JP2012244923A - Cultivation facility - Google Patents

Cultivation facility Download PDF

Info

Publication number
JP2012244923A
JP2012244923A JP2011117995A JP2011117995A JP2012244923A JP 2012244923 A JP2012244923 A JP 2012244923A JP 2011117995 A JP2011117995 A JP 2011117995A JP 2011117995 A JP2011117995 A JP 2011117995A JP 2012244923 A JP2012244923 A JP 2012244923A
Authority
JP
Japan
Prior art keywords
cultivation
skylight
pipe
seedling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011117995A
Other languages
Japanese (ja)
Inventor
Hiroichi Muta
博一 牟田
Jiro Nakada
次郎 中田
Yoshiaki Sakai
義明 坂井
Koji Takeda
康志 武田
Tetsuya Uchida
内田  哲也
Hidehiro Okada
英博 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2011117995A priority Critical patent/JP2012244923A/en
Publication of JP2012244923A publication Critical patent/JP2012244923A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the best cultivation in a cultivation facility even in the event that a skylight cannot be opened regardless of the need to ventilate a greenhouse, affecting plant cultivation.SOLUTION: A plurality of rotation fulcrum shafts (108) for rotating the same skylight (30) to open or close the same are provided and the rotation fulcrum shaft (108) serving as the center of rotation is selectively chosen so that the skylight (30) can be opened and closed in a different direction. Two pairs of rotation fulcrum shafts (108) to be disposed in parallel in the same direction are provided, with the directions of the pair of rotation fulcrum shafts (108) crossing each other.

Description

この発明は、栽培施設の技術分野に属する。   This invention belongs to the technical field of cultivation facilities.

栽培施設において、温室の屋根に複数の天窓を設けた構成が知られている。一般的に、前記温室の屋根は三角形状に傾斜した多数の棟を連続して並列に設けており、この屋根に設けた天窓は、屋根の傾斜上位側に設けた単一の回動支点軸回りに回動して屋根の傾斜下位側から開く構成となっている。従って、三角形状に傾斜する屋根の一側の天窓と他側の天窓が互いに反対方向に回動して開く構成となっている。   In a cultivation facility, a configuration in which a plurality of skylights are provided on a roof of a greenhouse is known. In general, the roof of the greenhouse is provided with a large number of ridges inclined in a triangle in parallel, and the skylight provided on the roof is a single pivot fulcrum shaft provided on the upper inclined side of the roof. It rotates around and opens from the lower slope side of the roof. Therefore, the skylight on one side of the roof inclined in a triangular shape and the skylight on the other side rotate in opposite directions to open.

そして、温室内の室温が高すぎるとき等、温室内の換気が必要なときには、天窓を開放して換気を行う。風の向きと強さを検知する風センサを屋根上に設け、風センサの検知に基づいて風の強さが所定以上のときに風上側が開く天窓を閉じたり全ての天窓を閉じたりする制御を実行する制御部を設けている。これにより、強風による天窓の破損を防止している。また、降雨を検知する降雨センサを屋根上に設け、降雨センサの検知に基づいて降雨状態のときは全ての天窓を閉じる制御を実行し、雨が温室内に入らないようにしている(特許文献1参照)。   And when ventilation in a greenhouse is required, such as when the room temperature in a greenhouse is too high, it ventilates by opening a skylight. A wind sensor that detects the direction and strength of the wind is installed on the roof, and based on the detection of the wind sensor, the skylight that opens on the windward side when the wind strength exceeds a predetermined level is closed or all skylights are closed The control part which performs is provided. This prevents the skylight from being damaged by strong winds. In addition, a rain sensor for detecting rain is provided on the roof, and when it is raining based on the detection of the rain sensor, control is performed to close all skylights so that rain does not enter the greenhouse (Patent Literature). 1).

特開昭62−6614号公報JP 62-6614 A

しかしながら、温室内の換気が必要であるにも拘らず、天窓を開くことができない事態か生じると、植物の栽培に影響を与える。
本発明は、最適で良好な栽培を維持することを課題とする。
However, even if ventilation in the greenhouse is necessary, a situation where the skylight cannot be opened will affect plant cultivation.
This invention makes it a subject to maintain optimal and favorable cultivation.

上記課題を解決するために、次のような技術的手段を講じた。
すなわち、請求項1に係る発明は、同一の天窓(30)を回動させて開閉させる複数の回動支点軸(108)を設け、回動中心となる回動支点軸(108)を択一的に選択して異なる方向に天窓(30)を開閉し得る構成とした栽培施設とした。
In order to solve the above problems, the following technical measures were taken.
In other words, the invention according to claim 1 is provided with a plurality of pivot fulcrum shafts (108) for rotating and opening the same skylight (30), and selecting the pivot fulcrum shaft (108) as the pivot center. The cultivation facility was configured so that the skylight (30) could be opened and closed in different directions.

請求項2に係る発明は、複数の回動支点軸(108)の向きが互いに交差する構成とした請求項1に記載の栽培施設とした。
請求項3に係る発明は、複数の回動支点軸(108)は同一方向で平行状に配置した請求項1に記載の栽培施設とした。
The invention according to claim 2 is the cultivation facility according to claim 1, wherein the directions of the plurality of pivot fulcrum shafts (108) intersect each other.
The invention according to claim 3 is the cultivation facility according to claim 1, wherein the plurality of pivot fulcrum shafts (108) are arranged in parallel in the same direction.

請求項4に係る発明は、同一方向で平行状に配置される一対の回動支点軸(108)を2組設け、互いの組の回動支点軸(108)の向きが交差する構成とした請求項1に記載の栽培施設とした。   The invention according to claim 4 is configured such that two pairs of rotation fulcrum shafts (108) arranged in parallel in the same direction are provided, and the directions of the rotation fulcrum shafts (108) of each pair intersect. The cultivation facility according to claim 1 is provided.

請求項5に係る発明は、天窓(30)には複数の回動支点軸(108)が下側から侵入して嵌る各々の軸受け溝(106)を設け、回動支点軸(108)が軸受け溝(106)から抜けるのを規制する規制装置(109)を各々の回動支点軸(108)に対応させて設け、天窓(30)を下側から押し上げる押上装置(77)を設け、一の回動支点軸(108)以外の全ての回動支点軸(108)に対応する規制装置(109)の規制を全て解除して押上装置(77)を作動させることにより、前記一の回動支点軸(108)回りに天窓(30)を回動させる構成とした請求項1に記載の栽培施設とした。   In the invention according to claim 5, the skylight (30) is provided with respective bearing grooves (106) into which a plurality of pivot fulcrum shafts (108) enter from below, and the pivot fulcrum shaft (108) is a bearing. A regulating device (109) that regulates removal from the groove (106) is provided corresponding to each pivot fulcrum shaft (108), and a push-up device (77) that pushes up the skylight (30) from below is provided. The restriction device (109) corresponding to all the rotation fulcrum shafts (108) other than the rotation fulcrum shaft (108) is all released to operate the push-up device (77), whereby the one rotation fulcrum is operated. The cultivation facility according to claim 1, wherein the skylight (30) is rotated around the axis (108).

請求項6に係る発明は、天窓(30)を複数設け、天窓(30)ごとに異なる方向に開閉可能な構成とした請求項1に記載の栽培施設とした。
請求項7に係る発明は、風向きを検知する風向計(111)を屋根上の複数位置に設け、複数の風向計(111)の各々に対応して該風向計の近傍の天窓(30)の風下側を開かせる制御を実行する制御部(26)を設けた請求項6に記載の栽培施設とした。
The invention according to claim 6 is the cultivation facility according to claim 1, wherein a plurality of skylights (30) are provided and can be opened and closed in different directions for each skylight (30).
The invention according to claim 7 is provided with an anemometer (111) for detecting the wind direction at a plurality of positions on the roof, and the skylight (30) in the vicinity of the anemometer corresponding to each of the plurality of anemometers (111). The cultivation facility according to claim 6 provided with the control part (26) which performs control which opens a leeward side.

請求項8に係る発明は、複数の風向計(111)の検知に基づいて風向計(111)が配置されていない位置の風向きを推測し、その推測された風向きに基づいて当該風向計(111)が配置されていない位置にある天窓(30)の風下側を開かせる制御を実行する制御部(26)を設けた請求項7に記載の栽培施設とした。   The invention according to claim 8 estimates a wind direction at a position where the anemometer (111) is not arranged based on detection of a plurality of anemometers (111), and based on the estimated wind direction (111) The cultivation facility according to claim 7, further comprising a control unit (26) for performing control for opening the leeward side of the skylight (30) at a position where the) is not disposed.

請求項1に係る発明によると、天窓30を開いて換気するとき、複数の回動支点軸108のうち極力風上側にある回動支点軸108回りに天窓30を回動させることにより、天窓30を風上方向に開かないようにでき、風が強いときでも換気が行え、温室内の環境を最適にして良好な栽培を維持することができる。   According to the first aspect of the present invention, when the skylight 30 is opened and ventilated, the skylight 30 is rotated around the rotation fulcrum shaft 108 that is on the windward side as much as possible among the plurality of rotation fulcrum shafts 108. Can be prevented from opening in the upwind direction, ventilation can be performed even when the wind is strong, and the environment in the greenhouse can be optimized to maintain good cultivation.

請求項2に係る発明によると、請求項1に係る発明の効果に加えて、天窓30の開閉方向を交差する方向に切替でき、風の向きに対応させて天窓30を適切に開閉できる。
請求項3に係る発明によると、請求項1に係る発明の効果に加えて、天窓30の開閉方向を互いに正反対の方向に切替でき、風の向きに対応させて天窓30を適切に開閉できる。
According to the invention according to claim 2, in addition to the effect of the invention according to claim 1, the opening / closing direction of the skylight 30 can be switched to the intersecting direction, and the skylight 30 can be appropriately opened / closed according to the direction of the wind.
According to the invention of claim 3, in addition to the effect of the invention of claim 1, the opening / closing direction of the skylight 30 can be switched to the opposite direction to each other, and the skylight 30 can be appropriately opened / closed according to the direction of the wind.

請求項4に係る発明によると、請求項1及び請求項2及び請求項3に係る発明の効果に加えて、天窓30の風下側を適確に開閉させることができる。
請求項5に係る発明によると、請求項1に係る発明の効果に加えて、共通の押上装置77により複数の開閉方向へ天窓30を開閉させることができ、天窓30の開閉機構を簡潔に構成でき、コストダウンが図れる。
According to the fourth aspect of the invention, in addition to the effects of the first, second, and third aspects, the leeward side of the skylight 30 can be opened and closed appropriately.
According to the invention according to claim 5, in addition to the effect of the invention according to claim 1, the skylight 30 can be opened and closed in a plurality of opening and closing directions by the common push-up device 77, and the opening and closing mechanism of the skylight 30 is simply configured. And cost reduction.

請求項6に係る発明によると、請求項1に係る発明の効果に加えて、複数の天窓30の位置によって異なる風の向きに対応させて、天窓30の開閉方向を異ならせて各々の天窓30を適切に開閉できる。   According to the invention of claim 6, in addition to the effect of the invention of claim 1, each skylight 30 can be made by changing the opening and closing direction of the skylight 30 in accordance with the direction of the wind that differs depending on the position of the plurality of skylights 30. Can be opened and closed properly.

請求項7に係る発明によると、請求項6に係る発明の効果に加えて、風向計111の検知により各々の天窓30を適切に開閉できる。
請求項8に係る発明によると、請求項7に係る発明の効果に加えて、風向計111が配置されていない位置の風向きを推測することにより、各々の天窓30をより適切に開閉できる。
According to the invention of claim 7, in addition to the effect of the invention of claim 6, each skylight 30 can be appropriately opened and closed by the detection of the anemometer 111.
According to the invention of claim 8, in addition to the effect of the invention of claim 7, each skylight 30 can be opened and closed more appropriately by estimating the wind direction at the position where the anemometer 111 is not arranged.

栽培施設を判り易く示す平面図Top view showing cultivation facilities in an easy-to-understand manner 養液供給装置の養液移送系統を判り易く示す図Diagram showing the nutrient solution transfer system of the nutrient solution supply device in an easy-to-understand manner 通風管を示す図Figure showing a ventilating pipe 暖房設備を判り易く示す図Easy-to-understand illustration of heating equipment 移動用帯体を示す正面図Front view showing moving belt 移動用帯体を示す平面図Plan view showing the moving band 茎温調用パイプの周辺構成を示す側面図Side view showing surrounding structure of stem temperature control pipe 茎温調用パイプの周辺構成を示す正面図Front view showing peripheral configuration of stem temperature control pipe 果実個数表示システムを判り易く示す平面図Plan view showing the fruit number display system in an easy-to-understand manner 養液殺菌システムを判り易く示す図Diagram showing the nutrient solution sterilization system 栽培室を示す正面図Front view showing the cultivation room 栽培室を示す平面図Top view showing the cultivation room 天窓開閉機構を示す側面図Side view showing the skylight opening and closing mechanism 風向きに応じた天窓制御例を示す斜視図A perspective view showing an example of skylight control according to the wind direction 天窓制御における区域を判り易く示す栽培室の平面図Top view of cultivation room showing the area in skylight control clearly 天窓制御における風向き対応制御を示すフローチャートFlow chart showing wind direction control in skylight control 風向きに応じた天窓開閉例を判り易く示す栽培室の平面図Top view of the cultivation room showing an easy-to-understand example of skylight opening and closing depending on the wind direction 反射板を示す正面図(a:通常の栽培状態、b:折りたたみ状態)Front view showing reflector (a: normal cultivation state, b: folded state) 異なる形態の反射板を示す正面図Front view showing different types of reflectors 栽培ベッドの移動機構を判り易く示す正面図Front view showing the movement mechanism of the cultivation bed in an easy-to-understand manner 播種装置を判り易く示す図Illustration showing the sowing device in an easy-to-understand manner

この発明の実施の一形態を、以下に説明する。
図1は栽培施設の一例を示すものであり、この栽培施設は、暖房機や加湿機等により温度及び湿度等の室内環境が管理される温室である栽培室1と、該栽培室1に隣接する出荷室2とを備えている。前記栽培室1内の中央には作業者又は作業移動車(作業台車)3あるいは防除作業車等が通過できるメイン通路4を設けており、このメイン通路4は、路面がコンクリートで構成されたコンクリート通路である。メイン通路4の両側の側方位置には、栽培条となる栽培ベッド5を多数列配置した作物を栽培するための栽培スペース6を構成している。尚、前記栽培ベッド5はロックウールで形成され、出荷室2内の養液供給装置7から各栽培ベッド5へ養液が供給される構成となっている。また、メイン通路4の両端には開閉扉を備える栽培室1への出入り口8を設け、一方の出入り口8を介して隣接する出荷室2へ行き来できる構成となっている。尚、他方の出入り口8は、栽培施設の屋外から出入りできる構成となっている。そして、作業移動車をメイン通路4から各栽培条(各栽培ベッド5)の間のサブ通路9に移動させ、該サブ通路9で栽培条(栽培ベッド5)に沿って作業移動車3を移動させながら栽培条に対する各種作業を行うことができる。
One embodiment of the present invention will be described below.
FIG. 1 shows an example of a cultivation facility. This cultivation facility is adjacent to the cultivation room 1, which is a greenhouse in which the indoor environment such as temperature and humidity is managed by a heater, a humidifier, or the like. And a shipping room 2. In the center of the cultivation room 1 is provided a main passage 4 through which an operator or a work vehicle (work cart) 3 or a control work vehicle can pass, and the main passage 4 is a concrete whose road surface is made of concrete. It is a passage. At side positions on both sides of the main passage 4, a cultivation space 6 for cultivating a crop in which a large number of cultivation beds 5 serving as cultivation strips are arranged is configured. In addition, the said cultivation bed 5 is formed with rock wool, and becomes a structure by which a nutrient solution is supplied to each cultivation bed 5 from the nutrient solution supply apparatus 7 in the shipping room 2. FIG. Moreover, the entrance / exit 8 to the cultivation room 1 provided with an opening / closing door is provided at both ends of the main passage 4, and it is configured to be able to come and go to the adjacent shipping room 2 through one entrance / exit 8. In addition, the other doorway 8 becomes a structure which can enter / exit from the outdoors of a cultivation facility. Then, the work vehicle is moved from the main passage 4 to the sub-passage 9 between the cultivation strips (each cultivation bed 5), and the work carriage 3 is moved along the cultivation strip (cultivation bed 5) in the sub-passage 9. Various operations can be performed on the cultivation strips.

