JP2012246227A - Soilborne disease controlling agent, and method for controlling soilborne disease using the same - Google Patents

Soilborne disease controlling agent, and method for controlling soilborne disease using the same Download PDF

Info

Publication number
JP2012246227A
JP2012246227A JP2011117281A JP2011117281A JP2012246227A JP 2012246227 A JP2012246227 A JP 2012246227A JP 2011117281 A JP2011117281 A JP 2011117281A JP 2011117281 A JP2011117281 A JP 2011117281A JP 2012246227 A JP2012246227 A JP 2012246227A
Authority
JP
Japan
Prior art keywords
cbm
genus
control agent
disease control
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011117281A
Other languages
Japanese (ja)
Inventor
Shuichi Karita
修一 苅田
Masafumi Shimizu
将文 清水
Toshisuke Ichikawa
俊輔 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2011117281A priority Critical patent/JP2012246227A/en
Publication of JP2012246227A publication Critical patent/JP2012246227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soilborne disease controlling agent, and a method for controlling a soilborne disease using the same.SOLUTION: This soilborne disease controlling agent contains a carbohydrate-binding module (CBM) originated in fungi. A soilborne disease can be controlled by spraying an aqueous solution containing the soilborne disease controlling agent to stems and leaves of an objective plant. In this case, the plant is preferably at least one selected from spinach, tomato, strawberry, eggplant, capsicum, green pepper and tobacco.

Description

本発明は、土壌病害防除剤、及びこの防除剤を用いた土壌病害防除方法に関する。   The present invention relates to a soil disease control agent and a soil disease control method using this control agent.

植物に対する病原菌は、農作物の減収や収穫物の品質低下等の被害を生じるため、農業生産上、その防除は最大の課題の一つとなっている。現在の農作物の生産現場では、多量の肥料を用いて、広大な面積に単一の農作物を栽培するために、病害発生時の被害は特に大きくなる。この被害を回避するために、病害防除剤の使用は必須の技術となっている。植物の茎・葉に発生する病害は、上記病害防除剤によって比較的容易に防除可能である一方、土壌伝染性の地下部病害(以下、「土壌病害」という)の防除は従来の病害防除剤によっては極めて困難である。土壌病害対策としては、太陽熱・土壌燻蒸剤・熱水を用いた土壌消毒、抵抗性品種の育成、及び抵抗性台木の利用が主たる対策となっている。
上記対策のうち、太陽熱消毒は天候に左右されるため、安定的な効果が得られにくい。土壌燻蒸剤は、毒性が高いため環境面や安全面での問題がある。また、熱水土壌消毒は、土壌の浸透性や圃場の勾配によって影響を受けるために汎用性が低いことに加え、水や燃料コストが掛かるため普及が進んでいない。抵抗性品種の開発、抵抗性台木の効果は、未だに十分とは言えず、抵抗性を打ち破る病原菌の発生が問題となる。
Since pathogenic fungi on plants cause damage such as reduced yields of crops and reduced quality of harvested products, their control is one of the biggest challenges in agricultural production. In the current crop production site, a large amount of fertilizer is used to cultivate a single crop over a vast area, so the damage at the time of the occurrence of a disease is particularly great. In order to avoid this damage, the use of disease control agents has become an essential technique. Diseases occurring on the stems and leaves of plants can be controlled relatively easily with the above-mentioned disease control agents, while the control of soil infectious underground diseases (hereinafter referred to as “soil diseases”) is a conventional disease control agent. Depending on the situation, it is extremely difficult. The main countermeasures against soil diseases are soil disinfection using solar heat, soil fumigant, and hot water, breeding of resistant varieties, and use of resistant rootstocks.
Of the above measures, solar heat disinfection is influenced by the weather, and it is difficult to obtain a stable effect. Soil fumigants are highly toxic and have environmental and safety issues. In addition, hot water soil disinfection is not widely used because it is affected by soil permeability and field gradients, so it has low versatility and requires water and fuel costs. The development of resistant varieties and the effects of resistant rootstocks are not yet sufficient, and the generation of pathogenic bacteria that breaks resistance becomes a problem.

上記問題点を解決するために、病原菌の植物病理を解明し、その原理に基づいて、植物の感染・発症を特異的に阻害する病害防除剤の開発がある。一般に、高等植物は、病原菌と接触すると抵抗性反応を示し、反応部位の周囲の組織に病原菌に対し抗菌性を示す物質を産生することが知られている。植物体中に、このような抵抗性物質を産生、誘導する物質はエリシターと称されており、これまでに多くのエリシターが植物病原菌から分離されている。代表的なエリシターとしては、多糖物質としてPhytophthora megasperma f. sp. glycinea から分離されたhepta-β-D-グルコピラノシド、蛋白物質としてMonilinia fructicolaから分離されたモニコリンA、脂質としてPhytophthora infestansから分離されたエイコサペンタエン酸などがある。
また、病原菌であるエキビョウ菌(phytophthora parasitica nicotianae)の細胞壁から抽出されたセルロース結合ドメイン(CBD)は、エリシターであることが知られている(非特許文献1)。但し、このエリシターは、病原菌自体から抽出されたものであり、さらに直接に植物体の内部に注射しなければ、その効果を発揮できなかった。したがって、時間的にも作業としても非常に煩雑になり、植物体にとってもストレスとなることから、簡便な手法で大量の植物体を扱うことができ、且つ、高安全性・低環境負荷を有する防除剤及び防除方法が望まれていた。
In order to solve the above problems, there is a development of a disease control agent that specifically elucidates the plant pathology of pathogenic bacteria and specifically inhibits infection and development of plants based on the principle. In general, it is known that higher plants produce a resistance reaction when contacted with a pathogenic bacterium, and produce a substance exhibiting antibacterial activity against the pathogenic bacterium in a tissue around the reaction site. Substances that produce and induce such resistance substances in plants are called elicitors, and many elicitors have been isolated from phytopathogenic fungi. Representative elicitors include hepta-β-D-glucopyranoside isolated from Phytophthora megasperma f. Sp. There is icosapentaenoic acid.
Moreover, it is known that the cellulose binding domain (CBD) extracted from the cell wall of the pathogenic phytophthora parasitica nicotianae is an elicitor (Non-patent Document 1). However, this elicitor was extracted from the pathogenic bacterium itself and could not exert its effect unless it was directly injected into the plant body. Therefore, it becomes very complicated both in terms of time and work, and it causes stress for the plant body. Therefore, a large amount of plant body can be handled by a simple method, and it has high safety and low environmental load. Control agents and control methods have been desired.

