JP2012244011A - Semiconductor light-emitting element, optical module, and method of manufacturing semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element, optical module, and method of manufacturing semiconductor light-emitting element Download PDF

Info

Publication number
JP2012244011A
JP2012244011A JP2011114001A JP2011114001A JP2012244011A JP 2012244011 A JP2012244011 A JP 2012244011A JP 2011114001 A JP2011114001 A JP 2011114001A JP 2011114001 A JP2011114001 A JP 2011114001A JP 2012244011 A JP2012244011 A JP 2012244011A
Authority
JP
Japan
Prior art keywords
semiconductor light
protective film
layer
light emitting
diffusion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011114001A
Other languages
Japanese (ja)
Other versions
JP5718150B2 (en
Inventor
Toshihiko Fukamachi
俊彦 深町
Masaru Mukaikubo
優 向久保
Takashi Washino
隆 鷲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Japan Inc
Original Assignee
Oclaro Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oclaro Japan Inc filed Critical Oclaro Japan Inc
Priority to JP2011114001A priority Critical patent/JP5718150B2/en
Publication of JP2012244011A publication Critical patent/JP2012244011A/en
Application granted granted Critical
Publication of JP5718150B2 publication Critical patent/JP5718150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element with improved durability and reliability.SOLUTION: A semiconductor light-emitting element comprises: a P-side electrode layer 4 that is stacked with an N-type semiconductor layer 3, an active layer 2, and a P-type semiconductor layer 1 and is composed of a multilayer metal; and an end-face protective film 13 that is formed on a side surface of the stack to prevent optical damage. The end-face protective film 13 has a protective film 5 composed of a material that hardly becomes a diffusion medium, when at least one layer of the P-side electrode layer 4 is a metal thin film that is a diffusant, and a diffusion medium film 6 composed of a material that becomes the diffusion medium and formed on the protective film 5 so as not to contact the metal thin film.

Description

本発明は、半導体発光素子、光モジュール及び半導体発光素子の製造方法に関する。   The present invention relates to a semiconductor light emitting device, an optical module, and a method for manufacturing the semiconductor light emitting device.

インターネットが世界中に行き渡り、今日では我々の経済活動や日常生活に欠かせないインフラストラクチャーとなった。現在でもインターネットのトラフィック量は爆発的に増大しており、日本では年率1.3倍の割合で増大している。それに伴って、幹線網から加入者網に至るメトロ網内に配置されたルータの大容量化が必要となった。特に、1990年後半からの10Gb/s幹線光通信システムの導入加速により、ルータ間の光インタフェースとなる10Gb/sトランシーバモジュールが待望視された。このモジュールには、伝送距離が短いことと、それに伴うコスト及び消費電力、単一モードファイバで分散極小波長という観点から、光源には広温度範囲で10Gb/s動作する1.3μm帯直接変調レーザを搭載することが望ましいと考えられた。その結果、1990年代後半より進展したInGaAlAs系材料の研究開発により、2000年代初めには広温度範囲で1.3μm帯で10Gb/s直接変調動作が実証された。   The Internet has spread all over the world, and today it has become an indispensable infrastructure for our economic activities and daily life. Even today, the amount of Internet traffic is increasing explosively, and in Japan, it is increasing at an annual rate of 1.3 times. Along with this, it has become necessary to increase the capacity of routers arranged in the metro network from the trunk network to the subscriber network. In particular, due to the accelerated introduction of the 10 Gb / s trunk optical communication system from the latter half of 1990, a 10 Gb / s transceiver module serving as an optical interface between routers has been awaited. This module has a 1.3 μm band direct modulation laser that operates at 10 Gb / s in a wide temperature range from the viewpoint of short transmission distance, cost and power consumption associated therewith, and single mode fiber with minimal dispersion wavelength. It was considered desirable to install. As a result, due to the research and development of InGaAlAs-based materials that have been developed since the late 1990s, 10 Gb / s direct modulation operation was demonstrated in the 1.3 μm band over a wide temperature range in the early 2000s.

しかし、特に活性層にAlを含む半導体レーザでは、自ら発する強い光によって端面が破壊されてしまう、いわゆる光学損傷を引き起こし易いため、信頼性の確保が課題であった。信頼性確保の1つには、端面に保護膜を形成する方法がある。この端面保護膜に関して、これまで特許文献1乃至4が知られている。これら端面保護膜は、通常、所望の反射(透過)率が得られるようにお互いに屈折率が異なる多層膜で形成される。例えば、通信波長帯では低屈折率材料としてAlなど、高屈折率材料として非晶質Siなど使用されることが特許文献1にある。以上のような端面保護膜の適用により、10Gb/sで動作するInGaAlAs系1.3μm帯直接変調レーザの信頼性が確保され、低消費電力の小型光モジュールに採用されるに至った。この小型光モジュールは世界各社のコア/エッジルータに適用され、現在の高度情報社会のインフラストラクチャーを支えている。 However, particularly in a semiconductor laser containing Al in the active layer, it is easy to cause so-called optical damage in which the end face is destroyed by strong light emitted by itself, and thus ensuring reliability has been a problem. One way to ensure reliability is to form a protective film on the end face. Regarding this end face protective film, Patent Documents 1 to 4 are known so far. These end face protective films are usually formed of multilayer films having different refractive indexes so as to obtain a desired reflection (transmission) rate. For example, Patent Document 1 discloses that Al 2 O 3 or the like is used as a low refractive index material and amorphous Si is used as a high refractive index material in a communication wavelength band. By applying the end face protective film as described above, the reliability of the InGaAlAs-based 1.3 μm band direct modulation laser operating at 10 Gb / s is secured, and it has been adopted for a small optical module with low power consumption. This compact optical module is applied to core / edge routers of various companies around the world, and supports the infrastructure of the current advanced information society.