尚、作業移動車3は、サブ通路9上に敷設された後述する左右の暖房用管37を走行用のレールとして走行する。
前記出荷室2内には、前述した養液供給装置7と、収穫されたトマト等の収穫物(果実)を重量や大きさあるいは等級別に選別する選別装置10とを備えている。尚、該選別装置10が、栽培された作物を出荷前に処理する前処理装置となる。選別装置10は、収穫物を搬送して選別する選別コンベア11と、該選別コンベア11の両側の側方に設けられた各階級毎の収穫物収容部12とを備えて構成され、選別コンベア11から各収穫物収容部12へ収穫物を供給して各階級に選別する構成となっている。尚、前記選別コンベア11は、平面視でL字状に屈曲した構成となっている。また、各々の収穫物収容部12には収穫物を収容する収容箱を設けて、この収容箱ごとに収穫物を出荷すればよい。
The work vehicle 3 travels on the left and right heating pipes 37, which will be described later, installed on the sub-passage 9 as traveling rails.
The shipping chamber 2 includes the nutrient solution supply device 7 described above and a sorting device 10 that sorts harvested fruits (fruits) such as tomatoes by weight, size, or grade. The sorting device 10 serves as a pretreatment device for treating the cultivated crop before shipment. The sorting device 10 includes a sorting conveyor 11 that conveys and sorts the harvested products, and a harvested storage unit 12 for each class provided on both sides of the sorting conveyor 11. The harvested product is supplied to each harvested storage unit 12 and sorted into each class. The sorting conveyor 11 is bent in an L shape in plan view. In addition, each harvest storage unit 12 may be provided with a storage box for storing the harvest, and the harvest may be shipped for each storage box.

栽培条(栽培ベッド5)の上側には、該栽培条に沿う誘引ワイヤ80を各栽培条ごとに左右に2本設けている。栽培条に一列に並ぶ栽培植物(栽培株)は、左右の誘引ワイヤ80により交互に振り分けて誘引される構成となっており、誘引ワイヤ80から垂れ下がる誘引紐81により誘引される。従って、例えばトマトを栽培する場合、トマトの茎が栽培ベッド5から誘引紐81を伝って伸長することになる。   On the upper side of the cultivation strip (cultivation bed 5), two induction wires 80 along the cultivation strip are provided on the left and right for each cultivation strip. The cultivated plants (cultivated strains) arranged in a line in the cultivation strip are configured to be alternately distributed by the left and right attracting wires 80 and are attracted by the attracting cord 81 hanging from the attracting wire 80. Therefore, for example, when cultivating tomatoes, the stalks of tomatoes extend from the cultivation bed 5 along the attracting string 81.

誘引ワイヤ80の下方で且つ栽培ベッド5よりも上位には、生長点温調用パイプ91を設けている。従って、生長点温調用パイプ91は、誘引紐81の近くに配置されることになる。また、生長点温調用パイプ91よりも下位となる栽培ベッド5の直上には、根圏温調用パイプ92を設けている。生長点温調用パイプ91及び根圏温調用パイプ92は、誘引ワイヤ80すなわち栽培条の方向に伸び、温調用の流体である温水又は冷水が流れる構成となっている。根圏温調用パイプ92は、栽培条ごとに設けられる。生長点温調用パイプ91は、誘引ワイヤ80に対応して設けられ、栽培条ごとに一対設けられている。従って、根圏温調用パイプ92に温調用の流体を流すことにより、栽培ベッド5を加温又は冷却し、栽培植物(例えばトマト)の根圏の温度調節を行う。また、生長点温調用パイプ91に温調用の流体を流すことにより、誘引紐81で誘引される栽培植物(例えばトマト)の生長点付近を加温又は冷却し、栽培植物の生長点付近の温度調節を行う。尚、栽培植物の生長に伴って生長点の高さが変化するが、それに合わせて生長点温調用パイプ91の高さを調節するための高さ調節装置を別途設けている。   A growth point temperature adjusting pipe 91 is provided below the attracting wire 80 and above the cultivation bed 5. Therefore, the growth point temperature adjusting pipe 91 is disposed near the attracting string 81. Further, a rhizosphere temperature adjusting pipe 92 is provided immediately above the cultivation bed 5 which is lower than the growth point temperature adjusting pipe 91. The growth point temperature adjusting pipe 91 and the rhizosphere temperature adjusting pipe 92 extend in the direction of the attracting wire 80, that is, the cultivation strip, and have a configuration in which hot water or cold water that is a temperature adjusting fluid flows. The rhizosphere temperature adjusting pipe 92 is provided for each cultivation strip. The growth point temperature adjusting pipes 91 are provided corresponding to the attracting wires 80, and a pair is provided for each cultivation strip. Therefore, the cultivation bed 5 is heated or cooled by flowing a temperature adjustment fluid through the rhizosphere temperature adjustment pipe 92, and the temperature of the rhizosphere of the cultivated plant (for example, tomato) is adjusted. Further, by flowing a temperature adjusting fluid through the growth point temperature adjusting pipe 91, the vicinity of the growth point of the cultivated plant (for example, tomato) attracted by the attracting cord 81 is heated or cooled, and the temperature near the growth point of the cultivated plant. Make adjustments. In addition, although the height of a growth point changes with the growth of a cultivated plant, the height adjustment apparatus for adjusting the height of the pipe 91 for growth point temperature control according to it is provided separately.

生長点温調用パイプ91と根圏温調用パイプ92の間には、茎温調用パイプ93を設けている。茎温調用パイプ93は、可撓性があり、誘引紐81すなわち栽培植物の近傍で茎に沿って設けられ、誘引紐81すなわち栽培株ごとに設けられている。そして、温水又は冷水は、生長点温調用パイプ91から茎温調用パイプ93を介して根圏温調用パイプ92へ流れる構成となっている。従って、茎温調用パイプ93により、栽培植物の茎の近傍を加温又は冷却し、栽培植物の近傍の温度調節を行う。よって、生長点温調用パイプ91、根圏温調用パイプ92及び茎温調用パイプ93により、栽培植物の近傍を局所的に暖房又は冷房することができて温調効率を向上させることができ、栽培室1全体を暖房又は冷房するのと比較して温調によるランニングコストの削減が図れる。熱源としては、温水又は冷水等の熱媒体を吐出して供給する電気式の加熱装置(チラー)を用いる。従って、加熱装置から温水又は冷水が生長点温調用パイプ91に供給され、その温水又は冷水が根圏温調用パイプ92から加熱装置へ戻る循環経路を構成している。尚、前記加熱装置に代えて、後述する第一加温装置31又は第二加温装置32からの熱媒体を供給する構成としてもよい。   A stem temperature adjusting pipe 93 is provided between the growth point temperature adjusting pipe 91 and the rhizosphere temperature adjusting pipe 92. The stem temperature adjusting pipe 93 is flexible, and is provided along the stem in the vicinity of the attracting string 81, that is, the cultivated plant, and is provided for each attracting string 81, that is, the cultivated strain. The hot water or the cold water flows from the growth point temperature adjusting pipe 91 to the rhizosphere temperature adjusting pipe 92 via the stem temperature adjusting pipe 93. Accordingly, the temperature of the vicinity of the cultivated plant is adjusted by heating or cooling the vicinity of the cultivated plant stem with the stem temperature adjusting pipe 93. Therefore, the growth point temperature adjustment pipe 91, the rhizosphere temperature adjustment pipe 92, and the stem temperature adjustment pipe 93 can locally heat or cool the vicinity of the cultivated plant to improve the temperature adjustment efficiency. Compared with heating or cooling the entire chamber 1, the running cost can be reduced by temperature control. As the heat source, an electric heating device (chiller) that discharges and supplies a heat medium such as hot water or cold water is used. Accordingly, a hot water or cold water is supplied from the heating device to the growth point temperature adjusting pipe 91, and the hot water or cold water forms a circulation path from the rhizosphere temperature adjusting pipe 92 to the heating device. In addition, it is good also as a structure which replaces with the said heating apparatus and supplies the heat medium from the 1st heating apparatus 31 or the 2nd heating apparatus 32 mentioned later.

各栽培植物(栽培株)が効率良く受光するためには各栽培植物(栽培株)の間隔が栽培室1内全体にわたって略同等となるのが理想であり、そのために、誘引ワイヤ80はサブ通路9の上方に位置しており、栽培植物がサブ通路9上にはみ出るようにしている。ところが、サブ通路9で作業移動車3を移動させながら栽培条に対する各種作業を行うとき、栽培植物がサブ通路9上にはみ出ていると、作業移動車3の移動の邪魔になり、作業が行いにくいおそれがある。そこで、誘引ワイヤ80よりも低位で栽培ベッド5よりも上位で作業移動車3と同じ高さとなる位置には、各栽培条ごとに左右に振り分けられた栽培植物を栽培ベッド5側へ移動させる移動用帯体82を設けている。この移動用帯体82は、栽培植物の側方で該栽培植物に対してサブ通路9側に栽培条に沿って延設され、一端が栽培条の端部に固定され、他端は帯体巻取りモータ83で駆動する帯体巻取り装置84により巻き取りあるいは繰り出しできる構成となっており、帯体巻取りモータ83で巻き取りあるいは繰り出しすることにより、栽培条に沿う帯体の長さを変更できる。これにより、通常栽培時には、帯体巻取り装置84により帯体を繰り出して栽培条に沿う帯体を長くすることにより、栽培植物は移動用帯体82にあまり規制されずにサブ通路9上にはみ出る位置となる。作業移動車3による作業時には、作業移動車3がサブ通路9に進入してきたことを移動用帯体82に設けた進入検出センサ85により検出すると、帯体巻取り装置84により帯体を巻き取って栽培条に沿う帯体を短くすることにより、栽培植物は移動用帯体82により栽培ベッド5側に寄せられ、作業移動車3の移動スペースを確保する。これにより、作業移動車3がサブ通路9に進入するのに連動して移動用帯体82が自動的に作動し、栽培植物が作業移動車3の移動の邪魔になるのを防止するため、作業移動車3の移動スペースの確保に作業者の手を煩わせることを抑え、作業性が向上する。尚、移動用帯体82は、内部に進入検出センサ85の検出子となるワイヤを備えている。尚、進入検出センサ85は防除作業車がサブ通路9に進入してきた場合も同様に検出でき、移動用帯体82は、作業移動車3だけでなく、防除作業車がサブ通路9に進入するのに連動して作動する。   In order for each cultivated plant (cultivated strain) to receive light efficiently, it is ideal that the interval between the cultivated plants (cultivated strain) is substantially the same throughout the cultivation room 1. 9 so that the cultivated plant protrudes on the sub-passage 9. However, when performing various operations on the cultivation strip while moving the work moving vehicle 3 in the sub-passage 9, if the cultivated plant protrudes from the sub-passage 9, the work moving vehicle 3 is obstructed and the work is performed. May be difficult. Therefore, in the position lower than the attracting wire 80 and higher than the cultivation bed 5 and at the same height as the work moving vehicle 3, the movement of the cultivation plant distributed to the left and right for each cultivation line is moved to the cultivation bed 5 side. A band 82 is provided. This moving strip 82 is extended along the cultivation strip on the side of the cultivated plant on the side of the sub-passage 9 with respect to the cultivated plant, one end is fixed to the end of the cultivation strip, and the other end is a strip. The belt winding device 84 driven by the winding motor 83 can be wound or unwound. By winding or unwinding the belt winding motor 83, the length of the band along the cultivating strip can be reduced. Can change. Thereby, at the time of normal cultivation, the cultivated plant is not restricted to the moving strip 82 and is placed on the sub passage 9 by extending the strip by the strip winding device 84 and lengthening the strip along the cultivation strip. It will be a position to protrude. When the work mobile vehicle 3 is working, when the work detection vehicle 85 detects that the work mobile vehicle 3 has entered the sub-passage 9 is detected by the mobile belt 82, the belt winding device 84 winds the belt. By shortening the band along the cultivation strip, the cultivated plant is brought to the cultivation bed 5 side by the moving band 82 to secure the movement space of the work vehicle 3. Thereby, in order to prevent the cultivated plant from interfering with the movement of the work vehicle 3, the moving belt 82 automatically operates in conjunction with the work vehicle 3 entering the sub-passage 9, Workability is improved by suppressing the operator's hands from securing the movement space of the work vehicle 3. The moving band 82 includes a wire serving as a detector of the entry detection sensor 85 inside. The entry detection sensor 85 can similarly detect when the control work vehicle has entered the sub-passage 9, and the moving belt 82 can be used not only for the work vehicle 3 but also for the control work vehicle to enter the sub-passage 9. Operates in conjunction with

サブ通路9上において、作業移動車3は作業者が作業の進捗状況に応じて走行操作を行って適宜移動させる構成であるが、防除作業車は自動走行しながら自動的に防除する構成である。防除作業車は、サブ通路9を往復走行することになるが、防除する栽培条の防除の必要量に応じて、往復走行における片道走行時にのみ防除作業を行う片道防除状態と、往復走行で防除作業を行う往復防除状態と、同じサブ通路9を2回往復走行させてその2回の往復走行で防除作業を行う2往復防除状態とに切替できる構成となっている。これにより、必要以上の防除による栽培植物への悪影響を防止すると共に、病害虫の発生度合の高い栽培条において防除効果の向上を図ることができる。   On the sub-passage 9, the work moving vehicle 3 has a configuration in which an operator performs a traveling operation according to the progress of the work and moves it as appropriate. However, the control work vehicle has a configuration that automatically controls while automatically traveling. . The control work vehicle will travel back and forth in the sub-passage 9, but depending on the required amount of control of the cultivation strip to be controlled, it will be controlled in the one-way control state where the control work is performed only during one-way travel in the reciprocation and in the reciprocation. The reciprocation prevention state in which the work is performed can be switched to the reciprocation prevention state in which the same sub-passage 9 is reciprocated twice and the prevention operation is performed by the reciprocation twice. Thereby, while preventing the bad influence to the cultivated plant by the control more than necessary, the improvement of the control effect can be aimed at in the cultivation strip with high incidence of pests.

また、作業移動車3又は防除作業車には、サブ通路9から栽培植物を撮影するカメラ94を設けている。カメラ94により、作業移動車3又は防除作業車を走行させながら、各々の栽培株で成熟した果実を自動的に検出する。カメラ94が撮影した画像データが無線により制御部(コントローラ)26に送信され、制御部(コントローラ)26内の果実判別装置により成熟した果実を検出する。例えば、果実がトマトである場合、果実が成熟すれば赤くなるので、果実判別装置がカメラ94により撮影した画像を処理して色彩判別することにより成熟した果実を検出する構成となっている。尚、色彩判別以外に、形状や大きさ等により成熟した果実を判別する構成としてもよい。また、画像データと共に作業移動車3又は防除作業車の位置情報が無線により制御部(コントローラ)26に送信され、栽培室1内のどの栽培株の画像であるかを認識する構成となっている。位置情報は、作業移動車3又は防除作業車に設けたGPS発信機により得ることができる。これにより、各々の栽培株ごとの成熟果実の個数をカウントする。そして、制御部26は、栽培株ごとの成熟果実の個数から各々の栽培条ごとの成熟果実の総数及び栽培室1内全体の成熟果実の総数を演算し、これらの成熟果実の総数から成熟果実を収穫する作業者を設定する。この作業者の設定について詳細に説明すると、複数の作業者の各々の作業能力(作業速度、作業能率:例えば単位時間当たりの成熟果実の収穫個数等)を予め制御部26に入力しておき、栽培室1内全体の成熟果実の総数から前記作業能力に応じて各作業者の仮収穫個数を演算する。そして、演算した仮収穫個数に基づいて、栽培室1の端の栽培条から順に作業者を割り振り、各作業者の作業領域を設定する。このとき、同一の栽培条に複数の作業者の作業領域がまたがらないよう、栽培条ごとに作業者を設定する。   In addition, the work moving vehicle 3 or the control work vehicle is provided with a camera 94 for photographing the cultivated plant from the sub passage 9. The camera 94 automatically detects a mature fruit in each cultivated strain while running the work vehicle 3 or the control work vehicle. Image data captured by the camera 94 is wirelessly transmitted to the control unit (controller) 26, and the fruit determination device in the control unit (controller) 26 detects the mature fruit. For example, when the fruit is a tomato, the fruit turns red when the fruit matures. Therefore, the fruit discriminating apparatus detects the mature fruit by processing the image captured by the camera 94 and performing color discrimination. In addition to color discrimination, it may be configured to discriminate mature fruits based on shape, size, and the like. Moreover, the position information of the work vehicle 3 or the control work vehicle is transmitted wirelessly to the control unit (controller) 26 together with the image data, and the cultivation stock in the cultivation room 1 is recognized. . The position information can be obtained by a GPS transmitter provided on the work vehicle 3 or the control work vehicle. Thus, the number of mature fruits for each cultivated strain is counted. Then, the control unit 26 calculates the total number of mature fruits for each cultivation strip and the total number of mature fruits in the entire cultivation room 1 from the number of mature fruits for each cultivated strain, and mature fruits from the total number of these mature fruits. Set up workers to harvest. The worker's setting will be described in detail. The work ability of each of the plurality of workers (work speed, work efficiency: for example, the number of harvested mature fruits per unit time) is input to the control unit 26 in advance. The temporary harvest number of each worker is calculated from the total number of mature fruits in the cultivation room 1 according to the work ability. And based on the calculated temporary harvest number, an operator is allocated in an order from the cultivation strip at the end of the cultivation room 1, and the work area of each worker is set. At this time, an operator is set for each cultivation strip so that the work areas of a plurality of workers do not span the same cultivation strip.