Elodie Gaulin, et al., Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns; The Plant Cell, Vol.18, 1766-1777 (2006)Elodie Gaulin, et al., Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns; The Plant Cell, Vol. 18, 1766-1777 (2006)

本発明は、上記した事情に鑑みてなされたものであり、その目的は、毒性(残留薬剤を含む)や薬剤耐性菌出現を生じさせない土壌病害防除剤、及びこの防除剤を用いた土壌病害防除方法、特に、病原菌由来ではなく、植物や微生物由来の土壌病害防除剤、及びこの防除剤を用いた土壌病害防除方法を提供することである。また、植物体内への直接的な投与(例えば注射など)を行うことなく、植物体外から噴霧することにより効果を発揮できる土壌病害防除剤、及びこの防除剤を用いた土壌病害防除方法を提供することである。   The present invention has been made in view of the above-described circumstances, and the object thereof is a soil disease control agent that does not cause toxicity (including residual drugs) and appearance of drug-resistant bacteria, and soil disease control using this control agent. It is to provide a method, particularly a soil disease control agent derived from plants and microorganisms, not from pathogenic bacteria, and a soil disease control method using this control agent. Further, the present invention provides a soil disease control agent capable of exerting an effect by spraying from the outside of the plant body without performing direct administration (for example, injection) into the plant body, and a soil disease control method using this control agent. That is.

本発明者らは、鋭意検討の結果、微生物から得られる糖質結合モジュールタンパク質を植物体に噴霧することによって、土壌病害の発生を予防できることを見出し、基本的には本発明を完成するに至った。
こうして、上記課題を解決するための発明に係る土壌病害防除剤は、菌由来の糖質結合モジュール(CBM)を含有することを特徴とする。
糖質結合モジュール(「セルロース結合モジュール」、「Carbohydrate-binding module (CBM)」、「Cellulose-binding module (CBM)」とも称する。また、「モジュール」は「ドメイン」とも称される。)とは、セルラーゼ中に存在するモジュール(ドメイン)の一つであり、糖質(セルロース)への結合活性を有している。セルロースはグルコースのユニットから構成されているので、CBMには、糖−蛋白質の相互作用が必要とされる。CBMは、アミノ酸配列の相同性に基づき、50を超えるファミリーに分類されている。タンパク質構造的には、β-バレル構造が多く、糖との結合には、芳香族アミノ酸(トリプトファンやチロシンなど)が関与していると言われている(糖との疎水性によるスタッキング効果)。結晶性のセルロースに結合するモジュールは、結合面がフラットな構造になり、そこに芳香族アミノ酸が並んでいるという特徴がある(CBM1など)。一方、非結晶性セルロースやキシランに結合するモジュールでは、結合面はややくぼんだクレフト(溝)を形成しており、そこに、芳香族アミノ酸が露出している(CBM6など)。また、糖鎖の端に結合するモジュールでは、クレフトが突き当たりになっており、そこを二つの芳香族アミノ酸で挟むという構造になっている(CBM9など)。これらのCBMを組換え蛋白質のタグとして精製に利用したり、酵素や菌体のセルロースへの固定化など応用面でも注目されている。
As a result of intensive studies, the present inventors have found that the occurrence of soil diseases can be prevented by spraying a carbohydrate binding module protein obtained from a microorganism onto a plant body, and basically the present invention has been completed. It was.
Thus, the soil disease control agent according to the invention for solving the above-mentioned problems is characterized by containing a fungus-derived carbohydrate binding module (CBM).
What is a carbohydrate binding module (also called “cellulose binding module”, “Carbohydrate-binding module (CBM)”, “Cellulose-binding module (CBM)”, and “module” is also called “domain”)? , One of the modules (domains) present in cellulase, and has a binding activity to carbohydrates (cellulose). Since cellulose is composed of glucose units, CBM requires sugar-protein interactions. CBMs are classified into over 50 families based on amino acid sequence homology. In terms of protein structure, there are many β-barrel structures, and it is said that aromatic amino acids (tryptophan, tyrosine, etc.) are involved in binding to sugar (stacking effect due to hydrophobicity with sugar). Modules that bind to crystalline cellulose have a flat bond surface, and aromatic amino acids are aligned there (CBM1 etc.). On the other hand, in a module that binds to amorphous cellulose or xylan, the binding surface forms a slightly concave cleft (groove) where aromatic amino acids are exposed (such as CBM6). In addition, in the module that binds to the end of the sugar chain, the cleft is at the end, and the structure is such that it is sandwiched between two aromatic amino acids (such as CBM9). These CBMs are also attracting attention for applications such as recombinant protein tags for purification and immobilization of enzymes and bacterial cells on cellulose.

