) Flip chip bonding method and manufacturing method of solid-state imaging device including the flip chip bonding method
JP5281498B2 (en) Pressure ultrasonic vibration bonding method and pressure ultrasonic vibration bonding apparatus
WO2017154642A1 (en) Electronic circuit board and ultrasonic bonding method
JP5922971B2 (en) Rail bond
JP2012039032A (en) Capillary for wire bonding device and ultrasonic transducer
JP2010206505A (en) Piezoelectric device, and manufacturing method thereof
JP6035775B2 (en) Parametric speaker and manufacturing method thereof
JP2014220424A (en) Photo coupler
JP6649467B2 (en) Electronic circuit board and ultrasonic bonding method
JP2013114014A (en) Manufacturing method of optical scanner and optical scanner
WO2011093028A1 (en) Piezoelectric excitor
JP4894159B2 (en) Semiconductor device and manufacturing method thereof
CN110870781A (en) Flexible ultrasonic transducer array and focusing transducer
JP3356072B2 (en) Gang bonding apparatus and gang bonding method
JP5085228B2 (en) Piezoelectric fan device
JP5765044B2 (en) Optical scanner
JP5177910B2 (en) Semiconductor device and manufacturing method thereof
JP2011215208A (en) Optical scanner
JP2006351771A (en) Optical chip and optical module
JP2013102025A (en) Bonding device equipped with piezo stage of linear reciprocation rapid response, and intermetallic junction structure using the same
JP2010181834A (en) Micromirror device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805