各々の栽培株の上方位置には電光表示板である個数表示器95を設けており、制御部26から個数表示器95への無線による送信により、対応する栽培株における成熟果実の個数が個数表示器95に表示される。また、各々の栽培条の入口(メイン通路4側の端部)にはモニター96を設けており、制御部26からモニター96への無線による送信により、栽培条における成熟果実の総数と収穫作業をする作業者名がモニター96に表示される。作業者は、自分の名前が表示されているモニター96に対応する栽培条で収穫作業を行うことになる。作業者は、モニター96に表示される栽培条における成熟果実の総数と、個数表示器95に表示される各々の栽培株ごとの成熟果実の個数を認識しながら、サブ通路9上で収穫作業を行う。これにより、作業者の作業能力に拘らず、栽培室1内全体の収穫作業を複数の作業者で効率良く行えると共に、成熟果実の発見を容易に行えるため、収穫作業が容易になり、作業時間の短縮が図れる。また、栽培条ごとに作業者を設定するので、同一のサブ通路9上で複数の作業者が同時に作業をしないようにでき、作業能率が向上する。尚、サブ通路9間に栽培条が2条ある場合は、サブ通路9の両側に面する一対の栽培条ごとに作業者を設定することが望ましい。   A number indicator 95 which is an electric display board is provided above each cultivated strain, and the number of mature fruits in the corresponding cultivated strain is displayed by wireless transmission from the control unit 26 to the number indicator 95. Displayed on the device 95. Moreover, the monitor 96 is provided in the entrance (end part by the side of the main channel | path 4) of each cultivation line, and the total number and the harvesting operation | work of the mature fruit in a cultivation line are carried out by the transmission from the control part 26 to the monitor 96 by radio. The operator name to be displayed is displayed on the monitor 96. The worker performs the harvesting work using the cultivation strip corresponding to the monitor 96 on which his / her name is displayed. The operator recognizes the total number of mature fruits on the cultivation strip displayed on the monitor 96 and the number of mature fruits for each cultivated strain displayed on the number display 95 while performing the harvesting work on the sub-passage 9. Do. As a result, the entire harvesting operation in the cultivation room 1 can be efficiently performed by a plurality of workers and the discovery of mature fruits can be easily performed regardless of the work ability of the worker. Can be shortened. Moreover, since an operator is set for each cultivation strip, a plurality of workers can be prevented from working at the same time on the same sub-passage 9, thereby improving work efficiency. In addition, when there are two cultivating strips between the sub-passages 9, it is desirable to set an operator for each pair of cultivating strips facing both sides of the sub-passage 9.

また、カメラ94により植物の葉の裏の気孔を撮影し、制御部26により気孔の大きさを判断する。一方、栽培室1内へ二酸化炭素を供給する二酸化炭素供給装置を設け、制御部26により、カメラからの撮影画像が気孔が大きいと判断されるときは、栽培室1内の二酸化炭素の濃度に拘らず二酸化炭素供給装置から二酸化炭素を吐出する。これにより、気孔が大きく開いて光合成が活発なときに、的確に二酸化炭素を供給でき、従来の二酸化炭素濃度に基づく二酸化炭素供給制御と比較して二酸化炭素の無駄な供給を低減できる。   Further, the camera 94 photographs the pores behind the leaves of the plant, and the control unit 26 determines the size of the pores. On the other hand, when a carbon dioxide supply device that supplies carbon dioxide into the cultivation room 1 is provided and the control unit 26 determines that the captured image from the camera has large pores, the concentration of carbon dioxide in the cultivation room 1 is set. Regardless, carbon dioxide is discharged from the carbon dioxide supply device. This makes it possible to supply carbon dioxide accurately when the pores are wide open and photosynthesis is active, and wasteful supply of carbon dioxide can be reduced as compared with conventional carbon dioxide supply control based on carbon dioxide concentration.

ところで、養液供給装置7は、図2に示すように、養液を貯留する第一タンク41並びに第二タンク42、硝酸を貯留する酸タンク43及び原水を貯留する原水タンク44を備え、これらのタンク41,42,43,44内に貯留する液が各主開閉バルブ45,46,47,48を介して混合装置49に供給され、該混合装置49で混合される構成となっている。尚、前記第一タンク41と第二タンク42とは、互いに肥料成分の異なる養液を貯留している。第一タンク41、第二タンク42並びに酸タンク43から混合装置49への供給経路(供給パイプ50,51,52)において、前記各主開閉バルブ45,46,47の供給上手側には、各々混合前のフィルター53,54,55を設けている。更に、該混合前フィルター53,54,55の供給上手側には、各々副開閉バルブ56,57,58を設けている。混合装置49で混合された養液は、養液ポンプ59及び混合後のフィルター60を介して給液パイプ61により栽培室1内の各栽培ベッド5へ供給される。   By the way, as shown in FIG. 2, the nutrient solution supply device 7 includes a first tank 41 and a second tank 42 for storing the nutrient solution, an acid tank 43 for storing nitric acid, and a raw water tank 44 for storing raw water. The liquid stored in the tanks 41, 42, 43, 44 is supplied to the mixing device 49 via the main opening / closing valves 45, 46, 47, 48 and mixed by the mixing device 49. The first tank 41 and the second tank 42 store nutrient solutions having different fertilizer components. In the supply path (supply pipes 50, 51, 52) from the first tank 41, the second tank 42, and the acid tank 43 to the mixing device 49, Filters 53, 54 and 55 before mixing are provided. Further, sub-opening / closing valves 56, 57, and 58 are provided on the upper supply side of the pre-mixing filters 53, 54, and 55, respectively. The nutrient solution mixed by the mixing device 49 is supplied to each cultivation bed 5 in the cultivation room 1 through the nutrient solution pump 59 and the mixed filter 60 by the liquid supply pipe 61.

そして、酸タンク43からの供給経路(供給パイプ52)において、副開閉バルブ58及び混合前フィルター55より供給下手側で主開閉バルブ47より供給上手側には、分岐パイプ62(分岐経路)を接続している。この分岐パイプ62(分岐経路)は、第一タンク41及び第二タンク42からの供給経路(供給パイプ50,51)における副開閉バルブ56,57及び混合前フィルター53,54より供給下手側で主開閉バルブ45,46より供給上手側の各々の位置に接続され、酸タンク43内の硝酸を第一タンク41及び第二タンク42からの供給経路(供給パイプ50,51)へ供給可能に構成している。尚、前記分岐パイプ62の中途部には、電磁式の分岐用の開閉バルブ63を設けている。第一タンク41及び第二タンク42からの供給パイプ50,51において、分岐パイプ62の接続部より供給下手側で主開閉バルブ45,46より供給上手側には、供給パイプ50,51内の流量を検出する流量センサ64,65を各々設けている。また、養液ポンプ59及び混合後のフィルター60より供給下手側には栽培室1内の各栽培ベッド5すなわち給液パイプ61へ液を供給せずに排出するための排出パイプ66を接続しており、該排出パイプ66に設けた電磁式の排出用の開閉バルブ67により、養液ポンプ59から吐出する液を給液パイプ61へ供給する給液状態と排出パイプ66を介して外部に排出する排出状態に切替可能に構成している。   In the supply path (supply pipe 52) from the acid tank 43, a branch pipe 62 (branch path) is connected on the supply lower side than the sub opening / closing valve 58 and the pre-mixing filter 55 and on the supply upper side from the main opening / closing valve 47. is doing. This branch pipe 62 (branch path) is mainly on the supply lower side than the auxiliary opening / closing valves 56 and 57 and the pre-mixing filters 53 and 54 in the supply path (supply pipes 50 and 51) from the first tank 41 and the second tank 42. Connected to each position on the supply side from the open / close valves 45 and 46, the nitric acid in the acid tank 43 can be supplied to the supply paths (supply pipes 50 and 51) from the first tank 41 and the second tank 42. ing. An electromagnetic branch opening / closing valve 63 is provided in the middle of the branch pipe 62. In the supply pipes 50, 51 from the first tank 41 and the second tank 42, the flow rates in the supply pipes 50, 51 are on the supply lower side than the connection part of the branch pipe 62 and on the supply upper side from the main opening / closing valves 45, 46. Are respectively provided. Further, a discharge pipe 66 for discharging without supplying liquid to each cultivation bed 5 in the cultivation room 1, that is, the liquid supply pipe 61, is connected to the lower supply side from the nutrient solution pump 59 and the mixed filter 60. In addition, the electromagnetic discharge opening / closing valve 67 provided in the discharge pipe 66 discharges the liquid discharged from the nutrient solution pump 59 to the liquid supply pipe 61 and discharges the liquid through the discharge pipe 66 to the outside. It can be switched to the discharge state.

従って、栽培室1内の各栽培ベッド5へ養液を供給する通常状態では、分岐用開閉バルブ63及び排出用開閉バルブ67を閉じ、混合装置49で混合された養液を給液パイプ61へ供給する。この養液供給時に、各々の流量センサ64,65により第一タンク41及び第二タンク42からの供給パイプ50,51内の流量を逐次検出する。そして、養液供給時の供給パイプ50,51内の流量が所定値以下になった場合は、栽培室1内の各栽培ベッド5への養液供給を停止しているときに、制御装置により自動的に分岐用開閉バルブ63及び排出用開閉バルブ67を開いて養液ポンプ59を駆動し、酸タンク43内の硝酸を分岐パイプ62を介して第一タンク41及び第二タンク42からの供給パイプ50,51へ供給し、該硝酸を排出パイプ66を介して外部に排出する。このとき、第一タンク41及び第二タンク42からの供給パイプ50,51において各々の副開閉バルブ56,57を自動的に閉じ、前記供給パイプ50,51に供給される硝酸が該供給パイプ50,51を逆流して第一タンク41及び第二タンク42へ供給されないようにしている。よって、第一タンク41及び第二タンク42からの供給パイプ50,51において、養液中の不溶解物や不純物が詰まるおそれがあるが、流量センサ64,65により供給パイプ50,51内の詰まりを検出すると自動的に該供給パイプ50,51内へ洗浄液となる硝酸を注入して該供給パイプ50,51を自動洗浄することができ、従来のように供給パイプを分解して該パイプ内を洗浄するようなメンテナンスの手間が省けて作業能率が向上する。また、洗浄液(硝酸)は、排出パイプ66を介して外部に排出され、栽培ベッド5に直接供給されないので、上記の洗浄により植物の成育を阻害することがない。   Therefore, in a normal state in which nutrient solution is supplied to each cultivation bed 5 in the cultivation room 1, the branching open / close valve 63 and the discharge opening / closing valve 67 are closed, and the nutrient solution mixed by the mixing device 49 is supplied to the liquid supply pipe 61. Supply. When supplying the nutrient solution, the flow rates in the supply pipes 50 and 51 from the first tank 41 and the second tank 42 are sequentially detected by the flow rate sensors 64 and 65, respectively. And when the flow volume in the supply pipes 50 and 51 at the time of nutrient solution supply becomes below a predetermined value, when the nutrient solution supply to each cultivation bed 5 in the cultivation room 1 is stopped, by the control device The branch opening / closing valve 63 and the discharge opening / closing valve 67 are automatically opened to drive the nutrient solution pump 59, and the nitric acid in the acid tank 43 is supplied from the first tank 41 and the second tank 42 via the branch pipe 62. Supplying to the pipes 50 and 51, the nitric acid is discharged to the outside through the discharge pipe 66. At this time, the auxiliary open / close valves 56 and 57 are automatically closed in the supply pipes 50 and 51 from the first tank 41 and the second tank 42, and nitric acid supplied to the supply pipes 50 and 51 is supplied to the supply pipe 50. , 51 are reversely flown so as not to be supplied to the first tank 41 and the second tank 42. Therefore, the supply pipes 50 and 51 from the first tank 41 and the second tank 42 may be clogged with insoluble matters and impurities in the nutrient solution, but the supply pipes 50 and 51 are clogged by the flow rate sensors 64 and 65. Can be automatically injected into the supply pipes 50, 51 to automatically clean the supply pipes 50, 51, and the supply pipes can be disassembled as in the prior art. Maintenance efficiency such as cleaning is eliminated and work efficiency is improved. Further, since the cleaning liquid (nitric acid) is discharged to the outside through the discharge pipe 66 and is not directly supplied to the cultivation bed 5, the above-described cleaning does not inhibit the growth of the plant.

また、養液ポンプ59の供給下手側で混合後のフィルター60の供給上手側には、養液ポンプ59から吐出される養液を分岐して養液ポンプ59の供給上手側で混合装置49の供給下手側に戻す循環経路(循環パイプ68)を接続している。この循環経路(循環パイプ68)には電磁式の戻り用の開閉バルブ69を設けており、混合後フィルター60の供給下手側に設けた圧力センサ70により給液パイプ61への養液供給における圧力変動が大きいことを検出すると、制御装置により自動的に前記戻り用の開閉バルブ69を開いて養液を循環経路(循環パイプ68)を介して循環させ、給液パイプ61内の圧力を安定させる構成となっている。これにより、養液ポンプ59起動時やエアがみ等によるウォーターハンマー現象を防止すると共に、養液ポンプ59供給下手側の配管(給液パイプ61)の破損を防止できる。また、前記循環経路(循環パイプ68)には循環される養液の温度を検出する温度センサ71を設けており、該温度センサ71により養液の温度が所定値以上に上昇したことを検出すると、制御装置により強制的に養液ポンプ59を停止させて循環パイプ68で養液を循環させないようにして養液の温度低下を促すように構成している。これにより、養液の熱で配管内のバルブやパッキン等の構造物が溶解して破損するようなことを防止できる。従来、給液パイプ内の養液の圧力調整のために、栽培室内の各栽培ベッドへ養液を供給する給液パイプを介する長い循環経路を設けて該循環経路の養液の戻り経路部分に圧力調整バルブを設けたものがあるが、循環により養液の温度が上昇すると、養液の熱で配管内のバルブやパッキン等の構造物が溶解して破損したり養液の熱で栽培作物に悪影響を与えたりするおそれがある。   Further, the nutrient solution discharged from the nutrient solution pump 59 is branched to the supply superior side of the filter 60 after mixing on the lower supply side of the nutrient solution pump 59, and the mixing device 49 of the mixer 49 is supplied on the superior supply side of the nutrient solution pump 59. A circulation path (circulation pipe 68) for returning to the lower supply side is connected. This circulation path (circulation pipe 68) is provided with an electromagnetic return opening / closing valve 69. After mixing, the pressure sensor 70 provided on the lower supply side of the filter 60 is used to supply the nutrient solution to the supply pipe 61. When it is detected that the fluctuation is large, the control device automatically opens the return on-off valve 69 to circulate the nutrient solution through the circulation path (circulation pipe 68), thereby stabilizing the pressure in the liquid supply pipe 61. It has a configuration. As a result, the water hammer phenomenon due to the start of the nutrient solution pump 59 or air stagnation can be prevented, and damage to the piping (liquid supply pipe 61) on the lower supply side of the nutrient solution pump 59 can be prevented. The circulation path (circulation pipe 68) is provided with a temperature sensor 71 for detecting the temperature of the nutrient solution to be circulated, and when the temperature sensor 71 detects that the temperature of the nutrient solution has risen above a predetermined value. The nutrient solution pump 59 is forcibly stopped by the control device so that the nutrient solution is not circulated by the circulation pipe 68 so as to promote a temperature drop of the nutrient solution. Thereby, it can prevent that structures, such as a valve in a piping, packing, etc. melt | dissolve with the heat | fever of nutrient solution, and are damaged. Conventionally, in order to adjust the pressure of the nutrient solution in the liquid supply pipe, a long circulation path is provided through the liquid supply pipe for supplying the nutrient solution to each cultivation bed in the cultivation room, and the nutrient solution return path portion of the circulation path is provided. Some pressure control valves are provided, but if the temperature of the nutrient solution rises due to circulation, the structure of the pipes, packing, etc. in the piping will be damaged by the heat of the nutrient solution, or it will be cultivated by the heat of the nutrient solution. May be adversely affected.