本発明に用いるCBMとしては、特に限定はされないが、菌類(真菌および細菌を含む。具体的には、例えばセルロース分解性微生物Clostridium属、Ruminococcus属、Cellulomonas属、Streptomyces属、Bacillus属、Trichoderma属、Aspergillus属、Penicillium属など)から調製されたもの、又は、これらの微生物からCBMをコードする遺伝子を取得し、異種発現系で発現させ調製したもの、又は、環境中のメタゲノム遺伝子から調製されたものを用いることができる。CBMの調製は、従来公知の文献に開示されている方法(例えば、Araki, et al., Characterization of family 17 and family 28 carbohydrate-binding modules from Clostridium josui. Biosci. Biotechnol. Biochem., 73: 1028-1032 (2009))に従って行える。また、本発明に用いるCBMのファミリーとしては、特に限定はされないが、CBM 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 17, 22, 28, 30, 37, 44, 46, 49, 63 を用いることができる。
CBMをコードする遺伝子をクローニングし、宿主内で高度に発現させることにより、CBM溶液を作成することができる。
具体的には、CBMをコードする遺伝子をPCR法により増幅し、これを発現ベクターに挿入後、発現を行う宿主(大腸菌、または酵母)に導入する。CBM遺伝子をもった組換え体微生物を培養する。大腸菌の場合では、生育した菌体を遠心分離により回収し、超音波などをあてることにより、菌体を破壊し、菌体内に発現したCBMタンパク質を回収する。CBMタンパク質は、タグを用いたアフィニティクロマトグラフィを使用して精製することができる。また、酵母に導入した場合、菌体外発現することができるので、この場合には、培養液そのものをCBM溶液として使用することができる。
また、本発明に係る土壌病害防除方法は、前記土壌病害防除剤を含有する水溶液を、対象とする植物体の茎・葉に噴霧することを特徴とする。
投与時のCBM濃度としては、特に限定されないが、1μM〜100μM(好ましくは5μM〜80μM、更に好ましくは10μM〜50μM)が好ましい。
CBM used in the present invention is not particularly limited, but fungi (including fungi and bacteria. Specifically, for example, cellulolytic microorganisms Clostridium genus, Ruminococcus genus, Cellulomonas genus, Streptomyces genus, Bacillus genus, Trichoderma genus, Aspergillus genus, Penicillium genus, etc.), those obtained by obtaining genes encoding CBM from these microorganisms and expressing them in heterologous expression systems, or those prepared from environmental metagenomic genes Can be used. CBM is prepared by a method disclosed in a conventionally known literature (for example, Araki, et al., Characterization of family 17 and family 28 carbohydrate-binding modules from Clostridium josui. Biosci. Biotechnol. Biochem., 73: 1028- 1032 (2009)). Further, the CBM family used in the present invention is not particularly limited, but CBM 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 17, 22, 28, 30, 37, 44 , 46, 49, 63 can be used.
A CBM solution can be prepared by cloning a gene encoding CBM and highly expressing it in a host.
Specifically, a gene encoding CBM is amplified by PCR, inserted into an expression vector, and then introduced into a host (E. coli or yeast) for expression. A recombinant microorganism having the CBM gene is cultured. In the case of Escherichia coli, the grown cells are collected by centrifugation, and ultrasonic waves are applied to destroy the cells and collect the CBM protein expressed in the cells. CBM protein can be purified using affinity chromatography with tags. In addition, since it can be expressed outside the cells when introduced into yeast, in this case, the culture solution itself can be used as a CBM solution.
The soil disease control method according to the present invention is characterized in that an aqueous solution containing the soil disease control agent is sprayed on the stems and leaves of a target plant.
The CBM concentration at the time of administration is not particularly limited, but is preferably 1 μM to 100 μM (preferably 5 μM to 80 μM, more preferably 10 μM to 50 μM).

なお、投与時のCBM濃度が低ければ、対象とする植物体に多量の防除剤を噴霧すれば良く、CBM濃度が高ければ、植物体に少量の防除剤を噴霧すれば良い。但し、CBM濃度が非常に低い場合には、噴霧量が多くなりすぎて多量の水を必要とするし、CBM濃度が非常に高い場合には、CBMが大量に必要となり、コスト高となる。このため、投与時のCBM濃度としては、上記程度の範囲であることが好ましい。
また、対象とする植物体としては、特に限定されないが、例えば、穀類、野菜、果樹等の農作物、観葉植物等が挙げられる。具体的には、ホウレンソウ、トマト、イチゴ、ナス、トウガラシ、ピーマン、タバコ、バナナ、ショウガ、メロン等を例示できる。
If the CBM concentration at the time of administration is low, a large amount of the control agent may be sprayed on the target plant body, and if the CBM concentration is high, a small amount of the control agent may be sprayed on the plant body. However, when the CBM concentration is very low, the spray amount becomes too large and a large amount of water is required, and when the CBM concentration is very high, a large amount of CBM is required and the cost is increased. Therefore, the CBM concentration at the time of administration is preferably in the above range.
In addition, the target plant body is not particularly limited, and examples thereof include crops such as cereals, vegetables, fruit trees, and foliage plants. Specific examples include spinach, tomato, strawberry, eggplant, pepper, bell pepper, tobacco, banana, ginger, melon and the like.

本発明によれば、従来には対処する方法がなかった土壌病害に対する防除剤、及びこの防除剤を用いた土壌病害防除方法を提供できる。また、本発明では、病原菌由来ではなく、植物や微生物由来のCBMを用いるので、毒性(残留薬剤を含む)や薬剤耐性菌出現を生じさせにくい。更に、本発明によれば、防除剤を植物体に直接に導入する注射のように手間の掛かるものではなく、防除剤を含有する水溶液を噴霧すれば済むので、非常に容易な防除方法となる。例えば、糖質結合モジュールの一種であるCBMを植物体に噴霧することで、フザリウム菌により引き起こされるホウレンソウ萎凋病やトマト青枯病の発病を顕著に抑制できる。糖質結合モジュールは、人体に無害な微生物由来のタンパク質であり、従来の土壌燻蒸剤に比べて安全性が高く、環境への負荷も非常に少ない。   ADVANTAGE OF THE INVENTION According to this invention, the control agent with respect to the soil disease which was not able to cope with conventionally, and the soil disease control method using this control agent can be provided. In the present invention, CBM derived from plants and microorganisms is used instead of pathogenic bacteria, so that it is difficult to cause toxicity (including residual drugs) and appearance of drug-resistant bacteria. Furthermore, according to the present invention, it is not time-consuming as injecting the control agent directly into the plant body, but it is only necessary to spray an aqueous solution containing the control agent. . For example, by spraying a plant body with CBM, which is a kind of carbohydrate binding module, the onset of spinach wilt and tomato bacterial wilt caused by Fusarium bacteria can be remarkably suppressed. The carbohydrate binding module is a protein derived from a microorganism that is harmless to the human body, and is safer and less burdensome on the environment than conventional soil fumigants.