特許第4699432号公報Japanese Patent No. 4699432 特許第4178022号公報Japanese Patent No. 4178022 特開平6−204602号公報JP-A-6-204602 特開2004−327637号公報JP 2004-327637 A

上述したような半導体発光素子の電極表面には通常Auが使用されており、劈開の際に発生する電極金属のバリや端面保護膜の形成誤差などのため、高屈折率材料として使用されている非晶質Siが電極を形成しているAuに接することがあり、このような素子に外部から熱が加わることで電極を形成しているAuが急速に非晶質Siに拡散し、端面保護膜の反射(透過)率の変化や剥離が発生する恐れがあった。さらに前記半導体発光素子への通電や前記半導体発光素子の発光光によっても拡散は加速され、素子の初期劣化、自発光の光吸収による光学損傷の発生など信頼性を低下させるという恐れがあった。   Au is usually used for the electrode surface of the semiconductor light emitting element as described above, and is used as a high refractive index material due to the formation error of the electrode metal burr and end face protective film generated during cleavage. Amorphous Si may come into contact with Au forming the electrode, and external heat is applied to such an element, so that Au forming the electrode rapidly diffuses into amorphous Si, thereby protecting the end face. There was a possibility that the reflection (transmission) rate of the film or peeling would occur. Further, diffusion is accelerated by energization of the semiconductor light emitting element and light emitted from the semiconductor light emitting element, and there is a fear that reliability is lowered such as initial deterioration of the element and occurrence of optical damage due to light absorption of self light emission.

本発明は、上述の事情に鑑みてされたものであり、耐久性及び信頼性を向上させた半導体発光素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor light emitting device with improved durability and reliability.

本発明の半導体発光素子は、半導体基板に活性層及び半導体層と共に積層され、多層金属からなる電極層と、少なくとも前記積層の側面に形成され、光学的損傷を防ぐための端面保護膜と、を備え、前記端面保護膜は、前記電極層の少なくとも1層を拡散質である金属薄膜として、拡散媒となりにくい物質からなる保護膜と、前記拡散媒となる物質からなり、前記金属薄膜と接しないように前記保護膜上に形成される拡散媒膜と、を有する、ことを特徴とする半導体発光素子である。   The semiconductor light emitting device of the present invention includes an active layer and a semiconductor layer laminated on a semiconductor substrate, an electrode layer made of a multilayer metal, and an end face protective film formed on at least a side surface of the laminated layer to prevent optical damage. The end face protective film comprises at least one of the electrode layers as a metal thin film that is a diffusive material, and is formed of a protective film made of a material that is difficult to serve as a diffusion medium and a material that serves as the diffusion medium, and does not contact the metal thin film Thus, a semiconductor light emitting element comprising: a diffusion medium film formed on the protective film.

ここで、端面保護膜が形成される「積層の側面」は、信号光となる光の出射面であってもよいし、制御のために計測されるモニター光の出射面であってもよい。   Here, the “side surface of the laminated layer” on which the end face protective film is formed may be an output surface of light that becomes signal light, or may be an output surface of monitor light that is measured for control.

また、本発明の半導体発光素子において、前記拡散媒膜は、前記保護膜を形成した面の面積よりも小さい面積で前記保護膜に接するように形成されている、とすることができる。   In the semiconductor light emitting device of the present invention, the diffusion medium film may be formed so as to be in contact with the protective film with an area smaller than the area of the surface on which the protective film is formed.

また、本発明の半導体発光素子において、前記保護膜は、前記電極層上の一部に更に積層されるように形成される第1保護膜と、少なくとも前記積層の端面に形成される第2保護膜と、を有していてもよい。   In the semiconductor light emitting device of the present invention, the protective film includes a first protective film formed so as to be further stacked on a part of the electrode layer, and a second protective film formed at least on an end face of the stacked layer. And a film.

また、本発明の半導体発光素子において、前記電極層上には、前記拡散質となりにくい難拡散性金属層が更に積層されていてもよい。   In the semiconductor light emitting device of the present invention, a non-diffusible metal layer that is difficult to become the diffusive material may be further laminated on the electrode layer.

また、本発明の半導体発光素子において、前記難拡散性金属層は、Pt、Ni、Pdのいずれかである、とすることができる。   In the semiconductor light emitting device of the present invention, the hardly diffusible metal layer may be any one of Pt, Ni, and Pd.

また、本発明の半導体発光素子において、前記拡散質である金属薄膜は、Au、Ag及びCuのいずれかであり、前記拡散媒となる物質は、非晶質珪素及び珪素のいずれかであり、前記拡散媒となりにくい物質は、酸化アルミニウム、酸化チタン、酸化珪素及び酸化タンタルのいずれかである、とすることができる。   Further, in the semiconductor light emitting device of the present invention, the metal thin film that is the diffusive material is any one of Au, Ag, and Cu, and the substance that serves as the diffusion medium is any one of amorphous silicon and silicon, The substance that is difficult to serve as a diffusion medium can be any one of aluminum oxide, titanium oxide, silicon oxide, and tantalum oxide.

また、本発明の半導体発光素子において、前記半導体層は、InP基板又はGaAs基板とすることができる。   In the semiconductor light emitting device of the present invention, the semiconductor layer can be an InP substrate or a GaAs substrate.

また、本発明の半導体発光素子は、前記活性層にはAlが含まれていてもよい。   In the semiconductor light emitting device of the present invention, the active layer may contain Al.

本発明の光モジュールは、上述の半導体発光素子のうちのいずれかの半導体発光素子と、前記半導体発光素子から発光された光を受光する受光素子と、を備える光モジュールである。   The optical module of the present invention is an optical module comprising any one of the semiconductor light-emitting elements described above and a light-receiving element that receives light emitted from the semiconductor light-emitting element.

本発明の半導体発光素子の製造方法は、半導体基板に活性層及び半導体層と共に、多層金属からなる電極層を積層する積層工程と、前記電極層からの距離が大きくなるに従って光の出射方向に延びる断面形状を有するマスクを、前記電極層上に重ねて設置するマスク工程と、前記マスク工程の後、前記積層の側面に、前記電極層の少なくとも1層を拡散質である金属薄膜として、拡散媒となりにくい物質からなる保護膜、及び前記拡散媒となる物質からなる拡散媒膜を順に重ねて端面保護膜を形成する端面保護膜形成工程と、を備えることを特徴とする半導体発光素子の製造方法である。   The method of manufacturing a semiconductor light emitting device according to the present invention includes a lamination process of laminating an electrode layer made of a multilayer metal together with an active layer and a semiconductor layer on a semiconductor substrate, and extends in a light emitting direction as the distance from the electrode layer increases. A mask process in which a mask having a cross-sectional shape is placed over the electrode layer, and after the mask process, at least one layer of the electrode layer is formed as a metal thin film that is a diffusive material on the side surface of the stack. A method of manufacturing a semiconductor light emitting device, comprising: a protective film made of a material that is difficult to be formed; and an end face protective film forming step of forming an end face protective film by sequentially stacking a diffusion medium film made of the material that becomes the diffusion medium It is.