また、栽培ベッド5からの排液は、原水タンク44に回収され、栽培ベッド5への給液に再利用される。栽培室1内には原水タンク44を通る通風管27を設け、ファン28の駆動により通風管27内に通風する。これにより、栽培室1内の空気が積極的に温度の低い原水タンク44に当たって結露し、栽培室1内の空気を簡易的に除湿できると共に、後述する暖房設備により暖房された栽培室1内の空気で原水タンク44内の原水及び養液を昇温させることができる。尚、結露した水は、通風管27に設けた排水口29を介して栽培室1外へ排出される。よって、後述する天窓制御における天窓30が開く頻度又は天窓30の開度を低く抑えることができるので、栽培室1内の室温低下を抑えることができ、暖房設備の暖房の負荷を抑えて省エネルギー化が図れる。   Further, the drained liquid from the cultivation bed 5 is collected in the raw water tank 44 and reused for supplying liquid to the cultivation bed 5. A ventilation pipe 27 passing through the raw water tank 44 is provided in the cultivation room 1, and the fan 28 is driven to ventilate the ventilation pipe 27. Thereby, the air in the cultivation room 1 positively hits the raw water tank 44 having a low temperature to cause dew condensation, and the air in the cultivation room 1 can be easily dehumidified, and the inside of the cultivation room 1 heated by the heating equipment described later. The raw water and nutrient solution in the raw water tank 44 can be heated with air. The condensed water is discharged outside the cultivation room 1 through a drain port 29 provided in the ventilation pipe 27. Therefore, since the frequency which the skylight 30 opens in the skylight control mentioned later or the opening degree of the skylight 30 can be restrained low, the room temperature fall in the cultivation room 1 can be restrained, and the load of the heating of heating equipment can be restrained and energy-saving. Can be planned.

原水タンク44には、養液の肥料濃度を検出するECセンサ86と、養液のペーハー値を検出するPHセンサ87とを備えている。このECセンサ86及びPHセンサ87の検出値に基づき、混合装置49で混合される養液が所望の肥料濃度及びペーハー値となるよう、制御装置のメインの養液供給コントローラ88により各主開閉バルブ45,46,47,48を制御する構成となっている。しかしながら、メインの養液供給コントローラ88が故障すると、各主開閉バルブ45,46,47,48を作動させることができなくなり、養液を各栽培ベッド5へ供給できなくなり、栽培に悪影響を与えることになってしまう。そこで、制御装置には予備制御盤89を設けており、メインの養液供給コントローラ88が故障したときには、各主開閉バルブ45,46,47,48の制御を前記予備制御盤89により行える構成とし、該予備制御盤89の制御に切り替えると、各主開閉バルブ45,46,47,48を予め設定した時間のみ開いて養液を作成し、養液を各栽培ベッド5へ簡易的に供給できる。これにより、供給する養液の肥料濃度やペーハー値の制御精度は低下するが、栽培ベッド5へ養液が供給できなくなるのを一時的に回避でき、植物が枯れるような大きな被害を回避することができる。予備制御盤89により養液供給制御を行っている間にメインの養液供給コントローラ88を修理し、メインの養液供給コントローラ88が正常に復帰すれば、メインの養液供給コントローラ88による養液供給制御に切り替えればよい。尚、予備制御盤89により養液供給制御において、予め設定される各主開閉バルブ45,46,47,48の開時間のパターンを複数備え、ECセンサ及びPHセンサの検出値に応じて前記パターンを切り替える構成としてもよい。   The raw water tank 44 includes an EC sensor 86 that detects the fertilizer concentration of the nutrient solution and a PH sensor 87 that detects the pH value of the nutrient solution. Based on the detection values of the EC sensor 86 and the PH sensor 87, each main open / close valve is controlled by the main nutrient solution supply controller 88 of the controller so that the nutrient solution mixed in the mixing device 49 has a desired fertilizer concentration and pH value. 45, 46, 47, and 48 are controlled. However, if the main nutrient solution supply controller 88 breaks down, the main open / close valves 45, 46, 47, and 48 cannot be operated, and no nutrient solution can be supplied to each cultivation bed 5, which adversely affects cultivation. Become. Therefore, the control device is provided with a preliminary control panel 89, and when the main nutrient solution supply controller 88 fails, the main control valve 45, 46, 47, 48 can be controlled by the preliminary control panel 89. When switching to the control of the preliminary control panel 89, the main open / close valves 45, 46, 47, and 48 are opened only for a preset time to create a nutrient solution, and the nutrient solution can be simply supplied to each cultivation bed 5. . As a result, the control accuracy of the fertilizer concentration and pH value of the nutrient solution to be supplied is lowered, but it is possible to temporarily prevent the nutrient solution from being supplied to the cultivation bed 5 and to avoid the great damage that causes the plant to die. Can do. If the main nutrient solution supply controller 88 is repaired while the nutrient solution supply control is performed by the preliminary control panel 89 and the main nutrient solution supply controller 88 returns to normal, the nutrient solution by the main nutrient solution supply controller 88 is restored. What is necessary is just to switch to supply control. In the nutrient solution supply control by the preliminary control panel 89, a plurality of preset opening time patterns of the main opening / closing valves 45, 46, 47, 48 are provided, and the patterns are set according to the detection values of the EC sensor and the PH sensor. It is good also as a structure which switches.

また、栽培ベッド5からの排液の肥料成分(例えば、窒素成分、カリ成分、カルシウム成分、リン酸成分等)を分析する成分分析計を設け、制御装置により成分分析計で測定した排液の肥料成分と栽培用に予め設定した設定肥料成分を比較して、養液タンクである第一タンク41及び第二タンク42から排液で不足する肥料成分が多く供給され、排液で余剰する肥料成分が少なく供給されるべく、主開閉バルブ45,46の開く時間又は開度を制御し、排液に養液タンクから養液を混合した新たな養液を作成する。これにより、排液を使用するにも拘らず、所望の肥料成分で高精度に安定させた養液を栽培ベッド5へ供給できる。尚、排液で不足する肥料成分は植物が多く吸収していることから植物が多量に要求していると判断し、排液で余剰する肥料成分は植物の吸収量が少ないことから植物の要求度が低いと判断し、植物の要求に合わせて設定肥料成分を補正してもよい。これにより、更に栽培状況に応じた高精度な養液供給制御が行えると共に、肥料の無駄を防止でき、肥料濃度の高い排液を最終的に廃棄することによる環境負荷を低減できる。   Moreover, the component analyzer which analyzes the fertilizer component (for example, a nitrogen component, a potassium component, a calcium component, a phosphoric acid component, etc.) of the drainage from the cultivation bed 5 is provided, and the drainage liquid measured with the component analyzer by the control device Compared with the fertilizer component and the preset fertilizer component set in advance for cultivation, a large amount of the fertilizer component that is deficient in drainage is supplied from the first tank 41 and the second tank 42, which are nutrient solution tanks, and surplus in the drainage In order to supply a small amount of components, the opening time or opening degree of the main opening / closing valves 45 and 46 is controlled, and a new nutrient solution is prepared by mixing the nutrient solution with the drainage from the nutrient solution tank. Thereby, in spite of using drainage, the nutrient solution stabilized with the desired fertilizer component with high precision can be supplied to the cultivation bed 5. In addition, it is judged that the plant demands a large amount of fertilizer components that are deficient in the drainage, because the plant absorbs a lot. It is judged that the degree is low, and the set fertilizer component may be corrected according to the request of the plant. Thereby, while being able to perform highly accurate nutrient solution supply control according to cultivation conditions, waste of fertilizer can be prevented, and the environmental load by discarding waste liquid with high fertilizer concentration can be reduced.

尚、栽培ベッド5からの排液は、先ず殺菌前タンク97へ回収され、殺菌前タンク97から殺菌前ポンプ98を介して殺菌タンク99へ供給され、殺菌タンク99で殺菌された排液が殺菌後ポンプ100を介して原水タンク44へ供給される。殺菌タンク99は太陽光が照射する屋外に配置されると共に、殺菌タンク99内には光触媒である酸化チタン101が混入されており、太陽光で照射された酸化チタン101がその表面で強力な酸化力を発生させて排液中の有機物(細菌等)を分解して殺菌する。尚、良好な殺菌効果を得るべく、殺菌タンク99内を適宜攪拌するのが好ましい。また、殺菌タンク99から殺菌後ポンプ100へ通じる出口部にはフィルター102を設け、殺菌タンク99から排液と一緒に酸化チタンを排出させない構成となっている。また、殺菌タンク99の近くには日射量センサ103を設け、該日射量センサ103で検出される日射量の積算値(積算日射量)が所定値に達すると、制御装置により殺菌が完了したと判断して殺菌前ポンプ98及び殺菌後ポンプ100を駆動し、殺菌タンク99から排液を排出すると共に、殺菌前タンク97から新たな排液を殺菌タンク99へ供給する。酸化チタン101で分解された排液中の有機物(細菌等)の一部は二酸化炭素となるので、この二酸化炭素を栽培室1内に供給して植物の光合成に利用することができる。この酸化チタン101による殺菌により、従来の加熱殺菌装置や紫外線殺菌装置と比較して、コストダウンが図れると共にメンテナンス性が向上する。   The drained liquid from the cultivation bed 5 is first collected in the pre-sterilization tank 97 and supplied from the pre-sterilization tank 97 to the sterilization tank 99 via the pre-sterilization pump 98, and the drained liquid sterilized in the sterilization tank 99 is sterilized. It is supplied to the raw water tank 44 through the rear pump 100. The sterilization tank 99 is disposed outdoors exposed to sunlight, and the sterilization tank 99 is mixed with titanium oxide 101 which is a photocatalyst, and the titanium oxide 101 irradiated with sunlight is strongly oxidized on the surface thereof. Generates force to decompose and sterilize organic matter (bacteria etc.) in the drainage. In order to obtain a good sterilization effect, the inside of the sterilization tank 99 is preferably appropriately stirred. In addition, a filter 102 is provided at the outlet from the sterilization tank 99 to the pump 100 after sterilization, so that titanium oxide is not discharged from the sterilization tank 99 together with the drainage. Further, a solar radiation amount sensor 103 is provided near the sterilization tank 99, and when the integrated value of the solar radiation amount (integrated solar radiation amount) detected by the solar radiation amount sensor 103 reaches a predetermined value, the sterilization is completed by the control device. Then, the pre-sterilization pump 98 and the post-sterilization pump 100 are driven to discharge the effluent from the sterilization tank 99 and supply new effluent from the pre-sterilization tank 97 to the sterilization tank 99. Since a part of the organic matter (bacteria and the like) in the drained liquid decomposed by the titanium oxide 101 becomes carbon dioxide, this carbon dioxide can be supplied into the cultivation room 1 and used for plant photosynthesis. By sterilization with the titanium oxide 101, the cost can be reduced and the maintainability can be improved as compared with the conventional heat sterilization apparatus and ultraviolet sterilization apparatus.

この栽培室1の暖房設備について説明すると、化石燃料である重油又は灯油等の石油を燃焼させた熱を利用して温水を加温する石油ボイラーである第一加温装置31と、化石燃料以外の燃料である植物の残渣やおがくず等の製材副産物を圧縮成形した木質ペレット等を燃焼させた熱を利用して温水を加温する木質ペレットボイラーである第二加温装置32と、第一加温装置31及び第二加温装置32に温水を供給する加温管33と、加温管33により加温された温水をポンプ34へ供給するための第一供給管35と、ポンプ34からの温水を温室内の暖房用管37へ供給するための第二供給管36と、暖房用管37から加温管33へ温水を戻すための戻り管38を設け、加温管33、第一供給管35、第二供給管36、暖房用管37及び戻り管38を経由する温水の循環経路を構成している。尚、第一加温装置31、第二加温装置32及び加温管33は栽培室1外の管理室25内に配置され、第一加温装置31及び第二加温装置32が加温管33に沿って直列状に配置され、暖房用管37は栽培室1内の各サブ通路9に沿って配置されている。また、第一供給管35と戻り管38を繋ぐバイパス管72を設け、加温管33を経由せずにバイパス管72、第一供給管35、第二供給管36、暖房用管37及び戻り管38を経由する温水の循環経路を構成し、バイパス管72と第一供給管35の接続部には、加温管33側から合流する流量の割合とバイパス管72側から合流する流量の割合を調節する流量割合調節可能な切替弁(三方弁)73を設けている。尚、第二供給管36には、該第二供給管36を流れる温水の温度を検出する温水温度センサ75を設けている。栽培室1には、栽培室1内の室温を検出する室温センサ74と、栽培室1内の湿度を検出する湿度センサ76を設けている。また、温風を吹き出す温風暖房機(ヒートポンプ)104を設けている。この温風暖房機(ヒートポンプ)104は、電力により作動する。   Explaining the heating equipment of the cultivation room 1, the first heating device 31, which is an oil boiler that heats hot water using the heat of burning oil such as heavy oil or kerosene that is fossil fuel, and other than fossil fuel A second heating device 32, which is a wood pellet boiler that heats hot water using the heat of burning wood pellets and the like, which are compression-molded lumber by-products such as plant residues and sawdust, and the first heating A heating pipe 33 for supplying warm water to the heating apparatus 31 and the second heating apparatus 32, a first supply pipe 35 for supplying warm water heated by the heating pipe 33 to the pump 34, A second supply pipe 36 for supplying hot water to the heating pipe 37 in the greenhouse and a return pipe 38 for returning the hot water from the heating pipe 37 to the heating pipe 33 are provided. Pipe 35, second supply pipe 36, heating pipe 37 and return Constitute a circulation path of the hot water through the 38. In addition, the 1st heating apparatus 31, the 2nd heating apparatus 32, and the heating pipe 33 are arrange | positioned in the management room 25 outside the cultivation room 1, and the 1st heating apparatus 31 and the 2nd heating apparatus 32 heat up. Arranged in series along the pipe 33, the heating pipe 37 is arranged along each sub-passage 9 in the cultivation room 1. Further, a bypass pipe 72 connecting the first supply pipe 35 and the return pipe 38 is provided, and the bypass pipe 72, the first supply pipe 35, the second supply pipe 36, the heating pipe 37 and the return pipe are not passed through the heating pipe 33. The circulation path of the hot water passing through the pipe 38 is configured, and the ratio of the flow rate that joins from the heating pipe 33 side to the connection part of the bypass pipe 72 and the first supply pipe 35 and the ratio of the flow rate that joins from the bypass pipe 72 side. A switching valve (three-way valve) 73 capable of adjusting the flow rate ratio is provided. The second supply pipe 36 is provided with a hot water temperature sensor 75 that detects the temperature of the hot water flowing through the second supply pipe 36. The cultivation room 1 is provided with a room temperature sensor 74 for detecting the room temperature in the cultivation room 1 and a humidity sensor 76 for detecting the humidity in the cultivation room 1. Moreover, the warm air heater (heat pump) 104 which blows out warm air is provided. The hot air heater (heat pump) 104 is operated by electric power.