CBM噴霧によるトマト(桃太郎)青枯病抑制の様子を示した写真図である。BSA(A、B)、TrCBM1-CFP(C、D)の噴霧効果を示した。It is the photograph figure which showed the mode of tomato (Momotaro) bacterial wilt suppression by CBM spraying. The spray effects of BSA (A, B) and TrCBM1-CFP (C, D) were shown. トマト(桃太郎)茎内で増殖した病原菌の密度を示すグラフである。It is a graph which shows the density of the pathogenic microbe which proliferated in the tomato (Momotaro) stem. CBM噴霧によるトマト(マイクロトム)青枯病抑制の様子を示した写真図である。CFP(A、B)、TrCBM1-CFP(C、D)、CjCBM3(E、F)の噴霧効果を示した。移植時(A、C、E)とCBM2回目噴霧4日後(B、D、F)のトマト外観を示した。It is the photograph figure which showed the mode of tomato (microtom) bacterial wilt suppression by CBM spraying. The spray effects of CFP (A, B), TrCBM1-CFP (C, D), and CjCBM3 (E, F) were shown. Appearance of tomato at the time of transplantation (A, C, E) and 4 days after the second spray of CBM (B, D, F) was shown. 青枯病発病後のトマト(マイクロトム)地上部の乾燥重量を示すグラフである。CBM2回目噴霧後11日目の地上部乾燥重量を示した。It is a graph which shows the dry weight of tomato (microtom) above-ground part after bacterial wilt disease onset. The above-ground dry weight on the 11th day after the second spray of CBM was shown. CBM噴霧によるホウレンソウ萎凋病抑制の様子を示す写真図である。緩衝液のみ(A、B)、CjCBM3(C、D)の噴霧効果を示した。2回目CBM噴霧時(A、C)と2回目CBM噴霧から5日後(B、D)のホウレンソウ外観を示した。It is a photograph figure which shows the mode of spinach wilt suppression by CBM spraying. The spray effects of buffer solution only (A, B) and CjCBM3 (C, D) were shown. The appearance of spinach was shown during the second CBM spray (A, C) and five days after the second CBM spray (B, D). トマト(桃太郎)葉組織の遺伝子発現解析を行った結果を示すグラフである。CBM噴霧後24時間地点で葉からRNAを抽出し、DNAマイクロアレイ解析を行った。横軸にCFP処理株での遺伝子発現量、縦軸にTrCBM1-CFP処理株での遺伝子発現量を示した。It is a graph which shows the result of having performed the gene expression analysis of the tomato (Momotaro) leaf tissue. RNA was extracted from leaves at 24 hours after CBM spraying, and DNA microarray analysis was performed. The horizontal axis shows the gene expression level in the CFP-treated strain, and the vertical axis shows the gene expression level in the TrCBM1-CFP-treated strain.

次に、本発明の実施形態について、図表を参照しつつ説明するが、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶ。
<実施例1.タンパク質溶液調製>
真菌由来の糖質結合モジュール(Carbohydrate-binding module: CBM) (TrCBM1-CFP)と細菌由来のCBM(CjCBM3)を調製した。また、対照試料としてトマト(桃太郎)の場合は牛血清アルブミン(BSA)を、トマト(マイクロトム)の場合はシアン色蛍光タンパク質(CFP)を、ホウレンソウの場合は20mMリン酸カリウム緩衝液を使用した。各溶液は20mMリン酸カリウム緩衝液で透析し、25μMの濃度に設定し、試験に用いた。
TrCBM1-CFP: Trichoderma reesei NBRC31329株のゲノムDNAを鋳型として、セルラーゼCel7AのもつCBM1をコードする領域をPCR法で増幅した。PCRに使用したプライマー配列として、5'-GGATCCCCTACCCAGTCTCACTACGG-3'(配列番号1)と5'-GAATTCGGGGGAGGTCAGGCACTGAGAGTAGTAAGG-3'(配列番号2)のオリゴヌクレオチドを合成して使用した。この配列は、Shoemarker et al., Nature Biotechnology 1: 691-696 (1983) に発表されている塩基配列に基づいて、設計した。PCR反応は、市販のrTaq DNAポリメラーゼを使用した。この増幅した遺伝子を、発現ベクターpRSET-CFPのBamHI-EcoRIサイトに導入し、大腸菌BL21(DE3)株を形質転換した。IPTGによる誘導下、形質転換体を培養し、回収した菌体を超音波で破壊し、CBMを含む無細胞抽出液を得た。この抽出液にNi-NTAアガロース樹脂を添加し、CBMを吸着させ、洗浄の後、イミダゾール溶液によりCBMを遊離した。これを透析することにより、CBM1-CFPタンパク質を含む溶液を作成した。
CjCBM3: Clostridium josui FERM P-9684株のゲノムDNAを鋳型として、スキャホールディンタンパク質CipAのもつCBM3をコードする領域をPCR法で増幅した。PCRに使用したプライマー配列として、5'-AAGGATCCGCAGCTGATACTGGCG-3'(配列番号3)と5'-AAGCTTTCAACCATTAGGTGTTGAACCA-3'(配列番号4)のオリゴヌクレオチドを合成して使用した。この配列は、Kakiuchi et al., Journal of Bacteriology 180: 4303-4308 (1998) に発表されている塩基配列に基づき設計した。この増幅した遺伝子を、発現ベクターpQE30のBamHI-HindIIIサイトに導入し、大腸菌JM109株を形質転換した。IPTGによる誘導下、形質転換体を培養し、回収した菌体を超音波で破壊し、CBMを含む無細胞抽出液を得た。この抽出液にNi-NTAアガロース樹脂を添加し、CBMを吸着させ、洗浄の後、イミダゾール溶液によりCBMを遊離した。これを透析することにより、CjCBM3タンパク質を含む溶液を作成した。
Next, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited by these embodiments, and various forms can be made without changing the gist of the invention. Can be implemented. Further, the technical scope of the present invention extends to an equivalent range.
<Example 1. Preparation of protein solution>
A fungal-derived carbohydrate binding module (CBM) (TrCBM1-CFP) and a bacterial-derived CBM (CjCBM3) were prepared. As a control sample, bovine serum albumin (BSA) was used for tomato (Momotaro), cyan fluorescent protein (CFP) was used for tomato (MicroTom), and 20 mM potassium phosphate buffer was used for spinach. . Each solution was dialyzed against 20 mM potassium phosphate buffer, set to a concentration of 25 μM, and used for testing.
TrCBM1-CFP: Trichoderma reesei NBRC31329 strain genomic DNA was used as a template to amplify the region encoding cellulase Cel7A-encoding CBM1 by PCR. As primer sequences used for PCR, oligonucleotides of 5′-GGATCCCCTACCCAGTCTCACTACGG-3 ′ (SEQ ID NO: 1) and 5′-GAATTCGGGGGAGGTCAGGCACTGAGAGTAGTAAGG-3 ′ (SEQ ID NO: 2) were synthesized and used. This sequence was designed based on the nucleotide sequence published in Shoemarker et al., Nature Biotechnology 1: 691-696 (1983). A commercially available rTaq DNA polymerase was used for the PCR reaction. This amplified gene was introduced into the BamHI-EcoRI site of the expression vector pRSET-CFP to transform E. coli BL21 (DE3) strain. Under the induction with IPTG, the transformant was cultured, and the collected cells were disrupted with ultrasound to obtain a cell-free extract containing CBM. Ni-NTA agarose resin was added to this extract to adsorb CBM, and after washing, CBM was released with an imidazole solution. This was dialyzed to prepare a solution containing CBM1-CFP protein.
CjCBM3: Using the genomic DNA of Clostridium josui FERM P-9684 as a template, the region encoding CBM3 of the scaffoldin protein CipA was amplified by PCR. As primer sequences used for PCR, oligonucleotides of 5′-AAGGATCCGCAGCTGATACTGGCG-3 ′ (SEQ ID NO: 3) and 5′-AAGCTTTCAACCATTAGGTGTTGAACCA-3 ′ (SEQ ID NO: 4) were synthesized and used. This sequence was designed based on the nucleotide sequence published in Kakiuchi et al., Journal of Bacteriology 180: 4303-4308 (1998). This amplified gene was introduced into the BamHI-HindIII site of the expression vector pQE30, and Escherichia coli JM109 strain was transformed. Under the induction with IPTG, the transformant was cultured, and the collected cells were disrupted with ultrasound to obtain a cell-free extract containing CBM. Ni-NTA agarose resin was added to this extract to adsorb CBM, and after washing, CBM was released with an imidazole solution. This was dialyzed to prepare a solution containing CjCBM3 protein.