ここで「電極層からの距離が大きくなるに従って光の出射方向に延びる断面形状」とは、電極層の面に対して斜めに形成された面であってもよいし、階段状に形成された面であってもよい。   Here, the “cross-sectional shape extending in the light emitting direction as the distance from the electrode layer increases” may be a surface formed obliquely with respect to the surface of the electrode layer, or may be formed in a step shape. It may be a surface.

本発明によれば、半導体発光素子の耐久性及び信頼性を向上させることができる。   According to the present invention, durability and reliability of a semiconductor light emitting device can be improved.

本発明の実施例1に係る半導体発光素子を搭載した光モジュールの分解斜視図である。It is a disassembled perspective view of the optical module carrying the semiconductor light-emitting device based on Example 1 of this invention. 図1のII−II線における断面の概略図である。It is the schematic of the cross section in the II-II line | wire of FIG. 本発明の実施例1に係る半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device based on Example 1 of this invention. 本発明の実施例1に係る半導体発光素子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the semiconductor light-emitting device based on Example 1 of this invention. 図4の半導体発光素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor light-emitting device of FIG. 本発明の実施例2に係る半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device based on Example 2 of this invention. 図6の半導体発光素子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the semiconductor light-emitting device of FIG. 本発明の実施例3に係る半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device based on Example 3 of this invention. 本発明の実施例4に係る半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device based on Example 4 of this invention.

以下に本発明の実施例1〜4について説明する。なお、以下の実施例1〜4の説明及び図面において、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。   Examples 1 to 4 of the present invention will be described below. In the following description of Examples 1 to 4 and the drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の実施例1に係る半導体発光素子26を搭載した光モジュール100の分解斜視図であり、図2は、図1のII−II線における断面の概略図である。図1及び図2に示されるように、光モジュール100は、ステム22と、ステム22に取り付けられ、光モジュール100の電気的な端子となる3本のリードピン23と、ステム22に取り付けられたマウント部24と、マウント部24から積み重ねられるように取り付けられたサブマウント部25及び半導体発光素子26と、ステム22に取り付けられ、半導体発光素子26からのモニター光29を受光する受光素子27と、マウント部24、サブマウント部25、半導体発光素子26及び受光素子27を覆うようにステム22に取り付けられるキャップ21と、キャップ21に取り付けられ、出射光7が略中心を透過するように設置された非球面レンズ20と、リードピン23から半導体発光素子26及び受光素子27に電気信号を伝えるリード線28と、を備えている。   1 is an exploded perspective view of an optical module 100 on which a semiconductor light emitting element 26 according to Example 1 of the present invention is mounted, and FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. As shown in FIGS. 1 and 2, the optical module 100 includes a stem 22, three lead pins 23 attached to the stem 22 and serving as electrical terminals of the optical module 100, and a mount attached to the stem 22. Part 24, submount part 25 and semiconductor light emitting element 26 attached so as to be stacked from mount part 24, light receiving element 27 attached to stem 22 and receiving monitor light 29 from semiconductor light emitting element 26, and mount A cap 21 attached to the stem 22 so as to cover the portion 24, the submount portion 25, the semiconductor light emitting element 26 and the light receiving element 27, and a non-attached portion attached to the cap 21 so that the emitted light 7 is transmitted substantially through the center. Electrical signals are transmitted from the spherical lens 20 and the lead pin 23 to the semiconductor light emitting element 26 and the light receiving element 27. It is provided with a lead wire 28, a.

リードピン23およびリード線28を介して半導体発光素子26へ伝えられた電気信号は、半導体発光素子26にて光信号に変換され、出射光7として外部へ伝えられる。一方、モニター光29は受光素子27で電気信号などに変換され、リードピン23およびリード線28を介して外部へ半導体発光素子26の状態などの情報を伝える。   The electrical signal transmitted to the semiconductor light emitting element 26 via the lead pin 23 and the lead wire 28 is converted into an optical signal by the semiconductor light emitting element 26 and transmitted to the outside as the emitted light 7. On the other hand, the monitor light 29 is converted into an electric signal or the like by the light receiving element 27 and transmits information such as the state of the semiconductor light emitting element 26 to the outside via the lead pin 23 and the lead wire 28.