栽培室1の屋根は、三角形状に傾斜した多数の棟105を連続して並列に設けた構成となっており、無数の天窓30を縦横に配置している。天窓30は四角形状(長方形状)で透明なガラスにより形成され、天窓30の下面側の複数の縁部(四辺の各辺部)には、下側から切り欠かれた軸受け溝106を形成する軸受け部材107を固着している。一方、栽培室1側には、軸受け溝106に嵌る回動支点軸108を各々設けている。従って、一つの天窓30において、天窓30の四辺に対応して4本の回動支点軸108を設けており、対向する一対の回動支点軸108は同一方向で平行状に配置され、この一対の回動支点軸108を2組設け、互いの組の回動支点軸108の向きが交差(直交)する構成となっている。軸受け部材107の下部には、回動支点軸108が軸受け溝106から抜けるのを規制する規制装置109を設けている。規制装置109は、軸受け溝106の入口部に突出する規制部材となるソレノイドピン109aを、規制用の電磁ソレノイド109bにより作動させる構成となっている。従って、軸受け溝106に回動支点軸108が挿入された状態でソレノイドピン109aを突出させることにより、ソレノイドピン109aよりも上側に位置する回動支点軸108が軸受け溝106から抜けることを規制し、軸受け部材107が回動支点軸108から離れて上側へ移動するのを規制する。天窓30の中央の下方には、天窓30を下側から押し上げる押上装置77を設けている。押上装置77は、電動シリンダにより構成され、電動シリンダのシリンダロッド110が上側に突出することにより、該シリンダロッド110の先端部が天窓30に下側から接触して押し上げる構成となっている。従って、複数(4本)の回動支点軸108のうちの一の回動支点軸108以外の全てとなる3本の回動支点軸108に対応する規制装置109の規制を全て解除して押上装置77を作動させることにより、前記一の回動支点軸108回りに天窓30を上側へ回動させる構成となっている。よって、複数(4本)の回動支点軸108に対応する複数(4個)の規制装置109のうち、規制する規制装置109を択一的に選択して異なる方向(4方向)に天窓30を開閉し得る構成となっている。   The roof of the cultivation room 1 has a configuration in which a large number of ridges 105 inclined in a triangular shape are continuously provided in parallel, and innumerable skylights 30 are arranged vertically and horizontally. The skylight 30 is formed of a square (rectangular) transparent glass, and a plurality of edges (each side of the four sides) on the lower surface side of the skylight 30 are formed with bearing grooves 106 cut out from below. The bearing member 107 is fixed. On the other hand, a rotation fulcrum shaft 108 that fits into the bearing groove 106 is provided on the cultivation room 1 side. Therefore, in one skylight 30, four rotation fulcrum shafts 108 are provided corresponding to the four sides of the skylight 30, and the pair of opposed rotation fulcrum shafts 108 are arranged in parallel in the same direction. Two rotation fulcrum shafts 108 are provided, and the directions of the rotation fulcrum shafts 108 of each set intersect (orthogonal). A regulating device 109 that regulates the rotation fulcrum shaft 108 from coming out of the bearing groove 106 is provided below the bearing member 107. The restricting device 109 is configured to operate a solenoid pin 109a serving as a restricting member protruding from the inlet portion of the bearing groove 106 by a restricting electromagnetic solenoid 109b. Therefore, by projecting the solenoid pin 109a with the pivot fulcrum shaft 108 inserted into the bearing groove 106, the pivot fulcrum shaft 108 positioned above the solenoid pin 109a is prevented from coming out of the bearing groove 106. The bearing member 107 is prevented from moving away from the rotation fulcrum shaft 108 and moving upward. A push-up device 77 that pushes up the skylight 30 from below is provided below the center of the skylight 30. The push-up device 77 is constituted by an electric cylinder, and is configured such that the tip of the cylinder rod 110 comes into contact with the skylight 30 from below and is pushed up when the cylinder rod 110 of the electric cylinder protrudes upward. Therefore, the restriction of the restriction device 109 corresponding to all three rotation fulcrum shafts 108 other than one rotation fulcrum shaft 108 among the plurality (four) of rotation fulcrum shafts 108 is released and pushed up. By operating the device 77, the skylight 30 is rotated upward about the one rotation fulcrum shaft 108. Therefore, among the plurality (four) of restriction devices 109 corresponding to the plurality of (four) rotation fulcrum shafts 108, the restriction device 109 to be restricted is selectively selected and the skylight 30 in different directions (four directions). Can be opened and closed.

そして、栽培室1の屋根上の複数の位置(5箇所)には、各々の位置における風向き及び風力を検知する風向計111を設けている。栽培室1の屋根上には、降雨の有無及び降雨の強さを検出する降雨センサ90を設けている。栽培室1の環境を制御する制御部(コントローラ)26は、栽培室1外の管理室25内に配置され、室温センサ74と、湿度センサ76、各々の風向計111及び降雨センサ90の検出値を入力し、各々の規制装置109及び押上装置77へ作動信号を出力する。   And the wind direction meter 111 which detects the wind direction and wind force in each position in the some position (5 places) on the roof of the cultivation room 1 is provided. On the roof of the cultivation room 1, a rain sensor 90 for detecting the presence or absence of rain and the strength of rain is provided. The control unit (controller) 26 that controls the environment of the cultivation room 1 is disposed in the management room 25 outside the cultivation room 1, and the detected values of the room temperature sensor 74, the humidity sensor 76, each anemometer 111, and the rainfall sensor 90. And an operation signal is output to each regulating device 109 and push-up device 77.

例えば昼間は高めに夜間は低めにというように一日の時間帯に応じて目標室温を演算して設定すると共に、設定される目標温度に対応して目標温度が高いほど低くなるように目標湿度を演算して設定する。尚、目標温度及び目標湿度は、上述の一日の時間帯に基づく設定方法以外に、作物の栽培過程や季節等に基づいて設定値を変更したり、作業者が一定の設定値に設定したりしてもよい。そして、目標温度よりも室温センサ74で検出される検出温度が高いか、又は目標湿度よりも湿度センサ76で検出される検出湿度が高くなると、押上装置77を作動させて天窓30を開く天窓制御を実行する。   For example, the target room temperature is calculated and set according to the time zone of the day, such as higher in the daytime and lower in the nighttime, and the target humidity becomes lower as the target temperature is higher corresponding to the set target temperature. Is calculated and set. In addition to the setting method based on the above-mentioned daily time zone, the target temperature and target humidity may be changed based on the cultivation process, season, etc. of the crop, or may be set to a constant setting value by the operator. Or you may. When the detected temperature detected by the room temperature sensor 74 is higher than the target temperature or when the detected humidity detected by the humidity sensor 76 is higher than the target humidity, the skylight control that opens the skylight 30 by operating the push-up device 77. Execute.

天窓制御の詳細について説明すると、栽培室1の屋根に縦横に配置された複数の天窓30を複数の区域ごとに区分し、複数の風向計111に対応する該風向計の近傍となる各々の風向実測区域112と、風向計111どうしの間で近傍に風向計111が配置されていない各々の風向推測区域113を設定している。これらの区域ごとに天窓30の開閉方向を制御する。尚、複数(5個)の風向計111は屋根の四隅部と中央部に配置されており、風向実測区域112は四隅部と中央部の5箇所に設けられ、風向推測区域113は中央部の風向実測区域112の側方で且つ四隅部のうちの2箇所の風向実測区域112で挟まれる4箇所に設けられている。そして、風向実測区域112では、各々の風向計111により検出される風向きに基づいて、各々の天窓30における風上側の規制装置109のみを作動させると共に押上装置77を作動させ、天窓30の風下側を開く。風向推測区域113では、風向計111の検出により隣接する複数(3箇所)の風向実測区域112における風向きと風力に基づく各々のベクトルを算出し、これらのベクトルを合成して得られる合成ベクトルによる風向きに基づき、各々の天窓30における風上側の規制装置109のみを作動させると共に押上装置77を作動させ、天窓30の風下側を開く。すなわち、風向推測区域113では、隣接する全て(3箇所)の風向実測区域112における風向きが同じ方向であれば、隣接する風向実測区域112における天窓30の開閉方向と同じ方向に天窓30が開閉する。また、局所的な風の流れにより隣接する風向実測区域112で風向きが異なれば、上述した合成ベクトルにより風向きを推測し、天窓30の開閉方向を適切に制御しようとするのである。尚、上述したベクトルは、風向きを方向で表し、風力を長さで表すものである。   The details of the skylight control will be described. A plurality of skylights 30 arranged vertically and horizontally on the roof of the cultivation room 1 are divided into a plurality of areas, and each wind direction in the vicinity of the anemometer corresponding to the plurality of anemometers 111 is provided. Each wind direction estimation area 113 where the anemometer 111 is not arranged in the vicinity is set between the measured area 112 and the anemometer 111. The opening / closing direction of the skylight 30 is controlled for each of these areas. Note that a plurality (five) of anemometers 111 are arranged at the four corners and the center of the roof, the wind direction measurement areas 112 are provided at five locations of the four corners and the center, and the wind direction estimation area 113 is at the center. It is provided at four locations on the side of the wind direction measurement area 112 and sandwiched between the two wind direction measurement areas 112 in the four corners. Then, in the wind direction actual measurement area 112, based on the wind direction detected by each anemometer 111, only the windward side regulation device 109 in each skylight 30 is activated and the push-up device 77 is activated, so that the leeward side of the skylight 30 open. In the wind direction estimation area 113, the wind direction in the plurality (three places) of wind direction measurement areas 112 adjacent to each other and the vectors based on the wind power are calculated by the detection of the anemometer 111, and the wind direction based on the combined vector obtained by combining these vectors. Based on the above, only the upwind regulating device 109 in each skylight 30 is operated and the push-up device 77 is operated to open the leeward side of the skylight 30. That is, in the wind direction estimation area 113, if the wind direction in all adjacent (three) wind direction measurement areas 112 is the same direction, the sky window 30 opens and closes in the same direction as the opening and closing direction of the sky window 30 in the adjacent wind direction measurement area 112. . Further, if the wind direction is different in the adjacent wind direction measurement area 112 due to the local wind flow, the wind direction is estimated by the above-described combined vector, and the opening / closing direction of the skylight 30 is appropriately controlled. In addition, the vector mentioned above represents a wind direction with a direction, and represents a wind force with length.

また、目標温度と室温センサ74による検出温度の差又は目標湿度と湿度センサ76による検出湿度の差が大きくなるにつれて天窓30の開度が比例して大きくなるよう、全ての天窓30における押上装置77の作動量(天窓30の開閉量)が制御される。   Further, the push-up devices 77 of all skylights 30 are increased so that the opening degree of the skylight 30 increases proportionally as the difference between the target temperature and the temperature detected by the room temperature sensor 74 or the difference between the target humidity and the humidity detected by the humidity sensor 76 increases. Is controlled (the amount of opening and closing of the skylight 30).

尚、実測又は推測される風力に基づいて風力が大きいときには、天窓30の開き量が小さくなるように押上装置77の作動量(天窓30の開閉量)を補正する構成としてもよい。また、隣接する区域と風向きが異なり、天窓30の開閉方向が異なる場合には、天窓30の開き量が小さくなるように押上装置77の作動量(天窓30の開閉量)を補正する構成としてもよい。これにより、風力が大きかったり、局所的な風向きの変化が激しかったりする等、風による天窓30の破損のおそれが大きいときは、天窓30の開き量を極力小さくして天窓30の破損を防止することができる。   Note that when the wind power is large based on the actually measured or estimated wind power, the operation amount of the push-up device 77 (the opening / closing amount of the skylight 30) may be corrected so that the opening amount of the skylight 30 becomes small. Further, when the wind direction is different from the adjacent area and the opening / closing direction of the skylight 30 is different, the operation amount of the push-up device 77 (the opening / closing amount of the skylight 30) is corrected so that the opening amount of the skylight 30 is reduced. Good. Thereby, when there is a great risk of damage to the skylight 30 due to wind, such as when the wind force is large or the local wind direction is severely changed, the opening amount of the skylight 30 is made as small as possible to prevent the skylight 30 from being damaged. be able to.

尚、上述では、区域ごとに天窓30の開閉方向及び開閉量を制御する構成について説明したが、風向きと風力に基づいて各々の天窓30ごとに開閉方向又は開閉量を設定して制御するファジー制御を利用してもよい。具体的に説明すると、隣接する区域で天窓30の開閉方向が異なるとき、両区域の境界付近の天窓の開閉量を小さく設定したり、両区域で風力が相違する場合に、風力が強い方の区域の風向きを優先して、その風向きに基づいて開閉制御される天窓30を風力の差異に応じて両区域の境界を越えて他区域側にわたって増加させるような制御を行うことが考えられる。   In addition, although the structure which controls the opening / closing direction and the opening / closing amount of the skylight 30 for every area was demonstrated in the above, the fuzzy control which sets and controls the opening / closing direction or the opening / closing amount for each skylight 30 based on a wind direction and wind power. May be used. More specifically, when the opening / closing direction of the skylight 30 is different in the adjacent area, the opening / closing amount of the skylight near the boundary between the two areas is set to be small, or when the wind force is different in both areas, It is conceivable to give priority to the wind direction of the area and to perform control such that the skylight 30 that is controlled to open and close based on the wind direction is increased over the other area side beyond the boundary between both areas according to the difference in wind power.

尚、降雨センサ90により降雨を検出すると、天窓制御における天窓30の最大開度を規制する構成となっている。降雨の強さが強いほど前記最大開度が小さく設定され、降雨が所定以上の強さであれば前記最大開度が零となり、天窓30が開かない。尚、降雨センサ90は、単位時間当たりの降雨量を検出する構成としたり、あるいは降雨の衝撃を検出する構成とすることにより、降雨の強さを検出することができる。これにより、天窓制御により栽培室1内の環境を良好に制御する構成としながら、天窓30から入る降雨により栽培室1内の温度や湿度等の環境が大きく変化するのを適確に防止できる。尚、風力が大きいときには前記最大開度を大きく、風力が小さいときには前記最大開度を小さくする等して、風力に応じて天窓30の最大開度を規制する構成としてもよい。   Note that when the rain sensor 90 detects rain, the maximum opening of the skylight 30 in the skylight control is regulated. As the intensity of rainfall is stronger, the maximum opening is set smaller. If the rainfall is stronger than a predetermined level, the maximum opening is zero and the skylight 30 is not opened. The rain sensor 90 can detect the intensity of rainfall by detecting the amount of rainfall per unit time or by detecting the impact of rainfall. Thereby, while setting it as the structure which controls the environment in the cultivation room 1 favorably by skylight control, it can prevent appropriately environment, such as temperature and humidity in the cultivation room 1, by the rain which enters from the skylight 30 significantly. Note that the maximum opening degree of the skylight 30 may be regulated according to the wind force by increasing the maximum opening degree when the wind force is large and decreasing the maximum opening degree when the wind force is small.