<実施例2.トマト(桃太郎)の栽培と病害防除試験法>
培土を詰めたセルトレイにトマト種子(桃太郎)を播種し、ガラス温室内で育苗した。なお、1区7株とした。草丈が約10cmに生長した苗にCBM溶液3mLを噴霧した。噴霧処理から7日後、苗を青枯病菌(Ralstonia solanacearum)汚染土(106 cfu/g)を詰めたポットへ移植し、同温室内で栽培を続けた。移植から3日後にCBM溶液3mLを再度噴霧した。2回目噴霧から4日後に発病を調査した。さらに、茎内で増殖した病原菌の密度(cfu/g)を測定した。
CBM噴霧処理後の遺伝子発現状況を解析した。上記と同様、セルトレイ中で草丈約10cmまで育苗し、1mLのタンパク溶液を噴霧した。噴霧処理から24時間後、葉を採取し、そこからRNAを抽出し試料とした。試料はDNAマイクロアレイにて解析した。
<Example 2. Tomato (Momotaro) Cultivation and Disease Control Test Method>
Tomato seeds (Momotaro) were sown in cell trays filled with culture soil and grown in a glass greenhouse. In addition, 1 ward was set to 7 shares. 3 mL of CBM solution was sprayed on seedlings with a plant height of about 10 cm. Seven days after the spray treatment, the seedlings were transplanted into pots filled with Ralstonia solanacearum-contaminated soil (10 6 cfu / g), and cultivation was continued in the greenhouse. Three days after transplantation, 3 mL of CBM solution was sprayed again. The disease was investigated 4 days after the second spray. Furthermore, the density (cfu / g) of pathogenic bacteria grown in the stem was measured.
The gene expression situation after CBM spray treatment was analyzed. In the same manner as described above, seedlings were grown in a cell tray to a plant height of about 10 cm and sprayed with 1 mL of protein solution. Twenty-four hours after the spray treatment, leaves were collected, and RNA was extracted therefrom to prepare a sample. Samples were analyzed with a DNA microarray.

<実施例3.トマト(マイクロトム)の栽培と病害防除試験法>
バーミキュライトを詰めたセルトレイにトマト種子(マイクロトム)を播種し、液体肥料を与えながら人工気象器内で30℃に管理し、育苗した。なお、1区6株とした。草丈が約2cmに生長した苗にCBM溶液3mLを噴霧した。噴霧処理から3日後、苗を青枯病菌汚染土(106cfu/g)を詰めたポットへ移植し、同気象器内で栽培を続けた。移植から3日後にCBM溶液3mLを再度噴霧した。2回目噴霧から4日から11日後までの間、病徴の進行を調査し、以下の6段階の発病指数に分類した。発病指数(0:萎れた葉の割合が0%、1:1〜25%、2:26〜50%、3:51〜75%、4:76〜99%、5:100%)。また、発病指数を用いて防除価を以下の式にて算出した。
防除価={1−(処理区の平均発病指数/対照区の平均発病指数)}×100。
<Example 3. Tomato (Microtom) Cultivation and Disease Control Test Method>
Tomato seeds (microtomes) were sown in a cell tray packed with vermiculite, and the seedlings were grown by controlling them at 30 ° C. in an artificial weather apparatus while giving liquid fertilizer. In addition, 1 ward 6 shares. 3 mL of CBM solution was sprayed on seedlings with a plant height of about 2 cm. Three days after spraying, the seedlings were transplanted into pots filled with bacterial wilt contaminated soil (10 6 cfu / g), and cultivation was continued in the same meteorological apparatus. Three days after transplantation, 3 mL of CBM solution was sprayed again. From the second spray to the fourth to eleventh days, the progression of symptoms was investigated and classified into the following six stages of disease index. Disease index (0: 0% wilted leaf ratio, 1: 1-25%, 2: 26-50%, 3: 51-75%, 4: 76-99%, 5: 100%). Moreover, the control value was calculated by the following formula using the disease index.
Control value = {1− (average disease incidence index of treatment group / average disease incidence index of control group)} × 100.