図3は、半導体発光素子26の断面図であり、N型半導体層3上に活性層2が形成されており、上記活性層2上にはP型半導体層1が形成されており、P型半導体層1上には、少なくとも表面が易拡散性金属からなる多層のP側電極層4が形成されている。また半導体発光素子26の少なくとも1つの端面には反射率が概0%となるように、少なくとも端面側からP側電極層4の易拡散性金属が拡散質とならない保護膜5、次いでP側電極層4の易拡散性金属の拡散媒となる拡散媒膜6の順で、少なくとも2層からなる端面保護膜13が形成されており、半導体発光素子26への通電により出射光7が出射される。なお、この図において、N型半導体層3に形成されたN側電極は省略されている。保護膜5はP側電極層4の易拡散性金属の端面側を覆うようにかつ端面に対して概均一に形成されており、拡散媒膜6は端面に対して概均一、かつ保護膜5よりも面積が小さく、かつ内側となるように形成されている。つまり、拡散媒膜6は、保護膜5を形成した面の面積よりも小さい面積で保護膜5に接するように形成されている。このように形成することで、劈開時の偶発的な電極のバリや端面保護膜13の膜厚などの形成誤差が発生したとしても、P側電極層4の易拡散性金属が拡散媒膜6と接することはなく、その結果、組立時に熱が加わることでP側電極層4の易拡散性金属が拡散媒膜6へ拡散することを防止し、端面保護膜13の剥離や初期不良、動作時に突発的な故障が発生することを防いでいる。   FIG. 3 is a cross-sectional view of the semiconductor light emitting device 26, in which the active layer 2 is formed on the N-type semiconductor layer 3, the P-type semiconductor layer 1 is formed on the active layer 2, and the P-type On the semiconductor layer 1, a multilayer P-side electrode layer 4 having at least a surface made of an easily diffusible metal is formed. Further, at least one end face of the semiconductor light emitting element 26 has a protective film 5 in which the easily diffusible metal of the P-side electrode layer 4 does not become a diffusive material at least from the end face side, and then the P-side electrode so that the reflectance is approximately 0%. An end face protective film 13 composed of at least two layers is formed in the order of the diffusion medium film 6 serving as a diffusion medium of the easily diffusible metal of the layer 4, and the emitted light 7 is emitted by energizing the semiconductor light emitting element 26. . In this figure, the N-side electrode formed on the N-type semiconductor layer 3 is omitted. The protective film 5 is formed so as to cover the end face side of the easily diffusible metal of the P-side electrode layer 4 and substantially uniformly with respect to the end face, and the diffusion medium film 6 is substantially uniform with respect to the end face. It is formed so that the area is smaller than that of the inner side. That is, the diffusion medium film 6 is formed so as to be in contact with the protective film 5 with an area smaller than the area of the surface on which the protective film 5 is formed. By forming in this way, even if formation errors such as accidental electrode burr at the time of cleavage and film thickness of the end face protective film 13 occur, the easily diffusible metal of the P-side electrode layer 4 becomes the diffusion medium film 6. As a result, heat is applied during assembly to prevent the diffusible metal of the P-side electrode layer 4 from diffusing into the diffusion medium film 6, and the end face protective film 13 is peeled off, initial failure, operation Sometimes it prevents sudden failures.

図4には、半導体発光素子26の製造方法が示されている。この図に示されるように、まず、ステップS11の成膜工程において、N型半導体の基板(ウェハ)上に上述した活性層2、P型半導体層1及びP側電極層4を順に積層し、基板の反対側面にはN側電極を形成する。次いで、ステップS12の劈開工程において、基板を劈開させ半導体発光素子26が一列に並んだ棒状物体とする。この時の棒状物体における一半導体発光素子26の断面の様子が図5のステップS21に示されている。なお、図5において、N側電極については図示していない。引き続き、ステップS13において、その棒形物体における積層面の端面であり、出射光7及びモニター光29の出射面に該当する面に端面コーティング用のマスク10を取り付ける。図5のステップS22には、マスク10が取り付けられたときの様子が示されている。この図に示されるように、マスク10は、P側電極側とN側電極側の両方に棒状物体を挟むように取り付けられる。また、P側電極側に取り付けられるマスク10は、電極層からの距離が大きくなるに従って光の出射方向に延びる断面形状を有している。なお、本実施形態においては、マスク10は、P側電極層4側の出射光側の面のみが斜めの面を有していることとしたが、モニター光側の面がモニター光の出射方向に延びる斜めの面を有していてもよいし、N側電極側のマスク10がこのような斜めの面を有していてもよい。   FIG. 4 shows a method for manufacturing the semiconductor light emitting device 26. As shown in this figure, first, in the film forming process of step S11, the above-described active layer 2, P-type semiconductor layer 1, and P-side electrode layer 4 are sequentially stacked on an N-type semiconductor substrate (wafer). An N-side electrode is formed on the opposite side of the substrate. Next, in the cleavage step of step S12, the substrate is cleaved to form a bar-shaped object in which the semiconductor light emitting elements 26 are arranged in a line. The state of the cross section of one semiconductor light emitting element 26 in the rod-like object at this time is shown in step S21 in FIG. In FIG. 5, the N-side electrode is not shown. Subsequently, in step S13, the mask 10 for end face coating is attached to the end face of the laminated surface of the rod-shaped object and corresponding to the exit face of the emitted light 7 and the monitor light 29. Step S22 in FIG. 5 shows a state when the mask 10 is attached. As shown in this figure, the mask 10 is attached so as to sandwich a rod-shaped object between both the P-side electrode side and the N-side electrode side. The mask 10 attached to the P-side electrode side has a cross-sectional shape that extends in the light emission direction as the distance from the electrode layer increases. In the present embodiment, the mask 10 has an oblique surface only on the outgoing light side surface on the P-side electrode layer 4 side, but the surface on the monitor light side emits the monitor light. The mask 10 on the N-side electrode side may have such an oblique surface.

図4に戻り、ステップS14の端面コーティング工程において、保護膜5及び拡散媒膜6を順に成膜する(図5のステップS23)。その後マスク10を取り外すことにより、図5のステップS24に示されるように、拡散媒膜6が保護膜5の内側に、より小さい面積で形成されることによりP側電極層4の易拡散性金属に触れない形状の端面保護膜13が形成される。最後に図4のステップS15のダイシング工程において、棒形物体を切断し、半導体発光素子26とする。   Returning to FIG. 4, in the end surface coating step of step S14, the protective film 5 and the diffusion medium film 6 are sequentially formed (step S23 of FIG. 5). Thereafter, by removing the mask 10, the diffusion medium film 6 is formed on the inner side of the protective film 5 with a smaller area as shown in Step S <b> 24 of FIG. 5, thereby easily diffusing metal of the P-side electrode layer 4. An end face protective film 13 having a shape that does not touch is formed. Finally, in the dicing process of step S15 in FIG. 4, the rod-shaped object is cut to form the semiconductor light emitting element 26.

上述のように形成することで、保護膜5はP側電極層4の易拡散性金属の端面側を覆うようにかつ端面に対して概均一に形成され、拡散媒膜6は、マスク10の特殊な形状により、端面に対して概均一かつ保護膜5よりも面積が小さくかつ内側となるように形成される。また、端面保護膜13はP側電極層4の端面側の易拡散性金属のP側電極側の面にも形成される。   By forming the protective film 5 as described above, the protective film 5 is formed so as to cover the end face side of the easily diffusible metal of the P-side electrode layer 4 and to be substantially uniform with respect to the end face. Due to the special shape, it is formed so as to be substantially uniform with respect to the end surface, smaller in area than the protective film 5 and inside. The end surface protective film 13 is also formed on the surface of the P-side electrode side of the easily diffusible metal on the end surface side of the P-side electrode layer 4.