制御部(コントローラ)26は、第一の設定室温よりも室温センサ74で検出される検出室温が低いとき、温風暖房機(ヒートポンプ)104を作動する。
また、制御部(コントローラ)26は、温水温度センサ75の検出値を入力し、第一加温装置31、第二加温装置32、ポンプ34及び切替弁73へ作動信号を出力する。そして、第二の設定室温よりも室温センサ74で検出される検出室温が低いとき、第二の設定室温に基づいて第二供給管36を流れる温水の目標温度を演算する。尚、第二の設定室温は、第一の設定室温よりも低温に設定されている。尚、第二の設定室温が高くなるにつれて一次関数的に(第二の設定室温に拘らず第二の設定室温の一定の変化量に対する前記目標温度の変化割合が同一となる演算式に基づいて)前記目標温度が高く設定される。更に、温水温度センサ75により検出される温水の検出温度が目標温度よりも低いと、検出温度と目標温度の差が大きくなるにつれて一次関数的に(前記差に比例して)加温管33側から合流する流量の割合が多くなるように加温管33側からの設定流量割合が演算されて設定される。従って、第二の設定室温よりも室温センサ74で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、検出温度と目標温度の差が大きいほど、加温管33側から合流する流量の割合が多くなるように設定される加温管33側からの設定流量割合に基づいて切替弁73が作動する。また、前記加温管33側からの設定流量割合が予め設定される第一の所定の割合(0%)以下のとき、第一加温装置31及び第二加温装置32の燃焼運転を共に停止させる。尚、制御部26により、温風暖房機(ヒートポンプ)104が所定時間(例えば10分)以上連続して作動しているとき、はじめて第一加温装置31及び第二加温装置32の燃焼運転が開始される。温風暖房機(ヒートポンプ)104が停止しているときは、第一加温装置31及び第二加温装置32も停止する構成となっている。第二の設定室温よりも室温センサ74で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、加温管33側からの設定流量割合が予め設定される第一の所定の割合(0%)を超過し予め設定される第二の所定の割合(100%)未満のとき、第二加温装置32のみを燃焼運転して第一加温装置31の燃焼運転を停止させる。第二の設定室温よりも室温センサ74で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、加温管33側からの設定流量割合が予め設定される第二の所定の割合(100%)以上のとき、第一加温装置31及び第二加温装置32を共に燃焼運転する。尚、前述した割合とは、第二供給管36を流れる合流した合流量に対する加温管33側からの流量の割合である。尚、室温センサ74で検出される検出室温や温水温度センサ75により検出される温水の検出温度に関係なく、常にポンプ34を作動させる。
The control unit (controller) 26 operates the hot air heater (heat pump) 104 when the detected room temperature detected by the room temperature sensor 74 is lower than the first set room temperature.
In addition, the control unit (controller) 26 inputs a detection value of the hot water temperature sensor 75 and outputs an operation signal to the first warming device 31, the second warming device 32, the pump 34, and the switching valve 73. When the detected room temperature detected by the room temperature sensor 74 is lower than the second set room temperature, the target temperature of the hot water flowing through the second supply pipe 36 is calculated based on the second set room temperature. The second set room temperature is set lower than the first set room temperature. It should be noted that as the second set room temperature increases, a linear function (based on an arithmetic expression in which the change rate of the target temperature with respect to a constant change amount of the second set room temperature is the same regardless of the second set room temperature). ) The target temperature is set high. Further, when the detected temperature of the hot water detected by the hot water temperature sensor 75 is lower than the target temperature, the heating pipe 33 side is linearly proportional to the difference between the detected temperature and the target temperature (in proportion to the difference). The set flow rate ratio from the heating tube 33 side is calculated and set so that the ratio of the flow rate to be merged from is increased. Accordingly, when the detected room temperature detected by the room temperature sensor 74 is lower than the second set room temperature and the detected temperature of the hot water is lower than the target temperature, the larger the difference between the detected temperature and the target temperature, the greater the temperature from the heating tube 33 side. The switching valve 73 is operated based on the set flow rate ratio from the heating tube 33 side that is set so that the flow rate of the merged flow increases. Further, when the set flow rate ratio from the heating tube 33 side is equal to or less than a first predetermined ratio (0%) set in advance, both the first heating device 31 and the second heating device 32 are operated for combustion. Stop. Note that when the hot air heater (heat pump) 104 is continuously operated for a predetermined time (for example, 10 minutes) by the control unit 26, the combustion operation of the first heating device 31 and the second heating device 32 is not performed for the first time. Is started. When the hot air heater (heat pump) 104 is stopped, the first heating device 31 and the second heating device 32 are also stopped. When the detected room temperature detected by the room temperature sensor 74 is lower than the second set room temperature and the detected temperature of the hot water is lower than the target temperature, a set flow rate ratio from the heating tube 33 side is preset. When the ratio exceeds (0%) and is less than the second predetermined ratio (100%) set in advance, only the second heating device 32 is burned and the combustion operation of the first heating device 31 is stopped. Let When the detected room temperature detected by the room temperature sensor 74 is lower than the second set room temperature and the detected temperature of the hot water is lower than the target temperature, the set flow rate ratio from the heating pipe 33 side is preset. When the ratio (100%) or more is reached, both the first warming device 31 and the second warming device 32 are operated for combustion. In addition, the ratio mentioned above is a ratio of the flow volume from the heating pipe | tube 33 side with respect to the combined flow volume which flows through the 2nd supply pipe | tube 36. FIG. The pump 34 is always operated regardless of the detected room temperature detected by the room temperature sensor 74 and the detected temperature of the hot water detected by the hot water temperature sensor 75.

従って、第二供給管36を流れる温水の温度が高くなって、該温水の検出温度と温水の目標温度の差が小さくなると、切替弁73が作動して加温管33側から合流する流量の割合が少なくなると共にバイパス管72側から合流する流量の割合が多くなり、第一加温装置31又は第二加温装置32で加温される温水が第二供給管36ひいては暖房用管37に供給される量を抑え、熱量を無駄に消費しないようにし、省エネルギー化が図れる。第二供給管36を流れる温水の温度が低くなって、該温水の検出温度と温水の目標温度の差が大きくなると、切替弁73が作動して加温管33側から合流する流量の割合が多くなると共にバイパス管72側から合流する流量の割合が少なくなり、第一加温装置31又は第二加温装置32で加温される温水が第二供給管36ひいては暖房用管37に多量に供給されるようにし、栽培室(温室)1を能率良く暖房できる。また、加温管33側からの設定流量割合が第二の所定の割合よりも小さく設定されるときは第二加温装置32のみを燃焼運転して第一加温装置31の燃焼運転を停止させ、限りある資源である化石燃料の消費を抑え、省エネルギー化が図れる。そして、加温管33側からの設定流量割合が所定の割合よりも大きく設定されるときは第一加温装置31及び第二加温装置32を共に燃焼運転し、温水の加温量を増大させて栽培室(温室)1を能率良く暖房できる。尚、目標湿度よりも湿度センサ76で検出される検出湿度が高くなって天窓30を開けば、栽培室1内の室温が低下するが、それにより第二の設定室温よりも室温センサ74で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低くなれば、前述と同様に暖房制御する。   Accordingly, when the temperature of the hot water flowing through the second supply pipe 36 is increased and the difference between the detected temperature of the hot water and the target temperature of the hot water is reduced, the switching valve 73 is activated and the flow rate of the flow that joins from the heating pipe 33 side is increased. As the ratio decreases, the ratio of the flow rate joining from the bypass pipe 72 side increases, and the hot water heated by the first heating device 31 or the second heating device 32 is supplied to the second supply pipe 36 and thus the heating pipe 37. Energy consumption can be reduced by suppressing the amount of supply and avoiding wasteful consumption of heat. When the temperature of the hot water flowing through the second supply pipe 36 is lowered and the difference between the detected temperature of the hot water and the target temperature of the hot water is increased, the ratio of the flow rate at which the switching valve 73 is actuated to join from the heating pipe 33 side is increased. As the flow rate increases, the proportion of the flow rate that flows from the bypass pipe 72 side decreases, and a large amount of hot water heated by the first heating device 31 or the second heating device 32 is supplied to the second supply pipe 36 and thus to the heating pipe 37. As a result, the cultivation room (greenhouse) 1 can be efficiently heated. Further, when the set flow rate ratio from the heating pipe 33 side is set to be smaller than the second predetermined ratio, only the second heating device 32 is operated for combustion and the combustion operation of the first heating device 31 is stopped. Energy consumption can be reduced by reducing the consumption of fossil fuels, which are limited resources. And when the set flow rate ratio from the heating pipe 33 side is set to be larger than a predetermined ratio, both the first heating device 31 and the second heating device 32 are combusted to increase the heating amount of the hot water. The cultivation room (greenhouse) 1 can be efficiently heated. Note that if the detected humidity detected by the humidity sensor 76 becomes higher than the target humidity and the skylight 30 is opened, the room temperature in the cultivation room 1 is lowered, but this is detected by the room temperature sensor 74 rather than the second set room temperature. If the detected room temperature is low and the detected temperature of the hot water is lower than the target temperature, heating control is performed as described above.

よって、化石燃料以外の燃料(廃棄物や副産物等)を燃焼させた熱を利用して加温する加温装置を利用して温室を効率良く暖房できると共に、省エネルギー化が図れる。
また、栽培室1内が第一の設定室温よりも低い第二の設定室温以下で、且つ温風暖房機(ヒートポンプ)104が所定時間(例えば10分)以上連続して作動しているときのみ、第一加温装置31及び第二加温装置32を燃焼運転するので、温風暖房機(ヒートポンプ)104で暖房を賄える場合に無闇に第一加温装置31及び第二加温装置32を作動させて無駄に燃料(特に石油)を消費しないようにでき、省エネルギー化が図れる。
Therefore, it is possible to efficiently heat the greenhouse using a heating device that heats the fuel other than fossil fuels (waste, byproducts, etc.) burned, and to save energy.
Moreover, only when the inside of the cultivation room 1 is below the second set room temperature, which is lower than the first set room temperature, and the warm air heater (heat pump) 104 is continuously operated for a predetermined time (for example, 10 minutes) or more. Since the first warming device 31 and the second warming device 32 are operated for combustion, when the warm air heater (heat pump) 104 can cover the heating, the first warming device 31 and the second warming device 32 are silently set. It can be operated so that fuel (especially oil) is not consumed unnecessarily, and energy can be saved.

尚、サブ通路9の走行用のレール(暖房用管37)上で、補助暖房機を走行させてもよい。補助暖房機は、電気式のヒートポンプを備え、温風を側方に吹き出しながら走行する構成である。そして、栽培室1内の複数の箇所に温度センサを設け、栽培室1内の温度のむらがあるとき、温度の低い箇所(局所)のみを補助暖房機で暖房することにより、栽培室1内の温度を均一にでき栽培の均一化が図れる。尚、複数の温度センサからの検出信号に基づき、補助暖房機を自動走行させて局所を自動的に暖房する構成とすればよい。   In addition, you may run an auxiliary | assistant heater on the rail for a driving | running | working of the sub channel | path 9 (heating pipe 37). The auxiliary heater has an electric heat pump and travels while blowing hot air to the side. And when temperature sensors are provided at a plurality of locations in the cultivation room 1 and the temperature in the cultivation room 1 is uneven, only the low temperature portion (local) is heated with an auxiliary heater, The temperature can be made uniform and cultivation can be made uniform. In addition, what is necessary is just to set it as the structure which makes an auxiliary heater drive | work automatically based on the detection signal from a several temperature sensor, and heats a local automatically.

また、栽培室1内には、霧を噴霧させて細霧冷房を行う細霧冷房装置を設けている。この細霧冷房装置は、細霧の噴霧とこの噴霧の休止とを交互に行って冷房するものであり、検出室温が目標室温よりも高いとき作動する構成となっている。検出室温と目標室温との差が大きいほど、噴霧する噴霧時間及び噴霧を休止する休止時間が長く設定される。例えば、目標室温が20度のとき、検出室温が25度未満であれば細霧冷房装置は作動しないが、検出室温が25度以上30度未満であれば噴霧時間を50秒、休止時間を250秒に設定し、検出室温が30度以上35度未満であれば噴霧時間を60秒、休止時間を300秒に設定し、検出室温が35度以上であれば噴霧時間を80秒、休止時間を350秒に設定して、細霧冷房を行う。これにより、栽培室1内が高温で細霧冷房の必要度が高いときには、噴霧時間を長くして室温の低下を図りつつ、休止時間を長くして栽培室1内の湿度過多も抑え、湿度過多による植物の同化作用の低下や病害の発生を防止できる。   Moreover, in the cultivation room 1, the fine fog cooling apparatus which sprays fog and performs fine fog cooling is provided. This fine fog cooling device cools by alternately spraying fine fog and stopping the spray, and is configured to operate when the detected room temperature is higher than the target room temperature. As the difference between the detected room temperature and the target room temperature is larger, the spraying time for spraying and the pause time for stopping spraying are set longer. For example, when the target room temperature is 20 degrees, the fine fog cooling device does not operate if the detected room temperature is less than 25 degrees, but if the detected room temperature is 25 degrees or more and less than 30 degrees, the spray time is 50 seconds and the rest time is 250. If the detection room temperature is 30 degrees or more and less than 35 degrees, the spraying time is set to 60 seconds, the pause time is set to 300 seconds, and if the detection room temperature is 35 degrees or more, the spray time is set to 80 seconds. Set to 350 seconds and perform fine fog cooling. Thereby, when the inside of the cultivation room 1 is high temperature and the necessity degree of fine fog cooling is high, lengthening spraying time and aiming at the fall of room temperature, lengthening rest time and also suppressing excessive humidity in the cultivation room 1 and humidity It is possible to prevent a decrease in the assimilation effect of plants and the occurrence of diseases due to excess.

尚、湿度センサ76による検出湿度に応じて、検出湿度が高いほど噴霧時間が短くなるように該噴霧時間を補正する構成としてもよい。例えば、検出湿度が所定値(70%)以上であれば検出室温に拘らず細霧冷房を行わず、検出湿度が40%未満であれば噴霧時間の最大値を90秒に設定し、検出湿度が40%以上50%未満であれば噴霧時間の最大値を80秒に設定し、検出湿度が50%以上60%未満であれば噴霧時間の最大値を70秒に設定し、検出湿度が60%以上70%未満であれば噴霧時間の最大値を60秒に設定して、細霧冷房を行うことができる。これにより、栽培室1内の湿度過多も抑えることができる。   Note that the spray time may be corrected so that the spray time becomes shorter as the detected humidity is higher in accordance with the humidity detected by the humidity sensor 76. For example, if the detected humidity is equal to or higher than a predetermined value (70%), fine fog cooling is not performed regardless of the detected room temperature, and if the detected humidity is less than 40%, the maximum spray time is set to 90 seconds. Is 40% or more and less than 50%, the maximum value of the spraying time is set to 80 seconds, and if the detected humidity is 50% or more and less than 60%, the maximum value of the spraying time is set to 70 seconds, and the detected humidity is 60 If it is not less than 70% and less than 70%, the maximum spray time can be set to 60 seconds, and fine fog cooling can be performed. Thereby, excessive humidity in the cultivation room 1 can also be suppressed.

また、特に夏場等に、暖房用管37に地下水等の冷却水を流し、暖房用管37による冷却効果を図ると共に、暖房用管37の外周面に結露させて除湿効果を得ることができる。これにより、細霧冷房装置により高湿度になった栽培室1内において、天窓30の開放等による換気を行わずに除湿でき、換気しない分栽培室1内の二酸化炭素の濃度を高い濃度に維持でき、植物の光合成を高めることができる。特に、冷却水として地下水を利用すれば、冷却水を作る加熱装置(チラー)が不要となり、省エネルギー化ひいてはコストダウンが図れる。尚、栽培室1内において、冷却効果及び除湿効果を得ると共に、二酸化炭素濃度の均一化を図るべく、栽培室1内の空気を循環する循環ファンを設けるのが望ましい。   In addition, particularly in summer, cooling water such as ground water is allowed to flow through the heating pipe 37 to achieve a cooling effect by the heating pipe 37 and to condense on the outer peripheral surface of the heating pipe 37 to obtain a dehumidifying effect. Thereby, in the cultivation room 1 which became high humidity by the fine fog cooling apparatus, it can dehumidify without performing ventilation by opening the skylight 30, etc., and the density | concentration of the carbon dioxide in the cultivation room 1 which is not ventilated is maintained at a high density | concentration. And can enhance plant photosynthesis. In particular, if groundwater is used as cooling water, a heating device (chiller) for producing cooling water is not necessary, and energy saving and cost reduction can be achieved. In the cultivation room 1, it is desirable to provide a circulation fan that circulates the air in the cultivation room 1 in order to obtain a cooling effect and a dehumidifying effect and to make the carbon dioxide concentration uniform.

尚、栽培室1の下方に地下室を設け、該地下室内に多数の流水管を設け、該流水管へ地下水を流すと共に、地下室と栽培室1の間で空気を循環する地下循環ファンを設け、栽培室1内の空気が順次地下室へ供給され、地下室から栽培室1内へ戻る構成とすることができる。これにより、地下室において、流水管により栽培室1からの空気を冷却すると共に除湿し、栽培室1内の冷却及び除湿を行うことができる。特にこの形態では、地下室に太陽光が照射しないため、流水管の温度上昇が抑えられると共に、栽培室1内よりも室温の低い地下室で除湿するので、除湿効果が高まる。尚、前記流水管を介して、養液供給装置7へ原水として地下水を供給する構成としてもよい。尚、上述の流水管へ地下水を流す構成に代えて、養液供給装置7の原水タンク44内の冷水を流水管へ流して循環する構成としてもよい。このとき、原水タンク44を栽培室1外に配置しているので、栽培室1内の高温の空気で原水タンク44内の冷水の温度が上昇するのを防止でき、冷却効果及び除湿効果を維持できる。更に、栽培室1外の原水タンク44から地下室への冷水の流路を地下に設けることにより、冷水の温度上昇を防止できる。   In addition, a basement is provided below the cultivation room 1, a large number of water pipes are provided in the basement, a ground circulation fan that circulates air between the basement and the cultivation room 1 is provided while flowing ground water to the water pipe, The air in the cultivation room 1 can be sequentially supplied to the basement and returned to the cultivation room 1 from the basement. Thereby, in the basement, the air from the cultivation room 1 can be cooled and dehumidified by the flowing water pipe, and the cultivation room 1 can be cooled and dehumidified. In particular, in this embodiment, since the basement is not irradiated with sunlight, an increase in the temperature of the water pipe is suppressed, and dehumidification is performed in the basement whose room temperature is lower than that in the cultivation room 1, so that the dehumidifying effect is enhanced. In addition, it is good also as a structure which supplies groundwater as raw | natural water to the nutrient solution supply apparatus 7 through the said water flow pipe. In addition, it is good also as a structure which replaces with the structure which flows groundwater to the above-mentioned flowing water pipe, and circulates by flowing the cold water in the raw | natural water tank 44 of the nutrient solution supply apparatus 7 to a flowing water pipe. At this time, since the raw water tank 44 is disposed outside the cultivation room 1, it is possible to prevent the temperature of the cold water in the raw water tank 44 from rising due to the high-temperature air in the cultivation room 1, and maintain the cooling effect and the dehumidifying effect. it can. Furthermore, the temperature rise of cold water can be prevented by providing a passage of cold water from the raw water tank 44 outside the cultivation room 1 to the basement.