<実施例4.ホウレンソウ(おかめ)の栽培と病害防除試験法>
培土を詰めたセルトレイにホウレンソウ種子(おかめ)を播種し、人工気象器内で26℃に管理し、育苗した。なお、1区13株とした。播種から4日後に苗にCBM溶液3mLを噴霧した。噴霧処理から3日後、萎凋病菌(Fusarium oxysporum f. sp. spinaciae GF960)(104 cfu/g)を接種した。接種から3日後にCBM溶液3mLを再度噴霧した。2回目噴霧から5日後、病徴の進行を調査し、以下の5段階の発病指数に分類した。発病指数(0:健全、1:地上部は健全だが根部表面が褐変、2:地上部は健全だが根部導管が褐変、3:地上部が萎凋、4:枯死)。さらに発病指数を用いて防除価を算出した。
<Example 4. Spinach cultivation and disease control test method>
Spinach seeds (okame) were sown in cell trays filled with culture soil, and the seedlings were grown at 26 ° C. in an artificial meteorological device. In addition, it was set to 13 shares in 1 district. Four days after sowing, seedlings were sprayed with 3 mL of CBM solution. Three days after the spray treatment, Fusarium oxysporum f. Sp. Spinaciae GF960 (10 4 cfu / g) was inoculated. Three days after inoculation, 3 mL of CBM solution was sprayed again. Five days after the second spray, the progression of symptom was investigated and classified into the following five stages of disease index. Disease index (0: healthy, 1: healthy above ground but browned root surface, 2: healthy above ground but browned root conduit, 3: wilt above ground, 4: dead). Furthermore, the control value was calculated using the disease index.

<結果>
トマト(桃太郎)における青枯病抑制効果
対照区では86%のトマト株が青枯病を発病し、枯死した。一方、TrCBM1-CFPを噴霧したトマト株の枯死率は29%にとどまり、高い発病抑制効果が認められた(図1)。また、茎内の病原菌を比較したところ、TrCBM1-CFP処理区では対照区の約1/3に減少していた(図2)。以上の結果から、TrCBM1-CFP噴霧処理によりトマト株が青枯病に耐病性化し、トマト体内への病原菌の感染および増殖が抑制されることが明らかとなった。
<Result>
Inhibitory effect of bacterial wilt on tomato (Momotaro) In the control group, 86% of tomato strains developed bacterial wilt and died. On the other hand, the death rate of the tomato strain sprayed with TrCBM1-CFP was only 29%, and a high disease suppression effect was observed (FIG. 1). Moreover, when the pathogenic bacteria in the stem were compared, the TrCBM1-CFP treatment group showed a reduction to about 1/3 of the control group (FIG. 2). From the above results, it became clear that the tomato strain became resistant to bacterial wilt by TrCBM1-CFP spray treatment, and the infection and growth of pathogenic bacteria in the tomato body were suppressed.

トマト(マイクロトム)における青枯病抑制効果
対照区では、2回目CBM噴霧から4日後には100%のトマト株が枯死した(図3)。一方、TrCBM1-CFP処理区では発病が抑制され、2回目噴霧4日後の発病指数は1.3(防除価74)、2回目噴霧11日後の発病指数は3.3(同34)であった(図3、表1)。さらに、CjCBM3処理区では、2回目噴霧4日後には発病株は全く現れず(防除価100)、2回目噴霧11日後でも発病指数が0.8(防除価84)にとどまった(図3、表1)。また、CBM処理区では対照区と比較して、2回目噴霧11日後の乾燥重量が有意に大きかった(図4)。このように、両タンパク質の処理は、難防除の土壌伝染性の細菌病害である青枯病に高い防除効果を示すことが明らかとなった。
Inhibitory effect of bacterial wilt in tomato (microtom) In the control group, 100% of tomato strains died 4 days after the second CBM spray (FIG. 3). On the other hand, in the TrCBM1-CFP treatment group, the disease was suppressed, the disease index after 4 days of the second spray was 1.3 (control value 74), and the disease index after 11 days of the second spray was 3.3 (34) (FIG. 3, Table 1). Furthermore, in the CjCBM3 treatment group, no pathogenic strain appeared 4 days after the second spray (control value 100), and the disease index remained at 0.8 (control value 84) even 11 days after the second spray (FIG. 3, Table 1). ). In the CBM-treated group, the dry weight after 11 days of the second spray was significantly larger than that in the control group (FIG. 4). Thus, it has been clarified that the treatment of both proteins exhibits a high control effect against bacterial wilt, which is a soil-borne bacterial disease that is difficult to control.

ホウレンソウ萎凋病に対する防除効果
CjCBM3噴霧はホウレンソウ萎凋病の発病を顕著に抑制した(図5)。表2に示すように、無処理区の発病指数は2.2であったが、CjCBM3処理区は1.0(防除価55)であった。この結果から、CjCBM3の葉面噴霧は土壌伝染性の糸状菌病害にも有効であることが明らかとなった。
Control effect against spinach wilt
CjCBM3 spray remarkably suppressed the onset of spinach wilt (FIG. 5). As shown in Table 2, the disease index of the untreated group was 2.2, but the CjCBM3 treated group was 1.0 (control value 55). From this result, it became clear that foliar spray of CjCBM3 is also effective for soil-borne fungal diseases.