活性層2にはInGaAlAs系材料やInGaAsP系材料を、P型半導体層1やN型半導体層3にはInP材料やGaAs材料などが用いられるが、これらに限定されるものではない。保護膜5として、例えば酸化アルミニウム、酸化チタン、酸化珪素、酸化タンタルがあるが、これらに限定されるものではない。また拡散媒膜6として、例えば非晶質珪素、珪素があるが、これらに限定されるものではない。さらにP側電極層4に用いられる易拡散性電極材料として、例えばAu、Ag、Cuがあるが、これらに限定されるものではない。   The active layer 2 is made of InGaAlAs-based material or InGaAsP-based material, and the P-type semiconductor layer 1 or N-type semiconductor layer 3 is made of InP material or GaAs material, but is not limited thereto. Examples of the protective film 5 include, but are not limited to, aluminum oxide, titanium oxide, silicon oxide, and tantalum oxide. Examples of the diffusion medium film 6 include amorphous silicon and silicon, but are not limited thereto. Further, examples of the easily diffusible electrode material used for the P-side electrode layer 4 include, but are not limited to, Au, Ag, and Cu.

図6は、本発明の実施例2に係る半導体発光素子36の断面図である。N型半導体層3上に活性層2が形成されており、上記活性層2上にはP型半導体層1が形成されており、P型半導体層1上には、少なくとも表面が易拡散性金属からなる多層のP側電極層4が形成されており、P側電極層4の易拡散性金属上には半導体発光素子端面付近に第1保護膜11が形成されている。また半導体発光素子の少なくとも1つの端面には反射率が概0%となるように、少なくとも端面側からP側電極層4の易拡散性金属が拡散質とならない第2保護膜8、次いでP側電極層4の易拡散性金属の拡散媒となる拡散媒膜6の順で、かつ少なくとも2層からなる端面保護膜13が形成されており、半導体発光素子36への通電により出射光7が出射される。第2保護膜8は端面に対して概均一に形成されており、拡散媒膜6は端面に対して概均一となるように形成され、第1保護膜11及び第2保護膜8を形成した面の面積よりも小さい面積で、第1保護膜11及び第2保護膜8に接するように形成されている。   FIG. 6 is a cross-sectional view of a semiconductor light emitting device 36 according to Example 2 of the present invention. An active layer 2 is formed on the N-type semiconductor layer 3, a P-type semiconductor layer 1 is formed on the active layer 2, and at least the surface of the P-type semiconductor layer 1 is a diffusible metal. A multi-layered P-side electrode layer 4 is formed, and a first protective film 11 is formed on the easily diffusible metal of the P-side electrode layer 4 in the vicinity of the end face of the semiconductor light emitting element. Further, at least one end face of the semiconductor light emitting element has a second protective film 8 in which the diffusible metal of the P-side electrode layer 4 does not become a diffusive material at least from the end face side, so that the reflectance is approximately 0%, and then the P side. An end face protective film 13 composed of at least two layers is formed in the order of the diffusion medium film 6 serving as a diffusion medium of the easily diffusible metal of the electrode layer 4, and the emitted light 7 is emitted by energization of the semiconductor light emitting element 36. Is done. The second protective film 8 is formed substantially uniformly with respect to the end face, the diffusion medium film 6 is formed so as to be substantially uniform with respect to the end face, and the first protective film 11 and the second protective film 8 are formed. It is formed so as to be in contact with the first protective film 11 and the second protective film 8 with an area smaller than the surface area.

第1保護膜11は以下の方法で形成される。N型半導体層3の基板(ウェハ)上に周知の半導体プロセスで活性層2、P型半導体層1及びP側電極層4を順に形成する。次いで、図7に示すようにP側電極層4の易拡散性金属が形成されている表面に第1保護膜11を形成する。次いで、通常のフォトリソグラフィー工程などにより、P側電極層4の易拡散性金属の特定部分だけ第1保護膜11が残るようにエッチングする。この状態で、第1保護膜11の概中心位置12を劈開する。このように形成することで、劈開時の偶発的な電極のバリを抑制し、かつ端面保護膜13の膜厚などの形成誤差が発生したとしても、P側電極層4の易拡散性金属が拡散媒膜6と接することはなく、その結果、組立などで熱が加わることでP側電極層4の易拡散性金属が拡散媒膜6へ拡散することを防止し、端面保護膜13の剥離や初期不良、動作時に突発的な故障が発生しなくなった。   The first protective film 11 is formed by the following method. An active layer 2, a P-type semiconductor layer 1, and a P-side electrode layer 4 are sequentially formed on a substrate (wafer) of the N-type semiconductor layer 3 by a known semiconductor process. Next, as shown in FIG. 7, the first protective film 11 is formed on the surface of the P-side electrode layer 4 on which the easily diffusible metal is formed. Next, etching is performed by a normal photolithography process or the like so that the first protective film 11 remains only in a specific portion of the easily diffusible metal of the P-side electrode layer 4. In this state, the approximate center position 12 of the first protective film 11 is cleaved. By forming in this way, accidental burr of the electrode at the time of cleavage is suppressed, and even if a formation error such as the film thickness of the end face protective film 13 occurs, the diffusible metal of the P-side electrode layer 4 The diffusion medium film 6 is not in contact, and as a result, heat is applied during assembly or the like to prevent the diffusible metal of the P-side electrode layer 4 from diffusing into the diffusion medium film 6, and the end face protective film 13 is peeled off. No initial failure or sudden failure during operation.

第1保護膜11として酸化アルミニウム、酸化チタン、酸化珪素、酸化タンタルなどがあるが、これらに限るものではない。   Examples of the first protective film 11 include, but are not limited to, aluminum oxide, titanium oxide, silicon oxide, and tantalum oxide.