前述の栽培ベッド5は架台により地面に支持される構成であるが、栽培室1内の上方から吊下支持部材114を介して栽培ベッド5を吊り下げて支持する構成としてもよい。このとき、架台がないので、栽培ベッド5の下方はメイン通路4上及びサブ通路9上と連通する空間が形成されるが、該空間と通路上(サブ通路9上)にわたる反射板115を設けることができる。該反射板115は、栽培ベッド5に対して左右に設けられ、サブ通路9上等に照射される太陽光を上側の栽培ベッド5上に反射させるべく、サブ通路9側よりも栽培ベッド5側が低位となる傾斜姿勢で配置される。そして、サブ通路9側となる反射板115の外側部116は、反射板115の内側部117に反射板回動軸118回りに左右方向に回動可能に取り付けられている。従って、反射板115の外側部116を左右内側(栽培ベッド5側)に回動させて折りたためば、サブ通路9上で作業移動車3又は防除作業車を走行させる等して作業を行うことができる。反射板115により、直射日光を受けにくい植物の下部の葉へ反射光を供給でき、植物の光合成を促進させて収穫物の収量増加を図ることができる。尚、反射板115は、表面に反射性フィルムを貼り付けた構成としてもよい。   The above-mentioned cultivation bed 5 is configured to be supported on the ground by a gantry, but may be configured to suspend and support the cultivation bed 5 from above in the cultivation room 1 via a suspension support member 114. At this time, since there is no frame, a space communicating with the main passage 4 and the sub-passage 9 is formed below the cultivation bed 5, but a reflector 115 is provided over the space and the passage (on the sub-passage 9). be able to. The reflectors 115 are provided on the left and right of the cultivation bed 5, and the cultivation bed 5 side is closer to the cultivation path 5 than the sub passage 9 side in order to reflect the sunlight irradiated on the cultivation path 5 and the like onto the cultivation bed 5 on the upper side. It is arranged in an inclined posture that becomes a low level. The outer portion 116 of the reflecting plate 115 on the sub-passage 9 side is attached to the inner portion 117 of the reflecting plate 115 so as to be rotatable in the left-right direction around the reflecting plate rotation shaft 118. Therefore, if the outer side part 116 of the reflecting plate 115 is turned to the left and right inner side (the cultivation bed 5 side) and folded, the work moving vehicle 3 or the control work vehicle can be operated on the sub-passage 9. it can. The reflection plate 115 can supply reflected light to the lower leaves of the plant that are not easily exposed to direct sunlight, and can promote the photosynthesis of the plant to increase the yield of the harvest. The reflector 115 may have a configuration in which a reflective film is attached to the surface.

尚、栽培ベッド5の側方に該栽培ベッド5と一体の茎受け部材119を設け、茎受け部材119により誘引ワイヤ80(栽培ベッド5)と同じ方向に延びる植物の茎を受けることができるが、前述の栽培ベッド5の下方に反射板115を設ける構成に代えて、栽培ベッド5の側方に茎受け部材119と一体で反射板115を設ける構成とすることができる。反射板115の外側部116を水平にすれば、反射光が栽培ベッド5上に供給されにくくなり、夏場等の植物の高温化を避けることができる。また、栽培ベッド5の下方の空間に、細霧冷房装置や暖房装置等を配置でき、前記空間の有効利用が図れる。   In addition, although the stem receiving member 119 integral with this cultivation bed 5 is provided in the side of the cultivation bed 5, the stem receiving member 119 can receive the plant stem extended in the same direction as the attracting wire 80 (cultivation bed 5). Instead of the configuration in which the reflection plate 115 is provided below the cultivation bed 5 described above, the reflection plate 115 may be provided integrally with the stem receiving member 119 on the side of the cultivation bed 5. If the outer side part 116 of the reflecting plate 115 is made horizontal, it becomes difficult for the reflected light to be supplied onto the cultivation bed 5, and it is possible to avoid an increase in the temperature of the plant such as in summer. Moreover, a fine fog cooling device, a heating device, etc. can be arrange | positioned in the space under the cultivation bed 5, and the said space can be used effectively.

また、吊下支持部材114を吊下ワイヤを備えて構成し、左右の吊下ワイヤで栽培ベッド5を支持し、左右の吊下ワイヤのうちの一方の吊下ワイヤとなる固定ワイヤ120の一端を栽培室1の天井部に設けた固定パイプ120に固定すると共に、他方の吊下ワイヤである引上ワイヤ121を引上装置122に取り付けて引き上げ可能に構成している。従って、引上装置122で引上ワイヤ121を引き上げることにより、栽培ベッド5が上昇しながら引上ワイヤ121側に左右移動する。栽培ベッド5の配列方向(左右方向)において固定ワイヤ120と引上ワイヤ121が交互に配列され、つまり、隣接する栽培ベッド5どうしで固定ワイヤ120と引上ワイヤ121が左右反対に配置され、各々の栽培ベッド5の引上ワイヤ121が対向する栽培ベッド5間と、各々の栽培ベッド5の固定ワイヤ120が対向する栽培ベッド5間が交互に配置される。固定ワイヤ120が対向する栽培ベッド5間の上方に固定パイプ123を配置し、引上ワイヤ121が対向する栽培ベッド5間の上方に引上装置122のワイヤ巻取軸124を配置している。引上装置122は、引上用モータ125の駆動により引上用ラック126が左右方向にスライドし、引上用ラック126に噛み合うピニオンを介してワイヤ巻取軸124を回転させ、対向する引上ワイヤ121を共に上昇(引き上げ)又は下降(引き伸ばし)させる構成となっている。これにより、引上ワイヤ121を下降させているときは、栽培ベッド5が低位で固定ワイヤ120側に寄り、引上ワイヤ121側の栽培ベッド5側方に広い作業空間が形成され、作業者は前記作業空間側から栽培ベッド5の植物に対して芽欠き、葉欠き又は収穫等の作業を行える。引上ワイヤ121を上昇させているときは、栽培ベッド5が上位で引上ワイヤ121側に寄り、固定ワイヤ120側の栽培ベッド5側方に広い作業空間が形成され、作業者は前記作業空間側から栽培ベッド5の植物に対して芽欠き、葉欠き又は収穫等の作業を行える。従って、引上ワイヤ121により、栽培ベッド5の左右何れの側を作業空間とするかを切り替えることができ、同一の栽培ベッド5に対して左右何れの側からも作業が行えるので、作業が容易になる。また、引上ワイヤ121により、作業者の身長等に応じて、同一の栽培ベッド5の高さを作業しやすい高さに変更できる。   Moreover, the suspension support member 114 is provided with a suspension wire, the cultivation bed 5 is supported by the left and right suspension wires, and one end of the fixed wire 120 serving as one of the left and right suspension wires. Is fixed to a fixed pipe 120 provided on the ceiling portion of the cultivation room 1, and a pulling wire 121, which is the other hanging wire, is attached to the pulling device 122 so that it can be pulled up. Therefore, by pulling up the pulling wire 121 with the pulling device 122, the cultivation bed 5 moves to the left and right while pulling up. The fixed wires 120 and the pull-up wires 121 are alternately arranged in the arrangement direction (left-right direction) of the cultivation bed 5, that is, the fixed wires 120 and the pull-up wires 121 are arranged opposite to each other between the adjacent cultivation beds 5. Between the cultivation beds 5 facing the pulling wires 121 of the cultivation beds 5 and between the cultivation beds 5 facing the fixed wires 120 of the cultivation beds 5 are alternately arranged. A fixed pipe 123 is disposed above the cultivation bed 5 opposed to the fixed wire 120, and a wire winding shaft 124 of the lifting device 122 is disposed above the cultivation bed 5 opposed to the lifting wire 121. In the pulling device 122, the pulling rack 126 slides in the left-right direction by driving the pulling motor 125, rotates the wire take-up shaft 124 via a pinion that meshes with the pulling rack 126, and pulls up oppositely. Both the wires 121 are configured to rise (pick up) or descend (stretch). Thereby, when raising the pulling wire 121, the cultivation bed 5 is low and close to the fixed wire 120 side, and a wide work space is formed on the cultivation bed 5 side on the pulling wire 121 side. From the work space side, operations such as shoot cutting, leaf cutting or harvesting can be performed on the plant in the cultivation bed 5. When the pull-up wire 121 is raised, the cultivation bed 5 is closer to the pull-up wire 121 side at the upper position, and a wide work space is formed on the side of the cultivation bed 5 on the fixed wire 120 side. Work such as shoot cutting, leaf cutting or harvesting can be performed on the plant in the cultivation bed 5 from the side. Therefore, the pulling wire 121 can be used to switch between the left and right sides of the cultivation bed 5 as the work space, and the work can be performed from either the left or right side with respect to the same cultivation bed 5. become. Moreover, the height of the same cultivation bed 5 can be changed to the height which is easy to work with the pulling wire 121 according to an operator's height.

尚、植物を栽培するべくロックウールで形成された栽培ベッド5に移植する苗の育苗は、栽培と同様にロックウールで育苗することもできるが、縦横に複数設けたセルを備える苗トレイ127により育苗してもよい。苗トレイ127は、セルにより一株ずつ苗を育苗する構成である。苗トレイ127による育苗は、播種装置128によりセルに所定粒数ずつ播種して行う。播種装置128は、苗トレイ127を搬送する搬送コンベヤ129上に設けられ、種子を貯留する貯留皿130と、種子131を吸着して搬送する播種ドラム132を備える。尚、搬送コンベヤ129は搬送用モータにより駆動し、播種ドラム132は播種モータにより回転する構成であり、搬送コンベヤ129の搬送作動に連動して播種ドラム132が回転する。播種ドラム132の外周には所定間隔おきに吸着孔132aを設け、該吸着孔132aが、播種ドラム132の回転により順次貯留皿130の位置に到達して、貯留皿130上の種子を一粒ずつ順次エアにより吸着する。そして、播種ドラム132の回転により吸着孔132aが播種ドラム132の下端位置に到達すると、吸着孔132aが吸着を解除して種子131を落下させて播種位置にあるセルに一粒ずつ播種する構成である。播種作業を開始するとき、作業者が運転準備スイッチを操作すると、苗トレイ127の第一列のセルが播種位置に到達するまで搬送コンベヤ129が駆動すると共に、最初の種子を吸着する吸着孔132aが播種ドラム132の下端位置の直前に位置するまで播種ドラム132が回転する。そして、播種作業開始スイッチの操作により、搬送コンベヤ129及び播種ドラム132が連続的に駆動を開始し、播種作業を開始する。播種作業を終了するときは、運転終了スイッチを操作すると、播種ドラム132の回転が停止して播種を停止し、搬送コンベヤ129は所定時間後に停止し、その後、播種ドラム132が通常の正転時の速度よりも極めて遅い速度で逆方向への回転を開始する。この逆方向への回転は、播種停止時に播種ドラム132の下端位置にあった吸着孔132aが貯留皿130の受け面に到達するまで(実施例では240度)回転する。これにより、播種停止時に吸着孔132aに吸着した状態の種子131を貯留皿130の受け面に引っ掛けて該貯留皿130に回収することができ、種子131の無駄を防止する。この種子131の回収は、播種ドラム132を極めて遅い速度で回転させて行うので、種子131を貯留皿130の受け面に引っ掛ける際に種子131が傷みにくく、また種子131が貯留皿130の近くで飛び跳ねることを防止できる。   In addition, the seedling raising of the seedling transplanted to the cultivation bed 5 formed with the rock wool in order to cultivate the plant can be raised with the rock wool similarly to the cultivation, but by the seedling tray 127 provided with a plurality of cells provided vertically and horizontally. You may raise seedlings. The seedling tray 127 is configured to grow seedlings one by one in the cell. Raising seedlings in the seedling tray 127 is performed by sowing a predetermined number of grains in a cell by a seeding device 128. The seeding device 128 is provided on a transport conveyor 129 that transports the seedling tray 127, and includes a storage tray 130 that stores seeds and a seeding drum 132 that adsorbs and transports seeds 131. The conveyor 129 is driven by a conveyor motor, and the seeding drum 132 is rotated by the seeding motor. The seeding drum 132 rotates in conjunction with the transport operation of the conveyor 129. Suction holes 132a are provided on the outer periphery of the seeding drum 132 at predetermined intervals. The suction holes 132a sequentially reach the position of the storage tray 130 by the rotation of the seeding drum 132, and seeds on the storage tray 130 are collected one by one. Adsorbed sequentially with air. When the suction hole 132a reaches the lower end position of the seeding drum 132 by the rotation of the seeding drum 132, the suction hole 132a releases the suction, drops the seed 131, and seeds the seeds one by one in the cell at the seeding position. is there. When the operator operates the operation preparation switch when starting the sowing operation, the conveying conveyor 129 is driven until the first row of cells in the seedling tray 127 reaches the sowing position, and the suction hole 132a for adsorbing the first seed. Until the sowing drum 132 is positioned immediately before the lower end position of the sowing drum 132. And by operation of a sowing operation start switch, the conveyance conveyor 129 and the sowing drum 132 start driving continuously, and sowing work is started. When the seeding operation is finished, when the operation end switch is operated, the rotation of the seeding drum 132 stops and the seeding is stopped. The conveyor 129 stops after a predetermined time, and then the seeding drum 132 is in a normal forward rotation. The rotation in the reverse direction is started at a speed much slower than the speed of the speed. The rotation in the reverse direction is rotated until the suction hole 132a at the lower end position of the seeding drum 132 when the seeding is stopped reaches the receiving surface of the storage tray 130 (240 degrees in the embodiment). Thereby, the seed 131 in a state of being adsorbed in the adsorption hole 132a when sowing is stopped can be hooked on the receiving surface of the storage tray 130 and collected in the storage tray 130, and the waste of the seed 131 is prevented. Since the seed 131 is collected by rotating the seeding drum 132 at an extremely low speed, the seed 131 is hardly damaged when the seed 131 is hooked on the receiving surface of the storage tray 130, and the seed 131 is close to the storage tray 130. It can prevent jumping.

尚、苗トレイの上面に載置するガイド板を設け、該ガイド板により該ガイド板と苗トレイからなる育苗器の高さを高くすることができる。ガイド板は、苗トレイのセルに合わせて該セルに連設されるセル形成部を縦横に備え、育苗器のセルの容量を大きくして苗の床部を大きくすることができる。これにより、セルから苗を取り出すときに苗の床部が崩れにくくなり、圃場に苗を移植する苗移植機において苗を一株ずつ容易に取り出せる。更に、育苗後にガイド板を取り外せば、苗の床部の上部が苗トレイの上側に突出した状態となるので、この突出部分に取出用爪を側方から突き刺したり取出用爪が前記突出部分を挟持したりするのが容易になり、更なる苗取出の容易化が図れる。尚、苗の床部の寸法を所望に設定するべく、ガイド板の寸法を考慮して苗トレイの高さを低く設定してもよい。   In addition, the guide plate mounted in the upper surface of a seedling tray is provided, and the height of the seedling raising device which consists of this guide plate and a seedling tray can be made high with this guide plate. The guide plate includes cell forming portions that are connected to the cells of the seedling tray vertically and horizontally, and can increase the cell capacity of the seedling raising device to increase the seedling floor. Thereby, when taking out seedlings from the cell, the seedling floor is less likely to collapse, and the seedlings can be easily taken out one by one in a seedling transplanting machine for transplanting seedlings in the field. Furthermore, if the guide plate is removed after raising seedlings, the upper part of the seedling floor part protrudes to the upper side of the seedling tray.Therefore, a picking nail is inserted into this protruding part from the side or the picking nail is inserted into the protruding part. It becomes easy to pinch and further facilitates the removal of seedlings. In order to set the size of the seedling floor as desired, the height of the seedling tray may be set low in consideration of the size of the guide plate.