遺伝子発現解析
TrCBM1-CFP噴霧したトマト(桃太郎)株における遺伝子発現をマイクロアレイ解析した結果、エチレン応答性遺伝子等の防御関連遺伝子やストレス応答性遺伝子の発現が顕著に誘導されていることが明らかとなった(表3、図6)。この結果は、TrCBM1-CFPを植物葉に噴霧するだけで、植物体全身に病害やストレスに対する抵抗性が誘導されることを示唆している。
下表3には、TrCBM1-CFP噴霧後24時間地点で葉を採取し、RNAを抽出後にDNAマイクロアレイ解析を行い、発現量に2倍以上の変化があることが明らかとなった遺伝子の一例を示した。
Gene expression analysis
Microarray analysis of gene expression in TrCBM1-CFP sprayed tomato (Momotaro) strains revealed that expression of defense-related genes such as ethylene-responsive genes and stress-responsive genes was remarkably induced (Table) 3, FIG. 6). This result suggests that just spraying TrCBM1-CFP onto plant leaves induces disease and stress resistance throughout the plant body.
Table 3 below shows an example of genes whose leaves were collected 24 hours after TrCBM1-CFP spraying, RNA was extracted, and DNA microarray analysis was performed. Indicated.

このように、本実施形態によれば、従来には有効に対処する方法が少なかった土壌病害である青枯病や萎凋病に対する防除剤、及びこの防除剤を用いた土壌病害防除方法を提供できた。また、本実施形態では、病原菌由来ではなく、植物や微生物由来のCBMを用いたので、毒性(残留薬剤を含む)や薬剤耐性菌出現を生じさせにくい。更に、本実施形態では、植物体への注射のように手間の掛かるものではなく、防除剤を噴霧すれば良いので、容易な防除方法を提供できた。例えば、糖質結合モジュールの一種であるCBMを植物体に噴霧することで、フザリウム菌により引き起こされるホウレンソウ萎凋病やトマト青枯病の発病を顕著に抑制できた。CBMは、人体に無害な微生物由来のタンパク質であり、従来の土壌燻蒸剤に比べて安全性が高く、環境への負荷も非常に少ない土壌病害防除剤を提供できた。 As described above, according to the present embodiment, it is possible to provide a control agent for bacterial wilt and wilt disease, which are soil diseases for which there have been few methods for effectively dealing with it, and a soil disease control method using this control agent. It was. In this embodiment, since CBM derived from plants and microorganisms is used instead of pathogenic bacteria, toxicity (including residual drugs) and appearance of drug-resistant bacteria are unlikely to occur. Furthermore, in this embodiment, it is not time-consuming as injecting into a plant body, and it is only necessary to spray a control agent, so that an easy control method can be provided. For example, by spraying CBM, which is a kind of carbohydrate binding module, on plants, the onset of spinach wilt disease and tomato bacterial wilt caused by Fusarium bacteria could be remarkably suppressed. CBM is a protein derived from microorganisms that are harmless to the human body, and can provide a soil disease control agent that is safer and less burdensome on the environment than conventional soil fumigants.

Claims (6)

菌由来の糖質結合モジュール(CBM)を含有することを特徴とする土壌病害防除剤。 A soil disease control agent comprising a saccharide-binding module (CBM) derived from a fungus. 前記糖質結合モジュール(CBM)が、セルロース分解性微生物Clostridium属、Ruminococcus属、Cellulomonas属、Streptomyces属、Bacillus属、Trichoderma属、Aspergillus属、Penicillium属から調製されたもの、又は、これらの微生物からCBMをコードする遺伝子を取得し、異種発現系で発現させ調製したもの、又は、環境中のメタゲノム遺伝子から調製されたものから選択されることを特徴とする請求項1に記載の土壌病害防除剤。 The carbohydrate binding module (CBM) is prepared from the cellulolytic microorganisms Clostridium genus, Ruminococcus genus, Cellulomonas genus, Streptomyces genus, Bacillus genus, Trichoderma genus, Aspergillus genus, Penicillium genus, or CBM from these microorganisms. The soil disease control agent according to claim 1, wherein the agent is selected from those obtained by obtaining a gene coding for and expressing in a heterologous expression system, or those prepared from metagenomic genes in the environment. 前記糖質結合モジュール(CBM)が、CBM 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 17, 22, 28, 30, 37, 44, 46, 49, 63 からなる群から選択される1または2以上のものであることを特徴とする請求項1又は2に記載の土壌病害防除剤。 The carbohydrate binding module (CBM) consists of CBM 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 17, 22, 28, 30, 37, 44, 46, 49, 63 The soil disease control agent according to claim 1 or 2, which is one or more selected from the group. 請求項1〜3のいずれか一つに記載の土壌病害防除剤であって、対象とする植物体が、ホウレンソウ、トマト、イチゴ、ナス、トウガラシ、ピーマン、タバコ、バナナ、ショウガ、メロンからなる群から選択される少なくとも一つのものであることを特徴とする土壌病害防除剤。 It is a soil disease control agent as described in any one of Claims 1-3, Comprising: The target plant body consists of a spinach, a tomato, a strawberry, eggplant, a pepper, a bell pepper, a tobacco, a banana, ginger, and a melon. A soil disease control agent, which is at least one selected from the group consisting of: 請求項1〜3のいずれか一つに記載の土壌病害防除剤を含有する水溶液を、対象とする植物体の茎・葉に噴霧することを特徴とする土壌病害防除方法。 The soil disease control method characterized by spraying the aqueous solution containing the soil disease control agent as described in any one of Claims 1-3 to the stalk and leaf of the target plant body. 前記植物体は、ホウレンソウ、トマト、イチゴ、ナス、トウガラシ、ピーマン、タバコ、バナナ、ショウガ、メロンからなる群から選択される少なくとも一つのものであることを特徴とする請求項5に記載の土壌病害防除方法。 The soil disease according to claim 5, wherein the plant body is at least one selected from the group consisting of spinach, tomato, strawberry, eggplant, pepper, pepper, tobacco, banana, ginger and melon. Control method.
JP2011117281A 2011-05-25 2011-05-25 Soilborne disease controlling agent, and method for controlling soilborne disease using the same Pending JP2012246227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117281A JP2012246227A (en) 2011-05-25 2011-05-25 Soilborne disease controlling agent, and method for controlling soilborne disease using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117281A JP2012246227A (en) 2011-05-25 2011-05-25 Soilborne disease controlling agent, and method for controlling soilborne disease using the same

Publications (1)

Publication Number Publication Date
JP2012246227A true JP2012246227A (en) 2012-12-13

Family

ID=47467053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117281A Pending JP2012246227A (en) 2011-05-25 2011-05-25 Soilborne disease controlling agent, and method for controlling soilborne disease using the same