図8は、本発明の実施例3に係る半導体発光素子46の断面図であり、N型半導体層3上に活性層2が形成されており、上記活性層2上にはP型半導体層1が形成されており、P型半導体層1上には、少なくとも表面が易拡散性金属からなる多層のP側電極層4が形成されており、P側電極層4の易拡散性金属上の全体もしくは一部には表面が難拡散性金属からなる難拡散性金属層9が形成されている。また半導体発光素子46の少なくとも1つの端面には反射率が概0%となるように、少なくとも端面側からP側電極層4の易拡散性金属が拡散質とならない保護膜5、次いでP側電極層4の易拡散性金属の拡散媒となる拡散媒膜6の順で端面に対して概均一に、少なくとも2層からなる端面保護膜13が形成されており、半導体発光素子46への通電により出射光7が出射される。このように形成することで、劈開時の偶発的な電極のバリや端面保護膜13の膜厚などの形成誤差が発生したとしても、P側電極層4の易拡散性金属が拡散媒膜6と接することはなく、その結果、組立時に熱が加わることでP側電極層4の易拡散性金属が拡散媒膜6へ拡散することを防止し、端面保護膜13の剥離や初期不良、動作時に突発的な故障が発生しなくなった。本実施例は本発明を説明する1つの例に過ぎず、これに限るものでない。   FIG. 8 is a cross-sectional view of a semiconductor light emitting device 46 according to Example 3 of the present invention. An active layer 2 is formed on an N-type semiconductor layer 3, and a P-type semiconductor layer 1 is formed on the active layer 2. A multi-layer P-side electrode layer 4 having at least a surface made of a diffusible metal is formed on the P-type semiconductor layer 1, and the entire P-side electrode layer 4 on the diffusible metal is formed. Alternatively, a hardly diffusible metal layer 9 whose surface is made of a hardly diffusible metal is formed in part. Further, at least one end face of the semiconductor light-emitting element 46 has a protective film 5 in which the easily diffusible metal of the P-side electrode layer 4 does not become a diffusive material at least from the end face side, and then the P-side electrode so that the reflectance is approximately 0%. The end face protective film 13 composed of at least two layers is formed almost uniformly with respect to the end face in the order of the diffusion medium film 6 serving as the diffusion medium of the easily diffusible metal of the layer 4. Outgoing light 7 is emitted. By forming in this way, even if formation errors such as accidental electrode burr at the time of cleavage and film thickness of the end face protective film 13 occur, the easily diffusible metal of the P-side electrode layer 4 becomes the diffusion medium film 6. As a result, heat is applied during assembly to prevent the diffusible metal of the P-side electrode layer 4 from diffusing into the diffusion medium film 6, and the end face protective film 13 is peeled off, initial failure, operation Sometimes sudden failures no longer occur. The present embodiment is merely an example for explaining the present invention, and the present invention is not limited to this example.

難拡散性金属層9を形成する難拡散性電極材料として、例えばPt、Ni、Pdを使用するのが好適であるが、これらに限定されるものではない。   For example, Pt, Ni, and Pd are preferably used as the hardly diffusible electrode material for forming the hardly diffusible metal layer 9, but are not limited thereto.

図9は、本発明の実施例4に係る半導体発光素子56の断面図であり、N型半導体層3上に活性層2が形成されており、上記活性層2上にはP型半導体層1が形成されており、P型半導体層1上には、少なくとも表面が易拡散性金属からなる多層のP側電極層4が形成されている。また半導体発光素子の少なくとも1つの端面には反射率が概0%となるように、少なくとも端面側からP側電極層4の易拡散性金属が拡散質とならない保護膜5、次いでP側電極層4の易拡散性金属の拡散媒となる拡散媒膜6の順で、少なくとも2層からなる端面保護膜13が形成されており、半導体発光素子56への通電により出射光7が出射される。   FIG. 9 is a cross-sectional view of a semiconductor light emitting device 56 according to Example 4 of the present invention. The active layer 2 is formed on the N-type semiconductor layer 3, and the P-type semiconductor layer 1 is formed on the active layer 2. On the P-type semiconductor layer 1, a multilayer P-side electrode layer 4 having at least a surface made of an easily diffusible metal is formed. Further, at least one end face of the semiconductor light emitting element has a protective film 5 in which the diffusible metal of the P-side electrode layer 4 does not become a diffusive material at least from the end face side, and then the P-side electrode layer so that the reflectance is approximately 0%. The end face protective film 13 composed of at least two layers is formed in the order of the diffusion medium film 6 serving as a diffusion medium of the 4 easily diffusible metal, and the emitted light 7 is emitted by energization of the semiconductor light emitting element 56.

保護膜5は端面に対して概均一に形成されており、拡散媒膜6は端面に対して概均一、かつ保護膜5よりも十分に面積が小さく、かつ内側となるように、かつ半導体発光素子の発光光の近視野像よりも大きくなるように形成されている。つまり、拡散媒膜6は、保護膜5を形成した面の面積よりも小さい面積で保護膜5に接するように形成されている。このように形成することで、劈開時の偶発的な電極のバリや端面保護膜13の膜厚などの形成誤差が発生したとしても、P側電極層4の易拡散性金属が拡散媒膜6と接することはなく、その結果、組立時に熱が加わることでP側電極層4の易拡散性金属が拡散媒膜6へ拡散することを防止し、端面保護膜13の剥離や初期不良、動作時に突発的な故障が発生しなくなった。   The protective film 5 is formed substantially uniformly with respect to the end face, the diffusion medium film 6 is substantially uniform with respect to the end face, has a sufficiently smaller area than the protective film 5 and is located inside, and emits semiconductor light. It is formed so as to be larger than the near-field image of the light emitted from the element. That is, the diffusion medium film 6 is formed so as to be in contact with the protective film 5 with an area smaller than the area of the surface on which the protective film 5 is formed. By forming in this way, even if formation errors such as accidental electrode burr at the time of cleavage and film thickness of the end face protective film 13 occur, the easily diffusible metal of the P-side electrode layer 4 becomes the diffusion medium film 6. As a result, heat is applied during assembly to prevent the diffusible metal of the P-side electrode layer 4 from diffusing into the diffusion medium film 6, and the end face protective film 13 is peeled off, initial failure, operation Sometimes sudden failures no longer occur.

以上説明したように、本発明の半導体発光素子では、耐久性及び信頼性をより向上させることができる。   As described above, in the semiconductor light emitting device of the present invention, durability and reliability can be further improved.