また、苗トレイを使用せず、苗箱によりマット状に苗を育苗することもできる。このとき、マット状の苗を一株分ずつ分離しやすくするため、一株分の寸法ごとに切れ目が入ったマット状の不織布を予め苗箱に敷き、その上に床土を詰めてマット状の苗を育苗すればよい。尚、一株分ごとの苗の位置と合致する突起を苗箱の底面に設け、前記突起と合致する孔をマット状の不織布に設け、苗移植機において苗を移送する苗移送ベルトの表面のベルト突起が前記孔に合致する構成とすれば、苗移送ベルトの苗移送でマット状の苗が縮むことを防止しながら苗を適正に移送することができる。   In addition, seedlings can be grown in a mat shape using a seedling box without using a seedling tray. At this time, in order to make it easier to separate the mat-like seedlings one by one, a mat-like non-woven fabric with a cut for each stock size is laid in a seedling box in advance, and floor soil is stuffed on it to form a mat. Should be raised. In addition, a protrusion that matches the position of the seedling for each strain is provided on the bottom surface of the seedling box, a hole that matches the protrusion is provided in the mat-like nonwoven fabric, and the surface of the seedling transfer belt that transfers the seedling in the seedling transplanter If the belt protrusion is configured to match the hole, the seedling can be properly transferred while preventing the mat-like seedling from shrinking due to the seedling transfer of the seedling transfer belt.

尚、水稲苗を育苗する場合、育苗培土に腐植酸資材(アヅミン等)を0.5〜5%配合すると、腐植酸による根の活力を高める効果が得られ、健苗を育成できる。これにより、圃場で移植株間を広くして栽培する疎植栽培において、一株ごとの栽培を確実にでき、収量を確実に得ることができる。また、育苗培土に倒伏低減剤となる矮化剤(ウニコナゾール等)を添加すれば、苗の徒長を低減できて健苗を育成できる。尚、矮化剤は、育苗培土20kgあたり成分量で0.05〜0.5mg添加するのが望ましい。   In addition, when raising paddy rice seedlings, the effect which raises the vitality of the root by humic acid will be acquired when humic acid material (Amin) etc. is mix | blended with the seedling culture medium 0.5 to 5%, and it can grow a healthy seedling. Thereby, in the sparse planting cultivation in which the transplanted strains are widened in the field, the cultivation of each strain can be ensured and the yield can be reliably obtained. In addition, if a dwarfing agent (such as uniconazole) as a lodging reducing agent is added to the seedling culture soil, the seedling length can be reduced and healthy seedlings can be grown. In addition, it is desirable to add 0.05-0.5 mg of mashing agent as a component amount per 20 kg of seedling culture soil.

ところで、たばこ苗を育苗する場合、仮植をせずにプール育苗し、苗を直立させることができる。これにより、苗を小さく形成できるので、従来のたばこ移植機にみられる大型の植付具が不要になり、野菜等の他の作物苗の移植機でも移植でき、移植機の汎用性が高まる。プール育苗においては、発泡度が20倍以下程度の低発泡である発泡スチロール製の苗トレイを用いるとよい。低発泡であるため、根が発泡スチロールに入りにくく、苗を取り出しやすくなり、また複数回の使用が可能になり、更にはプール育苗で水面に苗トレイが浮き上がりにくくなって苗の養分吸収が良好になる。育苗培土は、仮比重が0.4〜0.8、水分を含んだ状態でも比重が1.2以下となる培土を使用すればよい。更に、育苗培土に軽石を10〜20%混合して根腐れを防止できる。また、育苗培土において、軽石やパーライト等の多孔質を容積比で50%以上混合し、その他の50%未満はヤシガラやピートモス等の繊維質とすれば、根張りが良好になると共に、肥料の保持性(肥料持ち)が低下するので肥料水による苗の草型(苗の形状)のコントロールが容易になる。また、育苗過程の前半では通常の育苗を行い、育苗過程の後半でプール育苗し、このプール育苗で苗トレイを浮かせて(苗トレイの底面がプールの底面に接触しない状態で)育苗すれば、育苗過程の前半で根の伸長を図ると共に、育苗過程の後半で苗をやや徒長させて直立させることができる。尚、播種して発芽した後、本葉が3枚程度の状態から7〜8枚程度になるまでの間、プール育苗すればよい。本葉が7〜8枚程度になれば苗を圃場に移植する。また、育苗過程の後半にプール内の水を肥料が2000倍程度に薄められた肥料水にすれば、苗の伸長を促すことができる。また、発芽後からプール育苗する場合、発芽後から本葉が4枚程度になるまでは、苗の節間が伸び易くするべくプール内の水を窒素成分を多くした肥料水とし、本葉が4枚程度から後は、苗を頑丈にするためにプール内の水をリン酸成分やカルシウム成分を多くした肥料水とし、育苗過程の途中で肥料の形態を変更すればよい。   By the way, when raising tobacco seedlings, it is possible to raise the seedlings by pool raising without temporary planting. Thereby, since the seedling can be formed small, a large planting tool found in a conventional tobacco transplanting machine is unnecessary, and transplanting can be performed with other crop seedling transplanting machines such as vegetables, thereby increasing the versatility of the transplanting machine. In the pool seedling raising, it is good to use a seedling tray made of styrene foam having a low foaming degree of about 20 times or less. Low foaming makes it difficult for roots to enter expanded polystyrene, making it easier to take out seedlings, allowing multiple use, and preventing seedling trays from floating on the surface of pool seedlings for better nutrient absorption. Become. The seedling culture soil may be a soil having a temporary specific gravity of 0.4 to 0.8 and a specific gravity of 1.2 or less even in the state of containing moisture. Further, root rot can be prevented by mixing 10-20% of pumice with the seedling culture soil. Also, in the seedling culture soil, if the porous ratio such as pumice and pearlite is mixed by 50% or more by volume, and the other less than 50% is made of fiber such as coconut husk and peat moss, the rooting will be good and the fertilizer Since the retention (fertilizer retention) decreases, it becomes easy to control the plant shape (shape of seedling) of the seedling with fertilizer water. Also, normal seedling is performed in the first half of the seedling process, pool seedling is grown in the second half of the seedling process, and if the seedling tray is floated with this pool seedling (with the bottom of the seedling tray not in contact with the bottom of the pool), In the first half of the seedling process, the roots can be elongated, and in the second half of the seedling process, the seedlings can be slightly raised to stand upright. It should be noted that after seeding and germination, pool seedlings may be grown until the number of true leaves changes from about 3 to about 7-8. If the number of true leaves reaches about 7-8, seedlings are transplanted to the field. In addition, if the water in the pool is changed to fertilizer water in which the fertilizer is diluted about 2000 times in the latter half of the seedling raising process, the growth of the seedling can be promoted. In addition, when pool seedlings are grown after germination, the water in the pool is used as fertilizer water with an increased nitrogen component so that the internodes of the seedlings can be easily stretched until the number of the leaves is about 4 after germination. After about 4 sheets, in order to make the seedlings strong, the water in the pool should be changed to fertilizer water with increased phosphate and calcium components, and the form of the fertilizer can be changed during the seedling process.

また、プール育苗において、プール内にエア(酸素)を定期的に供給すれば、根が伸長しやすくなって苗の床部を頑丈にできる。プール内にエア(酸素)を供給するには、エア噴出孔を備えるエアパイプをプール内の苗トレイの下方に配置し、エアパイプにエア(酸素)を供給すればよい。また、プール育苗において、定期的にプール内の水を抜き、根に酸素が供給されやすくする方法もある。流水しながらプール育苗する場合は、プールへの水の供給を一時的に停止することによりプール内の水を抜くことができる。   In addition, if air (oxygen) is regularly supplied into the pool in the pool seedlings, the roots are easily extended and the seedling floor can be made strong. In order to supply air (oxygen) into the pool, an air pipe having an air ejection hole may be disposed below the seedling tray in the pool, and air (oxygen) may be supplied to the air pipe. There is also a method of draining water in the pool periodically in the pool seedling so that oxygen is easily supplied to the roots. When raising seedlings while running water, water in the pool can be drained by temporarily stopping the supply of water to the pool.

また、プール育苗において、苗トレイの上方(プールの上方)でエアを吹き出し、苗の徒長を防止することができる。尚、苗トレイの上方にエア噴出孔を備えるエアパイプを設け、苗へ向けて下方にエアを常時噴出すればよい。これにより、プール育苗による苗の過湿を軽減して苗の徒長を防止できる。前記エアパイプは、横方向に移動する自走式とすれば、プール(苗トレイ)上方の全域にわたって適切にエアを噴出できる。また、エアの吹き出しに代えて、苗に軽く接触するブラシにより苗の徒長を防止してもよい。上述と同様に、ブラシを方向に移動する自走式とすれば、プール(苗トレイ)上方の全域にわたって適切に徒長防止効果が得られる。   Moreover, in pool seedlings, air can be blown out above the seedling tray (above the pool) to prevent seedling length. An air pipe having an air ejection hole may be provided above the seedling tray, and air may be constantly ejected downward toward the seedling. Thereby, the overhumidity of the seedling by a pool seedling can be reduced and the length of a seedling can be prevented. If the air pipe is a self-propelled type that moves in the lateral direction, air can be appropriately ejected over the entire area above the pool (seedling tray). In addition, instead of air blowing, seedling length may be prevented by a brush that makes light contact with the seedling. Similarly to the above, if it is a self-propelled type that moves the brush in the direction, it is possible to appropriately obtain an effect of preventing a length increase over the entire area above the pool (seedling tray).

1:栽培室(温室)、26:制御部(コントローラ)、30:天窓、77:押上装置、106:軸受け溝、108:回動支点軸、109:規制装置、111:風向計   1: cultivation room (greenhouse), 26: control unit (controller), 30: skylight, 77: push-up device, 106: bearing groove, 108: rotation fulcrum shaft, 109: regulating device, 111: anemometer

Claims (8)

同一の天窓(30)を回動させて開閉させる複数の回動支点軸(108)を設け、回動中心となる回動支点軸(108)を択一的に選択して異なる方向に天窓(30)を開閉し得る構成とした栽培施設。   A plurality of pivot fulcrum shafts (108) for rotating the same skylight (30) to open and close are provided, and the pivot fulcrum shaft (108) serving as the pivot center is alternatively selected and the skylight ( 30) A cultivation facility that can be opened and closed. 複数の回動支点軸(108)の向きが互いに交差する構成とした請求項1に記載の栽培施設。   The cultivation facility according to claim 1, wherein the directions of the plurality of pivot fulcrum shafts (108) intersect each other. 複数の回動支点軸(108)は同一方向で平行状に配置した請求項1に記載の栽培施設。   The cultivation facility according to claim 1, wherein the plurality of pivot fulcrum shafts (108) are arranged in parallel in the same direction. 同一方向で平行状に配置される一対の回動支点軸(108)を2組設け、互いの組の回動支点軸(108)の向きが交差する構成とした請求項1に記載の栽培施設。   The cultivation facility according to claim 1, wherein two pairs of rotation fulcrum shafts (108) arranged in parallel in the same direction are provided, and the directions of the rotation fulcrum shafts (108) of each pair intersect. . 天窓(30)には複数の回動支点軸(108)が下側から侵入して嵌る各々の軸受け溝(106)を設け、回動支点軸(108)が軸受け溝(106)から抜けるのを規制する規制装置(109)を各々の回動支点軸(108)に対応させて設け、天窓(30)を下側から押し上げる押上装置(77)を設け、一の回動支点軸(108)以外の全ての回動支点軸(108)に対応する規制装置(109)の規制を全て解除して押上装置(77)を作動させることにより、前記一の回動支点軸(108)回りに天窓(30)を回動させる構成とした請求項1に記載の栽培施設。   The skylight (30) is provided with respective bearing grooves (106) into which a plurality of pivot fulcrum shafts (108) enter from below, and the pivot fulcrum shaft (108) can be removed from the bearing grooves (106). A regulating device (109) for regulating is provided in correspondence with each rotation fulcrum shaft (108), and a push-up device (77) for pushing up the skylight (30) from the lower side is provided, except for one rotation fulcrum shaft (108). All the restrictions of the restriction device (109) corresponding to all the rotation fulcrum shafts (108) are released and the push-up device (77) is operated, so that the skylight ( The cultivation facility according to claim 1, wherein 30) is rotated. 天窓(30)を複数設け、天窓(30)ごとに異なる方向に開閉可能な構成とした請求項1に記載の栽培施設。   The cultivation facility according to claim 1, wherein a plurality of skylights (30) are provided and can be opened and closed in different directions for each skylight (30). 風向きを検知する風向計(111)を屋根上の複数位置に設け、複数の風向計(111)の各々に対応して該風向計の近傍の天窓(30)の風下側を開かせる制御を実行する制御部(26)を設けた請求項6に記載の栽培施設。   An anemometer (111) for detecting the wind direction is provided at a plurality of positions on the roof, and control is performed to open the leeward side of the skylight (30) near the anemometer corresponding to each of the plurality of anemometers (111). The cultivation facility according to claim 6, wherein a control unit (26) is provided. 複数の風向計(111)の検知に基づいて風向計(111)が配置されていない位置の風向きを推測し、その推測された風向きに基づいて当該風向計(111)が配置されていない位置にある天窓(30)の風下側を開かせる制御を実行する制御部(26)を設けた請求項7に記載の栽培施設。   A wind direction at a position where the anemometer (111) is not arranged is estimated based on detection of a plurality of anemometers (111), and a position where the anemometer (111) is not arranged based on the estimated wind direction. The cultivation facility according to claim 7, further comprising a control unit (26) for performing control for opening a leeward side of a certain skylight (30).
JP2011117995A 2011-05-26 2011-05-26 Cultivation facility Withdrawn JP2012244923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117995A JP2012244923A (en) 2011-05-26 2011-05-26 Cultivation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117995A JP2012244923A (en) 2011-05-26 2011-05-26 Cultivation facility

Publications (1)

Publication Number Publication Date
JP2012244923A true JP2012244923A (en) 2012-12-13

Family

ID=47466011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117995A Withdrawn JP2012244923A (en) 2011-05-26 2011-05-26 Cultivation facility

Country Status (1)

Country Link
JP (1) JP2012244923A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103636437A (en) * 2013-12-05 2014-03-19 界首市聚丰家庭农场 Greenhouse skylight with light adjustment and ventilation controlled intelligently
JP2014089693A (en) * 2012-10-01 2014-05-15 Kenji Yoshida Dot pattern
JP2017158598A (en) * 2017-06-27 2017-09-14 井関農機株式会社 Moving work vehicle
JP2017195895A (en) * 2017-06-27 2017-11-02 井関農機株式会社 Car moving in cultivation facility
JP7468125B2 (en) 2020-05-01 2024-04-16 井関農機株式会社 Plant Cultivation Equipment
KR102675201B1 (en) * 2020-12-17 2024-06-18 대한민국 Smart greenhouse automatic control device that controls side window and skylight according to wind direction and wind speed and operation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089693A (en) * 2012-10-01 2014-05-15 Kenji Yoshida Dot pattern
CN103636437A (en) * 2013-12-05 2014-03-19 界首市聚丰家庭农场 Greenhouse skylight with light adjustment and ventilation controlled intelligently
JP2017158598A (en) * 2017-06-27 2017-09-14 井関農機株式会社 Moving work vehicle
JP2017195895A (en) * 2017-06-27 2017-11-02 井関農機株式会社 Car moving in cultivation facility
JP7468125B2 (en) 2020-05-01 2024-04-16 井関農機株式会社 Plant Cultivation Equipment
KR102675201B1 (en) * 2020-12-17 2024-06-18 대한민국 Smart greenhouse automatic control device that controls side window and skylight according to wind direction and wind speed and operation method thereof

Similar Documents

Publication Publication Date Title
CA3028899C (en) A system and method of growing plants in the absence of soil
KR101917789B1 (en) Improvement in and relating to environment controlled structured green houses for cost effective food production
JP6256821B2 (en) Agricultural house
JP4692010B2 (en) Cultivation facility
JP5603658B2 (en) Plant environmental management system
JP6350726B2 (en) Mobile work vehicle
US11596109B2 (en) High density plant growth systems and methods
JP6460161B2 (en) Mobile vehicle for cultivation facilities
CA2768264A1 (en) Plant cultivation system
CN105578870A (en) LED light timing in a high growth, high density, closed environment system
JP2012244923A (en) Cultivation facility
JP2019017396A (en) Harvesting system of fruit
KR20140003505U (en) Plant cultivation equipment
JP2014124167A (en) Cultivation facility
JP6657777B2 (en) Cultivation facility
JP2011172522A (en) Greenhouse shading device
JP4725212B2 (en) Cultivation facility
KR101396436B1 (en) Cultivation system of greenhouse plant
JP6439294B2 (en) Cultivation facility
JP2016010374A5 (en)
KR102664610B1 (en) Energy saving smart plant factory system
JP6435664B2 (en) Nutrient solution supply device
JP2019017395A (en) Cultivation facility
JP3203344U (en) Crop cultivation building
JP2000287547A (en) Field crop cultivation and equipment therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805