Country Status (1)

Country Link
JP (1) JP2012246227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103688819A (en) * 2014-01-15 2014-04-02 中国热带农业科学院热带生物技术研究所 No-till farming method for inhibiting banana vascular wilt from spreading in banana plantation
CN103782748A (en) * 2013-09-13 2014-05-14 哈尔滨派腾农业科技有限公司 Planting technique for big tomatoes
CN104996239A (en) * 2015-08-31 2015-10-28 王立丽 Method for comprehensively preventing and controlling banana disease and insect pests
CN105123390A (en) * 2015-07-31 2015-12-09 王振华 Method for planting bananas on hill slope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892023A (en) * 1994-09-26 1996-04-09 Kao Corp Activity-increasing agent composition for agrichemical and agrichemical composition
JP2002542833A (en) * 1999-04-28 2002-12-17 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Pesticide fusion
JP2005520789A (en) * 2001-10-03 2005-07-14 ユニリーバー・ナームローゼ・ベンノートシヤープ Carbohydrate binding domain-containing fusion proteins for delivery of therapeutic and other agents, and compositions containing them
JP2007191401A (en) * 2006-01-17 2007-08-02 National Agriculture & Food Research Organization Controlling agent against plant viral blight
JP2008178422A (en) * 1997-07-27 2008-08-07 Yissum Research Development Co Of The Hebrew Univ Of Jerusalem TRANSGENIC PLANT OF ALTERED MORPHOLOGY, ENDO-1,4-beta-GLUCANASE GENE ISOLATED FROM ARABIDOPSIS THALIANA, PROMOTER AND PROTEIN
JP2008222579A (en) * 2007-03-09 2008-09-25 Mie Univ Plant disease control agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892023A (en) * 1994-09-26 1996-04-09 Kao Corp Activity-increasing agent composition for agrichemical and agrichemical composition
JP2008178422A (en) * 1997-07-27 2008-08-07 Yissum Research Development Co Of The Hebrew Univ Of Jerusalem TRANSGENIC PLANT OF ALTERED MORPHOLOGY, ENDO-1,4-beta-GLUCANASE GENE ISOLATED FROM ARABIDOPSIS THALIANA, PROMOTER AND PROTEIN
JP2002542833A (en) * 1999-04-28 2002-12-17 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Pesticide fusion
JP2005520789A (en) * 2001-10-03 2005-07-14 ユニリーバー・ナームローゼ・ベンノートシヤープ Carbohydrate binding domain-containing fusion proteins for delivery of therapeutic and other agents, and compositions containing them
JP2007191401A (en) * 2006-01-17 2007-08-02 National Agriculture & Food Research Organization Controlling agent against plant viral blight
JP2008222579A (en) * 2007-03-09 2008-09-25 Mie Univ Plant disease control agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015007145; Molecular Plant-Microbe Interactions 10(9), 1997, 1045-1053 *
JPN7015000473; The Plant Cell 18, 2006, 1766-1777 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782748A (en) * 2013-09-13 2014-05-14 哈尔滨派腾农业科技有限公司 Planting technique for big tomatoes
CN103688819A (en) * 2014-01-15 2014-04-02 中国热带农业科学院热带生物技术研究所 No-till farming method for inhibiting banana vascular wilt from spreading in banana plantation
CN105123390A (en) * 2015-07-31 2015-12-09 王振华 Method for planting bananas on hill slope
CN104996239A (en) * 2015-08-31 2015-10-28 王立丽 Method for comprehensively preventing and controlling banana disease and insect pests

Similar Documents

Publication Publication Date Title
Lastochkina et al. Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables
Ference et al. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management
Bastas et al. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Turkey
EP3076791B1 (en) Methods for improving corn yield
Moon et al. Bacillus velezensis CE 100 inhibits root rot diseases (Phytophthora spp.) and promotes growth of Japanese cypress (Chamaecyparis obtusa Endlicher) seedlings
US9380786B2 (en) Agent for preventing bacterial wilt disease, and method for preventing bacterial wilt disease
EP2753181A2 (en) A copper resistant, fengycin-producing bacillus mojavensis strain for controlling vegetable pathogens, its use and compositions containing it
Hu et al. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations
Lahlali et al. The potential of novel bacterial isolates from natural soil for the control of brown rot disease (Monilinia fructigena) on apple fruits
Ghosh et al. Huanglongbing pandemic: current challenges and emerging management strategies
CN105861517A (en) Panax notoginseng antimicrobial peptide gene PnSN1 and application thereof
KR102663880B1 (en) Bvp10 protein for controlling tetranychid mites and use thereof
Palmieri et al. Influence of biocontrol and integrated strategies and treatment timing on plum brown rot incidence and fungicide residues in fruits
JP2012246227A (en) Soilborne disease controlling agent, and method for controlling soilborne disease using the same
Nan et al. Antibacterial potential of Bacillus amyloliquefaciens GJ1 against citrus huanglongbing
CN113527439B (en) Tetranychus-killing protein BVP8 and application thereof
Roca et al. Potential of the quorum‐quenching and plant‐growth promoting halotolerant Bacillus toyonensis AA1EC1 as biocontrol agent
Šņepste et al. Induction of defense responses in Pinus sylvestris seedlings by methyl jasmonate and response to Heterobasidion annosum and Lophodermium seditiosum inoculation
CN104530204B (en) A kind of rape cecropin B gene nPRP1 and its application
CN109797124A (en) One strain insect disinfestations performance is good, environmentally safe thuringiensis and its application
Meir et al. Transforming a NEP1 toxin gene into two Fusarium spp. to enhance mycoherbicide activity on Orobanche—failure and success
CN101709270A (en) Bacterial strain capable of increasing insecticidal effectiveness of biocontrol fungi and construction method thereof
CN106565832B (en) Companion cell crystal protein composition for preventing and treating root-knot nematode and application thereof
CN103923204A (en) Active substance of bacillus thuringiensis for killing meloidogyn incognita and application of active substance
CN104151409B (en) Bacillus thuringiensis vegetative insecticidal protein Vip3A aBb and encoding gene thereof and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721