なお、上述の実施例では各半導体発光素子にはN型基板を用いているが、P型基板や絶縁基板を用いた場合でも同様である。さらにN側の電極に易拡散性金属が用いられている場合でも同様の手法により耐久性及び信頼性をより向上させることができる。また、図面において端面保護膜13は2層で記載されているが2層以上で形成されていてもよい。   In the above-described embodiment, an N-type substrate is used for each semiconductor light emitting element, but the same applies to the case where a P-type substrate or an insulating substrate is used. Further, even when an easily diffusible metal is used for the N-side electrode, durability and reliability can be further improved by the same method. Moreover, although the end surface protective film 13 is described as two layers in the drawing, it may be formed of two or more layers.

1 P型半導体層、2 活性層、3 N型半導体層、4 P側電極層、5 保護膜、6 拡散媒膜、7 出射光、8 第2保護膜、9 難拡散性金属層、10 マスク、11 第1保護膜、13 端面保護膜、20 非球面レンズ、21 キャップ、22 ステム、23 リードピン、24 マウント部、25 サブマウント部、26 半導体発光素子、27 受光素子、28 リード線、29 モニター光、36 半導体発光素子、46 半導体発光素子、56 半導体発光素子、100 光モジュール。   1 P-type semiconductor layer, 2 active layer, 3 N-type semiconductor layer, 4 P-side electrode layer, 5 protective film, 6 diffusion medium film, 7 outgoing light, 8 second protective film, 9 hardly diffusible metal layer, 10 mask 11 First protective film, 13 End face protective film, 20 Aspheric lens, 21 Cap, 22 Stem, 23 Lead pin, 24 Mount part, 25 Submount part, 26 Semiconductor light emitting element, 27 Light receiving element, 28 Lead wire, 29 Monitor Light, 36 Semiconductor light emitting device, 46 Semiconductor light emitting device, 56 Semiconductor light emitting device, 100 Optical module.

Claims (10)

半導体基板に活性層及び半導体層と共に積層され、多層金属からなる電極層と、
少なくとも前記積層の側面に形成され、光学的損傷を防ぐための端面保護膜と、を備え、
前記端面保護膜は、
前記電極層の少なくとも1層を拡散質である金属薄膜として、拡散媒となりにくい物質からなる保護膜と、
前記拡散媒となる物質からなり、前記金属薄膜と接しないように前記保護膜上に形成される拡散媒膜と、を有する、ことを特徴とする半導体発光素子。
An electrode layer made of a multi-layer metal, laminated with an active layer and a semiconductor layer on a semiconductor substrate;
An end face protective film formed on at least the side surface of the laminate and preventing optical damage,
The end face protective film is
A protective film made of a material that is difficult to serve as a diffusion medium, with at least one of the electrode layers being a metal thin film that is a diffusive material,
A semiconductor light emitting device comprising a diffusion medium film made of a substance that serves as the diffusion medium and formed on the protective film so as not to contact the metal thin film.
請求項1に記載の半導体発光素子であって、
前記拡散媒膜は、前記保護膜を形成した面の面積よりも小さい面積で前記保護膜に接するように形成されている、ことを特徴とする半導体発光素子。
The semiconductor light emitting device according to claim 1,
The diffusion medium film is formed so as to be in contact with the protective film with an area smaller than the area of the surface on which the protective film is formed.
請求項1又は2に記載の半導体発光素子であって、
前記保護膜は、
前記電極層上の一部に更に積層されるように形成される第1保護膜と、
少なくとも前記積層の端面に形成される第2保護膜と、
を有している、ことを特徴とする半導体発光素子。
The semiconductor light-emitting device according to claim 1 or 2,
The protective film is
A first protective film formed to be further laminated on a part of the electrode layer;
A second protective film formed on at least the end face of the stack;
A semiconductor light-emitting element comprising:
請求項1乃至3のいずれか一項に記載の半導体発光素子であって、
前記電極層上には、前記拡散質となりにくい難拡散性金属層が更に積層される、ことを特徴とする半導体発光素子。
The semiconductor light-emitting device according to claim 1,
A semiconductor light-emitting element, wherein a non-diffusible metal layer that is difficult to become a diffusive material is further laminated on the electrode layer.
請求項4に記載の半導体発光素子であって、
前記難拡散性金属層は、Pt、Ni、Pdのいずれかである、ことを特徴とする半導体発光素子。
The semiconductor light emitting device according to claim 4,
The semiconductor light emitting element, wherein the hardly diffusible metal layer is any one of Pt, Ni, and Pd.
請求項1乃至5のいずれか一項に記載の半導体発光素子であって、
前記拡散質である金属薄膜は、Au、Ag及びCuのいずれかであり、
前記拡散媒となる物質は、非晶質珪素及び珪素のいずれかであり、
前記拡散媒となりにくい物質は、酸化アルミニウム、酸化チタン、酸化珪素及び酸化タンタルのいずれかである、ことを特徴とする半導体発光素子。
A semiconductor light emitting device according to any one of claims 1 to 5,
The metal thin film that is the diffusive material is one of Au, Ag, and Cu,
The substance serving as the diffusion medium is either amorphous silicon or silicon,
The semiconductor light emitting element characterized in that the substance that is difficult to serve as a diffusion medium is any one of aluminum oxide, titanium oxide, silicon oxide, and tantalum oxide.
請求項1乃至6のいずれか一項に記載の半導体発光素子であって、前記半導体層は、InP基板又はGaAs基板である、ことを特徴とする半導体発光素子。   7. The semiconductor light emitting device according to claim 1, wherein the semiconductor layer is an InP substrate or a GaAs substrate. 8. 請求項1乃至7のいずれか一項に記載の半導体発光素子であって、前記活性層にはAlが含まれる、ことを特徴とする半導体発光素子。   8. The semiconductor light emitting device according to claim 1, wherein the active layer contains Al. 9. 請求項1乃至8のいずれか一項に記載の半導体発光素子と、
前記半導体発光素子から発光された光を受光する受光素子と、を備える光モジュール。
A semiconductor light emitting device according to any one of claims 1 to 8,
A light receiving element that receives light emitted from the semiconductor light emitting element.
半導体基板に活性層及び半導体層と共に、多層金属からなる電極層を積層する積層工程と、
前記電極層からの距離が大きくなるに従って光の出射方向に延びる断面形状を有するマスクを、前記電極層上に重ねて設置するマスク工程と、
前記マスク工程の後、前記積層の側面に、前記電極層の少なくとも1層を拡散質である金属薄膜として、拡散媒となりにくい物質からなる保護膜、及び前記拡散媒となる物質からなる拡散媒膜を順に重ねて端面保護膜を形成する端面保護膜形成工程と、を備えることを特徴とする半導体発光素子の製造方法。
A lamination step of laminating an electrode layer made of a multilayer metal together with an active layer and a semiconductor layer on a semiconductor substrate;
A mask process in which a mask having a cross-sectional shape extending in the light emission direction as the distance from the electrode layer increases is placed on the electrode layer; and
After the masking process, at least one layer of the electrode layer is formed as a diffusive metal thin film on the side surface of the laminate, and a protective film made of a substance that is difficult to become a diffusion medium, and a diffusion medium film made of the substance that becomes the diffusion medium And a step of forming an end face protective film by sequentially stacking the end face protective films.
JP2011114001A 2011-05-20 2011-05-20 Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device Active JP5718150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114001A JP5718150B2 (en) 2011-05-20 2011-05-20 Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114001A JP5718150B2 (en) 2011-05-20 2011-05-20 Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2012244011A true JP2012244011A (en) 2012-12-10
JP5718150B2 JP5718150B2 (en) 2015-05-13

Family

ID=47465368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114001A Active JP5718150B2 (en) 2011-05-20 2011-05-20 Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5718150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009348A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser
JP2019009347A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237489A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Semiconductor laser and its manufacture
JPH04321292A (en) * 1990-11-08 1992-11-11 Fuji Electric Co Ltd Semiconductor laser element and manufacture thereof
JPH08139406A (en) * 1994-11-14 1996-05-31 Sanyo Electric Co Ltd Semiconductor laser
JP2003198044A (en) * 2001-12-27 2003-07-11 Sharp Corp Semiconductor laser element and manufacturing method thereof, and laser bar-fixing apparatus
JP2003209318A (en) * 2001-11-12 2003-07-25 Sharp Corp Semiconductor laser element and manufacturing method thereof
JP2004193257A (en) * 2002-12-10 2004-07-08 Sharp Corp Semiconductor laser element, manufacturing method thereof, and tool used for the manufacturing method
JP2005136080A (en) * 2003-10-29 2005-05-26 Sharp Corp Semiconductor laser element, its manufacturing method, and optical pickup element
JP2007288090A (en) * 2006-04-20 2007-11-01 Nec Electronics Corp Semiconductor laser device, and its fabrication method
JP2010141017A (en) * 2008-12-10 2010-06-24 Sharp Corp Light emitting element, chip, and method of manufacturing light emitting element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237489A (en) * 1987-03-26 1988-10-03 Oki Electric Ind Co Ltd Semiconductor laser and its manufacture
JPH04321292A (en) * 1990-11-08 1992-11-11 Fuji Electric Co Ltd Semiconductor laser element and manufacture thereof
JPH08139406A (en) * 1994-11-14 1996-05-31 Sanyo Electric Co Ltd Semiconductor laser
JP2003209318A (en) * 2001-11-12 2003-07-25 Sharp Corp Semiconductor laser element and manufacturing method thereof
JP2003198044A (en) * 2001-12-27 2003-07-11 Sharp Corp Semiconductor laser element and manufacturing method thereof, and laser bar-fixing apparatus
JP2004193257A (en) * 2002-12-10 2004-07-08 Sharp Corp Semiconductor laser element, manufacturing method thereof, and tool used for the manufacturing method
JP2005136080A (en) * 2003-10-29 2005-05-26 Sharp Corp Semiconductor laser element, its manufacturing method, and optical pickup element
JP2007288090A (en) * 2006-04-20 2007-11-01 Nec Electronics Corp Semiconductor laser device, and its fabrication method
JP2010141017A (en) * 2008-12-10 2010-06-24 Sharp Corp Light emitting element, chip, and method of manufacturing light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009348A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser
JP2019009347A (en) * 2017-06-27 2019-01-17 住友電気工業株式会社 Quantum cascade semiconductor laser

Also Published As

Publication number Publication date
JP5718150B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
TWI358179B (en) Semiconductor luminous element and process for pro
JP4815812B2 (en) Vertical cavity surface emitting semiconductor laser device
JP4983346B2 (en) Semiconductor light emitting device
JPWO2005067113A1 (en) Semiconductor light emitting device and manufacturing method thereof
JP4650631B2 (en) Semiconductor light emitting device
JP2004235190A (en) Optical semiconductor device
JP2009094332A (en) Surface-emitting semiconductor laser device, and manufacturing method thereof
JP2009054855A (en) Surface emission semiconductor laser device and method for fabrication thereof
JP2007123313A (en) Manufacturing method of surface emitting semiconductor laser
JP5718150B2 (en) Semiconductor light emitting device, optical module, and method for manufacturing semiconductor light emitting device
WO2019163274A1 (en) Semiconductor light-emitting element
JP4923489B2 (en) Semiconductor laser device
TWI690128B (en) Near infrared vertical cavity surface emitting laser and transfer method thereof
JP5867026B2 (en) Laser equipment
JP2011155143A (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser device, optical transmission device, and information processing device
KR20070088920A (en) Nitride light emitting diode including laser energy absorbing superlattices and fabrication method thereof
JP2002305349A (en) Nitride semiconductor laser device
JP2001284702A (en) Light transmitting module and surface emitting laser used therein
JP2002374029A (en) Multibeam semiconductor laser device
JP4869582B2 (en) Semiconductor laser device, optical disk device, and optical transmission system
JP2009071216A (en) Surface emitting semiconductor laser device and manufacturing method of the same
JP4821961B2 (en) Surface emitting semiconductor laser device and manufacturing method thereof
JP6435820B2 (en) Optical semiconductor device and optical semiconductor element mounting method
JP2005166881A (en) Nitride semiconductor laser element
JP2005086027A (en) Vertical cavity surface emitting laser, optical module, and light transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5718150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250